FORMING-FREE NITROGEN-DOPED ALUMINUM OXIDE RESISTIVE RANDOM ACCESS MEMORY GROWN BY ATOMIC LAYER DEPOSITION TECHNIQUE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Sung Il Park

November 2013
I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

S Simon Wong, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Yoshio Nishi

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Philip Wong

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives.
Abstract

As flash memory devices begin to scale into the sub-20nm lithographical regime, scaling is becoming a challenge because of high electric field requirements for a high programming or erase voltage and rigid leakage requirements for long term storage. In addition, the flash memory design has been based on a two-dimensional approach and density of integration is reaching its limits. To tackle these issues, many candidates for next generation non-volatile memory such as phase change random access memory (PCRAM), STT-magnetic random access memory (STT-RAM), ferroelectric random access memory (FeRAM), and resistive random access memory (RRAM) have been introduced and studied. Among these devices concepts RRAM is a prime candidate because of its unique characteristics. In order for RRAM technology to be adopted for manufacturing, the technology must meet the following requirements. First, the direct integration of metal oxide RRAM on MOSFET should be feasible and RRAM cells must be compatible with the standard CMOS process. Second, it must not require a high forming voltage and it should be programmed with an applied current below sub-uA at high data rates for many switching cycles. Finally, RRAM cells must be feasible for storing multiple bits. We demonstrated nitrogen-doped aluminum oxide RRAM that meets the requirements and the RRAM cell was deposited by a physical vapor deposition technique. However, it has been found that more uniform films can be deposited by an atomic layer deposition technique, and we believe that more uniform films are responsible for uniform switching characteristics. That is the motivation of this dissertation.

We have demonstrated nitrogen-doped aluminum oxide RRAM grown by an atomic layer deposition technique and have monolithically integrated such RRAM cells on top of selection transistors to achieve accurate control of the voltage and current waveforms for programming. We have studied the control of the on-and off-behavior of the RRAM cell by gathering the statistics on the turn-on and turn-off voltage, current and resistance as a function of the bias voltages and the limiting current on the selection MOSFET, and thereby evaluated the feasibility of multi-level programming, reliability, endurance and retention of nitrogen-doped aluminum oxide RRAM. Through this study, novel multi-bit programming strategies were investigated through accurate control of the programming waveform. The data collected
through this extensive study will provide important information on the viability of metal-oxide films for future generation stand-alone and embedded non-volatile memory applications. The demonstration of multi-level programming will greatly extend the scalability of RRAM. The evaluation methodology we develop can be extended to other resistance-change films.
Acknowledgments

I would like to express my thanks to my academic advisor, Professor S. Simon Wong. During my graduate study, he has been academically and financially supportive. An important lesson that I have learned from him is knowing the difference between science and engineering; science asks how nature works and engineering asks how nature can be used. He always asked his students to focus on practical issues and the lesson will be a long term asset for my research journey. Also, I would like to extend my thanks to Professor Yoshio Nishi and Professor H.S. Philip Wong. They gave valuable feedback to my thesis and without them my thesis could not be finished. Next gratitude is reserved for our group members, Wanki Kim, Zhiping Zhang, Jeongha Park, Stanley Yeh, Chaohao Wang, Young-yang Liew, and Alex Omid-zohor. Wanki, Zhiping, and myself worked together to develop RRAM stacks and integrate RRAM cells on top of MOSFET, and I cannot imagine the end of my Ph.D study without them. Next, I want to thank June Wang who is our group secretary, Jim Mcvittee who is in charge of AJA sputtering machine, and Michelle Rinconn who is in charge of Fiji atomic layer deposition tool. When the machine had a problem or even was broken, they always took prompt actions to fix the problem. Next, I am deeply indebted to many friends at Stanford University for their support.

Last but not least, I really thank my family. My depth of gratitude is too great to express in words. My parent raised me by sacrificing their life, and my lovely wife, Areum Han, has supported my study by taking care of our lovely kids, Hans and Yoon.
Table of Contents

Abstract .. iv
Acknowledgments .. vi
List of Tables .. ix
List of Illustrations .. x

Chapter 1: Introduction .. 1
 1.1. Resistive Random Access Memory (RRAM) technology .. 1
 1.2. Basic operations of RRAM ... 4
 1.3. Introduction of nitrogen-doped aluminum oxide RRAM grown by PVD 5
 1.4. Atomic Layer Deposition Vs. Physical Vapor deposition .. 7
 1.5. Introduction of RRAM grown by ALD .. 10
 1.6. Overview of dissertation .. 11

Chapter 2: Investigation of RRAM stacks .. 13
 2.1. TiN electrode for nitrogen-doped AlOₓ RRAM ... 13
 2.2. Aluminum nitride grown by ALD .. 14
 2.3. Incorporation of nitrogen into aluminum oxide ... 15
 2.3.1. AlOₓNᵧ composite material ... 15
 2.3.2. AlN grown on Al₂O₃ ... 17
 2.3.3. AlN grown on TiN electrode .. 22
 2.3.3.1 Al₂O₃ / AlN with TiN electrode ... 22
 2.3.3.2. XPS analysis for nitrogen-doped aluminum oxide RRAM 25

Chapter 3: Optimization of Al₂O₃ / AlN with TiN electrode ... 30
 3.1. Switching characteristics in terms of AlN thickness ... 30
 3.2. Switching characteristics in terms of Al₂O₃ thickness ... 32
 3.3. Switching characteristics dependency on annealing time ... 33

Chapter 4: Fabrication of N-doped AlOₓ RRAM grown by ALD 1T1R system 35
 4.1. Introduction of selection transistors ... 35
4.2. Integration of N-doped AlOₓ RRAM with CMOS ... 37
4.3. Description of 1Transistor 1RRAM structure ... 42

Chapter 5: Electrical switching characteristics of N-doped AlOₓ RRAM grown by ALD 44
5.1. Measurement setup for 1T1R structure ... 44
5.2. I-V switching characteristics ... 45
5.3. Programming voltage distribution .. 49
5.4. Set/reset current versus on resistance .. 51
5.5. Linear and non-linear I-V characteristics of HRS and various LRS 53
5.6. Conduction mechanism in ALD N-AlOₓ RRAM ... 56
5.7. Reliability characteristics of ALD N-AlOₓ RRAM .. 63
 5.7.1. Retention results at 120 °C ... 63
 5.7.2. Read disturb characteristics .. 64
 5.7.3. Endurance switching characteristics ... 65

Chapter 6: Incorporation of nitrogen into Al₂O₃ films ... 68
6.1. Role of nitrogen for resistive switching characteristics .. 68
6.2. Electrical switching characteristics in terms of nitrogen concentration 69
 6.2.1. Set / reset current versus on-resistance .. 69
 6.2.2. Extrapolated energy barrier ... 71
 6.2.3. Endurance characteristics .. 74

Chapter 7: Conclusion .. 79
7.1. Summary ... 79
7.2. Recommendation for future works ... 80

Bibliography .. 81
List of Tables

<table>
<thead>
<tr>
<th>Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1: Summary of ALD TiN properties.</td>
<td>13</td>
</tr>
<tr>
<td>Table 3.1: Summary of switching parameters versus AlN thickness.</td>
<td>31</td>
</tr>
<tr>
<td>Table 3.2: Summary of switching characteristics versus Al₂O₃ thickness.</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.3: Dependency on annealing time of switching characteristics.</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.1: Description of NMOS transistors with different sizes. W and L indicate channel width and length of selection transistors, respectively.</td>
<td>36</td>
</tr>
<tr>
<td>Table 4.2: RRAM cells of different sizes. The numbering corresponds to those shown in Figure 4.5 (b).</td>
<td>43</td>
</tr>
<tr>
<td>Table 6.1: N-AlOₓ with various nitrogen concentrations.</td>
<td>68</td>
</tr>
<tr>
<td>Table 6.2: Summary of extrapolated trap barrier height for HRS.</td>
<td>73</td>
</tr>
<tr>
<td>Table 6.3: Summary of extrapolated trap barrier height for each LRS.</td>
<td>74</td>
</tr>
<tr>
<td>Table 6.4: Summary of endurance characteristics.</td>
<td>78</td>
</tr>
</tbody>
</table>
List of Illustrations

<table>
<thead>
<tr>
<th>Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1: Scaling trend of NAND flash technology [1].</td>
<td>1</td>
</tr>
<tr>
<td>Figure 1.2: Basic I-V characteristics of RRAM; (a) unipolar operations with a forming process (b) bipolar operations with a forming process[17].</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.3: Nitrogen-doped aluminum oxide RRAM deposited by the PVD system; (a) cross-sectional view of a RRAM cell, (b) basic switching characteristics, and (c) retention characteristics of N-AlOₓ RRAM cells[21].</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.4: Illustration of deposition cycles consisting of 4 steps in the atomic layer deposition system; (a) exposure of metal precursors, (b) evacuation of reactants or any by-products, (c) exposure of H₂O, and (d) purging out of reactants or by-products. (e) Illustration of Al₂O₃ layer grown on a silicon substrate after one deposition cycle is reached[22].</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.5: Illustration of deposition processes in the physical vapor deposition system[23].</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.6: Summary of characteristics of films deposited by several deposition techniques[22].</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.7: Switching characteristics of hafnium-based RRAM deposited by an atomic layer deposition technique. (a) Illustration of a forming process, (b) basic I-V characteristics, (c) endurance characteristics, and (d) retention characteristics of HfOₓ RRAM[24].</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.1: AFM picture of TiN films deposited by ALD.</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.2: Atomic profiles of AlN grown on TiN layer.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.3: Cross-sectional view of layered aluminum oxynitride (AlOₓNᵧ).</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.4: Illustration of a set process of AlOₓNᵧ.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.5: Atomic profiles of alternating layers of Al₂O₃ and AlN.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.6: Cross-sectional view of AlN / Al₂O₃ stacks.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.7: Illustration of a set process of AlN / Al₂O₃ stacks.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.8: Atomic profiles of (a) as-deposited AlN / Al₂O₃ stacks and (b) annealed AlN / Al₂O₃ stacks.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.9: Atomic profiles of (a) AlN grown on top of SiO₂ and (b) AlN grown on top of HfO₂.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.10: Process flow of nitrogen-doped aluminum oxide RRAM stacks (50 um X 50 um); (a) cross-sectional view of N-AlOₓ, (b) patterning for the bottom electrode, (c) patterning for the top electrode, and (d) after annealing at 400 °C for 15 minutes.</td>
<td>23</td>
</tr>
</tbody>
</table>
Figure 2.11: Illustration of forming free switching behavior ... 24
Figure 2.12: Basic I-V characteristics of nitrogen-doped aluminum oxide RRAM with TiN electrodes ... 25
Figure 2.13: Atomic profiles of (a) as-deposited stacks and (b) annealed stacks at 400 °C for 30 minutes ... 26
Figure 2.14: Bonding information; (a) Al2p, (b) O1s, and (c) N1s .. 28
Figure 2.15: The peak signals of N1s[33] ... 29
Figure 4.1: (a) \(I_D-V_D\) and (b) \(I_D-V_G\) characteristics of a 10 um / 1 um NMOS transistor. 36
Figure 4.2: Illustration of the process flow for integration of N-AlO\(_x\) on top of selection transistors .. 39
Figure 4.3: (a) Cross-sectional view of RRAM stacks, (b) top view of 1T1R structure, and (c) cross-sectional schematic of 1T1R structure ... 40
Figure 4.4: Cross-sectional view of RRAM stacks that were deposited in a via region 41
Figure 4.5: (a) Test chip snapshot and (b) an enlarged view of 1T1R RRAM area. 42
Figure 5.1: Illustration of measurement set-up for (a) set and (b) reset switching. 44
Figure 5.2: I-V switching characteristics of ALD N-AlO\(_x\) RRAM ... 45
Figure 5.3: Illustration of set switching behaviors showing no forming process. 46
Figure 5.4: Set switching behavior as a function of the gate bias of selection transistors for (a) ALD N-AlO\(_x\) 1T1R structure and (b) PVD N-AlO\(_x\) 1T1R structure, respectively 48
Figure 5.5: Distributions of (a) set and (b) reset voltages of N-AlO\(_x\). The set and reset current are limited to 300nA and 1uA, respectively ... 49
Figure 5.6: (a) Set current versus on-resistance and (b) reset current versus on-resistance 51
Figure 5.7: Plot of natural log of current versus square root of voltage for HRS and various LRS .. 53
Figure 5.8: Dependency on temperature of HRS and various LRS .. 54
Figure 5.9: I-V relationship of (a) HRS and (b) LRS at various temperatures. 57
Figure 5.10: Temperature dependence of HRS and LRS .. 58
Figure 5.11: Illustration of curve-fitting for the Frenkel-Poole emission model 59
Figure 5.12: Illustration of curve-fitting for the Schottky emission model 59
Figure 5.13: Energy band diagram of (a) after an annealing process and (b) after a set process... 60
Figure 5.14: Macroscopic conduction model of ALD N-AlO\(_x\) RRAM .. 61
Figure 5.15: Retention results of the high resistance state and various resistance states at 120 °C. .. 63

