NEW LECTURE XI

Most of the present lecture and all of the following one will be devoted to
telling the story of the evolution of our understanding of
superconductivity.

As 1 am sure you all know, the basic mechanism responsible for
superconductivity remained a baffling mystery for nearly half a century
after the first discovery, although there was expanding progress in the
experimental knowledge of the behavior of superconductors and in the
development of phenomenological theories.

And as we all know, a new age began in 1957, when Bardeen, Cooper, and
Schrieffer proposed a theoretical mechanism that proved to be
essentially correct for very many superconductors, and that led
naturally into extensions and generalizations that gradually expanded
our understanding of many phenomena and led to the prediction of new
ones.

All parts of this history are fascinating, and there is so much to tell that I
couldn’t force myself to squeeze it all into one lecture.

Fortunately, there’s a very natural way to divide my story into two separate
though very unequal parts.

The first part, which I'll discuss today, covers the four and a half decades
from 1911 to 1957, when more and more properties of superconductors
were being discovered and measured, and even correlated
phenomenologically, while all speculations about the atomic-scale
mechanism of superconductivity kept turning out to be unsatisfactory.

The second part, to which I’ll devote the next lecture, has to do with what
may be called the “golden decade,” the ten or twelve years initiated by
the BCS paper when theorists and experimentalists everywhere
published a rapid succession of papers extending the BCS work,
making new predictions from it, and verifying the predictions.

Indeed, among all the laws and rules used today to understand the
properties of superconductors, nearly all that are accepted as solidly
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established by basic theory and also experimentally verified, date from
the “golden decade.”

My story will be divided into four time periods for each of which I've
chosen a few words to indicate roughly what was uppermost in the
minds of most research workers in this period.

The first three of these, which I'll discuss in this lecture, overlap each other
somewhat, while the fourth, which forms the next lecture, of course,
starts suddenly in 1957.

So now, to get started, here's a list of major developments in the first
period, which I've labeled with the words "Infinite Conductivity?" The
entries are in my usual type of format with time increasing downward;
theoretical references are on the right, and experimental on the left.

The initial discovery here was made in the low temperature laboratory of
the University of Leiden which was under the direction of Heike
Kamerlingh Onnes, and which at that time was leading the world in the
achievement and application of low temperatures.

In the course of their explorations of the newly discovered strong
dependence of the electrical conductivity of metals on temperature at
low temperatures, they discovered that near 4.3 Kelvin the resistivity of
mercury dropped suddenly by a factor of at least 300 to a value too low
to measure.

This result they published at once, while pressing ahead with experiments
on other metals, and with more accurate measuring techniques, and to
lower temperatures.

I've listed here only a few of the more important of these early discoveries
by the Leiden group.

A number of other metals were found to show the same sort of sudden
drop in conductivity that mercury showed, but some metals, such as
gold and platinum, did not show any such effect down to the lowest
temperature the laboratory was then able to reach, which was about 1.2
Kelvin.
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In the presence of a magnetic field, superconductivity was found to
disappear above a certain field strength, of the order of hundreds of
gauss, and the field due to the current passing through the
superconducting sample itself had a similar effect, bad news for hopes
about superconducting magnets.

And finally, when the ends of a superconducting coil bearing a current
were joined and connection to the outside was broken, it was found that
the current in the coil persisted unchanged for as long a time as it could
conveniently be held below the transition temperature.

This required the resistivity of superconducting lead to be at least fifty
billion times less than gf the resistivity at room temperature.

Unfortunately, the Leiden work slowed down rapidly during the World
War I years, but in the 1920's work resumed both at Leiden and in other
countries such as the United States, Canada, and Germany.

While it had been known for some time that the properties of a
superconductor depended not only on the fields present during a
measurement, but also on the past history of the fields, it was only in
1925 that the Leiden group called attention to the striking analogy
between the behavior of the magnetic moment of a superconducting
specimen in response to changes in the external magnetic field and the
hysteresis curves long known for ferromagnetic materials.

Throughout all these years, a lot of things were being learned about the
behavior of superconducting metals, but all the understanding had been
contributed by the experimentalists.

There were of course theoretical speculations, but no one could give a
plausible reason why the scattering mechanisms responsible for
electrical resistance should suddenly become ineffective.

There were two viewpoints, neither successful.

One was the idea that for certain materials, the state of lowest energy could
be a current-carrying state.



The other viewpoint held that superconducting samples were never in
thermodynamic equilibrium and that therefore thermodynamics could
not be applied to them.

Our present-day view, namely, that laboratory-created states of
superconductors, can sometimes be thermal equilibrium states to which
thermodynamics can be applied, and at other times can be non-
equilibrium but extremely metastable states, did not seem to be widely
accepted for a number of years, although the Leiden hysteresis
experiment should have suggested it strongly.

From the atomistic side, the leading quantum theorists after 1925 made
various speculations, but in the great 1933 Sommerfeld-Bethe article in
the Handbuch der Physik, Bethe discussed them, and found nothing that
seemed to have any solid value.

It's amusing to note that what is probably the most memorable theoretical
accomplishment of this period is a very simple argument by Bloch,
whose conclusion was for a while quoted (somewhat inaccurately) as
"superconductivity cannot exist."

The most citeable reference seems to be in the appendix to a paper by
Brillouin in 1933, and the result seems not to have been universally
appreciated for many years.

He assumed an electron system with any position-dependent interactions,
moving in any potential field, but with no magnetic or spin-orbit
interactions.

For such a system he showed that given any current-carrying
eigenfunction, he could construct a zero-current wave function with
lower energy.

The basis of Bloch’s argument was to start out with an assumed ground-
state wave function carrying a non-vanishing current, and then to show
that gne could always i wave function with 1 » away thet-
Woay loweﬁgnergy, making the original assumption self-contradictory.

The new wave function was obtained from the starting one by replacing the
electronic part of the wave function by a wave function of identical
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form but modified so as to impose a rigid motion with a velocity
opposite that of the original electron flow.

Simple perturbation theory showed that the kinetic energy of the electrons
would be decreased if the modification were carried out, while
interaction energies among the electrons or between the electrons and
the nuclei would remain unchanged.

However, this argument, quoted only second-hand, seemed, as I said, not
to be widely appreciated.

Some continuing efforts to resurrect the idea of a current-carrying ground
state—like these papers here—prompted David Bohm in 1949 to
generalize Bloch's argument.

Bohm extended the zero-current theorem to apply to systems in thermal
equilibrium at any finite temperature, and also to cover currents in a
circular ring.

In a brief discussion of possible effects of magnetic interaction of electrons
with each other, which had been neglected thus far in Bloch’s work and
his own, he was partially successful in showing that these would not
affect the result.

Though this was still not air-tight for systems with spin-orbit coupling, it
strengthened Bloch's position.

But unfortunately, it was largely wasted effort, because, as I shall explain,
by the time of these papers here, the controversy over infinite
conductivity had long been outdated.

In 1933, Walter Meissner, who had been working for a number of years in
Berlin measuring superconductivity in many metals and alloys, and his
colleague there, Robert Ochsenfeld, made a measurement of the
magnetic field in the space between two single crystals of pure tin.

The crystals were cylindrical in shape, with their cylinder axes parallel.

They found that on gradually lowering the temperature T at constant
applied field, the magnetic lines of force were suddenly totally expelled



from the cylinders when T passed through the transition temperature T,
producing a more intense field between the cylinders.

This could not have been caused merely by a sudden development of
infinite conductivity, because the constancy of the applied B field
would forbid any E field from developing with time.

The phenomenon was reversible when T was raised.
So the superconductors must have been perfectly diamagnetic.

Realizing that this discovery could revolutionize the thinking about
superconductors, and knowing that the Leiden group were doing closely
related experiments, Meissner and Ochsenfeld published a brief paper
as quickly as possible.

But awareness of the work and appreciation of its importance still spread
rapidly.

Further experimentation completely confirmed the result, and a new set of
conclusions, in harmony with the theorems of Bloch and Bohm, came
to be widely, though not always wholeheartedly, accepted.

These conclusions were, first, that many, though not all of the
measurements that had been made on superconductors could reliably be
interpreted as measurements on systems in thermodynamic equilibrium,
so that the laws of thermodynamics could be applied, and second, that
superconductors often behaved like perfect diamagnets, expelling
magnetic fields from their interiors by developing such distributions of
currents in thin surface layers as to produce zero magnetic fields in the
interior.

Adoption of this viewpoint led both to new types of experiments and to the
formulation of phenomenological theories that could, with the aid of a
few simple assumptions about the behavior of quasi-macroscopic fields
in superconductors, give a very good quantitative account of a wide
variety of experimental facts.



The most natural thing to do, at the outset, was to simply apply classical
thermodynamics.

