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Abstract

In recent years the amount of data collected by online platforms has increased
massively. These data, together with the unique ability of online platforms to
design their marketplaces, provide platforms with an unprecedented opportu-
nity to make better market design choices to enhance the welfare of platforms’
participants and increase platforms’ revenues. The first chapter of my disser-
tation (co-authored with my advisors Ramesh Johari and Gabriel Weintraub)
studies one such market design problem that relates to quality selection. On-
line markets typically consist of many small buyers and sellers, and thus, in
order to analyze market design decisions in online platforms it is crucial to
model and to have a better understanding of large games, i.e., settings with
many interacting agents. The second chapter of my dissertation (co-authored
with Gabriel Weintraub) studies some properties of mean field models which
are used to model settings with a large number of interacting agents. The
third and fourth chapters of my dissertation provide tools that enable deriving
comparative statics results in complex uncertain environments.

Below I describe each of the chapters in more detail.
Market Design for Platforms. Chapter 1 consists of the paper Qual-

ity Selection in Two-Sided Markets: A Constrained Price Discrimination Ap-
proach (co-authored with Ramesh Johari and Gabriel Weintraub). In this
paper, we study the following information disclosure problem in a two-sided
market: which sellers should the platform allow to participate and how much
of its available information about participant sellers’ quality should the plat-
form share with buyers to maximize its own revenue. We study two different
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settings. In the first setting (motivated by ridesharing and cleaning services
platforms) the platform chooses the prices and the sellers choose the quanti-
ties. In the second setting (motivated by online marketplaces such as Amazon
Marketplace) the sellers choose the prices and the quantities are determined
in equilibrium.

One of our work’s key observations is that the platform’s information disclo-
sure problem transforms to a constrained price discrimination problem. Using
this transformation, we provide a broad set of conditions under which a simple
information structure in which the platform bans a certain portion of low qual-
ity sellers and does not share any information about the participating sellers
maximizes the platform’s revenue. Our results shed light on information dis-
closure practices employed by real-world platforms, such as highlighting high
quality sellers and/or banning low quality sellers.

Large Games. Chapter 2 consists of the paper Mean Field Equilibrium:
Uniqueness, Existence, and Comparative Statics (co-authored with Gabriel
Weintraub, to appear in Operations Research). In this paper, we study mean
field equilibrium (MFE). MFE has received extensive attention as a solution
concept for dynamic games that overcomes the computational complexity of
solving for Markov perfect equilibrium. Our main contribution is finding con-
ditions that ensure that the MFE is unique. This result is the first of its nature
in the class of models we study. Before our result, in the absence of unique-
ness, previous work mostly focused on a particular MFE selected by a given
algorithm. Under a multiplicity of MFEs, counterfactual analysis depends on
the choice of the MFE. For example, the welfare implication of changing a
parameter in the model can go in opposite directions, depending on the choice
of equilibrium. Uniqueness significantly sharpens such counterfactual analysis.
We also leverage our uniqueness result to derive general comparative statics
results. Importantly, we apply our results to dynamic oligopoly models studied
in operations research and economics, to dynamic reputation models studied
in the literature on online marketplaces, and to heterogeneous agent macro
models that are commonly used in the economics literature.
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Comparative Statics. A question of interest in a wide range of problems
in operations research and economics is whether the solution to an optimiza-
tion problem is monotone with respect to its parameters. In Markov decision
processes (MDP), the future optimal decision is a random variable whose dis-
tribution depends on the parameters of the optimization problem. In Chapter
3, Stochastic Comparative Statics in Markov Decision Processes (to appear
in Mathematics of Operations Research) I analyze how the expected value of
this random variable changes as a function of the dynamic optimization pa-
rameters. I call this analysis stochastic comparative statics. I derive both
comparative statics results and stochastic comparative statics results showing
how the current and future optimal decisions change in response to changes
in the single-period payoff function, the discount factor, the initial state of
the system, and the transition probability function. These comparative stat-
ics and stochastic comparative statics results generalize and expand previous
results and apply to many models from the operations research and economics
literature, including investment theory, controlled random walks and dynamic
pricing. In Chapter 4 The Family of Alpha,[a,b] Stochastic Orders: Risk vs.
Expected Value (co-authored with Andres Perlroth, to appear in the Journal of
Mathematical Economics), we provide a novel family of stochastic orders. The
main motivation for introducing this family of stochastic orders is that they
allow us to derive novel comparative statics results for important applications
in economics and operations research that could not be derived using previous
stochastic orders. We characterize these stochastic orders and apply our re-
sults in many different settings, including self-protection problems, Bayesian
games, and consumption-savings problems.
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Chapter 1