Figure 5.16: Read disturb characteristics of various resistance states. ... 64

Figure 5.17: Endurance characteristics of (a) without using smart programming and (b) with using smart programming for N-AlO_x. ... 65

Figure 6.1: (a) Set current versus on-resistance and (b) reset current versus on-resistance for Al_2O_3, 3 % N-AlO_x, and 6 % N-AlO_x, respectively. .. 69

Figure 6.2: (a) Set current versus on-resistance and (b) reset current versus on-resistance for 6 % N-AlO_x, 12 % N-AlO_x, and AlN, respectively. ... 70

Figure 6.3: Fitting results for the Frenkel-Poole emission model of HRS. .. 72

Figure 6.4: Fitting results for the Frenkel-Poole emission model of 1MΩ LRS. 73

Figure 6.5: Pulse endurance characteristics of (a) Al_2O_3, (b) 3 % N-AlO_x, (c) 6 % N-AlO_x, (d) 12 % N-AlO_x, and (e) AlN. .. 77
Chapter 1: Introduction

1.1. Resistive Random Access Memory (RRAM) technology

In order to satisfy society's seemingly insatiable demand for new computers, video games, and smart phones, Moore's law dictates that a new generation of technology be introduced every two years or so. Many studies pertaining to advanced technologies follow this guideline. The main reasons for scaling down the dimensions of logic devices are higher device density and better performance. Scaling allows more transistors to be integrated into a chip with the same dimensions, and integrated chips based on this new technology operate faster and consume less power.

![Scaling trend of NAND flash technology](image)

Figure 1.1: Scaling trend of NAND flash technology [1].
However, silicon, which is the most important material in the semiconductor industry and the major reason why the semiconductor business has become successful, is reaching its physical limits. Thus, an integration density based on a two-dimensional approach, where transistors and passive components are placed in the same plane, is approaching its limit. From a structural point of view, traditional non-volatile memory structures such as NAND and NOR flash memory will be vulnerable to breakdown because a high programming voltage over 10 V is required as we scale down below 15 nm. In addition, a programming time of micro-second range for flash memory is not desirable for nano-second scale operation. To overcome these issues, many candidates such as Resistive Random Access Memory (RRAM)[2-4], Phase Change Random Access Memory (PCRAM)[5], Magnetic Random Access Memory (MRAM)[6], and Ferroelectric Random Access Memory (FeRAM)[7] have been introduced and extensively investigated. Among these candidates, the RRAM technology is the most promising non-volatile memory technology. The structure of RRAM is a simple metal-insulator-metal structure (MIM) that consists of a resistive dielectric material sandwiched between two metal electrodes. Operation of RRAM is also simple. Memory cells start in the high resistance state (HRS) which corresponds to logic ‘0’ state. At about 2 V, it will be set to the low resistance state (LRS) associated with logic ‘1’ state. That is, its state can be easily switched by applying low voltages. Compared with flash memory in which a high voltage over 10 V is required when switching the state of memory cells, the voltage required to switch the state of RRAM cells is low. Hence, no extra circuits such as a charge pump circuit is required to implement a high voltage, which simplifies the design of memory array.

Simple MIM structure and operation of RRAM have triggered interest, and many candidate resistive dielectric materials based on oxides of nickel[8,9], titanium[10], hafnium[11], and aluminum[12] with different electrodes for the dielectric films have been introduced and extensively investigated. At an early stage, nickel oxide and titanium oxide based RRAM were studied and those RRAM cells showed moderate performances such as uA-range current levels[8-
Hafnium based RRAM showed low power operation and a fast programming cycle\cite{11}, but the RRAM requires a forming process by which a resistive switching behavior is facilitated. Recently, we demonstrated nitrogen-doped aluminum oxide (N-AlO$_x$) RRAM technology with very promising switching characteristics. This technology was based on the physical vapor deposition (PVD) system. Although the N-doped AlO$_x$ RRAM technology shows low power operation and fast switching cycles, the control and reproducibility of PVD is marginal. We have studied N-doped AlO$_x$ RRAM grown by an atomic layer deposition (ALD) technique to make the RRAM technology more consistent. It is well known that films grown by ALD outweigh films deposited by PVD in term of the step coverage and uniformity of films\cite{13}. We believe that more uniform films guarantee more consistent switching characteristics which are desirable for the design of memory cell arrays, and this is why we started ALD work.

Along with studies to improve performance by investigating materials, switching mechanisms such as the filament theory\cite{14}, the ion migration model\cite{15}, and the Schottky or Frenkel-Poole emission model\cite{16} to understand what principle RRAM cells operate on and to identify how they change its state from HRS (LRS) to LRS (HRS) from a physical point of view have been proposed. The filament theory involves oxygen vacancies which is associated with LRS. When a current is passed through the filament, heat is released and the filament is broken\cite{14}. The ion migration model explains that the migration of oxygen ions is responsible for resistive switching behaviors of RRAM. When ions are aligned in series or form a current path, the state of memory cells is LRS. When an opposite polarity bias is applied across memory cells, however, ions are repelled or the chain of ions are broken by the bias and this results in HRS\cite{15}. Two common models such as the Schottky emission and Frenkel-Poole emission model explain rectifying conduction behavior in dielectric films. Both models have almost linear dependency between the natural log of current and the square root of voltage, and the energy barrier plays an important role in resistive switching characteristics\cite{16}. In this dissertation, we studied two
models to understand resistive switching characteristics in the N-doped AlO$_x$ RRAM, and Chapter 5 will deal with this topic in detail.

In order for a RRAM technology to be adopted for manufacturing, it must meet the following requirements. It must be compatible with the standard CMOS process and feasible for three dimensional stacking. It must be scalable to nm dimensions. In terms of programming performance, it must not require a high forming voltage. It should be programmed with a low current at high speed for many cycles. Finally, the RRAM cell must be capable of storing multiple bits reliably. For the rest of the dissertation, a RRAM with ALD nitrogen-doped aluminum oxide resistive dielectric that meets these requirements will be described.

1.2. Basic operations of RRAM

![Figure 1.2: Basic I-V characteristics of RRAM; (a) unipolar operations with a forming process (b) bipolar operations with a forming process[17].](image)

One unique characteristic of RRAM is a high voltage forming process that initiates the programming functions[17-19]. Figure 1.2 shows the forming process and basic switching characteristics of RRAM[17]. As shown in Figure 1.2 (a), a RRAM cell starts in the high
resistance state. At about 2.5 V, memory cells will be set into the low resistance state with an applied current 0.5 mA. This low resistance state indicates that a memory cell store '1' bit. A voltage of 0.6 V will be applied to reset the memory cells back to the high resistance state associated with '0' bit. At the subsequent set cycle, RRAM cells can be set into the low resistance state with an applied voltage less than the forming voltage. Since this forming process is not reversible and complicates the design of selection devices and peripheral circuits, eliminating the forming process is desirable. For RRAM operations, there are two operation modes, one is unipolar switching mode and the other one is bipolar switching mode. As shown in Figure 1.2 (a), in unipolar mode the same polarity of bias will be applied across memory cells when we reset memory cells. In bipolar mode, a reverse polarity of bias will be applied across RRAM cells when we reset RRAM cells as shown in Figure 1.2 (b). In general, bipolar switching mode is more reliable than unipolar switching mode[20]. For this reason, we will focus on bipolar switching mode.

1.3. Introduction of nitrogen-doped aluminum oxide RRAM grown by PVD

We demonstrated a forming free RRAM with nitrogen-doped aluminum oxide (N-AlO\textsubscript{x}) resistance change film[21]. It is composed of 20 nm thick aluminum bottom electrode, 10 nm thick nitrogen-doped aluminum oxide resistive dielectric film, and 20 nm thick aluminum top electrode. These layers were deposited in-situ by a physical vapor deposition technique to prevent any contamination or oxidation along the interfaces. Figure 1.3 shows a cross-sectional view of the RRAM, basic switching characteristics, and retention characteristics. RRAM cells can be programmed or erased with an applied current below 50 nA and no significant change of the resistances is observed for 105 seconds at 120 °C. Recently, it has been found that more uniform and conformal films can be deposited by an atomic layer deposition technique. We believe that the uniformity of films affects the uniform switching characteristics. To achieve more uniform switching characteristics, we have developed N-AlO\textsubscript{x} film grown by ALD and integrated such
RRAM on top of CMOS wafers. In the next section, we will introduce an ALD technique and discuss its advantages over a PVD technique.

