
Face Recognition in Mobile Phones

Guillaume Dave, Xing Chao, Kishore Sriadibhatla
Department of Electrical Engineering

Stanford University
Stanford, USA

gdavo@stanford.edu, chaox@stanford.edu, kishores@stanford.edu

Abstract—In this paper, we investigate various algorithms for
face recognition on mobile phones. First step in any face
recognition system is face detection. We investigated
algorithms like color segmentation, template matching etc. for
face detection, and Eigen & Fisher face for face recognition.
The algorithms have been first profiled in MATLAB and then
implemented on the DROID phone. While implementing the
algorithms, we made a tradeoff between accuracy and
computational complexity of the algorithm mainly because we
are implementing the face recognition system on a mobile
phone with limited hardware capabilities.

Keywords-face recognition; face detection; mobile phones

I. INTRODUCTION
As mobile phones are becoming increasingly powerful,
security of the data stored in mobile phones like email
addresses, sensitive documents, etc., becomes
very important. Most of the current phones have password
protection to address security. However, a face recognition
scheme is much more secure and flexible as it
provides distinctive print to gain access and also the user
need not remember passwords. The goal of this project is to
implement a face recognition application on the DROID
phone, which could be used to unlock the phone or authorize
a transaction when the registered user is recognized.

We used color segmentation combined with template
matching for face detection and Eigen/fisher face algorithms
for face recognition. We first profiled our algorithm in
MATLAB and then implemented it on DROID.

II. PRIOR AND RELATED WORK
Face recognition has been a very active research area in the
last decade. Numerous techniques have been designed to
detect and recognize faces. For the face detection algorithm,
we referred to the work done by Spring 2003 EE368
students. Majority of the students used Color Segmentation
and Template Matching for face detection and obtained good
results. We have studied the same algorithms and evaluated
the tradeoff between accuracy and computational
complexity, as the face recognition system has to be
implemented on mobile phone.

In [1] Vezhnevets et al. realized a quite exhaustive survey of
color segmentation techniques. It appears that parametric
skin modeling methods are better suited to cases like ours
with limited training and target sets. A lot of different

colorspaces can be used, like RGB [2], YCbCr or HSV. In
[3], Chai et al. proposed to use Hue and Cr to detect skin
pixels.

For basic template matching algorithm, we referred to the
EE368 lecture notes.

As two of the commonly discussed face recognition methods
[4-5], Eigenface and Fisherface schemes were employed and
tested in this work. Here we reproduce a brief introduction of
the two algorithms, while referring the reader to the relevant
references.

The eigenface scheme is pursued as a dimensionality
reduction approach, more generally known as principal
component analysis (PCA), or Karhunen-Loeve method.
Such method chooses a dimensionality reducing linear
projection that maximizes the scatter of all projected images.
Given a training set of N images Γi(i = 1,2,…N), each of size
m x n, we could turn the set into a big matrix as

[]1 2 NA = Φ Φ ΦL
where Φi’s are column vectors, each corresponding to an
image as

i iφ μΦ = −
()',[,1]i ireshape mφ = Γ n

()ii
meanμ φ=

The total scatter matrix is defined as
T

TS AA= .
Consider a linear transformation W mapping the image space
into a p-dimensional feature space, p<=N<<mn. PCA
chooses the projection Wopt that maximizes the determinant
of the total scatter matrix of the projected images, i.e.,

1 2arg max T
opt T pW

W W S W w w⎡ ⎤= = ⎣ ⎦Lw

where wi’s are eigenvectors of ST corresponding to the p
largest eigenvalues. Each of them corresponds to an
“eigenface”. The dimension of the feature space is thus
reduced to p. The weights of the training set images and test
images could be then calculated and the Euclidean distances
are obtained. The test face is recognized as the face of
training set with the closest distance, if such distance is
below a certain distance.

Since eigenface method maximizes the scatter within the
whole training set, the points corresponding to the same class
may not be well clustered in the projected space, or may be

mailto:gdavo@stanford.edu
mailto:chaox@stanford.edu
mailto:kishores@stanford.edu

smeared with each other. The variation due to lighting may
cause a within-class scatter to be larger than the between
cluster. One method proposed to overcome, or at least,
reduce the impact from such variation, is the Fisherface
algorithm. It is designed to maximize the between-class
scatter while minimizing the within-class scatter, by
calculating the between-class scatter matrix SB, and within-
class scatter SW, and the optimal projection is chosen as

1 2

arg max

arg max

T
BW

opt pT
WW

W S W
W w

W S W
⎡ ⎤= = ⎣ ⎦Lw w

.
Since the rank of SW is at most N-c, where c is the number of
classes in the training set, PCA is used as a first step to
reduce the dimensionality to avoid singularity. Note that
there are at most c-1 generalized eigenvectors, therefore at
most c-1 “fisherfaces”.