Some limited attempts to do this had already been made in earlier years,
but now, after learning of the Meissner-Ochsenfeld results, Cornelius
Gorter and Hendrik Casimir at Leiden developed a more intensive
theory, using not only thermodynamics but also the assumption that the
electrons of the superconductor could be divided into two classes,
normal ones and superconducting ones.

It was now clear that the difference in free energy between the normal and
superconducting phases at any temperature should be simply
proportional to the square of the critical field at that temperature, and
the transition between the two phases at zero field should have no latent
heat but a specific heat anomaly proportional to the square of the
temperature derivative of the critical field, etc.

The idea of distinguishing normal from superconducting electrons proved
useful in stimulating two types of phenomenological theories.

I've continued to use green boxes for these and for some key experiments
that tied in with fundamental concepts used in these theories.

The earliest of these theories, which had a long life and many successes,
though it ultimately required some modifications, was proposed in 1935
by the London brothers Fritz and Heinz, who had just fled from Nazi
Germany and taken up work at Oxford.

Not being a specialist in superconductivity, I made contact with the theory
only a few years later.

I remember very well how impressed I was in the summer of 1940, when I
had the opportunity, at the annual summer symposium on theoretical
physics at the University of Michigan, to hear a series of lectures by
Fritz London on the theory he and his brother had developed for
superconductivity, and to take copious notes.

Although the equations were found to be inadequate in various cases later,
and had to be modified or replaced, they were simple and provided
insights that were very useful for many years.
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To save time I'll have to limit my present discussion of their theory to a
very brief statement of their key assumptions and equations.

Following earlier ideas, the Londons assumed that a superconducting metal
contained two kinds of electronic fluids, normal, and superconducting,
the quantities of each of these being conserved in the flow of currents at
constant temperature.

The superconducting fluid was assumed to be frictionless and to respond
locally to electric and magnetic fields at a rate inversely proportional to
a single material-dependent constant A taking account of charge and
mass densities.

These assumptions already required that in a certain easily describably
gauge called the "London gauge," A times the superconducting current
density j should equal minus the magnetic vector potential A divided by
¢, a relation reminiscent of the theory of diamagnetism of atoms.

The behavior of the "normal" electrons was described by a conductivity
constant, unimportant for steady-state situations because the E field
would have to be zero to avoid accelerating the superconducting
electrons.

With their new equations, plus of course Maxwell's, the Londons could
predict the Meissner effect and calculate current distributions, and in
particular, penetration depths, in terms of the A parameter of their
theory.

With the Meissner effect now accepted and the London theory widely
used, penetration depths started to get major attention.

So a number of different experimentalists devised several schemes for
measuring penetration depths, and a large number of measurements
were made, starting in the late 30's and continuing through the 1940's.

In 1953, Brian Pippard, at Cambridge, made an important discovery that
forced the modification of the London equations.



Pippard was an expert at the measurement of the surface impedance of
metals for high frequency electromagnetic waves, and you may
remember, if you happened to hear Lecture VI of this series, how, a
few years later, Pippard obtained the first map of the Fermi surface of
copper from surface impedance data.

From his work with normal metals he had come to realize that because of
the finite mean free path, an electric field acting only at one point
could give rise to a current distribution extending an appreciable
distance away from that point.

His measurements on superconductors, which sometimes departed
significantly from the predictions of the London theory, might well, he
supposed, have been affected by similar non-locality in the response of
the super current to the electric field.

Specifically, he proposed replacing the London conclusion, that the
supercurrent at any point should equal the vector potential A at that
same point (in a certain special guage) divided by cA, by a similar
relation to an average of A over a region of diameter € centered on the
given point, where £ is a new "coherence length."

Well, so much for the London-Pippard type of theories, and the
experiments by Pippard.

Now I want to switch to an entirely different area of development, which
contributed great progress, although for many years it was confined to
the Soviet Union.

The key step was a new type of phenomenological theory published by
Ginzburg and Landau in 1950.

The basic ideas of the theory probably grew out of the thinking Landau
had done over a number of years about order parameters in phase
transitions and about the importance of a phase angle in the superfluid
phase of liquid helium.

o To save time, I'll skip mathematical details and just list their physical
s 18 assumptions, describe qualitatively how they put them into a basic free
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energy expression and then deduced from this a couple of equations
useful for practical calculations.

The most basic of their assumptions was that the state of a superconductor
can be described by a position-dependent order parameter ¥ that is a
complex number.

They assumed the free energy per unit volume to be an analytic function
of ¥, with its minimum at ¥ =0 for T =T, and representable by the

first few terms of a power series slightly beneath T,.

All this is just for homogeneous material; inhomogeneities, if gradual,
were assumed to increase the free energy density by a term
proportional to the square of the absolute value of the gradient of ¥.

Finally, the effect of a weak magnetic field was assumed to be of the same
form as in a Schrédinger equation for particles of some effective mass

* . *
m and some effective charge e .

With these assumptions, the final free energy density F looks like this
equation here, where F, is the free energy density of the normal state.

The only quantities on the right whose temperature variation is
appreciable near T, are W and this coefficient a, which is taken to be
proportional to (T - T,).

This makes the plot of the first three terms of F against ¥ look like the
left diagram here if T > T,, and like the right if T < T..

From this expression, many equilibrium properties of superconductors can
be calculated by straightforward mathematics.

The first step is usually to employ one or both of the equations expressing
the conditions on ¥, and the current desnity j(r) for which F is a

minimum.

These equations, obtained by setting 8F = 0 for arbitrary 8W or A, are
written here and here respectively; the second has j on the left as a
replacement for curl H.
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So much, then, for what the Ginzburg-Landau equations are and how they
got that way.

What's important is that they have really been extremely useful for several
decades, despite their limitations to temperatures only modestly below
T, and to magnetic fields and inhomogeneities that are not too large.

Within this range of conditions, they can be used to calculate all sorts of
macroscopic and mesoscopic equilibrium properties of structures made
of a single superconducting material, in terms of the four material
constants of the theory.

As you can see from our basic equation here, the constants are a (or rather,
its slope with temperature), b, m*, and e*, but as we now know and I'll
explain later, e* is always twice the electronic charge e, so there are
only three that can vary from case to case.

Although there's not time for mathematical details, I can mention just a
few of the simplest quantities that can be calculated in terms of these
same three parameters.

One such is what is called the "thermodynamic critical field H, " defined
as the value of magnetic field strength at a given temperature at which
the free energy of normal material plus a uniform magnetic field is the

same as that of superconducting material with the magnetic field
completely expelled from it.

Other general properties that can be calculated are the correlation length &
of the London-Pippard theory, the distance over which fluctuations in
¥ produced by some local perturbation decay as one goes away from
the perturbed region, and the familiar penetration depth A, the distance
over which the surface currents that screen the interior against an
external magnetic field, decay as one goes in.

And of course there are all sorts of problems to calculate the destribution
of magnetic field current and W, for various geometries of
superconductors and external sources.



12

P N

Ve 54~

Going beyond these routine applications was an important new discovery
pointed out in a short paper by Alexei Abrikosov, a young theorist in
Landau's group, in 1952.

Abrikosov called attention to some experiments that had been performed
in 1936 by Schubnikov, one of the leading Russian experimentalists of
his day, who unfortunately disappeared in the Stalin purges of 1937.

He had measured the magnetization of an alloy sample in various
magnetic fields, and found unmistakable evidence that over a
considerable range the superconducting material was not perfectly
diamagnetic, but partially diamagnetic.

Western observers had found similar effects, and tried unsuccessfully to
explain them as due to quasimacroscopic normal regions, as in the
"intermediate state" of more familiar superconductors.

What Abrikosov noted was that the Ginzburg-Landau theory predicts that
the partially diamagnetic behavior found by Schubnikov should ocur if
and only if the ratio of A to &, a ratio commonly called «, is greater or
less than 1/4/2, these alternatives being called "Type II" and Type I,"
respectively.

Unfortunately, as I've noted before, Western scientists often ignored the
Russian literature in these years. So Schubnikov's work and even
Abrikosov's were for some years not followed up in the West, and it
was only after Bruce Goodman in 1962 experimentally rediscovered
some of the properties of Type II superconductors, that these properties
and their explanation became widely appreciated.

Finally, in 2003, two of the three recipients who shared the Nobel prize in
physics were Abrikosov, for his explanation of Type II behavior, and
Ginzburg, for his work with Landau (an earlier Nobel laureate) gon the
Ginzburg-Landau theory.

So, let's take a look at what some of these properties are.
prop

The simplest way to distinguish the two types unambiguously and
measure the difference quantitatively is to measure the magnetization
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of a long cylindrical sample with an external magnetic field imposed
along its axis.