Figure 1.3: Nitrogen-doped aluminum oxide RRAM deposited by the PVD system; (a) cross-sectional view of a RRAM cell, (b) basic switching characteristics, and (c) retention characteristics of N-AlOₓ RRAM cells[21].
1.4. Atomic Layer Deposition Vs. Physical Vapor deposition

Figure 1.4: Illustration of deposition cycles consisting of 4 steps in the atomic layer deposition system; (a) exposure of metal precursors, (b) evacuation of reactants or any by-products, (c) exposure of H₂O, and (d) purging out of reactants or by-products. (e) Illustration of Al₂O₃ layer grown on a silicon substrate after one deposition cycle is reached[22].
Atomic layer deposition (ALD) is a cyclic process that consists of an iterated sequence of deposition cycles\cite{13,22}. Film thickness and properties are controlled at each cycle, and reproducible deposition of film composites by alternating layer composition is feasible. Because gas uniformity or flow does not affect layer growth, highly uniform and conformal films can be deposited. Figure 1.4 illustrates deposition cycles of the ALD system. In step 1, metal precursors are introduced into a chamber and react with atoms on the bottom layer. In the next step, precursors that do not have any bonding to the atom on the surface or any by-products are purged out of the chamber. In step 3, other precursors are delivered into the chamber and react with atoms in the layer deposited at step 1. Finally, un-reacted precursors and any by-products are evacuated. One of the most important requirements for the first step is the self-limitation of the precursor molecule absorption process. Usually, the ligands bonded to the metal atoms in the precursors, such as halogen or organic ligands, limit further absorption of the metal precursor by passivating the absorption sites after one monolayer is deposited.

Figure 1.5: Illustration of deposition processes in the physical vapor deposition system\cite{23}.

8
Figure 1.5 shows the deposition process in a PVD system based on sputtering. Highly energetic particles such as argon ions bombard the surface in the presence of high electric field. Then, atoms are ejected from the surface of a target material as a result of collision with high-energy particles according to Newton's law. Finally, the dislodged atoms or molecules condense on a substrate as a thin film.

<table>
<thead>
<tr>
<th>Method</th>
<th>ALD</th>
<th>MBE</th>
<th>CVD</th>
<th>Sputter</th>
<th>Evapor</th>
<th>PLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness Uniformity</td>
<td>good</td>
<td>fair</td>
<td>good</td>
<td>good</td>
<td>fair</td>
<td>fair</td>
</tr>
<tr>
<td>Film Density</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>fair</td>
<td>good</td>
</tr>
<tr>
<td>Step Coverage</td>
<td>good</td>
<td>varies</td>
<td>varies</td>
<td>poor</td>
<td>poor</td>
<td>poor</td>
</tr>
<tr>
<td>Interface Quality</td>
<td>good</td>
<td>good</td>
<td>varies</td>
<td>poor</td>
<td>good</td>
<td>varies</td>
</tr>
<tr>
<td>Low Temp. Deposition</td>
<td>good</td>
<td>good</td>
<td>varies</td>
<td>good</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>Deposition Rate</td>
<td>fair</td>
<td>fair</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>Industrial Applicability</td>
<td>varies</td>
<td>varies</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>poor</td>
</tr>
</tbody>
</table>

Figure 1.6: Summary of characteristics of films deposited by several deposition techniques[22].

Figure 1.6 compares the uniformity of films deposited by several deposition techniques and the film deposited by ALD shows better step coverage as expected. We believe that improved uniformity will result in uniform switching characteristics, which will be discussed in Chapter 5.
1.5. Introduction of RRAM grown by ALD

Figure 1.7: Switching characteristics of hafnium-based RRAM deposited by an atomic layer deposition technique. (a) Illustration of a forming process, (b) basic I-V characteristics, (c) endurance characteristics, and (d) retention characteristics of HfO$_x$ RRAM[24].

As a replacement for silicon oxide, hafnium oxide has been extensively investigated due to its high dielectric constant and thermal stability. Such intensive studies about hafnium oxide have triggered research for RRAM applications[24]. Figure 1.7 shows basic I-V switching characteristics and reliability characteristics of hafnium oxide RRAM, and the hafnium oxide resistive dielectric film with TiN electrodes was grown by ALD. The RRAM cell requires a
forming process and the cell can be programmed or erased with an applied current of about 10 μA as shown in Figure 1.7 (a) & (b). Hafnium oxide RRAM cells are switchable over 10^3 switching cycles, and are expected to retain stored data for an extended time, as shown in Figure 1.7 (c) & (d).

However, the problem of hafnium oxide based RRAM grown by ALD is that the RRAM cell requires a forming process by which RRAM operation is facilitated. As discussed in the previous section, the process is necessary for RRAM operation and requires a higher voltage, which complicates the peripheral circuit. To remove the forming process, a PVD metal film is deposited on top or bottom of a resistive dielectric film so that the layer scavenges oxygen from a resistive dielectric and as a result oxygen vacancies, which are necessary for RRAM operation, are generated[11]. The reason for using a PVD film instead of an ALD film is that a pure metal cannot be deposited in the ALD system. However, PVD metal films are deposited under an ex-situ condition and as a result the surfaces or interfaces are exposed to air and are vulnerable to contamination or extra-oxidation by oxygen in air. This will impact the operations of the RRAM. To avoid this issue, we developed RRAM stacks including electrodes that are deposited under an in-situ condition. The following chapter will introduce the fabrication of the N-doped AlO$_x$ RRAM and deal with material analysis, especially XPS, for films grown by ALD.

1.6. Overview of dissertation

This dissertation is organized as follows: Chapter 1 introduces the basic operation of RRAM technology, our previous works based on physical vapor deposition (PVD), atomic layer deposition (ALD), and RRAM grown by ALD. Chapter 2 discusses the investigation of RRAM stacks with various combinations of layers. The compositions of RRAM stacks have been analyzed by X-ray photoelectron spectroscopy (XPS) technique. Chapter 3 describes the optimization of RRAM stacks that were investigated in Chapter 2. Switching characteristics in terms of the thickness of different layer, and annealing time have been analyzed to optimize the
stack. Chapter 4 introduces the integration of nitrogen-doped aluminum oxide RRAM on top of CMOS wafers. Chapter 5 discusses in details, the switching characteristics and the reliability characteristics of RRAM. We also study the switching mechanism. Chapter 6 discusses the role of nitrogen in resistive switching behavior. Finally, Chapter 7 summarizes the discussions that have been addressed in this dissertation and suggests topics for future research.
Chapter 2: Investigation of RRAM stacks

2.1. TiN electrode for nitrogen-doped AlOₓ RRAM

<table>
<thead>
<tr>
<th></th>
<th>Resistivity</th>
<th>Roughness</th>
<th>Deposition rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasms TiN</td>
<td>10 u~25 uΩ*cm</td>
<td>0.2 nm</td>
<td>0.7 A/cycle</td>
</tr>
</tbody>
</table>

Table 2.1: Summary of ALD TiN properties.

Figure 2.1: AFM picture of TiN films deposited by ALD.

In our previous work of PVD nitrogen-doped aluminum oxide RRAM, the electrodes are aluminum[21]. However, it is very difficult to grow pure aluminum metal layers in an ALD system due to the unique deposition method; ligands cannot be bonded to the bottom aluminum layer at the subsequent deposition cycle because they are already bonded to the same metal atom.
Instead, we investigated the characteristics of transition metal, titanium nitride (TiN) as electrodes. TiN is a widely used electrode in industry since its grain is grown slowly and is chemically stable [25]. In addition, TiN deposition recipe in the ALD system is well established. The recipe consists of two steps: first, we baked the chamber of the ALD system at 200 °C for 1 hour to remove oxygen remaining in the chamber and in order to improve the conductivity of TiN. Then, we started deposition cycles. Tetrakis(dimethylamido)titanium(IV) precursor for Ti deposition and plasma nitrogen for N deposition were used. Table 2.1 summarizes the characteristics such as conductivity and roughness of TiN film. Since the roughness of thin film affects the film electrical conductivity, a reasonable surface roughness level must be guaranteed to achieve uniform switching characteristics. As shown in Table 2.1 & Figure 2.1, an excellent surface smoothness for TiN deposited by the ALD system was achieved, and thereby acceptable level of resistivity was obtained.

2.2. Aluminum nitride grown by ALD

![Atomic profiles of AlN grown on TiN layer.](image)

Figure 2.2: Atomic profiles of AlN grown on TiN layer.
In the previous chapter, forming free nitrogen-doped aluminum oxide deposited by the physical vapor deposition technique was introduced. The incorporation of nitrogen into aluminum oxide results in a uniform density of traps and thus uniform switching characteristics without a forming process. To demonstrate such RRAM technology in an atomic layer deposition system, we needed to investigate a method of incorporating nitrogen into a resistive dielectric layer or growing a nitrogen-doped resistive dielectric layer in an ALD system. First, we investigated the characteristics of aluminum nitride deposited by ALD. For this, aluminum nitride layers were grown on titanium nitride layers by alternating chemical species every cycle—TMA for aluminum deposition cycle and nitrogen decomposed by plasma for nitrogen deposition cycle—at 250 °C temperature. We performed X-ray photoelectron spectroscopy (XPS) for these stacks to analyze their composition. The atomic profile of AlN/TiN stacks is shown in Figure 2.2. Although we didn't introduce oxygen into the ALD chamber, some amount of oxygen that was present in the chamber was incorporated into the TiN and AlN films. However, this level of oxygen incorporation was acceptable.

2.3. Incorporation of nitrogen into aluminum oxide

After we developed a recipe for AlN deposition, we investigated a method to incorporate nitrogen into aluminum oxide to implement nitrogen-doped aluminum oxide in an atomic layer deposition system. This section will describe the various experiments of nitrogen incorporation into aluminum oxide.

2.3.1. AlO$_x$N$_y$ composite material

We started with alternating layers of Al$_2$O$_3$ and AlN. TMA precursors and plasma nitrogen were used for AlN deposition, TMA and H$_2$O were used for Al$_2$O$_3$ deposition, and Tetrakis(dimethylamido)titanium(IV) and plasma nitrogen were used for TiN deposition. After
depositing bottom TiN layers, we grew these layers by alternating AlN and Al₂O₃ layers in an ALD system. There was a final annealing at 400 °C for 15 minutes such that nitrogen diffused into the adjacent aluminum oxide layer. Figure 2.3 shows a cross-sectional view of composite AlOₓNₙ.

![Cross-sectional view of composite AlOₓNₙ](image)

Figure 2.3: Cross-sectional view of layered aluminum oxynitride (AlOₓNₙ).

![Set process of AlOₓNₙ](image)

Figure 2.4: Illustration of a set process of AlOₓNₙ.
Figure 2.4 shows the switching characteristics. Although a composite AlO$_x$N$_y$ RRAM cell shows resistive switching behaviors, its switching characteristics are very poor. Figure 2.5 shows the XPS analysis. There is no significant incorporation of nitrogen in the resistive dielectric. This suggests that a composite AlO$_x$N$_y$ is not an appropriate choice due to the ineffective incorporation of nitrogen in the resistive dielectric.

2.3.2. AlN grown on Al$_2$O$_3$

One way to incorporate nitrogen into resistive dielectric films is to implement AlN and Al$_2$O$_3$ bi-layer configuration and anneal the bi-layer so that nitrogen can diffuse into dielectric films. In this experiment, we investigated AlN / Al$_2$O$_3$ RRAM stacks where AlN is grown on top of Al$_2$O$_3$. It is composed of 20 nm thick bottom TiN electrode, 5 nm thick Al$_2$O$_3$ resistive dielectric layer, 4 nm thick AlN layer, and 20 nm thick top TiN electrode. The bottom electrode is composed of 5nm ALD TiN on top of 15 nm PVD TiN, whereas the top electrode is 15nm PVD.
TiN on top of 5nm ALD TiN. The ALD layers, TiN bottom electrode, AlN, Al₂O₃, and TiN top electrode are deposited in-situ to prevent any oxidation or contamination along the interfaces. Final annealing was performed at 400 °C for 15 minutes so that nitrogen diffused from top AlN into Al₂O₃. Conservative RRAM cell size of 50 um X 50 um was chosen. Figure 2.6 shows a cross-sectional view of AlN / Al₂O₃ RRAM cells and its switching characteristic are illustrated in Figure 2.7.