Quality Selection in Two-Sided
Markets: A Constrained Price
Discrimination Approach

Abstract
Online platforms collect rich information about participants and then share

some of this information back with them to improve market outcomes. In
this paper we study the following information disclosure problem in two-sided
markets: If a platform wants to maximize revenue, which sellers should the
platform allow to participate, and how much of its available information about
participating sellers’ quality should the platform share with buyers? We study
this information disclosure problem in the context of two distinct two-sided
market models: one in which the platform chooses prices and the sellers choose
quantities (similar to ride-sharing), and one in which the sellers choose prices
(similar to e-commerce). Our main results provide conditions under which
simple information structures commonly observed in practice, such as banning
certain sellers from the platform while not distinguishing between participating
sellers, maximize the platform’s revenue. An important innovation in our
analysis is to transform the platform’s information disclosure problem into a
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CHAPTER 1. QUALITY SELECTION IN TWO-SIDED MARKETS 2

constrained price discrimination problem. We leverage this transformation to
obtain our structural results.

1.1 Introduction

Online platforms have an increasingly rich plethora of information available
about market participants. These include rating systems, public and private
written feedback, purchase behavior, among others. Using these sources, plat-
forms have become increasingly sophisticated in classifying the quality of the
sellers that participate in their platform (for example, see Tadelis (2016), Filip-
pas et al. (2018), Donaker et al. (2019), and Garg and Johari (2019)). This in-
formation can be used both to increase the platform’s revenue, and to enhance
the welfare of the platform’s participants. For example, cleaning services and
ridesharing platforms remove low quality sellers from their platforms. Plat-
forms can also boost the visibility of high quality sellers with certain badges,
as is done by online marketplaces such as Amazon Marketplace and eBay. We
refer broadly to such market design choices by platforms as quality selection.

In this paper, we study quality selection in two-sided markets. In particu-
lar, we investigate which sellers a two-sided market platform should allow to
participate in the platform, as well as the optimal amount of information about
the participating sellers’ quality that the platform should share with buyers in
order to maximize its own revenue. Our results characterize conditions under
which simple information structures, such as just banning a portion of low
quality suppliers or giving badges to high quality suppliers, emerge as optimal
designs.

We introduce two different two-sided market models with heterogeneous
buyers and heterogeneous sellers. Sellers are heterogeneous in their quality
levels and buyers are heterogeneous in how they trade-off quality and price.
In the first model, the platform chooses prices and the sellers choose quantities
(e.g., how many hours to work). This setting is loosely motivated by labor
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platforms such as ride-sharing and cleaning services. In the second model, the
sellers choose prices, and quantities are determined in equilibrium. This setting
is motivated by online marketplaces such as Amazon Marketplace. In both
models, quality selection by the platform involves deciding on an information
structure, that is, how much of the information it has about the sellers’ quality
to share with buyers. The platform’s goal is to choose an information structure
that maximizes the platform’s revenue. The information structure can consist
of banning a certain portion of the sellers, and also richer structures that
share more granular information with buyers about the quality of participating
sellers.

The mapping from the information that the platform shares about the sell-
ers’ quality to market outcomes is generally complicated. After the platform
chooses an information structure, the buyers and the sellers take strategic ac-
tions. Market outcomes such as prices and offered qualities are determined
by these strategic actions and the resulting equilibrium conditions, includ-
ing market clearing: not only must the buyers’ incentive compatibility and
individual rationality constraints be satisfied, (as in a standard price discrim-
ination problem, e.g., Mussa and Rosen (1978)), but the total supply must
also equal the total demand. One of our paper’s key observations is that the
platform’s information disclosure problem transforms into a constrained price
discrimination problem. We show that every information structure induces
a certain subset of price-expected quality pairs which we call a menu, from
which the buyers can choose. Optimization over feasible menus yields a price
discrimination problem.