III. ALGORITHM
The below block diagram depicts the major steps in our face
recognition algorithm.

Figure 1: Block diagram of the Face Recognition system

IV. FACE DETECTION
The first step in our face recognition algorithm is the face
detection. We used color segmentation, morphological
processing and template matching algorithms for the face
detection. If the user takes the photo correctly, we can make
the following assumptions:

• The face is centered and takes a big part of the
image, since the photo is shot closely

• The illumination conditions are correct
• The user is facing the camera

So the face detection needs not to use the most performing
algorithm; we rather want an algorithm that can perform well
and fast in the cited conditions.

In consequence, we decided to use the following for face
detection:

1) Use color segmentation to find skin pixels

2) Use morphological operations to eliminate isolated
pixels (false acceptances in 1)

3) Use template matching to extract only the face,
which we will use for face recognition.

IV.1 COLOR SEGMENTATION
Detection of skin color in color images is a very popular and
useful technique for face detection. In the skin color
detection process, each pixel was classified as skin or non-
skin based on its color components values.
To reduce the computation time, we first down sample the
image by a factor of 8. This is done without pre-filtering to
avoid the extra computation required; the aliasing introduced
is negligible. Scale-by-max color balancing is also performed
to reduce the effects of illumination variations. Scale-by-max
was chosen over gray-world because it can be done in the
gamma pre-distorted world and the gray-world assumption is
not quite true for face pictures.

In the literature, the color segmentation can be done in many
different ways, with some very advanced methods to process
the images in extreme illumination conditions or with a
cluttered background. Here we looked for a simple rule to
detect the skin pixels as fast as possible. Two methods in
particular were explored.

First we can work in the RGB space to avoid any calculation.
We modified a rule from [2]:

A pixel with color values (R, G, B) is classified as skin if:
- R > 95 and G > 40 and B > 20 and
- R > G and R > B and
- R-G > 15

This algorithm performed well in general, but we wanted to
explore other options, in particular because the speed of the
RGB classifier was slower than expected. Other widely used
color segmentation methods are based on Cr or Hue
classifiers. We tested various rules for Hue, but the
classification can be too strict or on the contrary too loose for
some lighting conditions.

Figure 2: Example of bad performance for the Hue classifier

Finally, a Cr classifier was derived from [Chai and Ngan,
1999]: A pixel is considered as skin if Cr [136 173]. As Cr
component is easy to compute from RGB (affine
transformation) and there are only two tests to perform, the
classification is really fast, and surprisingly good results
were obtained. So, we adopted this last classifier.

IV.2 MORPHOLOGICAL IMAGE PROCESSING
After color segmentation, a mask of non-skin pixels is
obtained. However this mask is not perfect: some sparse non-

skin pixels are still visible while some parts of the face can
be masked (see fig. 3). Morphological image processing is
thus a good way to eliminate the non-skin visible pixels and
regroup the skin pixels: First, erosion is performed to remove
sparse non-skin pixels. Second, dilation is performed with a
larger disk to regroup the skin regions and smooth their
contours. The disk diameter is bigger when scale-by-max
was used because more skin pixels have been misclassified.

Below is a sample output of the color segmentation and
morphological processing stages.

(a) (b)

(b) (d)

Figure 3: Early steps of the face detection: downsampling (a), color
segmentation with Cr classifier (b), erosion (c), dilation (d).

Aliasing effects due to downsampling are negligible for the face as it has
few high frequency components.

IV.3 TEMPLATE MATCHING
After a color segmented image is obtained, template
matching is used as a final step in the face detection process.
Template matching is a process of locating an object
represented by a template T(x,y) in an input image I(x,y) by
cross-correlating the input with the template. Cross-
correlation is implemented in the frequency domain using
(FFT and IFFT) as it is computationally more efficient.

Down sampled output of the color segmentation and
morphological processing stages is used as an input to the
template-matching block. A standard template (average of
around 400 faces, both male/female and people from
different ethnic backgrounds) was taken from the Internet.
Then normalized 2D cross-correlation is performed with the
given input image to obtain the position of the face. We also
tried to manually generate the standard template using the
training images that we have taken from the phone. But it
didn’t give good results because all the images have to be
exactly aligned for the average image to be useful in
matching process.