Figure 2.6: Cross-sectional view of AlN / Al₂O₃ stacks.

Figure 2.7: Illustration of a set process of AlN / Al₂O₃ stacks.
Figure 2.8: Atomic profiles of (a) as-deposited AlN / Al₂O₃ stacks and (b) annealed AlN / Al₂O₃ stacks.
Contrary to our expectation that nitrogen diffusion from top AlN layer into bottom Al₂O₃ layer occurs during an annealing process and the incorporation of nitrogen facilitates RRAM operations, these RRAM cells didn't show resistive switching behaviors. The RRAM cell became short, during set, and cannot be reset back to the high resistance state. To understand their switching behaviors, we performed X-ray photoelectron spectroscopy for these stacks. The atomic profiles of AlN / Al₂O₃ stacks are plotted in Figure 2.8. For as-deposited case, there was a very small amount of nitrogen in the AlN region as shown in Figure 2.8 (a). In a previous section, we verified that AlN layers were successfully grown on TiN layers. However, it seems that AlN layers did not grow on top of Al₂O₃. As a result, there is no significant nitrogen diffusion from AlN into Al₂O₃ during the annealing process at 400 °C for 30 minutes, as shown in Figure 2.8 (b). The XPS results raised a question: Is AlN deposition dependent on the substrate?

To answer the question, we conducted a few experiments. First, we deposited AlN on top of oxide-based dielectric films such as hafnium oxide and silicon dioxide using the following procedure. After depositing the oxide films in the ALD system, we transferred samples from the chamber to the load lock without breaking vacuum and baked the chamber at 200 °C for 2 hours to get rid of oxygen remaining in the chamber before the deposition of AlN layer. Finally, we annealed the samples at 400 °C for 30 minutes to trigger diffusion of nitrogen into oxide dielectric films, and their compositions were analyzed by XPS. Figure 2.9 shows atomic profiles of each case. As shown in Figure 2.9, no significant nitrogen was incorporated in the AlN region and therefore noticeable diffusion didn't occur during the annealing process. Although we cannot explain the phenomena physically, the experimental results suggest that it is difficult to incorporate nitrogen into AlN that is grown on oxide dielectric films.
Figure 2.9: Atomic profiles of (a) AlN grown on top of SiO$_2$ and (b) AlN grown on top of HfO$_2$.
2.3.3. AlN grown on TiN electrode

In previous sections, we investigated switching characteristics of a composite AlO$_x$N$_y$ and AlN / Al$_2$O$_3$ stacks where AlN is grown on top of Al$_2$O$_3$ and found that these stacks were not appropriate for RRAM stacks because there was no significant nitrogen incorporation in the resistive dielectric. We showed that AlN can be grown on TiN electrode. In this section, we will describe RRAM stacks based on AlN grown on TiN electrode.

2.3.3.1 Al$_2$O$_3$ / AlN with TiN electrode

(a)
(b)
(c)
Figure 2.10: Process flow of nitrogen-doped aluminum oxide RRAM stacks (50 um X 50 um); (a) cross-sectional view of N-AlO_x, (b) patterning for the bottom electrode, (c) patterning for the top electrode, and (d) after annealing at 400 °C for 15 minutes.

We investigated another type of stacks where Al_2O_3 is grown on top of AlN. In this experiment, 20 nm thick bottom TiN electrode, 4 nm thick AlN diffusion layer, 5 nm thick Al_2O_3 resistive dielectric, and 20 nm thick top TiN electrode were deposited. The bottom electrode is composed of 5nm ALD TiN on top of 15 nm PVD TiN, whereas the top electrode is 15nm PVD TiN on top of 5nm ALD TiN. The ALD layers, TiN bottom electrode, AlN, Al_2O_3, and TiN top electrode are deposited in-situ to prevent any oxidation or contamination along the interfaces. TMA precursor and H_2O were used for Al_2O_3 deposition, TMA precursor and plasma nitrogen were used for AlN deposition, and Tetrakis(dimethylamido)titanium(IV) precursor and plasma nitrogen were used for TiN deposition. Figure 2.10 illustrates the process flow for fabricating nitrogen-doped aluminum oxide RRAM stacks. After in-situ deposition of RRAM stacks, we etch these stacks all the way down until the bottom TiN electrode is reached. Then, an etching process for the top electrode is performed as shown in Figure 2.10 (c). In this step, smaller size of mask image is used to avoid a leakage problem caused by etching of the sidewalls. Sidewalls of these stacks may be damaged during the etching process and as a result act as leakage paths. When the same size of mask image is used, effective cell area is determined by either top or bottom
electrode. However, the leakage paths caused by etching of the sidewalls can affect switching characteristics. This leakage problem can be prevented with two different sizes of electrodes where the image for top electrode is smaller than it for bottom electrode. Finally, we anneal these stacks at 400 °C for 15 minutes so that nitrogen diffuses from bottom AlN into Al₂O₃.

Figure 2.11: Illustration of forming free switching behavior.

Conservative RRAM cell size of 50 um X 50 um was chosen. Figure 2.11 compares 1st set cycle with subsequent set cycle, and no significant voltage difference between 1st and 2nd set cycle was observed, which indicates that a forming process is not required. As shown in Figure 2.12, a RRAM cell starts in the high resistance state of about 1 MΩ. At about 1 V, it will be set from the high resistance state into the low resistance state with an applied current 10 uA. A negative voltage of 1.4 V is applied to reset to cells back to the high resistance state, and the current required to reset is as low as 15 uA. Overall, very promising switching characteristics
were observed, and we believe that nitrogen diffuses from bottom AlN into top Al₂O₃ during the annealing process and the incorporation of nitrogen into Al₂O₃ results in a uniform density of traps that are necessary for RRAM operations and as a result facilitates RRAM operations. To prove that, we performed X-ray photoelectron spectroscopy (XPS) analysis for nitrogen-doped aluminum oxide RRAM, and the next section will discuss the results.

![Graph showing I-V characteristics of nitrogen-doped aluminum oxide RRAM with TiN electrodes.](image)

Figure 2.12: Basic I-V characteristics of nitrogen-doped aluminum oxide RRAM with TiN electrodes.

2.3.3.2. XPS analysis for nitrogen-doped aluminum oxide RRAM

Al₂O₃ grown on top of AlN structure showed very promising results such as no forming process and low operation currents and voltages. We believe that the incorporation of nitrogen into Al₂O₃ throughout the film results in these desirable switching characteristics. To verify that, the composition of nitrogen-doped aluminum oxide stacks were analyzed by X-ray photoelectron spectroscopy (XPS).
Figure 2.13: Atomic profiles of (a) as-deposited stacks and (b) annealed stacks at 400 °C for 30 minutes.
Figure 2.13 shows atomic profiles of aluminum in green, nitrogen in red, oxygen in blue, and titanium in black for (a) as-deposited and (b) annealed stacks. The limited depth resolution of XPS causes the gradual change of the composition, but this does not affect conclusions that will be discussed. For as-deposited films, no nitrogen was detected in the bulk of the Al$_2$O$_3$ region. On the other hand, at least 6% nitrogen was incorporated in the same region for annealed films. Oxygen concentration in the bulk of the AlN region also increased after annealing. This suggests that nitrogen incorporated into Al$_2$O$_3$ comes from bottom AlN, not top TiN electrode and nitrogen diffuses from bottom AlN into Al$_2$O$_3$ during the annealing process.
Figure 2.14: Bonding information; (a) Al2p, (b) O1s, and (c) N1s.
XPS can also provide bonding information. The Al2p, O1s, and N1s signals are plotted in Figure 2.14. The Al2p signals at each depth, 2nm, 4nm, and 6nm below TiN top electrode are plotted in Figure 2.14 (a). The signal at each depth can be expressed as the sum of two sub-peak signals, one at 74 eV corresponding to Al-N bonding[26-29] and another one at 76 eV associated with Al-O bonding[30,31]. In addition, the peak shifts from 76 eV (the top Al2O3) to 74 eV (the bottom AlN)[32]. As shown in Figure 2.14 (b) and (c), the peak signal of O1s was detected at 532 eV which indicates oxygen is bonded to aluminum, and the peak signal of N1s was found at 398 eV which means nitrogen is bonded to aluminum, not oxygen.

Figure 2.14: The peak signals of Al2p[26].

Figure 2.15 from reference [33] supports an observation. The N1s peak associated with AlN is found at 398 eV, and the N1s peak related to composite AlON is detected at 402 eV. These results confirm that after annealing, our resistive dielectric is a mixture of AlN and Al2O3, not a composite AlON material[34].

Figure 2.15: The peak signals of N1s[33].
Chapter 3: Optimization of $\text{Al}_2\text{O}_3 / \text{AlN}$ with TiN electrode

In the previous chapter, we investigated several RRAM stacks and found that $\text{Al}_2\text{O}_3 / \text{AlN}$ structure with TiN electrode, where AlN layer is grown on TiN, is a prime candidate among them. Based on the stack information, we optimized its switching characteristics by varying the thickness of each layer and annealing time. In this experiment, 20 nm thick bottom TiN electrode, 4 nm thick AlN diffusion layer, 5 nm thick Al_2O_3 resistive dielectric, and 20 nm thick top TiN electrode were deposited. The bottom electrode is composed of 5nm ALD TiN on top of 15 nm PVD TiN, whereas the top electrode is 15nm PVD TiN on top of 5nm ALD TiN. The ALD layers, TiN bottom electrode, AlN, Al_2O_3, and TiN top electrode are deposited in-situ to prevent any oxidation or contamination along the interfaces. In this chapter, optimization results—what thicknesses of aluminum oxide and aluminum nitride layer result in best performance, and how long RRAM cells need to be annealed—will be discussed.

3.1. Switching characteristics in terms of AlN thickness

In this section, we will discuss switching characteristics in terms of AlN thickness. To find how the thickness of AlN layer affects switching characteristics, we varied the thickness of AlN layer from 0 nm to 4 nm at a given Al_2O_3 thickness (5 nm). TMA precursor and nitrogen decomposed by plasma were used for AlN layer deposition, and TMA precursor and H_2O were used for aluminum oxide deposition. It was followed by annealing at 400 °C for 15 minutes. Conservative RRAM cell size of 50 um X 50 um was chosen. Table 3.1 summarizes switching
characteristics versus AlN thickness. The negative V_{reset} and I_{reset} indicate that the memory cells were programmed by bipolar switching mode.