With this geometry, the magnetic field and magnetization are independent
of position inside the sample and also outside of it, though the inside
and outside values may be different.

For the Type I superconductors, which strongly predominated among the
pure metals studied in the early years, the variation of magnetization
with field is as shown in the green curve at the upper left.

The material behaves as a perfect diamagnet at low fields, with a
magnetization opposite to the applied field and just sufficient to reduce
the B field inside to zero.

Above the thermodynamic critical field H,, the entire sample switches to
the normal state, and its magnetic moment drops to the value
corresponding to the normal typical para- or diamagnetism of a normal
metal, which is too small to show on the scale of a graph of this sort.

For a cylinder of Type II superconductor, as shown on the right, the
behavior is rather different.

Although the diamagnetism is again perfect at sufficiently low fields,
when the external field rises above some characteristic value called
H,;, which is less than the thermodynamic critical field H,, the
negative magnetization suddenly lessens, and tails off gradually, past
H,, to a higher field H, , at which it finally becomes essentially zero,

as shown by the red curve up here.

The distributions of the lines of magnetic force for the two types of
superconductors are shown in the next pair of diagrams below.

For either Type, at low fields, there are no lines of force inside the
specimen, except for the tiny penetration depth in the surface, and
there is a uniform spacing outside, as shown in the left hand diagram
by the purple lines.

And at high fields, the lines are uniformly spaced inside and outside.
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For Type II, however, when H is between H.; and H., , as shown here,

there are lines of force everywhere, but the spacing is denser outside
than it is inside, as shown by the orange lines in the right-hand
diagram.

Actually, these patterns correspond only to a relatively macroscopic
picture of the situation.

As Abrikosov showed in a 1957 paper, magnetic fields in the so-called
mixed phase of Type II—the one pictured here—do not vary smoothly
with position on a microscopic scale.

Rather, they penetrate in an orderly pattern of localized regions, which I
have shown in the bottom diagram as they would look viewed along
the lengthwise direction.

These regions, which are called "vortices" because each is surrounded by
circulating currents in the superconductor, each contain a unit of
magnetic flux, whose size, according to the Ginzburg-Landau theory,
is ch/e *

We now know, though Abrikosov did not know at the time he wrote his
paper, that because superconductivity is due to electron pairing, the
proper value for e* is 2e.

Each vortex has a normal-metal core, where W is zero, and the formation
of separated vortices is a manifestation of a negative interfacial tension
between the normal and superconducting phases.

Well now, having followed phenomenological theory and related
experiments through some exciting times in mid-century, I should
return to the continuing effort to understand the atomic-scale
mechanism of superconductivity.

The years 1950-mid 1957 were in one sense a period of great discovery, in
that the importance of electron-phonon coupling came to be realized,
and some new experiments revealed important properties of electronic
states of superconductors.
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In another sense, however, these years continued to see a lot of
misdirected effort by theorists.

In the year 1950, great attention was suddenly focused on electron-phonon
interaction by several experimental papers on isotope effects and two
theoretical papers, most of both initiated independently.

I've listed these and follow-up work in the orange boxes here.

The earliest papers to be published were two on the isotope effect in
mercury, one by Emanuel Maxwell at the National Bureau of
Standards, comparing ordinary mercury with almost pure mercury 198,
and the other by Reynolds, Serin, Wright, and Nesbitt at Rutgers
University, using samples with various degrees of isotopic separation.

The two groups were in touch, and intentionally had submitted their
papers on the same day.

The first theoretical paper to be published, that of Herbert Frohlich of the
University of Liverpool, was submitted just a trifle too soon for him to
have seen the experimental papers.

However, he learned about the experimental work while the paper was
being processed, and was able to add a short paragraph in proof
pointing out that the equations he had already written predicted a
transition temperature inversely proportional to the square root of the
isotopic mass, which was approximately the variation observed.

warkisg Ehon 2t Bell Laksvadovies

John Bardeen, the other theoretical author, had actually begun to speculate
about a possible role of electron-phonon interactions in
superconductivity just as World War II was starting, but he published
only a brief abstract on the subject before becoming involved in war
work, and later, at Bell Laboratories, in semiconductor physics.

However, the idea remained in the back of his mind, and when he learned
through personal contacts about the isotope effect experiments, he felt
at once that he had been on the right track, and after some modification
of his original ideas, he developed a theory by which it would be
possible for electrons in a region very close to the Fermi surface to



16

lower the total energy of the system by coupling to small lattice
distortions in such a way as to form states with wave functions
extended over distances of hundreds of Angstroms and which had such
small effective masses that in spite of their small numbers, they could
yield a diamagnetism so large that it would be plausible for it to
saturate at the perfect value y =-1/4x.

The transition temperature would be proportional to the inverse square
root of the isotopic mass, in at least approximate agreement with the
observations then available.

He published a letter-type paper as quickly as he could.
The details were explained in a full-length paper later in the same year.

Frohlich's and Bardeen's papers both had similar expressions for the
energy lowering due to the electron-phonon interaction, though the
approximations made in the two calculations are quite different.

A more fundamental difference in the two approaches is that Bardeen
concentrated on the perfect diamagnetism and did not discuss resistive
currents, whereas Frohlich ascribed superconductivity to finite-current
states that were metastable.

Both found the ground state in the absence of a magnetic field to be
current-free, in agreement with the Bloch theorem.

Soon after these papers, various people made criticisms, ostensibly fatal,
of the calculational methods used, but most of these were eventually
countered.

However, Schafroth, a Swiss scientist who moved to Australia, published
an analysis of perturbation theory to all orders, and showed that the
Frohlich Hamiltonian would never yield the Meissner effect to any
order in perturbation theory.

While this did not in itself prove the Frohlich-Bardeen theory to be
entirely wrong, it showed that straightforward perturbation theory
would be inadequate.
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A similar conclusion was suggested about the same time by some
calculations of Frohlich, but a safe way out was not obvious.

Suggestive though the work of both men was, no one succeeded in giving
a completely logical argument for the construction of a state with
superconducting properties—always, at one or more points, logic had
to be abandoned in favor of pure intuition.

The ultimate disappointment of some of the best minds is typified by the
discussion of the latest theories that Bardeen gave in his very scholarly

review of superconductivity theory for the Handbuch der Physik in
1956.

He devoted surprisingly little time to his own theory, and concluded the
entire article with the words "Some radically new ideas are required,
particularly to get a really good physical picture of the superconducting
state and the nature of the order parameter, if one exists."

Though their theories were very similar, the very thought of solving a
problem that had been a mystery for many decades and baffled the best
minds of the world was so exciting that the rivalry between Bardeen
and Frohlich was intense, though they were glad of any opportunity to
talk to each other face to face.

I remember one day in the spring of 1950 when Bardeen had arranged for
Frohlich to visit him at his office at Bell Laboratories.

John had met Frohlich at the railroad station and personally escorted him
the remaining four miles to our building and into his office, which was
adjacent to my own.

During the trip, he had started telling his guest about his own theory.

When they entered John's office, they saw, as John told me later, some
newly delivered mail on his desk.

This included a large sealed envelope from the Physical Review offices,
which John immediately opened, while Frohlich looked on.
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The contents turned out to be a copy of Frohlich's paper, which the editors
had just received and were sending to John with a request that he
referee it.

John told me later that he was very relieved at the coincidence, since
otherwise Frohlich might have suspected that John had seen the paper
earlier and was trying to steal some of the ideas and get them published
quickly as a Letter.

At any rate, not much doubt remained regarding the importance of
electron-phonon interactions for superconductivity.

So I have listed here one more paper that clarified this subject
appreciably.

Bardeen had left Bell Laboratories for the University of Illinois in 1951,
and among his first collaborations with his new colleagues there was a
1955 paper with David Pines taking proper account of electron
screening, and showing that the interactions would indeed be such as to
produce an effective attraction between electrons in states separated by
only a small energy.

At about this time, theorists in other parts of the world were trying to
construct alternative wave-mechanical models that would be more
successful than those of Frohlich and Bardeen in producing
demonstrable superconductivity.

Stimulated by the similarity of superconductivity to the superfluidity of
liquid “He, which some Russians and others associated with Bose-
Einstein condensation, Schafroth, Butler, and Blatt in 1957 proposed
that a few electron pairs, forming spatially distinct bosons, could form
a superconducting condensate.

(I’m sorry there wasn’t room to list this on the transparency here.)

As I’ll show in the next lecture, this sort of pairing would allow far too
few of the electrons to participate.
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Well, this is about all I need to say about the suggestive but not quite
successful early efforts to construct a logically convincing theory of
superconductivity produced by electron-phonon coupling.