Standard template used was a gray scale image. So, input
image is converted to gray scale and then cross-correlated
with the template. The standard template used for matching
purpose is shown in Fig. 4Figure . As we can see from Figure
4, standard template is a straight face without any rotations.

So, template matching makes sense when the input image is
also similar i.e. straight without any rotations.

Figure 4: Standard average face template used for matching.

Faces in the test images taken using the DROID phone can
be of different sizes. Correlating with a standard template
size didn’t give good results. So, we correlated the image
with templates of different sizes (scale ratios from .6 to 1.8)
and compared the correlation values. This technique worked
well in detecting faces of different sizes. Here are some
sample outputs of the template-matching.

Figure 5: Sample outputs of the template matching algorithm

After color segmentation and morphological processing,
ideally only the face portion of the image is left. In such
cases, we probably will not need template matching.
However, in cases where more skin is exposed like hands,
neck etc., or if the background is similar to skin color, then
template matching is helpful in detecting the face.

IV.4 ALTERNATE APPROACH
Template matching algorithm results are heavily dependent
on the kind of template used. If the input is unaligned or
doesn’t closely resemble the template, then the results are not
good. It also failed for images under bad illumination
conditions and dark skin colors. So, we tried to detect the
face using an alternate approach.

Output image of color segmentation stage is post processed
using region labeling. If background color is same as skin
color, then the color segmentation algorithm cannot
differentiate it. Region labeling will help in removing these
small skin colored background regions. The assumption here
is face occupies the major portion of the image. Figure 6
shows the images before and after applying the regional
labeling algorithms.

In some images, to accurately detect the face, neck region
has to be removed. We do a simple post processing after the
regional labeling stage to remove the neck region. If the neck
region is included, usually no of skin pixel rows would we
much greater than that of columns. By detecting this
condition, we can remove the neck region to accurately
detect the face. Figure 7 shoes this post processing.

Figure 6: Regional labeling input and output images

Figure7: Post processing to remove neck region

V. FACE RECOGNITION
After the face portion is detected by the previous steps, we
tried to identify a person’s face in the case that his or her
information has been stored in the training set, or reject this
person if not. Both eigenface and fisherface schemes were
employed and tested.

V.1 TRAINING SET AND TEST SET
We used a training set of 45 images, containing 9 classes
(persons), and 5 images per classes (Fig. 8). The cropped
faces captured by the face detector were used as the inputs of
the recognition step. The faces are centered and rescaled to
the same size.

Figure 8: Training set of 45 images (9 persons, 5 images per person)

We could see from the images that for a same person, the
color and direction of lighting could vary a lot, bringing in
more scatter within the same class on top of the variation of
facial expressions and angle. The background could also
vary, introducing differences between single images of the
same class. To alleviate these effects, some pre-processing
step were performed, including masking with an oval shape
that crops out the face part only, color to gray transformation,
and histogram equalization. The resulted images are shown
as following in Fig. 9.

Figure 9: Pre-processed training set

V.2 EIGENFACES
The same training set was used for both eigenface and
fisherface approaches. In eigenface scheme, the calculated
average face is shown in Fig. 10. In our particular case, there
are 45 images in the test set, therefore at most 44
eigenvectors, i.e., 44 eigenfaces could be found, and they
were sorted according to descending order of their
corresponding eigenvalues. The first ten eigenfaces are
shown in Fig. 11. The faces in the training set are then
projected onto these eigenfaces, and the weights are stored as
coordinates in the feature space.

Figure 10: Average face of the training set

Figure 11: The first ten eigenfaces

V.3 FISHERFACES
For fisherface approach, the eigenfaces calculated above
were used as a first step, but only N-c = 45-9 = 36
eigenvectors were retained for the need of dimensionality
reduction. The fisher linear discriminants were then

calculated in the low dimensionality space. Note that in our
case, 9 classes were included in the training set. Therefore c-
1 = 9-1 = 8 fisherfaces exist (Fig. 12)

Figure 12: Fisherfaces calculated using Fisher Linear Discriminants

Similarly as above, the faces in the training set are projected
onto these fisherfaces, and the weights were stored.