<table>
<thead>
<tr>
<th></th>
<th>0 nm(Al_2O_3)</th>
<th>1 nm</th>
<th>2 nm</th>
<th>3 nm</th>
<th>4 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{on}</td>
<td>Breakdown</td>
<td>Breakdown</td>
<td>30 k~100 kΩ</td>
<td>20 k~100 kΩ</td>
<td>20 k~90 kΩ</td>
</tr>
<tr>
<td>R_{off}</td>
<td>1.1 M ~ 2.1 MΩ</td>
<td>1.1 M ~ 2.1 MΩ</td>
<td>0.8 M ~ 1 MΩ</td>
<td>0.8 M ~ 1 MΩ</td>
<td>0.7 M ~ 1 MΩ</td>
</tr>
<tr>
<td>V_{set}</td>
<td>~ 3.5 V</td>
<td>2.5 ~ 3.2 V</td>
<td>0.8 ~ 1.2 V</td>
<td>0.8 ~ 1.2 V</td>
<td>0.8 ~ 1.2 V</td>
</tr>
<tr>
<td>V_{reset}</td>
<td>N/A</td>
<td>N/A</td>
<td>-(1.2 ~ 1.6) V</td>
<td>-(1.2 ~ 1.6) V</td>
<td>-(1.2 ~ 1.6) V</td>
</tr>
<tr>
<td>I_{set}</td>
<td>~ uA</td>
<td>~ uA</td>
<td>uA ~ 10 uA</td>
<td>uA ~ 10 uA</td>
<td>uA ~ 10 uA</td>
</tr>
<tr>
<td>I_{reset}</td>
<td>N/A</td>
<td>N/A</td>
<td>-(10 u ~ 90 u) A</td>
<td>-(10 u ~ 100 u) A</td>
<td>-(10 u ~ 100 u) A</td>
</tr>
</tbody>
</table>

Table 3.1: Summary of switching parameters versus AlN thickness.

For a 0 nm AlN or pure aluminum oxide sample, no resistive switching behaviors were shown. At about 3.5 V, the RRAM cell changed its state from the high resistance state to the low resistance state with an applied current as low as a few uA. However, it cannot be reset and no subsequent switching behaviors were observed. As the thickness of AlN layer increases, RRAM cells start showing resistance switching behaviors. In addition, the number of switchable memory cells increases with AlN thickness and RRAM cells can be programmed at lower voltages. In the case of thinner AlN layer samples, not enough traps required for initiating resistive switching.
behaviors exist in Al₂O₃ layer, which explains why thinner AlN layer structures require a high forming voltage. In the case of thicker AlN layer structures, there is enough diffusion of nitrogen from AlN into Al₂O₃ to create a moderate amount of traps during the annealing process. Hence, the RRAM cells can be programmed at a lower voltage. This suggests that a sufficiently thick AlN layer is required for facilitating RRAM operations. It is determined experimentally that 4 nm thick AlN layer samples resulted in best performance.

3.2. Switching characteristics in terms of Al₂O₃ thickness

In the previous section, we found that the optimum AlN thickness was 4 nm. Next, we investigated switching characteristics in terms of Al₂O₃ thickness to optimize characteristics. For this, we varied the thickness of aluminum oxide resistive layer from 4 nm to 7 nm to see how Al₂O₃ thickness affects switching characteristics. Same precursors for AlN and Al₂O₃ layer deposition were used and these layers were deposited in-situ in an atomic layer deposition system. Final annealing at 400 °C for 15 minutes was performed such that nitrogen diffuses from AlN into Al₂O₃.

The experimental results are summarized in Table 3.2. On–resistance and off-resistance were determined at 0.3 V. The negative Vreset and Ireset indicate that the memory cells were programmed by bipolar switching mode. As Al₂O₃ thickness increases, the number of switchable memory cells decreases and at the same time a forming process is required. For 7 nm Al₂O₃ structures, resistive switching behaviors were observed for only a few memory cells and for those cells a forming process was required. This indicates that diffusion of nitrogen from bottom AlN layer into thick Al₂O₃ were not enough to create the amount of traps that are necessary for RRAM operations. The remaining region in Al₂O₃ layer where nitrogen does not penetrate is not an effective resistive dielectric. This also explains why a forming process is required for thick Al₂O₃ structures. In this experiment, we found that the optimum combination of layers is 5 nm thick Al₂O₃ and 4 nm thick AlN layer.
Table 3.2: Summary of switching characteristics versus Al₂O₃ thickness.

3.3. Switching characteristics dependency on annealing time

In previous sections, we optimized switching characteristics of Al₂O₃ / AlN RRAM cells by controlling thickness of AlN or Al₂O₃ layer and found that 5 nm thick Al₂O₃ and 4 nm thick AlN results in best performance. Next, we will discuss the dependency of switching characteristics on annealing time. The purposes of this experiment are to investigate the optimum extent of nitrogen diffusion and to check if Al₂O₃ / AlN RRAM stacks are compatible with the standard CMOS process. In the standard CMOS process, final annealing in forming gas at 400 °C for 30 minutes is typically performed. The effects of annealing time on switching characteristics
are summarized in Table 3.3. On-resistance and off-resistance were determined at 0.3 V and bipolar switching mode was applied. As deposited samples, an RRAM cell changed its state from the high resistance state to the low resistance state, but no subsequent switching behaviors were observed. Their switching characteristics are similar to those of pure Al₂O₃ RRAM stacks. As annealing time increases, the number of switchable memory cells increases without a forming process. This is because more nitrogen diffuses from AlN into Al₂O₃ as annealing time increases and as a result more traps in Al₂O₃ that are necessary for RRAM operations are created. No significant dependency on annealing time over 15 minutes was observed, and this indicates that Al₂O₃ / AlN RRAM stacks are compatible with the standard CMOS process.

<table>
<thead>
<tr>
<th></th>
<th>As deposited</th>
<th>5min @400°C</th>
<th>10min @400°C</th>
<th>15min @400°C</th>
<th>30min @400°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{on}</td>
<td>Breakdown</td>
<td>30 k ~ 100 kΩ</td>
<td>20 k ~ 100 kΩ</td>
<td>20 k ~ 90 kΩ</td>
<td>10 k ~ 80 kΩ</td>
</tr>
<tr>
<td>R_{off}</td>
<td>1.1 M ~ 2.1 MΩ</td>
<td>0.8M ~ 1 MΩ</td>
<td>0.8 M ~ 1 MΩ</td>
<td>0.7 M ~ 1 MΩ</td>
<td>0.5 M ~ 0.9 MΩ</td>
</tr>
<tr>
<td>V_{set}</td>
<td>2.5 ~ 3.2 V</td>
<td>0.8 ~ 1.2 V</td>
<td>0.8 ~ 1.2 V</td>
<td>0.8 ~ 1.2 V</td>
<td>0.6 ~ 1 V</td>
</tr>
<tr>
<td>V_{reset}</td>
<td>N/A</td>
<td>-(1.2 ~ 1.6) V</td>
<td>-(1.2 ~ 1.6) V</td>
<td>-(1.2 ~ 1.6) V</td>
<td>-(1 ~ 1.5) V</td>
</tr>
<tr>
<td>I_{set}</td>
<td>~uA</td>
<td>uA ~ 10 uA</td>
<td>uA ~ 10 uA</td>
<td>uA ~ 10 uA</td>
<td>uA ~ 10 uA</td>
</tr>
<tr>
<td>I_{reset}</td>
<td>N/A</td>
<td>-(10 u ~ 90 u)A</td>
<td>-(10 u ~ 100 u)A</td>
<td>-(10 u ~ 100 u)A</td>
<td>-(30 u ~ 150 u)A</td>
</tr>
</tbody>
</table>

Table 3.3: Dependency on annealing time of switching characteristics.
Chapter 4: Fabrication of N-doped AlO$_x$
RRAM grown by ALD 1T1R system

In previous chapters, we showed that Al$_2$O$_3$ / AlN stacks where Al$_2$O$_3$ layer grown on AlN is appropriate for RRAM stacks and optimized the switching characteristics by varying the thickness of each layer and controlling the annealing time. Based on the stack information and optimization results obtained, we monolithically integrated such RRAM on top of CMOS wafers to achieve accurate control of the voltage and current waveforms for programming. This chapter will describe how we integrate nitrogen-doped aluminum oxide grown by an atomic layer deposition technique on top of selection transistors and control selection transistors during setting or resetting memory cells.

4.1. Introduction of selection transistors

In this section, description of selection transistors and switching characteristics will be introduced. First, NMOS selection transistors have four different sizes of channel width or length as shown in Table 4.1. Figure 4.1 illustrates I_D-V_D and I_D-V_G characteristics of a selection transistor. The minimum driving current level exceeds micro-Ampere when transistors are fully turned on. Because our nitrogen-doped aluminum oxide RRAM cells can be programmed with an applied current below micro-Ampere (which will be discussed in the next chapter), selection transistors need to operate in the sub-threshold region to accurately control the programming current.
Figure 4.1: (a) I_D-V_D and (b) I_D-V_G characteristics of a 10 um / 1 um NMOS transistor.

Table 4.1: Description of NMOS transistors with different sizes.

<table>
<thead>
<tr>
<th>W/L</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 um / 1 um</td>
<td>20 um / 2 um</td>
<td>100 um / 5 um</td>
<td>100 um / 1 um</td>
<td></td>
</tr>
</tbody>
</table>
4.2. Integration of N-doped AlO\textsubscript{x} RRAM with CMOS

Figure 4.2 illustrates the process flow for integration of N-AlO\textsubscript{x} RRAM on top of selection transistors. Figure 4.2 (a) starts with CMOS transistors already integrated in the substrate (not shown), connected with the Al layer shown. The Al layer is connected to the drain contact of a selection transistor, but the connections to source and gate contacts are not shown in Figure 4.2. We started with silicon oxide layer where LTO densification was performed at 400 °C as shown in Figure 4.2 (a). On top of LTO layer, we deposited RRAM stacks consisting of 20 nm thick bottom TiN electrode, 4 nm thick AlN, 5 nm thick Al\textsubscript{2}O\textsubscript{3}, and 20 nm thick top TiN electrode as shown in Figure 4.2 (b). The bottom electrode is composed of 5nm ALD TiN on top of 15 nm PVD TiN, whereas the top electrode is 15nm PVD TiN on top of 5nm ALD TiN. The ALD layers, TiN bottom electrode, AlN, Al\textsubscript{2}O\textsubscript{3}, and TiN top electrode are deposited in-situ to prevent any oxidation or contamination along the interfaces.
Figure 4.2: Illustration of the process flow for integration of N-AlO\textsubscript{x} on top of selection transistors.

In Figure 4.2 (c), RRAM area was defined by etching four layers. In next steps, bottom electrode for RRAM cells was patterned and was followed by top electrode patterning as shown in Figure (d) and (e), respectively. Fluorine gas etches TiN or SiO\textsubscript{2} layer, not Al\textsubscript{2}O\textsubscript{3} or AlN layer. Similarly, chlorine gas etches Al\textsubscript{2}O\textsubscript{3} or AlN layer chemically, but not TiN or SiO\textsubscript{2} layer. This makes selective etching feasible. Next, we deposited 200 nm plasma enhanced chemical vapor deposition (PECVD) oxide for the purpose of isolation as shown in Figure 4.2 (f). Here, the topology of PECVD oxide was oversimplified such that the surface of PECVD oxide layer is flat and smooth. In reality, the surface of the oxide layer is not flat, but this doesn’t affect conclusion that will be discussed in this dissertation. In step (g) and (h), contact vias for top and bottom TiN electrode were made and were followed by making contact vias for source, drain, gate, and body of a selection transistor, respectively. Next, titanium barrier layer and aluminum interconnection
layer were deposited and were patterned as shown in Figure 4.2 (i) and (j), respectively. For the last step, final annealing at 400 °C for 15 minutes were performed. Figure 4.3 (a) shows a SEM cross-sectional view of RRAM stacks. Figure 4.3 (b) illustrates top view of fabricated 1T1R structure and how TiN bottom electrode is connected to the drain region of a NMOS selection transistor. Figure 4.3 (c) shows a cross section schematic of 1T1R structure.