Note that platforms can use the information they collect about the sellers’
quality to induce a menu in many different ways. For example, giving badges
to high quality sellers can influence the prices such sellers charge, the quantities
they sell, and their market entry decisions (Hui et al., 2018). Similarly, banning
some low quality sellers can also influence the prices, the quantities sold, and
the participating sellers’ quality.
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We show that finding the optimal menu in the constrained price discrim-
ination problem is equivalent to finding the optimal information structure.
This equivalence proves to be beneficial for two reasons. First, deriving struc-
tural results in the constrained price discrimination problem (see Section 1.3)
is simpler than solving for the optimal information structure in a two-sided
market model directly. This is similar to the Bayesian persuasion literature
where the sender’s optimization problem is usually reformulated in order to
simplify the analysis (see Kamenica (2019) and Section 1.1.1). Second, the
constrained price discrimination problem is general and can capture different
market arrangements and different two-sided market models.

Using our results from the constrained price discrimination problem, we
provide a broad set of conditions under which a simple information structure
in which the platform bans a certain portion of low quality sellers and does
not distinguish between participating sellers maximizes the platform’s revenue.
This resembles a common practice in ride-sharing and cleaning services plat-
forms (in these cases the participating suppliers’ review scores are typically
so high that they do not reveal much information (Tadelis, 2016)). To obtain
this result, we require two conditions. First, we require a regularity condition
on the induced set of feasible menus in the constrained price discrimination
problem; as we suggest later, this regularity condition is natural and likely
to be satisfied in a wide range of market models. Given this regularity con-
dition, our second requirement is an appropriate convexity condition on the
demand; as we note, this condition reduces to the requirement that the de-
mand elasticity is not too low. We also provide results involving only local
demand elasticity that guide the market design decision of whether to share
less information about sellers’ quality. We provide a simple example in Section
1.2 that illustrates the key features of our analysis.

We then apply the equivalence between the constrained price discrimina-
tion problem and the information disclosure problem in order to study the two
different two-sided market models mentioned above. In both models, the plat-
form’s decisions (the platform decides on an information structure and prices
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in the first model, and on an information structure in the second model) gen-
erate a game between buyers and sellers. Given the platform’s decisions there
are four equilibrium requirements. First, the sellers choose their actions (prices
or quantities) to maximize their profits. Second, the buyers choose whether
to buy the product and if so, what (expected) quality to buy to maximize
their utility. Third, given the information structure that the platform chooses,
the buyers form beliefs about the sellers’ qualities that are consistent with
Bayesian updating and with the sellers’ actions. Fourth, we require market
clearing: the total supply equals the total demand.

We show that each equilibrium of the game induces a certain subset of price-
quality pairs; each pair consists of a price, and the expected quality of sellers
selling at that price. The platform’s goal is to choose a menu that maximizes
the platform’s revenue. Finding the set of equilibrium menus that the platform
can choose from depends on the equilibrium outcomes of the game. Hence, this
set is determined by the specific two-sided market model being studied and
can be challenging to characterize. For our first model (in which the platform
sets prices), we show that for every information structure there exists a strictly
convex optimization problem whose unique solution yields the unique menu
of induced price-quality pairs. For the second model, Bertrand competition
between the sellers pins down the equilibrium prices, so we are able to explicitly
provide the menu that each information structure induces. In each setting, we
then leverage the analysis of the constrained price discrimination problem to
characterize the platform’s optimal information disclosure, and in particular
to find conditions under which the policy of banning low quality sellers, and
not distinguishing between the remaining high quality sellers, is optimal.

The rest of the paper is organized as follows. Section 1.1.1 discusses related
literature. In Section 1.2 we describe a simple example that captures the
main features of our analysis. In Section 1.3 we study the general constrained
price discrimination problem. In Section 1.4 we present the platform’s initial
information and information structures. In Section 1.5 we present our first
model where the platform chooses prices and the sellers choose quantities. In
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Section 1.6 we present our second model where the sellers choose prices and
quantities are determined in equilibrium. In Section 1.7 we provide a summary,
followed by an Appendix.