VI. IMPLEMENTATION ON DROID
After profiling and testing the face recognition algorithm in
MATLAB, we then implemented the algorithm on the
Motorola DROID phone. For the face detection part, we used
the face detector available in the Android API instead of
implementing our face detection algorithm. The
documentation is really brief so we do not know for sure on
what algorithm it is based. As it is very robust, we assumed it
uses Viola-Jones. It was used to crop a face bitmap out of the
picture taken with the phone camera.

We developed the face recognition algorithm on the Android
platform. As we have found Fisherface to be more efficient
than Eigenface, only Fisherface was implemented in
Android. The KLT and Fisher LDA projection matrices were
computed in Matlab for our fixed training set and stored on
the Droid external storage.

We then reproduced the steps previously described for
Matlab: preprocessing, mean removal and projection. We
particularly paid attention to stay close to the Matlab
implementation because the same training set eigenvectors
were used. We tried to use JJIL for gray-scale histogram
equalization but it appeared that Gray8HistEq has an
undocumented bug: output values have an offset depending
on the input image. So finally JJIL was not used at all;
instead a new version of Gray8HistEq was written.

Another critical challenge was to keep the computation time
as small as possible, so that the user experience is the best
possible. In order to achieve that goal, we first downsample
the high resolution camera pictures by a factor of 8. The
computation time is then roughly 64 times smaller than for a
full size image. Second, the I/O management was critical.
We had to convert the text files written with Matlab into
binary files to store our KLT, FLD and mean face matrices in
an efficient way. Then it was possible to read these values
with a DataInputStream, which is much faster than to read
line by line from a text file. For example, the projection took
only 0.8 sec with a DataInputStream, compared to 14 sec
with text files.

Finally, our algorithm can identify a user in no more than 1.6
sec (face detection and recognition), with a simple user
interface depicted in Fig. 13.

(a) (b)

Figure 13: Result of the Face Recognition application for Android.
(a) user correctly recognized, (b) user correctly rejected

VII. RESULTS
To test how well the recognition system works, we have a
test set of 134 face images, containing 10 different persons,
one of which was not included in the training set. The test
image is projected onto eigenfaces and fisherfaces in the two
approaches, respectively, and the weights are then stored as
coordinates in the feature space. The Euclidean distances
between the test image coordinates and the training image
coordinates are calculated and the closest training image is
picked out. A threshold is set such that if the closest distance
is above the threshold, the test face is considered
unrecognized, and if below, is associated with the identity of
the closest face. The returned result is thus divided into four
cases:

• False rejection: if the face is associated with the correct
face, but the distance is larger than threshold.

• False acceptance: if the face is associated with the
wrong face, but the distance is smaller than threshold.

• Correct rejection: if the face is associated with the
wrong face, and the distance is larger than threshold.

• Correct acceptance: if the face is associated with the
correct face, and the distance is smaller than threshold.

By tuning the threshold value, the number of images that fall
into the four categories would change. The result is
reproduced in the table below. The addition of the percentage
of correct rejection and correct acceptance is considered as
total correct rate. With eigenface scheme, we were able to
achieve a total correct rate of 84.3%, whereas with
fisherface, the correct rate goes up to 94.0%.

Total number of test images: 134
FR: False Rejection
FA: False Acceptance
CR: Correct Rejection

CA: Correct Acceptance
 Eigenface

Max Correct Rate (84.3%)
Fisherface

Max Correct Rate (94.0%)

Threshold FR FA CR CA Total
correct FR FA CR CA Total

correct
50 42 0 39 53 92 70 0 16 48 64
60 34 0 39 61 100 69 0 16 49 65
70 28 0 39 67 106 62 0 16 56 72
80 21 1 38 74 112 57 0 16 61 77
90 17 8 31 78 109 53 0 16 65 81
100 6 22 17 89 106 47 0 16 71 87
110 2 35 4 93 97 41 0 16 77 93
120 1 38 1 94 95 33 0 16 85 101
130 0 38 1 95 96 27 0 16 91 107
140 0 38 1 95 96 23 0 16 95 111
150 0 39 0 95 95 11 1 15 107 122
160 0 39 0 95 95 5 3 13 113 126
170 0 39 0 95 95 3 6 10 115 125
180 0 39 0 95 95 2 7 9 116 125
190 0 39 0 95 95 0 10 6 118 124
200 0 39 0 95 95 0 12 4 118 122
210 0 39 0 95 95 0 14 2 118 120
220 0 39 0 95 95 0 15 1 118 119
230 0 39 0 95 95 0 15 1 118 119
240 0 39 0 95 95 0 16 0 118 118
250 0 39 0 95 95 0 16 0 118 118

Figure 14: Table of recognition results with Eigenface and Fisherface
scheme

We also plotted the false acceptance rate (FAR) versus the
false rejection rate (FRR) and got the equal error rate (EER)
where the FAR and FRR are equals. It is known that the
smaller the EER, the better a recognition system functions. In
our experiment, we achieved an EER of 35% for eigenface,
and an EER of 25% for fisherface. As expected, the
fisherface scheme worked better for recognizing faces under
varying lighting conditions.