But before I go on to the next and triumphal set of theoretical
developments, I should mention briefly several experimental findings
that gave important information about the nature of the
superconducting state, though they were not crucial for the phonon-
coupling model.

Theorists had speculated for some time that the ground state of a
superconductor might be separated from the lowest-energy excited
states by an energy gap of measurable magnitude and it had been
argued, I think incorrectly, that the absence of a measurable Thomson
effect for thermoelectric power would require such a gap.

But in the 50s there were several convincing experiments that I've listed in
green boxes.

In 1953, the experimentalist Bruce Goodman in England published
measurements of the thermal conductivity, whose rapid decrease at the
lowest temperatures seemed to require activation of electron
excitations across a gap.

In the same year, Brown, Zemansky, and Boorse, at Columbia University,
published heat capacity measurements for niobium in the normal and
superconducting states, and for the latter found the electronic
contribution to be smaller at the lowest temperatures than expected
from any of the available theories.

A quite different type of measurement was published in 1956 by Glover
and Tinkham, working at Berkeley, who measured the optical
transmission of films of superconducting lead and tin over a range of
far infrared frequencies.

Though the normal and superconducting phases had very nearly the same
transmission at quantum energies of the order of 15 or 20 times kT,

the transmission of the superconducting phase became higher over
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quite a range of lower frequencies and then suddenly lower at energies
of just a few kT.

A rough analysis by Tinkham assuming an energy gap grafted on to a
Ginzburg-Landau model suggested a gap of the order of 3kT,.

Various further energy-gap experiments were of course eventually
conducted by various people with improved techniques and supplied a
solid body of knowledge about the existence and magnitude of energy

gaps.

But before I conclude this discussion of the pre-BCS years I'd like to say
a few words about a few quite different experiments which, though less
critical than the work on gaps, gave new information on the nature of
superconductivity.

You may recall that in the history of magnetism, an important clue to the
origin of ferromagnetism (though at first it was puzzling) was provided
by measurements in 1915 and 1918 of the angular momentum
associated with a given ferromagnetic moment.

Since the measured ratio seemed to correspond to a g factor of about 2,
rather than to the value 1 that would be appropriate for an electron's
motion in an orbit, this enabled physicists to conclude, after the
discovery of electron spin, of course, that ferromagnetic moments
consisted mainly of alignment of spins.

Since the diamagnetic currents at the surface of a superconducting
specimen in a magnetic field give the specimen a net magnetic
moment, one can test their nature by the same sort of measurement of
the gyromagnetic ratio.

A measurement of the Einstein-de Haas effect—the change in angular
momentum of a specimen when its magnetic moment is reversed—was
made by Pry, Lathrop, and Houston at the Rice Institute, and published
in 1952.
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This confirmed the g value close to 1 that had been reported earlier by
Russian workers, and in addition supplied the sign, which was that to
be expected for the spin moment of negative electrons.

While this was of course what everyone expected, the feeling of ignorance
about superconductivity that pervaded the physics community was at
that time sufficiently strong that it was appreciably reassuring.

Another paper that I wanted to mention was an early example, and a
frequently cited one, of a type of work that has proliferated greatly in
more recent decades, namely, taking measurements of critical
temperatures and fields and other properties of whole families of alloys
or compounds, and trying to find significant trends with composition.

Bernd Matthias had come to Bell Laboratories a number of years earlier,
applying his broad knowledge of a wide variety of materials, first to
ferroelectrics, and later to superconductors.

In the work I've mentioned here, he found that there was a strong
correlation of transition temperature, in alloys, with the average
number of conduction electrons per atom.

There were peaks at about 5 and 7 electrons per atom, and very deep dips
at about 2, 6, and 8.

General data collection on superconductors of course continued to grow in
the fifties, and revealed a few further new properties and empirical
correlations which I won't have time to discuss now.

But the great breakthrough that I mentioned at the start of the lecture was
about to arrive.

The trigger for this breakthrough was the 1957 paper of Bardeen, Cooper
and Schrieffer, work which was followed by what I called the “golden”
decade in which theorists and experimentalists at many institutions
clarified and extended this work and demonstrated that the new
theoretical picture could not only account quantitatively for old
observations but could also predict new effects.
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(’@\ | The story of this decade is so rich that it can’t be broken up and it will
occupy my entire lecture XII, which follows this one.
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Although I was not myself working in superconductivity, I got a rather early and
sudden introduction to this work when Bardeen sent me a preprint of this paper,
which was in press.

. 8
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Now it was only about a year since Bell Laboratories had, for the first time, set up a
department devoted specifically to theoretical physics, and it was a fairly strong
one, with something like six or seven theorists in various areas of solid state
theory, all or nearly all Fellows of the American Physical Society.

So I asked all of them if it wouldn't be a good idea to organize a little seminar, meeting
perhaps once a week, to go through this paper bit by bit, with open discussion of
each part as we went.

Although none of us had been working in superconductivity t)-leory, we all were
hea vty .

curious about such a long-lasting puzzle, and ##th-enc-oneeption, everybody
-~ supported the idea of a seminar, #h0oush o 1e 5a:. e

—> TFhe-onccxeeption,thoughinterested in-the subjecs, was so fed up with previous

unsuccessful theories that he feared it would be a waste of time to study one more,

So we went ahead, and I think nearly everybody became finally convinced that despite

one or two puzzling questions that remained, BCS was indeed a critical

breakthrough.
il The ned few years Lo nfivrnred 1his .ex;awéaéi&m f;e,;gm,m,/v,

won't try to reproduce their arguments in any detail sew, for two reasons.
%—%¢uesrw the orlginal BCSwarks) ,
One reason is that they are widely reproduced in most courses and textbooks dealin
* with superconductivity, and many of you will have been exposed to such already.

My other reason is that the real content of the theory can be made much more
transparent by reformulating it along lines that were developed by others a few
years later—Ilines that are both simpler and more general.

But my preference for explaining superconductivity in the language of these
reformulations in no way implies any doubt about the credit that should be given to
BCS for making the key breakthrough.

As I hope I can make clear in the course of my description, BCS for the first time
proposed an explicit wave function for the superconducting state that could in
principle be explicitly calculated from knowledge of the normal-state band

Sd Ma_éurt”j rdfx./c avr ofr 2tcay &0 9&5 50M¢mmj at this /w"%ﬁ ,J:-p"f
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structure and phonon modes of any given metal, and which would give, when
perturbed by an outside field, a full Meissner effect and other superconducting
properties, such as a calculable penetration depth.

and sane s‘r)r:ffe
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leolal Bogolyubov and by T. G. Valatin, respectwcly

-
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Bogolyubov, in Russia, led a group of theorists similar to the one that formed around
Landau, though perhaps a little more mathematically oriented; Valatin in England,
had a stron% interest in the nuclear mang.body problem.

Do cwﬁk}o T ‘ve called

What Bogolbyubov and Valatm showed was that the ground state wave functlon ussd-
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The wave function propeses S was
# 'li=is what had seemed to them toﬁg a natural approximation to conform to two

physical ideas.

One of these was that an appreciable number of electrons should occupy a pair state
and the other was that it would be energetically advantageous for thlsf?'alr state to &
i be a ﬂ-ﬁ’m {i7which the amplitudes of states with opposite wave vectors and near
the Fermi surface would all be of the same sign.

—== The latter requirement grew out of the fact taﬁgt?g‘(’:h a k, -k pairgof electrons could
always scatter off each other by absorbing and re-emitting a phonon of wave

vector k' - Kk, if the energy difference between the k and the k’ electrons was less
than the phonon energy.

It's of course necessary, if one wants to get this beneficial effect, to start from a wave

function that has the states k and -k occupied, and the states k” and -k’
unoccupied.
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So it was not unreasonablé for BCS to assume, as a paramcter-dependent wave
\| Greei function to be ﬁd’ usted to achieve minimum energy, a wave function of the form
a

f{:n i I've shown here, with a linear combination of empty and paired states for each

(’“‘gﬁ{;‘é 2 wave vector K.
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The state labele on which the creation operators act is of course simply the
vacuum state with no electrons present.
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The uy and vy here cana)e takoaste be eeat numbers, Mmctlon is to be) "make réens all
~—» T normalized, the sum 0 eir squares should be 1.

Subject to this constraint, uy and vy are determined by two further conditions,

— 1, namely, that the expectation value of the total number of electrons be the
S appropriate number for the specimen under consideration, and, most importantly,
that the total energy be minimized.

As regards the former of these conditions, you can easily see that the wave function is
a linear combination of states with different numbers of electrons, from zero on up,
since if one expands the product of operators given here, one will get a sum of

terms with no ¢*'s, with two ¢*'s, with four ¢*'s, etc., etc.