1.1.1 Related Literature

Our paper is related to several strands of literature. We discuss each of them
separately below.
Information design. There is a vast recent literature on how different in-
formation disclosure policies influence the decisions of strategic agents and
equilibrium outcomes in different settings. Applications include Bayesian per-
suasion (Aumann and Maschler (1966) and Kamenica and Gentzkow (2011)),
dynamic contests (Bimpikis et al., 2019), matching markets (Ostrovsky and
Schwarz, 2010), queuing theory (Lingenbrink and Iyer, 2019), games with com-
mon interests (Lehrer et al., 2010), transportation (Meigs et al., 2020), inven-
tory systems (Kostami, 2019), ad-auctions (Varadaraja et al., 2018), explo-
ration in recommendation systems (Papanastasiou et al. (2017) and Immorlica
et al. (2019)), social networks (Candogan and Drakopoulos (2020) and Can-
dogan (2019)), social services (Anunrojwong et al., 2020), the retail industry
(Lingenbrink and Iyer (2018) and Drakopoulos et al. (2019)), warning policies
(Alizamir et al., 2020), and many more (see Candogan (2020) for a recent
review of information design in operations.)

In this paper we focus on the amount of information about the sellers’
quality that a two-sided market platform should share with buyers. Our infor-
mation disclosure policy problem is different from the previous literature be-
cause the platform faces equilibrium constraints when informing buyers about
the sellers’ quality; these constraints emerge because actual two-sided market
outcomes are determined endogenously by buyers’ and sellers’ behavior, sub-
sequent to the information disclosure choices of the platform. There are at
least three salient characteristics of our setting. First, the platform does not
have full information about the sellers’ quality. Second, buyers’ beliefs about
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the sellers’ quality can depend on the sellers’ actions (in addition to the stan-
dard dependence of the buyers’ beliefs on the platform’s information disclosure
policy). For example, if the sellers choose quantities (e.g., how many hours
to work) these quantities influence the expected qualities.1 Third, the prices
and the sellers’ expected qualities must form an equilibrium in the two-sided
market (i.e., the total supply equals the total demand). Overall, these con-
straints significantly limit the platform’s feasible information structures, and
therefore, the typical techniques used in the Bayesian persuasion literature
cannot be applied.

Similar to the Bayesian persuasion literature, we reformulate the platform’s
optimization problem in order to simplify the analysis. In the Bayesian per-
suasion literature, it can be shown that the platform’s (sender) payoffs are
determined by the receivers’ posterior beliefs. The standard approach is to
optimize over these posterior beliefs instead of over information structures.
This approach leads, at least in some cases, to sharp characterizations of the
optimal information disclosure policy (see, e.g., Aumann and Maschler (1966)
and Kamenica and Gentzkow (2011)). In our setting, we can show that the
platform’s payoffs are determined by the buyers’ (i.e., the receivers) equilib-
rium posterior quality means and by the equilibrium prices. Our approach is
to optimize jointly over posterior means and prices, and thus, we transform
the information disclosure problem to a price discrimination problem. This ap-
proach leads to sharp characterizations of the optimal information structure
under certain conditions.
Nonlinear pricing. Nonlinear pricing schemes are widely studied in the eco-
nomics and management science literature (see Wilson (1993) for a textbook
treatment). The price discrimination problem that we consider in this paper
is closest to the classical second-degree price discrimination problem (Mussa
and Rosen, 1978) and (Maskin and Riley, 1984).

1Because the buyers’ beliefs are consistent with the sellers’ actions, our model also
relates to the adverse selection literature (see Akerlof (1970)).
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The problem that the platform solves in our setting differs from the previ-
ous literature on price discrimination in two major aspects. First, the costs for
the platform from producing higher quality products are zero. This is because
in the two-sided market models that we study, the costs of producing a higher
quality product are incurred by the sellers and not by the platform. Hence,
the platform’s revenue maximization problem transforms into a constrained
price discrimination problem with no costs. Second, the platform cannot sim-
ply choose any subset of price-quality pairs (menus) that satisfies the incentive
compatibility and individual rationality constraints. The set of menus from
which the platform can choose is determined by the additional equilibrium
requirements described in the introduction.