Figure 4.3: (a) Cross-sectional view of RRAM stacks, (b) top view of 1T1R structure, and (c) cross-sectional schematic of 1T1R structure.
Figure 4.4: Cross-sectional view of RRAM stacks that were deposited in a via region.

In this experiment, we also considered topography of RRAM stacks. The RRAM stacks were not deposited in a via region directly. If RRAM stacks were deposited in the via region as shown in Figure 4.4, films that were deposited on the sidewalls of the via tend to be thinned, and therefore most current will flow across the thinned RRAM stacks on the sidewalls. This will affect the reliability of RRAM stacks. For this reason, we prefer planar structure.

4.3. Description of 1Transistor 1RRAM structure

Figure 4.5 (a) shows a snapshot of the test chip. The 1T1R cell area is enlarged in Figure 4.5 (b). In Figure 4.5, m1 to m4 correspond to column of transistors with different width or length as summarized in Table 4.1. In each column, 13 RRAM cells with different sizes are located and these are summarized in Table 4.2. In these RRAM sets, we conservatively chose RRAM cell size of 1um X 1um for detailed characterization.
Figure 4.5: (a) Test chip snapshot and (b) an enlarged view of 1T1R RRAM area.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRAM cells size</td>
<td>10 um X 10 um</td>
<td>5 um X 5 um</td>
<td>1 um X 1 um</td>
<td>0.9 um X 0.9 um</td>
<td>0.8 um X 0.8 um</td>
<td>0.7 um X 0.7 um</td>
<td>0.6 um X 0.6 um</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>RRAM cells size</td>
<td>0.5 um X 0.5 um</td>
<td>1.5 um X 1.5 um</td>
<td>1.4 um X 1.4 um</td>
<td>1.3 um X 1.3 um</td>
<td>1.2 um X 1.2 um</td>
<td>1.1 um X 1.1 um</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2: RRAM cells of different sizes. The numbering corresponds to those shown in Figure 4.5 (b).
Chapter 5: Electrical switching characteristics of N-doped AlO$_{x}$ RRAM grown by ALD

In this chapter, switching characteristics of 1T1R N-AlO$_{x}$ RRAM cells will be discussed in details. Before we discuss characteristics, measurement set-up for characterization of N-AlO$_{x}$ will be introduced in the following section.

5.1. Measurement setup for 1T1R structure

Figure 5.1: Illustration of measurement set-up for (a) set and (b) reset switching.
Figure 5.1 illustrates the configurations for measuring the 1T1R structure. As shown in Figure 5.1, V_G indicates a gate bias and RRAM cells are connected to the drain contact directly. With this configuration, the parasitic capacitance is minimized, and instantaneous switching prevents over-programming [35]. This explains why 1T1R structures show reliable and uniform switching characteristics. When we set a memory cell, a small bias is applied to the gate so that the selection transistor operates in the sub-threshold region and as a result controls current level of nano-Ampere. This is because our N-AIO$_x$ RRAM cells can be programmed with an applied current below micro-Ampere range.

5.2. I-V switching characteristics

Figure 5.2: I-V switching characteristics of ALD N-AIO$_x$ RRAM.
I-V switching characteristics of N-AlOₓ RRAM are shown in Figure 5.2. Arrows indicate switching sequence of N-AlOₓ RRAM cells. Memory cells start in the high resistance state of about 1 GΩ. At about voltage of 2.4 V memory cells will be set from the low resistance state to the high resistance state with an applied current as low as 600 pA. A negative voltage of 1.8 V will be applied to reset memory cells back to the high resistance state. The current that is required to reset memory cells can be as low as 800 pA. The resulting on-off ratio, which is defined as ratio off-resistance to on-resistance, is about 20, which is insufficient for multi-bit storage. However, this does illustrate the potential of this technology for low power application. Figure 5.3 compares the 1st set cycle with the subsequent set cycle. Set voltage is defined as the point where current flowing across memory cells abruptly jumps into high level of current, and no significant difference in the set voltage between the 1st and the 2nd set cycle is detected. This indicates the N-AlOₓ RRAM is a forming free device. We believe that a moderate amount of traps is required to facilitate resistive switching behavior. If less traps exist in the resistive
dielectric films, a high voltage is needed to be applied across the film to create traps that are necessary for RRAM operations, which explains a forming process. On the other hand, many traps in resistive dielectric films may result in forming free switching behavior but at the same time make the films leaky which is not desirable for low power application. In addition, it is difficult to precisely control the amount of traps caused by oxygen vacancies due to strong preference of aluminum to bond with oxygen. However, we can obtain a moderate amount of traps by incorporating nitrogen into aluminum oxide because chemical reaction of nitrogen to aluminum is not as strong as that of oxygen to aluminum and the incorporation of nitrogen into aluminum oxide is limited. We believe that the incorporation of nitrogen results in a uniform density of traps that are necessary for RRAM operations and removes the forming process.
Figure 5.4: Set switching behavior as a function of the gate bias of selection transistors for (a) ALD N-AlO\textsubscript{x} 1T1R structure and (b) PVD N-AlO\textsubscript{x} 1T1R structure, respectively.

Since we have a 1T1R configuration, we can control set current by adjusting the gate bias of the selection transistor. Figure 5.4 shows set switching behavior of ALD and PVD N-AlO\textsubscript{x} 1T1R structure as a function of the gate bias of the selection transistor. The switching conditions such as set compliance current and the gate bias are inserted. For both ALD and PVD 1T1R structure, a few hundreds mV for the gate bias indicates the selection transistor operates in the sub-threshold region, and drain current of the selection transistor increases with the gate bias. Figure 5.4 also shows that the set voltage of ALD N-AlO\textsubscript{x} 1T1R is less sensitive to the gate bias.
5.3. Programming voltage distribution

Figure 5.5: Distributions of (a) set and (b) reset voltages of N-AlOx. The set and reset current are limited to 300 nA and 1 uA, respectively.
Distributions of set and reset voltages for ALD and PVD N-AlO$_x$ 1T1R structure are plotted in Figure 5.5. This type of statistical study such as distributions of switching parameters will be a useful guideline when array of RRAM cells are implemented in circuit systems. If these parameters are distributed broadly, circuits must be designed to guarantee reliable operation, usually with a sacrifice in circuit performance. Therefore, a tight distribution of switching parameters is highly desirable. As shown in Figure 5.5, ALD N-AlO$_x$ RRAM cells show a tighter distribution of set and reset voltages than that of PVD N-AlO$_x$ RRAM cells. We believe that the tight distribution is due to the improved uniformity of films deposited by ALD.
5.4. Set/reset current versus on resistance

Figure 5.6: (a) Set current versus on-resistance and (b) reset current versus on-resistance.
In section 5.2, I-V characteristics of forming free N-AlO_x RRAM were shown, and the resulting on/off ratio was not sufficient for multi-bit storage. A higher set current should be used to accommodate for multi-bit storage. With 1T1R configuration, we can control the set current by adjusting the gate bias of the selection transistor. Figure 5.6 illustrates the relationship between set/reset current and on-resistance. In this figure, the on-resistance was defined as the ratio of voltage and current at an applied voltage of 0.3 V. If a higher set current is used, the resulting on-resistance will be lower. Conversely, a lower set current will result in higher on-resistance as shown in Figure 5.6 (a). As expected, the selection transistor successfully limits the set current and therefore on-resistance is precisely controlled by the gate bias of the selection transistor. In Figure 5.6 (b), for lower on-resistance a higher reset current is required, and higher on-resistance requires a lower reset current. In the case of no selection transistors or diodes, the reset current is higher than the set current. However, the electrical damage that may occur during the set process can be minimized by using the selection transistor, and therefore the reset currents can be comparable to the set currents [21]. Overall, the selection transistor controls the set current and thereby on-resistance, and finally the resulting on-resistance determines the subsequent reset current. The strong relationship between the set or reset current and on-resistance is observed for both ALD and PVD N-AlO_x RRAM. Based on the relationship, we can control on-off resistance ratio to accommodate for multi-bit storage; for an on-off resistance ratio of 10^3 with 1 MΩ on-resistance, the set current less than 1 uA is required, and the reset current below 10 uA is required. These levels of currents for ALD N-AlO_x are comparable with those for PVD N-AlO_x and still very low compared with other published RRAM results[11,24]. In addition, ALD N-AlO_x RRAM cells show a tight distribution, which is consistent with the tight distributions of set and reset voltages as illustrated in Figure 5.5. We believe that the uniformity of films affects switching characteristics and this is why ALD N-AlO_x RRAM cells show tighter distributions and better performance than PVD N-AlO_x RRAM cells.
5.5. Linear and non-linear I-V characteristics of HRS and various LRS

As illustrated in Section 5.2, RRAM cells can be set to various low resistance states by controlling the gate bias of the selection transistor. Natural log of current versus square root of voltage for various low resistance states and the high resistance state are plotted in Figure 5.7. The on-resistance was determined by the ratio of the applied voltage of 0.3 V to an applied current. The low voltage applied across RRAM cells during resistance measurement prevents any programming. For on-resistance of below 100 kΩ, the RRAM shows Ohmic linear conduction behavior. When the RRAM is set to above 100 kΩ, the on-state conduction is no longer linear, but exhibits rectifying behavior instead. In addition, the off-conduction is not Ohmic. This non-linear conduction behavior can be shown in natural log of current versus square root of voltage plot. This relationship implies that the carrier flow in the resistive dielectric films is limited by a
potential barrier. There are two well-known conduction models, Frankel-Poole emission model and Schottky emission model, that describe this type of behavior.

We believe that Frenkel-Poole conduction behavior is associated with the AlN traps and oxygen-vacancy traps in the AlOx where these traps are involved in the conduction. Larger set currents would increase the density of traps, and as a result the increased traps lead to the lowering of the potential barrier[36]. This explains that the on-resistance decreases when the set current is increased. If the set current is further increased, the density of traps can reach the point where the current conduction behavior becomes Ohmic.

![Diagram showing resistance vs. temperature for different states](image)

Figure 5.8: Dependency on temperature of HRS and various LRS.