If there is a range of k's for which uy is small and vy nearly 1, practically all the
Bloch states in this region will be occupied, just as is the case inside the Fermi
surface of a normal metal, whereas if there is a range of k's for which uy is nearly
1 and vy is small, these Bloch states will be nearly all unoccupied, just as is
typical for states outside the Fermi surface of a normal metal.

It turns out that only for k vectors very close to the normal Fermi surface will there be

sizable opportunities both for k up and -k down to be occupied and for neither to
be occupied.

And only some of these pairs can be used in constructing a macroscopically occupied
pair state, which I'll discuss in more detail in a minute.
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The new operators still retained the label of a wave vector and a spin, but were defined

as linear combinations of a creation and a destruction operator for electrons, as
shown by this equation here.

For a given wave vector k and spin s, the typical new operator y™ was defined as Uy
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As most of you probably know, density matrices are a very convenient way of
describing the physically important aspects of a complicated many-body wave
function or mixture of wave functions.

Let's just recall what density matrices are.

Suppose we have an N-electron system, in a quantum state described by some wave
function ¥ depending on the coordinate and spin variables of all the different
electrons, which I have for brevity called x;.

Suppose we want to determine the expectation value of a one-electron operator, in
other words, an operator V that is a sum of contributions from the individual
electrons taken one at a time, as shown here.

The operator V is representable as a summation of all the matrix elements of the
operator v, each multiplied by the corresponding product of a creation operator for
the one state of the matrix and a destruction operator for the other.

Then the expectation value of V is, just as I have written here, the trace of the product
of the one-electron matrix by the expectation value, in the state ‘¥, of the
corresponding product of a creation and a destruction operator, as I have shown
here.

This latter expectation value is what is called the first-order density matrix of the
system in this state.

Similarly, if one is interested in the expectation value of an operator given by a sum of
identical operators acting on all the different pairs of electrons—the electrostatic
interaction energy of the electrons would be an example—one can again describe
the operator for a single pair of electrons by its matrix element between two
quantum states of a pair, and if these are described by a pair of single-electron
states, then the desired expectation value for the many-electron system can be
written as the trace of the product of the one-pair matrix here and what is called a
two-electron density matrix, defined by the equation on the bottom line.

One could go on defining higher and higher-order density matrices, but it turns out that
nearly all the quantities one is interested in can usually be obtained from the p(l )

and p(z) I have written here.
There is one more simple thing I should say.

Suppose, as sometimes occurs, we are interested not in a single quantum state of our
system, but in an ensemble of quantum states that it may occupy with various
probabilities but no phase relation among them, such as, for example, a thermal
equilibrium ensemble.
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. £ Obviously, one can just define density matrices for the ensemble by taking a suitably
4 weighted sum of the density matrices for each of the various quantum states in the
ensemble, and then use the density matrix in just the same way that we would for a
pure state.

Py

Well now, getting back to the subject of BCS type wave functions, I should mention a
very useful 1963 paper by Michel Baranger, a French nuclear structure theorist
who became interested in superconductivity theory as a possible sources of ideas
for the nuclear many-body problem.

At about this time he emigrated to the United States.
\16' n'Q' In this paper he studied two types of ground-state wave functions.

One, which he called the "Hartree-Bogolyubov" form, was one I mentioned a few
minutes ago, in connection with citation of Bogolyubov's 1958 introduction of
Fermion operators that were linear combinations of electron creation and
annihilation operators, where the superconducting ground state could be written as
simply the vacuum of the family of Bogolyubov Fermions.

This ground state, you recall, was a superposition of states with all different numbers
of total electrons.

The other type of ground state wave function considered by Baranger was simply the
projection of this one onto the subspace with a particular number 2N of electrons.

This is what he called the "Blatt" wave function, and it was already well known that it
was given, in an unnormalized form, by applying this creation operator here N
times to the vacuum state.

Notice that this is the same creation operator that we used, in a somewhat different
manner, to create the Hartree-Bogolyubov ground state.

Now Baranger's important contribution was to derive simple formulas to express the
expectation values of various products of electron creation and annihilation
operators in either type of ground state in terms of the pairing matrix that I've
called ¢.

I will quote some of his main results without proof, and even at risk of boring some of
you with a lot of detail, but my main purpose is simply to give you a feel for the
existence of a tool that will enable anyone who wants to propose any sort of model
for a superconducting material and is willing to use a wave function of either of the
types described here to compute ground-state averages of physical quantities once
a choice has been made of which states are paired and how the strength of the
pairing varies among these.



K/E’ 0 M-‘Z If one is using a Hartree-Bogolyubov model, it is convenient to define two types of
matrices relative to any complete orthonormal 1-electron basis, the first, which he
called p, being given by this equation, which you will recognize as the same as the

definition of the 1-electron density matrix ,0(1).

The second type of matrix, fgll‘/i(lg Ll-fsed the symbol x, is defined somewhat similarly,
but using two annihilation operators or two creation operators, instead of one of
each, so that it is really a matrix element between portions of the wave function
having different values of the electron number.

I've indicated some symmetries here for both of these.

He then showed that these would be given by the expressions I've written in the red
box, in terms of the pairing matrix ¢.

He also showed that p and x satisfy the equations in the purple box, and that any p
and x matrices with the proper symmetries that satisfy these two equations and
have trace p = 2N determine the ¢ matrix completely.

Especially important is the equation in the green box, which expresses the 2-electron
density matrix in terms of the p and x matrices.

All these could of course be expressed in terms of the ¢ matrix, using the equations
above.

This can be used to calculate the expectation value &r.electron-electron interaction
energy. !

Incidentally, I've here corrected a typographical error in Baranger's paper.

Now all these formulas I've been talking about, especially those in the colored boxes,
were derived for the case of the Hartree-Bogolyubov model.

For the Blatt model, the steps in the derivations had to be somewhat different, but the
conclusions were for practical purposes the same.

While the same definition could be used for the p matrix as in the Hartree-
Bogolyubov case, after suitable normalization of the wave function, the previous
definition of the x matrix would give identically zero, because the Blatt wave
function contains only one value of the electron number.

Although Baranger's primary definition of this for the Blatt case involved a
diagrammatic expression, for practical purposes one could just as well use the
expression in the red box in terms of the ¢ matrix.
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All the theoretical work I've discussed so far,en-supereenduetivity, the material in the
green boxes, has used the BCS model, or the minor generalizations of it used in
this viewgraph over here, and nearly all the subsequent work that I'm going to
discuss devoted to other physical conditions or novel effects, has done the same.

But this paper of C. N. Yang in 1962 undertook to do something more general.

As you may remember, Yang had recently shared, with his collaborator T. D. Lee, the
1957 Nobel Prize in Physics, for their work on non-conservation of parity in
elementary particle physics.

Both of them were very versatile theorists, and had even earlier made historic
contributions to the theory of phase transitions in condensed matter.

Although undoubtedly Yang, like all fundamental theorists, had been fascinated by the
BCS breakthrough, his interest was undoubtedty further stimulated by a visit that
he spent at Stanford in early 1961 when Bill Fairbank and Bascom Deaver were
doing their history-making experiment on the quantization of flux in
superconducting circuitg:?xperimentg which I'll discuss in a few minutes.

He had many discussions about this and other aspects of superconductivity with the
experimentalists, with Felix Bloch, and with others.

t. &0 Lulk alont;

w
> The Yangls pal;%ra»ﬂﬁch appeared in an‘issue of Reviews of Modern Physics dedicated to

Eugene Wigner on his 60th birthday, started out with a description of a number of
important properties of 1-particle, 2-particle, and higher order density matrices of
general systems containing fermions, bosons, or both.

I'll concentrate on systems containing fermions only, presenting first, without proof,
some simple algebraic limits on the bounds of the eigenvalues of the matrices, then
showing, using the BCS type of theories as an example, a demonstration that some
of these bounds can in practice be reached, and then show how in such cases
systems can actually show a quantum type behavior on a macroscopic scale, which
is what is needed to explain superconductivity.

So here goes.

Some definilions exarple
Just as_a reminder, I've repeatedhat the top, Tt Fthe 1-particle density
the expectation valu@ product of a creation operator and a

a ¢~ destruction operator for single-particle states of the fermions or bosons being
considered.
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The expectation value is thaf in a particular quantum state, perhaps the ground state, or
in a thermal ensemble of states.