These differences significantly change the analysis and the platform’s op-
timal menu. First, a key part of our analysis is to incorporate equilibrium
constraints into the price discrimination problem, introducing significant ad-
ditional complexity. In addition, under the regularity assumption that the
virtual valuation function is increasing, Mussa and Rosen (1978) show that
the optimal menu assigns different qualities of the product to different types.
In contrast, the results in our paper are drastically different: under certain reg-
ularity assumptions, the optimal menu assigns the same quality of the product
to different types.2

Two-sided market platforms. Recent papers study how platforms can
use information and other related market design levers to improve market
outcomes. In the context of matching markets, Arnosti et al. (2018) and
Kanoria and Saban (2019) suggest different restrictions on the agents’ actions
in order to mitigate inefficiencies that arise in those markets. Vellodi (2018)
studies the role of design of rating systems in shaping industry dynamics. In

2Another difference from most of the previous literature is that in our model each
menu is finite (i.e., there is a finite number of price-quality pairs), and thus the standard
techniques used to analyze the price discrimination problems in the previous literature
cannot be used. Bergemann et al. (2011) study a price discrimination problem with a
finite menu in order to study a setting with limited information. However, because the
platform’s costs are zero in our setting, we cannot use the Lloyd-Max optimality condition
that Bergemann et al. (2011) employs.
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Romanyuk and Smolin (2019) the platform designs what buyer information
the sellers should observe before the platform decides to form a match.

The paper most closely related to ours is the contemporaneous work by
Bimpikis et al. (2020) that studies the interaction between information disclo-
sure and the quantity and quality of the sellers participating in the platform.
Studying a dynamic game theoretic model, Bimpikis et al. (2020) focuses on
how information design influences supply-side decisions, showing that informa-
tion design can be a substitute to charging lower fees when solving the “cold
start” problem. As in our paper, in the papers noted above the full disclo-
sure policy is not necessarily optimal, and hiding information can increase the
social welfare and/or the platform’s revenue.

1.2 A Simple Motivating Model

In this section we provide a simple model that illustrates many important
features of our paper. While this model ignores important features of our
more general model, it will be helpful to highlight important aspects of our
analysis and main results.

Consider a platform where heterogeneous sellers and heterogeneous buyers
interact. In our simple model of this section, there are two types of sellers:
high quality sellers qH and low quality sellers qL with qH > qL > 0. The
platform knows the sellers’ quality and considers two policies. Policy B is
to ban the low quality sellers and keep only the high quality sellers on the
platform. Policy K is to keep both low quality and high quality sellers on the
platform and share the information about the sellers’ quality with the buyers.

The total supply of products by sellers whose quality level is i = H,L is
given by the function Si(pji ). When the platform chooses policy j = B,K,
pji is the price of the product sold by sellers whose quality level is i = H,L.
We assume that the total supply is increasing in the price. The total supply
can also depend on the mass of sellers whose quality level is i = H,L and on
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the sellers’ costs. In our two-sided market models the supply function will be
micro-founded, but we abstract away from these details for now.

Buyers are heterogeneous in how much they value quality relative to price.
A buyer with type m that decides to purchase from a seller whose quality
level is i = H,L has a utility mqi − pji . We normalize the utility associated
to not buying to zero. The distribution of the buyers’ types is described by
a probability distribution function F . We assume that F admits a density
function f . The buyers choose to buy or not to buy the product from sellers
whose quality level is i = H,L in order maximize their own utility. The buyers’
decisions generate demand for quality i = H,L sellers DK

i (pKL , pKH) when the
platform chooses policy K, and demand for quality H sellers DB

H(pBH) when
the platform chooses policy B (when the platform chooses option B, there is
no demand for low quality sellers as they are banned).