Figure 15: False Acceptance Rate (FAR) versus False Rejection Rate
(FRR) and Equal Error Rate (EER) of test set recognition using both

Eigenface and Fisherface scheme

Step Droid computation time
Preprocessing 0.52s
Mean removal 0.18s

Projection 0.80s
Distance calculation and

identification (including GUI) 0.08s

Total 1.58s
Figure 16: Table of various run times on Droid

The run time of different steps of DROID implementation of
the fisher scheme is shown in the table above. It is also worth
noting that for our particular application, which is face

recognition in mobile phones that likely to be used for
security reasons, we could tolerate a slightly higher false
rejection rate, while a very low false acceptance is preferred.
The threshold value of 150 with fisherface scheme is then
chosen with such intention.

VIII. CONCLUSIONS
In this project, we investigated various algorithms for
implementing face recognition system on mobile phones. We
used color segmentation and template matching for face
detection. There are some limitations for our face detection
algorithm. If background color in an image is akin to the skin
color, then the color segmentation algorithm cannot
distinguish. In the template-matching algorithm, our results
are dependent on the standard template chosen (orientation
etc), illumination conditions etc. Also it didn’t perform well
while detecting faces of people from specific ethnic origins.
Eigenface and fisherface algorithms are then employed and
tested for face recognition. We achieved a total correct
recognition/rejection rate of 84.3% with eigenface and 94.0%
with fisherface. An EER of 35% was obtained with eigenface
and 25% with fisher, indicating that the latter had better
performance. We finally implemented face recognition
algorithm on DROID and integrated it with a standard face
detection application and tested the whole face recognition
system.

As part of the future work, we would like to develop an
application that would allow the user to add/delete face
classes in the training set. This would give users the freedom
to define their own user groups rather than a pre-defined set
on the server. We would also like to explore better
algorithms for face detection and face recognition.

IX. REFERENCES
[1] V Vezhnevets, V Sazonov, A Andreeva, “A survey on pixel-based skin

color detection techniques,” Proc. Graphicon, 2003 – Citeseer.
[2] P. Peer,J. Kovac,F. Solina, “Human skin colour clustering for face

detection,” in submitted to EUROCON 2003 - International
Conference on Computer as a Tool.

[3] D. Chai and K. N. Ngan,”Face segmentagion using skin-color map in
videophone applications,” IEEE Trans. on Circuits and System for
video Technology, Vol.9, No.4, pp. 551-564, 1999.

[4] Peter N. Belhumeur, Joao P. Hespanha, and David J. Kriegman,
“Eigenfaces vs. Fisherfaces: Recognition using class specific linear
projection,” IEEE transactions on pattern analysis and machine
intelligence, Vol. 19, No. 7, 1997..

[5] Thomas Heseltine, Nick Pears, Jim Austin, Zezhi Chen, “Face
Recognition: a comparison of appearance-based approaches,” Proc.
VIIth Digital image computing: Techniques and applications, 10-12,
2003.

X. APPENDIX: JOB PARTITION IN THE GROUP
Guillaume Davo: Color Segmentation on Matlab;

Implementation of face recognition algorithms on
DROID phone.

Kishore Sriadibhatla: Template matching and color
segmentation output post-processing on Matlab.

Xing Chao: Face recognition algorithms (Eigenface and
Fisherface) on Matlab.

	I. Introduction
	II. Prior and related work
	III. Algorithm
	IV. Face Detection
	IV.1 Color Segmentation
	IV.2 Morphological Image Processing
	IV.3 Template Matching
	IV.4 Alternate approach

	V. Face Recognition
	V.1 Training set and test set
	V.2 Eigenfaces
	V.3 Fisherfaces

	VI. Implementation on DROID
	VII. Results
	VIII. Conclusions
	IX. References
	X. Appendix: Job partition in the group