Similarly, ass=shewed-yeu-previousty, one can define a 2-particle density matrix as an $ Yerseriyt
expectation value of a product of two creation and two destruction operators and $0 S, /6 vo,. ?ﬁ:l

on for 3-particle and 4-particle density matrices, etc., with the general form I have _ﬂ » /
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particles in the case of the I-particle density matrix, and, is the number N(N -1) of 3:”’:?:&}:; Ziis
pairs of particles for the 2-particle matrix, etc.
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Since the matrices are always positive semi-definite, these normalizations give uppe
bounds to the largest eigenvalues of density matrices of different orders, which I_<,,. 4) “\1
have designated by A's with the appropriate superscripts. Gaee L

But since we have a special interest in the possibility of large eigenvalues, of the order
of N for a macroscopic system, which will go with degrees of freedom
corresponding to macroscopic behavior, we would like to know also, whether there
are useful lower bounds to any of the largest eigenvalues.

Using elementary algebra, Yang derived a number of such lower bounds, some of
which I've written down here using green for bosons and red for fermions.

You don't need to worry about all the details; I'll just point out a couple of noteworthy
features.

One thing that is of course very obvious but that deserves mention anyway, is the fact

that A1 is not forbidden from being a large number for a many-boson system, but
is limited to being no greater than 1 for a many-fermion system because of the
Pauli exclusion principle.

So liquid “He can have a macroscopic occupation for a single 1-particle state, but
liquid He cannot, nor can a many-electron system.

Note here that ).(2), in contrast, is not forbidden to be a finite fraction of N for
fermions.

Thus, macroscopic occupation of a pair state is allowed, and, as I will show in a
minute, is what occurs for the BCS wave function.

It also occurs, though in a different manner, for superfluid He.
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Here are some of the more important of these fields, listed in the boxes on
the left hand side, with areas very crudely proportional to the volumes
of research work being done in them.

Most conspicuous here is the area at the top in the orange box, and
encompassing the properties and phenomena involving solid surfaces,
interfaces between different solids, and thin solid films.

These can be structural, thermodynamic, electrical, or magnetic properties,
and their mutual correlations.

This happens to be an area which has been of especial interest to me for
many years, and I love to talk about it, so why did I leave it out?

For one thing, of course, the lecture series was getting too long.

But I didn’t want to ignore any area whose development had an important
effect on the development of the areas I did discuss.

And it seemed to me that very rarely had the development of understanding
of bulk properties of solids been significantly influenced by prior
advances on surfaces and interfaces.

So I omitted discussion of this field, although it has been a field of great
importance and excitement, and its activity has grown greatly over the
years because solid-state devices practically always involve surfaces
and interfaces, especially with the current trend toward
miniaturization.

And a succession of developments in experimental techniques for making
reproducible clean surfaces and measuring atomic arrangements on
them, has changed the field from a “dirty” science more and more
toward a science of precise measurement.

In the few remarks I’ll have time to make now on this field, I hope I can
convince you that it’s not dull, and sometimes reaches discoveries or
insights that just make you say “gee whiz.”

I’ve listed some examples in the column at the right.
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One development, that I think I’ve already mentioned in these lectures, is
the one known as STM, or scanning tunneling microscopy, a very
powerful tool for studying the atomic surface structure of crystals with
or without adsorbed atoms.

You’ve probably all seen lots of STM pictures and know the general
physics of how they are produced, so I won’t go into details
describing them.

But there’s one historical point I'd like to stress.

For many years experimenters had considered such a measurement
essentially impossible, because they were unable to control the
relative positions of the two electrodes to within a fraction of an
angstrom, so vibrations from the outside world would cause
uncontrollable fluctuations.

Finally, in 1982, Gerd Binnig and his colleagues at the IBM laboratory in
Zurich succeeded in solving the problems of vibration and control by
installing the vacuum chamber on a heavy stone bench floating on
inflated rubber tubes and then isolating the electrode systems within it
by static magnetic levitation inside a large superconducting lead bowl.

Relative motion of the experimental tip and the surface being studied was
achieved piezoelectrically.

The first experiments simply verified the sensitivity and reproducibility of
the variation of tunneling current with position, but further
experiments soon aided by a simple theory due to Tersoff and
Hamman at Bell Laboratories, opened up a dazzling world of new
knowledge about atomic positions on metal and semiconductor
surfaces.

—> whel’s more.

aBa-t-the formula also shows that in some cases useful information about the

band structure and wave functions can be obtained.

But this isn’t all.



24

A few years later, the existence of the STM gave rise to a second-
generation technology that made possible the measurement of
extremely small interatomic forces at surfaces, the technology called
“atomic force microscopy.”

This was developed in 1986 by a collaboration of Binnig, Quate, and
Gerber, the first and last authors being on leave from IBM Zurich.

Probably, many of you are familiar with the experimental procedure, but
for others I’'ve shown here a simplified picture of it.

The surface to be studied is placed here on the left and a moveable tip, very
sharp, attached to a cantilever with a very soft spring constant, can be
moved to any desired position at a small atomic distance from the
surface, where it will feel attractive or repulsive forces from the
surface atoms.

These forces will move the tip toward or away from the surface through a
distance proportional to their strength, and the distance moved can be
measured by a scanning tunneling microscope tip on the far side of the
cantilever, and from this distance, with knowledge of the elastic
constant of the cantilever, one can infer the strength of the force.

In practical use, it is usually convenient to introduce feedback controls and
often to use a modification of the resonant vibrations of the cantilever
by the force being measured to obtain greater accuracy.

Eventually, much useful information on van der Waals, ionic, and
repulsive interactions has been obtained by force microscopy.

Now, just for variety, I’d like to mention a totally different type of surprise
in the form of a new phenomenon that was predicted and then
observed in Russia some years ago, the phenomenon of crystallization
waves.

When a crystal is in static equilibrium with its melt, at constant
temperature, the most stable configuration of the interface is simply a
flat plane, at least locally since this is what minimizes the surface area
and hence the interfacial free energy.
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If some perturbing influence like inhomogeneous stress or temperature
distorts the interface into some other shape and is then removed, the
interface will relax back gradually to its flat configuration, normally
by some combination of melting where convexities project into the
melt and solidification where concavities project into the crystal.

These relaxation processes have to be accompanied by tangential motion of
material within the liquid phase or possibly within the solid phase
since in equilibrium both phases are uniform.

These processes are slow, because they involve things like diffusion and
thermal conduction, which are dissipative.

However, in 1978, Andreev and Parshin, at the Institute of Physical
Problems in Moscow, made the point that if the melt is liquid 4He in

its superfluid phase, the 4He chemical potential must remain uniform
and no entropy production by diffusion or viscosity can occur.

Because the boundary condition for melt-solid equilibrium across the
interface is different in the convex and concave regions, a
thermodynamic parameter of the solid must be different in those two
regions, and this can lead to a dissipative transport of some kind in
principle.

However, damping from such transport can be slow enough to allow a
number of cycles of oscillation to take place before the up and down
curvature of the interface is damped out.

The oscillations, like capillary waves in water, are of course due to the
interplay of the kinetic energy of motion due to transfer of material
between solid and liquid when the densities of the two are different,
and the potential energy of the solid which, as I mentioned a minute
ago, is varying as the interface moves, and to which must be added a
gravitation term if the surface is horizontal.

When gravitation is absent or negligible, the dispersion law for
propagation of crystallization waves turns out to be frequency
proportional to the three halves power of the wave vector.
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Xy,

In the following year, experiments by Keshishev, Pffarshin, and Bobkin,
also at the Institute for Physical Problems, verified the existence of

crystallization waves and the correctness of the predicted dispersion
law.

Well now let me leave surface and interface physics and go into the other
subfields that I’ve listed on the left.

I'll treat all of these similarly, listing for each subfield one or more exciting
developments on theright, skipping explanations of effects I think
most of you are familiar with, and sketching quickly the physics of the
others.

The brown box here has to do with what is today quite a major field,
disordered media such as glasses, effects in crystals dominated by
randomly distributed defects or impurities etc.

This area used to be what Pauli called a “dirty” field, namely one that was
so complicated that one couldn’t hope to describe much of it with
simple or elegant theories.

But in recent decades, more and more elegant and general theorems are
being proved.

One of the earliest was the phenomenon known as “Anderson
localization.”

In a 1958 paper, Phil Anderson undertook to formulate mathematically the
problem of migration of an electron in the so-called “impurity band”
of a semiconductor, a problem essentially identical with that of
migration of a preferred spin polarization among dilute magnetic

impurities. b
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possible diffusion paths does not increase with the number of steps
already taken.

Another corollary, one that is very important for semiconductors, is that as
one moves away from the center of an electronic band toward the
region of forbidden energies, there will always be a definite energy
beyond which no mobile electronic states exist.

This energy is called the “mobility edge.”
This is essentially because as the energy gets farther from the center of the

band, the spacing of impurities with this energy gets larger and larger,
and the tails of the impurity wave functions decay more and more

sharply.
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SUPERCONDUCTIVITY
I. “INFINITE CONDUCTIVITY”?