To understand switching characteristics, we also studied temperature dependence of the non-Ohmic conduction behavior. The RRAM cells were programmed in the high resistance state and various low resistance states at room temperature. They were heated from 30 °C to 90 °C where their resistances were measured at each temperature. Figure 5.8 shows the dependency of those resistance states on temperature. For LRS below 100 kΩ, the resistance increases with
temperature. This implies that the conduction is Ohmic conduction, which is consistent with the result discussed in the previous section. On the other hand, for HRS and LRS above 100 kΩ, the resistance decreases with temperature. This is consistent with non-linear conduction behavior. As temperature increases, carriers in resistive dielectric films gain energy, and therefore more carriers can surmount the potential barrier and contribute to the conduction. This is typical of Frenkel-Poole conduction behavior at high temperature.
5.6. Conduction mechanism in ALD N-AlOₓ RRAM

In the previous section, two different conduction behaviors, metallic and rectifying conduction, of ALD N-AlOₓ RRAM were observed. In this section, we will focus on the non-linear rectifying conduction behavior. To understand non-linear conduction behavior, we applied two common models, Frenkel-Poole emission model as described by equation 5.1, and Schottky emission model as described by equation 5.2, to our experimental data [37]. An almost linear dependency between the natural log of current and the square root of voltage exists in both models.

\[J \propto A T^2 \exp\left(-\frac{q(\phi_B - \sqrt{qE/(4\pi\varepsilon_r\varepsilon_0)})}{k_B T}\right) \] \hspace{1cm} (5.1)

\[J \propto E \exp\left(-\frac{q(\phi_T - \sqrt{qE/(\pi\varepsilon_r\varepsilon_0)})}{k_B T}\right) \] \hspace{1cm} (5.2)

In the equations, \(A \) is the effective Richardson constant, \(T \) is the absolute temperature, \(k_B \) is the Boltzmann constant, \(\varepsilon_0 \) is the permittivity of free space, \(\varepsilon_r \) is relative permittivity of the resistive dielectric films. \(E \) is the intensity of electric field and is given by the ratio of the applied voltage to the dielectric thickness. \(\phi_B \) and \(\phi_T \) are the energy barrier height in the respective model.

In this experiment, we measured I-V characteristics of various resistance states. Under different temperature from 40 °C to 55 °C, each I-V curve is fitted to a linear dependence between the natural log of current and the square root of voltage as shown in Figure 5.9 [21]. These results show that current increases as temperature is increased and there is a linear dependence between the natural log of current and the square root of voltage at each temperature. The current conduction mechanism is the same at these ranges.
Figure 5.9: I-V relationship of (a) HRS and (b) LRS at various temperatures.
The next step is to verify the dependency of the natural log of current on temperature. Figure 5.10 illustrates the natural log of current is proportional to kT. The results obtained as depicted in Figure 5.9 and Figure 5.10 support that the current conduction in our ALD N-AlO$_x$ RRAM is either Frenkel-Poole emission or Schottky emission. In the last step, we calculated the energy barriers using the non-linear I-V curve for both emission models to determine the best fit to our experimental results. Figure 5.11 illustrates the fitting results to the Frenkel-Poole emission model. If we extrapolate to the Y axis in this plot, the intersection is the intrinsic trap barrier height at the zero electric field [21]. A trap energy barrier height of about 0.53 eV is calculated for the high resistance state (0.95 GΩ), and the energy barrier height of about 0.22 eV and 0.15 eV are obtained for low resistance states (18.1 MΩ and 5.1 MΩ, respectively). We also applied the Schottky emission model to experimental data as shown in Figure 5.12. The fitting results for the model led to unreasonably low energy barrier height (a few kT) [37]. This suggests that the Frenkel-Poole emission model is the best description of conduction in ALD N-AlO$_x$ RRAM.
Figure 5.11: Illustration of curve-fitting for the Frenkel-Poole emission model.

Figure 5.12: Illustration of curve-fitting for the Schottky emission model.
Figure 5.13: Energy band diagram of (a) after an annealing process and (b) after a set process.

Figure 5.13 shows a speculative band model for ALD N-doped AlOx RRAM. As shown in Figure 5.13 (a), the discrete energy level that is located 0.53 eV below conduction band is created after the annealing process. This discrete energy level is caused by AlN\textsubscript{x} traps that are
generated from the diffusion of nitrogen into Al₂O₃. The energy level of 0.53 eV corresponds to the calculated traps barrier for 1 GΩ HRS. This energy level is similar to the offset of conduction bands in Al₂O₃ and AlN, which is 0.54 eV. In Figure 5.13 (b), a discrete energy level is created after the set process. The traps energy level is caused by oxygen vacancies, not AlNₓ traps. For 1 MΩ LRS, the discrete energy level is located 0.2 eV below conduction band. The energy level of 0.2 eV corresponds to the extrapolated traps barrier height for 1MΩ LRS. Overall, HRS is associated with AlNₓ traps, and LRS is related to oxygen vacancies [38].

Figure 5.14: Macroscopic conduction model of ALD N-AlOₓ RRAM.

Figure 5.14 illustrates a macroscopic conduction model of ALD N-doped AlOₓ RRAM. The thick black dotted line indicates on-state conduction path which consists of aligned oxygen vacancies. Thin black dotted lines are associated with off-state conduction paths which consist of AlNₓ traps. Normally, more AlNₓ traps exist in the bottom AlNₓ region. We believe that these off-state conduction paths are distributed throughout the resistive dielectric films. This ensures uniform switching characteristics. If we increase the gate bias during set, more oxygen vacancies are generated to support the on-state conduction, and therefore the potential barrier between traps caused by oxygen vacancies reduces. The increased trap density essentially reduces the distance between traps, and more carriers can travel via traps. This is referred to the barrier lowering effect. Finally, the on-state conduction reaches the point where the conduction behavior is no longer
rectifying conduction behavior if the set current is further increased. In this conduction regime, carriers can tunnel from trap to trap through the resistive dielectric films, which exhibits metallic conduction behavior.
5.7. Reliability characteristics of ALD N-AlOₓ RRAM.

5.7.1. Retention results at 120 °C

It is very important to evaluate the stability of various resistance states for multi-bit storage. NAND flash memory is typically required to retain data for 10 years. This is verified by monitoring the various resistance states of RRAM cells especially at high temperature. The results are projected to evaluate the retention for 10 years. In this experiment, RRAM cells were programmed in various resistance states at room temperature, and then heated up to 120 °C where their resistance states are monitored as a function of time under a constant DC voltage of 0.2 V. The results are summarized in Figure 5.15. Strong stability for all resistance states without noticeable degradation for 10^5 seconds was detected. In addition, as the results are extrapolated, this experiment projects that multi-bit storage can be retained for 10 years.

Figure 5.15: Retention results of the high resistance state and various resistance states at 120 °C.
5.7.2. Read disturb characteristics

When an RRAM cell is read, the state being stored must not be disturbed. Read disturb testing is designed to evaluate the robustness of data storage of the RRAM cell when the memory cell is repeatedly read. This test is performed by applying the low read voltage to the RRAM cell and monitoring the resistance during the read operation. A failure indicates that the initial state of the RRAM cell was disturbed to the other state as a result of continuous reading operations, and the read disturb error can be caused by a high number of read operations. In this experiment, RRAM cells were programmed in various resistance states at room temperature, and we monitored the resistance of various resistance states under a constant voltage of 0.5 V for 10^5 seconds as the RRAM cells were read. Figure 5.16 shows read disturb characteristics of ALD N-AI$_2$O$_x$ RRAM. No significant degradation of the resistance states was observed up to 10^5 seconds, which corresponds to 10^{12} read cycles assuming a conservative read time of 100 nano seconds and indicates that the potential usage of this technology for multi-bit storage.

Figure 5.16: Read disturb characteristics of various resistance states.

![Read disturb characteristics of various resistance states](image-url)
5.7.3. Endurance switching characteristics

![Graph showing endurance characteristics without smart programming](a)

![Graph showing endurance characteristics with smart programming](b)

Figure 5.17: Endurance characteristics of (a) without using smart programming and (b) with using smart programming for N-AlO$_x$.
Endurance is one of the important characteristics of non-volatile memory cells and is verified by a method of how many switching cycles the RRAM cells can be repeatedly programmed. This also evaluates how reusable the RRAM cells are. In this experiment, the endurance characteristics of the RRAM cell as it was set and reset were measured. The pulse width used for this endurance test was about 100 ns for the set and reset switching, and the programming voltages for the set and reset switching were 5 V and -6 V, respectively. Resistance of HRS and LRS was determined by the ratio of an applied voltage of 0.3 V to the measured current. Figure 5.17 shows endurance results for both cases without using smart programming and with using smart programming. In general, the measurement for endurance consists of 4 steps: In step 1, a pulse is applied to set the RRAM cells. In the next step, their resistances are measured at a voltage of 0.3 V. In step 3, a reverse polarity of pulse is applied to reset the RRAM cells, and their resistances are measured at a voltage of 0.3 V in the last step. This is a normal endurance test procedure. However, applying the same pulse height to the RRAM cells may lead to the variation of resistance states. In addition, we cannot rule out the possibility of overstressing because there is no way to check whether the RRAM cells are overprogrammed or not. Therefore, a strategy to minimize the variation of resistance states and avoid the overstress that may be caused by applying the same pulse height every switching cycle is highly desirable. An alternative is to use a smart programming scheme. In this scheme, the height of pulse that will be applied in the next switching cycle is adjusted by their resistance states determined in the previous switching cycle. For example, a pulse with low height is applied in the first cycle, and the resistance state of the memory cell is measured. If the memory cell is successfully set to a low resistance state, the pulse with the same height will be applied in the next cycle. If the memory cell has not achieved the desired resistance state, a pulse with higher height will be applied. The height of pulse will be increased until a set switching event occurs. A similar procedure is used to reset the memory cell. By using this smart programming scheme, we can minimize the variation of resistance states and the electrical stress caused by an applied pulse. Figure 5.17 illustrates how
smart programming improves pulse endurance characteristics. For both cases, no noticeable narrowing of the on-off window was observed up to 10^5 switching cycles. However, the result based on smart programming shows less variation of HRS and LRS.
Chapter 6: Incorporation of nitrogen into \(\text{Al}_2\text{O}_3 \) films

6.1. Role of nitrogen for resistive switching characteristics

As discussed in Chapter 2 and 5, the incorporation of nitrogen into \(\text{Al}_2\text{O}_3 \) results in a uniform density of traps with the energy barrier height of about 0.53 eV throughout the film, and these trap sites are beneficial to the operation of the RRAM cell. In order to understand the role of nitrogen and the effect of nitrogen concentration on resistive switching characteristics, we investigated N-AlO\(_x\) RRAM with different nitrogen concentrations. In atomic layer deposition, it is very hard to control the concentration of nitrogen because deposition is independent of concentration of reactants [13]. Instead, we used a physical vapor deposition technique to control the concentration of nitrogen. N-AlO\(_x\) dielectrics with various concentrations were obtained by controlling oxygen and nitrogen flow rates in the chamber of PVD system. Finally, we integrated these PVD N-AlO\(_x\) RRAM cells on top of selection transistors. Nitrogen concentration of each sample was verified by XPS analysis. N-AlO\(_x\) with various nitrogen concentrations were summarized in Table 6.1.