Expg Theory
: Sudden drop of
Kamerlingh »| p(T) of Hg by
Onnes 1911 factor at least
300, at ~4.2K
Kam. Onnes || }))rr(l)’l: for Sn, not Au

1913-14 \ :
Superc. destroyed by H_

Persistent currents
on a ring —>

p < 0.2x10-1%p (0°C)

de Haas, Sizoo, -
Kam. Onnes, 1925 [~ Hysteresis

Argues ground
state in H=0 Bloch ca.1929?
has macroscopic 1933
J=0

/| Bethe 1933
Survey: no
substantial ideas

states can have _ e
lowest free energy Born&Cheng 1948

Gen. of Bloch J=0 theorem,

but not sure if spin-orbit | <= Bohm 1949
int. spoils it




SUPERCONDUCTIVITY
II. PERFECT DIAMAGNETISM; PHENOMENOLOGY

Expt. Flux exclusion Theory
—» perfect bulk
— diamagnetism 1930
Meissner & Gorter &
Ochsenfeld, 1933 |~ Casimir 1933-4
Thermodymics
of a two-fluid
model
F. & H. London,
Schubnikoy, Phenomeno- 1935
1936 \’1 Type II || logical theory

Various workers,

Intermediate state

1937-40 & later

Landau, 1937 |

Meas. of many
1940 \ penetration 1940
depths
1950 Theory with [¥]; [V W|2, 1950
and |®[ terms in free 4| Ginzburg &
energy Landau, 1950
G-L. th. — Types I&II '« Abrikosov, 1952
London theory Pippard, 1953
must be made
nonlocal
Magnetic properties | | Abrikosov, 1957
of Type II; flux
lattice
1960 1960
Goodman, |—j | Rediscovery of Type II
1962 and Abrikosov th.




SUPERCONDUCTIVITY
IIl. ELECTRONS PULLED TOGETHER BY PHONONS

Expt. | Phonon-induced Theory
1 e-e coupling —»
Sl metastable clusters 1460
Maxwell, 1950 carrying current ¥ | Frohlich, 1950
Reynolds, Serin, | | Isotope effect in Hg
Wright, & Bardeen, 1950
Nesbitt, 1950 Phonons can lower |,/
- E&m* of els. near Schafroth,
FS — high di .
Oxford&Cambridge = g Gl » 1931
groups, aided by Isotope T 3
Harweil, 1950 =% effectp 1 S Frohlich Ham. can’t
give Meissner eff.

in any order of
perturbation th.

Brown, Zemanski EL Sp heat
& Boo;se, 1953 of ng)isea

exp. at low T

Goodman, 1953 (1) of Sn
shows energy gap

1955 1955
Bardeen &
/ Pines, 1955
Glover & —» | IR abs. of Pb&Sn
Tinkham, 1956 | |—> gaps = 3kT. e
and Coul.
interactions
Bardeen 1956

Review: mechanism /
of supercond. still
unclear
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LONDON EQUATIONS

ASSUMPTIONS:

Two kinds of electrons, normal and superconducting,
with densities Pn,Ps and separately conserved
currents Jn,Js .

Maxwell’s equations
Current-field relations: Jn =0E, 9(Ajs )/dt=E,

(Ps is frictionless), A a material constant.

SOME CONCLUSIONS:

In the “London gauge” A(r), Aj, =-A/c

In a homogeneous steady state
V3. =js/AZ, A =Ac?/dn

(A = penetration depth)



GINZBURG-LANDAU EQUATION

ASSUMPTIONS:
Complex order parameter ¥, finite below T, .

Free energy density I of a homogeneous state is an

analytic fnction of W] near Lc , hence can let terms
in I suffice.

Gradual mhomogene1ty of Y| increases F by a term

o< [VE|”
In a weak magnetic field of vect01 -potential A,
replace V¥ by Vi ie AW
hc
E_QUATION h 5 A 2
fic

M /

T>T.,a>0 Bl ,a.50

MINIMIZATION ON ¥ GIVES WAVE EQUATION:
” 2
. 2 B
%[V+LAJ W a¥ +b¥2 W =0
m n¢

AND DITTO ON A GIVES CURRENT DENSITY

“ %)
ie h
j(r) =

(‘PV‘P Y vq!) A2

lll lll C



TYPE 1 VS. TYPE 11

For a long cylinder || H (field independent of r over most of

length):
-% =
Type |k <2 Type II { k> 2
4mM 4’2‘
Hc Hcl Hc HcZ
I H
H<H Hcl <H< ch

Vortex structure viewed along field direction:
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LONDON EQUATIONS

ASSUMPTIONS:

Two kinds of electrons, normal and superconducting,
with densities Pn,Ps and separately conserved
currents jn Js .

Maxwell’s equations
Current-field relations: Jn =OE, a(Ajs )/ ot =E,

(Ps is frictionless), A a material constant.

SOME CONCLUSIONS:

In the “London gauge” A(r), Aj,=-A/c

In a homogeneous steady state
V2jS =js/?t2 , A2 =Ac2/41|:

(A = penetration depth)



GINZBURG-LANDAU EQUATION

ASSUMPTIONS:
Complex order parameter ‘P, finite below T .

Free energy density F of a homogeneous state is an
analytic fnction of '¥| near Lc , hence can let terms
in ‘ suffice.

Gradual mhomogenelty of |'¥] increases F by a term

o<| V[’
In a weak magnetic field of vector-potentlal A,
replace V¥ b AW
P y VY — ie -
C
UATION: .

- - h2 _ie'A S W
N he 81

F-Fn F—FN

P _\// k4
T>T.,a>0 T<Te,a<0

MINIMIZATION ON ¥ GIVES WAVE EQUATION:

hz &t )
V+—A ¥ 4+a¥ + b2 Y =0
m Re

AND DITTO ON A GIVES CURRENT DENSITY

i) =" h(‘I’V‘I’ _y w)
m

mc




GINZBURG-LANDAU EQUATION

ASSUMPTIONS:
Complex order parameter ¥, finite below T, .

Free energy density F of a homogeneous state is an
analytic fnction of |'¥] near I , hence can let terms
in suffice.

Gradual 1nhomogene1ty of ['¥] increases F by a term
o< |VH]”

In a weak magnetic field of vector-potential A,
replace V¥ by v ie AW

hc

EQUATION: . 2 2
ie A H
F=F{ +a(T)|‘I’] +— |‘I‘| +—|V‘I’— ‘l’j +—

T T/

T>T.,a>0 T<T.,a<0

MINIMIZATION ON ¥ GIVES WAVE EQUATION:
2 * )2
L (V+—A] ‘I’+a‘I’+b|‘P]2‘I’ =0
m" n¢

AND DITTO ON A GIVES CURRENT DENSITY
ie h(

@)=
m



TYPE I VS. TYPE II

For a long cylinder || H (field independent of r over most of length):

Type I (K< 2_%) Type I1 (K> 2_%)
47M 47M
HC
—>H
H<H H,<H<H,

Vortex structure viewed along field direction:
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*
Each vortex carries a flux ch/e



ATOMIC FORCE MICROSCOPY
surface

studied STM
probe
sharp <4— thin cantilever
tip .

]J = support with
piezoelectric
positioner

CRYSTALLIZATION WAVES
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L SOLLD “inertia” of wave

% lpsol. N pliq.‘
[u’sol. _u‘liq] interface <Y (curvature)

Main dissip., due to transport in liquid,

A B
x Hliq.( ) —Mliq.( )

(non-superfluid waves very overdamped.)

Disperson law in absence of gravity: o q3 £
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GINZBURG-LANDAU EQUATION

ASSUMPTIONS:
Complex order parameter ‘P, finite below T, .
Free energy density F of a homogeneous state is an
analytic fnction of || near T, hence can let terms in
|‘I‘° ,T‘I‘Z’,"I"‘l suffice. Gradual inhomogeneity of |V
increases F by a term o< |V¥]>
In a weak magnetic field of vector-potential A,
replace V¥ by VY ie A¥Y

he
EQUATION: 2 k2 g
F=Fy +a(Ty¥2 + 20 + vy Ay H
2 2M he 87
F—Fy F-Fy
l b 4 L 4
T>T.,a>0 T<T.,a<0

MINIMIZATION ON ¥ GIVES WAVE EQUATION:
RESULTS:
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SUPERCONDUCTIVITY

‘6 229
Expt. I. “INFINITE CONDUCTIVITY”? Thieory
f - Sudden drop of
Kamerlingh P p(T) of Hg by
Onnes 1911 factor at least
300, at ~4.2K

Kam. Onnes 0y} Drop for Sn, not Au
1913-14 or Pt.

Superec. destroyed by H,

Persistent currents
on a ring —
p <0.2x101%p (0°C)

de Haas, Sizoo, -
Kam. Onnes, 1925 Hysteresis I

Argues ground

has macroscopic
J=0

state in H=0 | | Bloch, ¢a.1929?

1933

‘/| Bethe 1933 |
| Survey: no

substantial ideas

lowest free energy

Idea current-carrying | Heisenberg 1948
states can have
B

orn&Cheng 1948

Gen. of Bloch J=0 theorem,

int. spoils it

but not sure if spin-orbit <€—{ Bohm 1949 I




SUPERCONDUCTIVITY
II. PERFECT DIAMAGNETISM; PHENOMENOLOGY

Expt. Flux exclusion Theory
1930 — perfect bulk
diam agnetism 1930

Meissner & Gorter &
Ochsenfeld, 1933 /' Casimir 1933-4

Thermodymics
of a two-fluid
model

F. & H. London,
Schubnikov, Phenomeno- 1935

1936 \‘| Type II || logical theory

Various workers, Intermediate state
1937-40 & later

Landau, 1937

<. Meas. of many
1940 penetration 1940
depths
1950 Theory with|¥|? |V ¥, 1P
and [P terms in free 4| Ginzburg &
energy Landau, 1950

G-L. th. — Types I&II [« Abrikosov, 1952

London theory Pippard, 1953
must be made

nonlocal

Magnetic properties Abrikosov, 1957

of Type II; flux
lattice /

1960

1960

Goodman, |—p| Rediscovery of Type II
1962 and Abrikosov th.




SUPERCONDUCTIVITY
III. ELECTRONS PULLED TOGETHER BY PHONONS

Expt.
1950
Maxwell, 1950

Phonon-induced
e-e coupling —>

carrying current

metastable clusters

Theory

1950

[P

Frohlich, 1950

Wright, &
Nesbitt, 1950

Reynolds, Seri:‘l

Isotope effect in Hg

Bardeen, 1950

Oxford&Cambridge
groups, aided by
Harwell, 1950

/ Phonons can lower

¥

E&M* of els. near
FS — high diamag. Schlagfgi)th,
—p! Isotope !

effect in Sn

Brown, Zem anski
& Boorse, 1953

El Sp heat
of Nb is
exp. atlow T

Frohlich Ham. can’t
give Meissner eff.

in any order of
perturbation th.

Schafroth,
1954

Goodman, 1953

~NA

K(T) of Sn
shows energy gap

l Idea Bose
cond. of

1955

Matthias, 1955

Glover &

Tinkham, 1956

~]

T.vs. N, of
tr.met.alloys

IR abs. of Pb&Sn
—>gaps = 3KkT,

e-e pairs

1955

Bardeen &
Pines, 1955

i

Interplay
of el-ph
and Coul.
interactions

Bardeen 1956

unclear

Review: mechanism
of supercond. still

rd




SOME FIELDS OMITTED OR SLIGHTED

Field

Surfaces, thin films, and
interfaces

(Structure,
thermodynamics,
electronic
properties, etc.)

Disordered
materials

Mag. Res.
(EPR, FMR,
NMR)

Optics & laser
phys.

Fast-particle
bombardment

Samples of striking
discoveries

STM & force
microscopy

Crystallization
waves

“Wigner crystal”
in 2D electron gas

Mobility edges
2-level systems

Spin echoes

Doppler-free
spectroscopy

Self-focusing

Channeling

Anisotropic radiation
growth



GINZBURG-LANDAU EQUATION

ASSUMPTIONS:
Complex order parameter W, finite below T, .

Free energy density F of a homogeneous state is an
analytic fnction of %] pear Lc , hence can let terms
in 2 q14| suffice.

Gradual mhomogenelty of [l increases F by a term
o VW[

In a weak magnetic field of vector -potential A,

replace VW by ie AW
V¥ -
hc

7 1e ‘A
- hc

EQUATION: )
F =Fy +a(T)¥ + =

HZ
., =
8w

Ay

T>T.,a>0 T<T.,a<0

MINIMIZATION ON ¥ GIVES WAVE EQUATION:
2 N
i V+-—A W 4 aW + bW2 W = 0
m he

AND DITTO ON A GIVES CURRENT D*ENSITY
9)
_ies - (wve” -wve) - =

m m C



GINZBURG-LANDAU EQUATION

ASSUMPTIONS:
Complex order parameter ‘¥, finite below T, .

Free energy density F of a homogeneous state is an
analytic fnction of | near Lc , hence can let terms
in suffice.

Gradual mhomogenelty of |'¥|increases F by a term

o< |VH]”
In a weak magnetic field of vector-potentlal A,

replace V¥ b "AW

P y Vi — ie
hc
EQUATION: 2 i A 2 H "

F=Fy +a(T) ¥ +

T>Tc,a>0 T<T.,a<0

MINIMIZATION ON ¥ GIVES WAVE EQUATION:

h2 & )
V+ —A ¥ +a¥ +b¥> ¥ =0
m he

AND DITTO ON A GIVES CURRENT DENSITY
] ie h
@)=
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SOME FIELDS OMITTED OR SLIGHTED

Field

Surfaces, thin films, and
interfaces

(Structure,
thermodynamics,
electronic
properties, etc.)

Disordered
materials

Mag. Res.
(EPR, FMR,
NMR)

Optics & laser
phys.

Fast-particle
bombardment

Samples of striking
discoveries

STM & force
MICroscopy

Crystallization

waves

“Wigner crystal’’
in 2D electron gas

Mobility edges
2-level systems

Spin echoes

Doppler-free
spectroscopy
Self-focusing

Channeling

Anisotropic radiation
growth



ATOMIC FORCE MICROSCOPY
surface
3 STM
studied probe

- rd
]~

sharp <— thin cantilever
tip
support with
piezoelectric
positioner
CRYSTALLIZATION WAVES

interface A
LIQUID

o m wm®
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.
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boundary of
a fixed mass

-
-
-
-
-
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" e g opm n w

B SOLID
“inertia” of wave

& }psol. ~ pliq.‘
[u‘sol. - an] interface <Y (curvature)

Main dissip., due to transport in liquid,

A B
% l"liq.( )"u'liq.( )

(non-superfluid waves very overdamped.)

Disperson law in absence of gravity: wx q>'>



SUPERCONDUCTIVITY
II. PERFECT DIAMAGNETISM; PHENOMENOLOGY

Expt. Flux exclusion Theory
1930 — perfect bulk
diamagnetism 1930

Meissner & Gorter &
Ochsenfeld, 1933 / Casimir 1933-4

Thermodymics
of a two-fluid
model

F. & H. London,
Schubnikov, Phenomeno- 1935

1936 [ Type II || logical theory

Various workers, | | Intermediate state
1937-40 & later Landau, 1937
Meas. of many
1940 penetration 20
depths
1950 Theory with |¥|; [V |2, 1950
and |¥[* terms in free 4| Ginzburg &
energy Landau, 1950

G-L. th. —» Types I&II {«{ Abrikosov, 1952

London theory Pippard, 1953
must be made

nonlocal

Magnetic properties Abrikosov, 1957
of Type II; flux
lattice

1960

1960

Goodman, |—p| Rediscovery of Type I1
1962 and Abrikosov th.




SUPERCONDUCTIVITY
III. ELECTRONS PULLED TOGETHER BY PHONONS

Expt. Phonon-induced Theory
e-e coupling —»
1950 metastable clusters 1950
Maxwell, 1950 carrying current ¥ Frohlich, 1950
Reynolds, Serin, Isotope effect in Hg
Wright, & / Bardeen, 1950
Nesbitt, 1950 Phonons can lower |,/
E&m* of els. near Schafroth
FS — high di ; ’
Oxford&Cambridge i v 1951
groups, aided by —»| Isotope T .
Harwell, 1950 effecF 5 Sn F.rohllch_ Ham. can’t
give Meissner eff.

in any order of
perturbation th.

Brown, Zemanski El Sp heat

& Boorse, 1953 of Nb is
exp. at low T
, 1
Goodman, 1953 |\ () oTSm
shows energy gap
1955 1955
Bardeen &
/ Pines, 1955
Glover & ——| IR abs. of Pb&Sn
! o 12 Interplay
Tinkham, 1956 —>gaps = 3kT, of el-ph
and Coul.
interactions

Bardeen 1956

Review: mechanism /
of supercond. still
unclear
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Fic. 3. Numerical estimates for the critical W/2V, the ratio of
line width to interaction, for transport, plotted against con-
nectivity K. The upper curve is a quasi-exact uppet limit; the
lower one is our best estimate.

solution is the lower curve of Fig. 3. It is very unlikely
that (85) is accurate for K~1, so no plot has been made
in this region. This concludes our estimates of the
critical ratio for transport.
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