<table>
<thead>
<tr>
<th>N concentration</th>
<th>(\text{Al}_2\text{O}_3)</th>
<th>N-AlO(_x)</th>
<th>N-AlO(_x)</th>
<th>N-AlO(_x)</th>
<th>AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %</td>
<td>3 %</td>
<td>6 %</td>
<td>12 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1: N-AlO\(_x\) with various nitrogen concentrations.
6.2. Electrical switching characteristics in terms of nitrogen concentration

6.2.1. Set / reset current versus on-resistance

Figure 6.1: (a) Set current versus on-resistance and (b) reset current versus on-resistance for Al₂O₃, 3 % N-AlOₓ, and 6 % N-AlOₓ, respectively.
Figure 6.2: (a) Set current versus on-resistance and (b) reset current versus on-resistance for 6 % N-AlO_x, 12 % N-AlO_x, and AlN, respectively.
We studied the relationship between set (reset) current and on-resistance for N-AlOx with various nitrogen concentrations. The relationship for each case from Al2O3 to AlN is illustrated in Figure 6.1. We observed the same trend as shown in Chapter 5 for all cases. If a higher set current is used, the resulting on-resistance will be lower. For a lower on-resistance, a higher reset current will be required. However, set and reset current decrease at a given on-resistance as more nitrogen is incorporated into Al2O3. In Figure 6.1 and Figure 6.2, this trend was shown consistently from Al2O3 to AlN and can be explained as following: as more nitrogen is incorporated into the film, nitrogen traps density increases. Under this circumstance, less oxygen vacancy traps are needed to form a current path or conduction filament during a set process, which explains the reduction of set current. Similarly, in the reset process, less oxygen vacancy traps are needed to be restored to break the conduction filament, the reset current is reduced.

6.2.2. Extrapolated energy barrier

We measured I-V switching characteristics at various temperatures. Based on I-V characteristics, we calculated an energy barrier for each case from Al2O3 to AlN. We also calculated the dielectric constant of each sample by measuring capacitance-voltage (C-V) curve, which was used in equation 5.1. Figure 6.3 shows fitting results for the Frenkel-Poole emission model for HRS, and the results are summarized in Table 6.2. For Al2O3, an energy barrier of 0.59 eV was calculated. For 3, 6, and 12 % N-AlOx, energy barriers of 0.57, 0.55, 0.53 eV were calculated, respectively and 0.51 eV was obtained for AlN. As more nitrogen is incorporated into the resistive film, the energy barrier reduces. The reduction is consistent with the decrease of a high resistance state. More incorporation of nitrogen into the resistive film leads to an increase of the density of traps and as a result decreases a high resistance state. For the energy barrier of a low resistance state, five samples with different nitrogen concentrations were programmed to 1
MΩ low resistance state, and their switching characteristics were measured at various temperatures. Based on I-V characteristics, energy barriers were extrapolated. The fitting results for Frenkel-Poole emission are shown in Figure 6.4 and summarized in Table 6.3. An energy level of about 0.2 eV for each case was extrapolated, which indicates that traps barrier height for LRS is independent of nitrogen concentration. This is consistent with our model. We believe that HRS is related to AlNₓ traps and LRS is associated with oxygen vacancies. If we incorporate more nitrogen into resistive dielectric films, effective trap barrier height for HRS should reduce, but the barrier height for LRS is independent of nitrogen concentration and remains unchanged. Thus, the fitting results for LRS of each sample support our conduction model.

![Graph](image)

Figure 6.3: Fitting results for the Frenkel-Poole emission model of HRS.
<table>
<thead>
<tr>
<th>Material</th>
<th>Trap barrier height (eV)</th>
<th>Roff</th>
<th>Nitrogen content</th>
<th>Dielectric constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>0.591</td>
<td>~ 2 GΩ</td>
<td>0 %</td>
<td>9.5</td>
</tr>
<tr>
<td>N-AlOₓ</td>
<td>0.573</td>
<td>~ 1.5 GΩ</td>
<td>3 %</td>
<td>9.5</td>
</tr>
<tr>
<td>N-AlOₓ</td>
<td>0.557</td>
<td>~ 1 GΩ</td>
<td>6 %</td>
<td>9.3</td>
</tr>
<tr>
<td>N-AlOₓ</td>
<td>0.539</td>
<td>~ 700 MΩ</td>
<td>12 %</td>
<td>9.2</td>
</tr>
<tr>
<td>AlN</td>
<td>0.511</td>
<td>~ 500 MΩ</td>
<td></td>
<td>9.1</td>
</tr>
</tbody>
</table>

Table 6.2: Summary of extrapolated trap barrier height for HRS.

Figure 6.4: Fitting results for the Frenkel-Poole emission model of 1MΩ LRS.
<table>
<thead>
<tr>
<th>Material</th>
<th>Trap barrier height</th>
<th>Ron</th>
<th>Nitrogen content</th>
<th>Dielectric constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>0.2034 eV</td>
<td>1 MΩ</td>
<td>0 %</td>
<td>9.3</td>
</tr>
<tr>
<td>N-AlO$_x$</td>
<td>0.2031 eV</td>
<td>1 MΩ</td>
<td>3 %</td>
<td>9</td>
</tr>
<tr>
<td>N-AlO$_x$</td>
<td>0.2023 eV</td>
<td>1 MΩ</td>
<td>6 %</td>
<td>8.6</td>
</tr>
<tr>
<td>N-AlO$_x$</td>
<td>0.2014 eV</td>
<td>1 MΩ</td>
<td>12 %</td>
<td>8.4</td>
</tr>
<tr>
<td>AlN</td>
<td>0.2009 eV</td>
<td>1 MΩ</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Table 6.3: Summary of extrapolated trap barrier height for each LRS.

6.2.3. Endurance characteristics

We investigated endurance characteristics for samples from Al$_2$O$_3$ to AlN to further understand the role of nitrogen for resistive switching behavior. A smart programming scheme was applied, and the endurance characteristics of the RRAM cells of each sample as the cells were set and reset were monitored. The resistance of HRS and LRS was determined at 0.3 V. In Figure 6.5 (a), Al$_2$O$_3$ RRAM showed large variation for HRS and LRS during 1000 switching cycles, and the RRAM cell failed at the end of switching cycles. In Figure 6.5 (b), 3 % N-AlO$_x$ RRAM showed better endurance characteristics and the RRAM cell remained functional at the end of switching cycles. However, there was still large variation for HRS and LRS. In Figure 6.5 (c), 6 % N-AlO$_x$ yielded best performance with least variation for HRS and LRS. In Figure 6.5 (d), 12 % N-AlO$_x$ RRAM cell showed larger variation of HRS and LRS, and a smaller on-off
window when compared with 6% N-AlOₓ. Finally, almost no on-off window was observed for the AlN RRAM cell.

We believe that a moderate amount of nitrogen traps is required for RRAM operations. For Al₂O₃ RRAM, the following situation appears. If insufficient nitrogen traps exist in the resistive dielectric films, a forming process is required to initiate resistive switching behavior. However, the forming process involves a high voltage and may damage the resistive films. The current path created by the forming process may not be uniform. Therefore, switching characteristics of those RRAM cells are not uniform with poor endurance. Conversely, if too many nitrogen traps exist in the resistive dielectric films, the forming process is not required. However, the high resistance state tends to be leaky which degrades the on-off window.

(a) Al₂O₃
(b) 3 % N-AlOₓ

(c) 6 % N-AlOₓ
Figure 6.5: Pulse endurance characteristics of (a) Al$_2$O$_3$, (b) 3 % N-AlO$_x$, (c) 6 % N-AlO$_x$, (d) 12 % N-AlO$_x$, and (e) AlN.
<table>
<thead>
<tr>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
</tr>
<tr>
<td>Endurance of about 1K cycles</td>
</tr>
<tr>
<td>3 %</td>
</tr>
<tr>
<td>Variation of HRS and LRS</td>
</tr>
<tr>
<td>6 %</td>
</tr>
<tr>
<td>Least variation of HRS and LRS</td>
</tr>
<tr>
<td>12 %</td>
</tr>
<tr>
<td>Variation of HRS and LRS and small on-off window</td>
</tr>
<tr>
<td>AlN</td>
</tr>
<tr>
<td>Almost no on/off window</td>
</tr>
</tbody>
</table>

Table 6.4: Summary of endurance characteristics.
Chapter 7: Conclusion

7.1. Summary

We have demonstrated a nitrogen-doped aluminum oxide based RRAM cell deposited by an atomic layer deposition technique (ALD) and have monolithically integrated such a RRAM on top of a selection transistor to accurately control programming current. ALD N-doped AlO\textsubscript{x} RRAM cells have shown uniform switching characteristics without a forming process. Compared with PVD N-AlO\textsubscript{x} RRAM cells, ALD N-AlO\textsubscript{x} RRAM cells have shown less variation of switching parameters. This technology is compatible with the standard CMOS process and feasible for 3D stacking. To analyze the composition of the resistive film as a result of incorporation of nitrogen into AlO\textsubscript{x}, we have performed X-ray photoelectron spectroscopy. The results of this study have confirmed that our ALD RRAM cell is a mixture of AlN and Al\textsubscript{2}O\textsubscript{3}.

We have also studied the conduction mechanism in ALD N-doped AlO\textsubscript{x} RRAM by applying rectifying conduction model to experimental data measured at various temperatures. Frenkel-Poole emission has given the best description of conduction in ALD N-doped AlO\textsubscript{x} RRAM.

ALD 1T1R N-doped AlO\textsubscript{x} RRAM cell has demonstrated reproducible and reversible switching, nondestructive readout, good cycling performance, and non-volatility. The RRAM cell can be programmed with sub-nA and is capable of storing multiple bits for 10^{12} read cycles and 10 years.

We have also investigated the role of nitrogen for resistive switching behavior by controlling nitrogen concentrations in N-AlO\textsubscript{x} RRAM with physical vapor deposition. The results have confirmed that HRS is associated with AlN traps and LRS is related to oxygen vacancies.
The results of this dissertation demonstrate that ALD N-AlOₓ has great potential for a resistance change material in next generation non-volatile memories. The accurate control of the trap energy level through different set currents allows the optimization of this technology for program efficiency, high endurance, and long retention.

7.2. Recommendation for future works

In this dissertation, we conservatively chose RRAM cell size of 1um X 1um for detailed characterization. Scaling N-AlOₓ technology below 10 nm is needed for future works. The size of RRAM cells can be reduced to below 10 nm by using electron beam lithography. Investigating how scaling affects switching characteristics will help to understand the switching mechanism in N-AlOₓ RRAM.

Next recommendation is to understand why AlN layer cannot be deposited on top of Al₂O₃ layer in ALD systems and find a solution. If AlN layer can be deposited on top of Al₂O₃, we can precisely control the incorporation of nitrogen in the resistive dielectric film: during an annealing process, nitrogen from top AlN and bottom AlN can diffuse into the resistive dielectric film. This will also allow us to investigate switching characteristics of ALD N-AlOₓ in terms of nitrogen concentration.

Last recommendation is to apply the concept of nitrogen incorporation to other resistive dielectric films such as HfO₂ and TiO₂ and look into ab-initio for doping effects. This experiment and in-depth physics study will give a clue to a deeper understanding of the role of nitrogen for resistive switching behavior and allow us to consider it from a different point of view.
Bibliography