The platform’s goal is to choose a policy that maximizes the total trans-
action value given that prices form an equilibrium. Equilibrium requires that
the market must clear: that is, supply must equal demand. Note that if the
platform charges commissions from each side of the market, maximizing the
total transaction value is equivalent to maximizing the platform’s revenue.
For this reason, we will refer to the platform’s objective as “revenue” or “total
transaction value” interchangeably. If the platform chooses policy B, then
the total transaction value is pBHDB

H(pBH) and the equilibrium requirement is
SH(pBH) = DB

H(pBH). If the platform chooses policy K, then the total transac-
tion value is

pKHD
K
H (pKL , pKH) + pKLD

K
L (pKL , pKH)

and the equilibrium requirements are

SH(pKH) = DK
H (pKL , pKH) and SL(pKL ) = DK

L (pKL , pKH). (1.1)

For simplicity, we assume that the prices that satisfy the equilibrium require-
ments are unique. That is, (pKL , pKH) are the unique prices that solve the



CHAPTER 1. QUALITY SELECTION IN TWO-SIDED MARKETS 11

equations in (1.1) and pBH is the unique price that solves DB
H(pBH) = SH(pBH).

In this case, the platform’s revenue maximization problem transforms into a
constrained price discrimination problem. Choosing policy B is equivalent to
showing the buyers the price-quality pair (qH , pBH), while choosing policy K is
equivalent to showing the buyers the price-quality pairs (qH , pKH) and (qL, pKL ).
Hence, each policy is equivalent to a subset of price-quality pairs that we call a
menu, and the platform’s goal is to choose the menu with the higher revenue.

In our simple model, the set of feasible menus (denoted by C) contains only
two menus. We introduce our general model in Section 1.3, where we study
a general price discrimination problem with a rich set of possible menus C,
defined by a general constraint set. Furthermore, in the model we consider
in this section, the sellers’ qualities are fixed and the prices are constrained
by the equilibrium requirements. In the general two-sided market models we
consider (see Sections 1.5 and 1.6), the expected qualities are also determined
in equilibrium. Hence, the set of feasible menus C in the corresponding price
discrimination problem is determined by the specific two-sided market model
that we study. When the model is complicated, characterizing the set C can
be challenging as it requires computation of the equilibria of the two-sided
market model.

While the price discrimination problem in this example is simple, we later
show that we can solve a general constrained price discrimination problem
with similar arguments (see Section 1.3). We analyze the price discrimination
problem in two stages. In the first stage, we compare the revenue from policy
K (showing the price-quality pairs (qH , pKH) and (qL, pKL )) to the revenue from
the infeasible policy I: showing the price-quality pair (qH , pKH). Policy I is
generally infeasible because while the pair (qH , pKH) and (qL, pKL ) clears the
market, only showing (qH , pKH) will generally not do so: demand will be higher
than supply.

Note that the equilibrium requirements imply that the price of the product
sold by high quality sellers is higher than the price of the product sold by low
quality sellers, i.e., pKH > pKL . Now, if the platform were to choose policy I then
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fewer buyers would participate in the platform compared to policy K, but the
participating buyers would pay the higher price pKH . Policy I would be better
than policy K if and only if the revenue gains from the participating buyers
that pay a higher price when choosing I instead of K outweigh the revenue
losses from the mass of buyers that do not participate in the platform when
choosing I instead of K. This depends on the elasticity of the density function
∂ ln f(m)/∂ lnm. Intuitively, when the density function’s elasticity is not too
“low” the mass of buyers that the platform loses is not too “high”. We show
in Theorem 1.1 a general version of the following: when the density function’s
elasticity is bounded below by −2, policy I yields more revenue than policy
K (see a detailed analysis of the elasticity condition in Section 1.3).

In the second stage of the analysis, we compare the revenue from policy B
to the revenue from (potentially infeasible) policy I. The equilibrium require-
ments imply that pBH ≥ pKH . To see this, note that DB

H(pKH) ≥ DK
H (pKL , pKH) =

SH(pKH), i.e., the demand for high quality sellers in policy B is greater than the
demand for high quality sellers in policy K when the price is pKH . This follows
because for some buyers, buying from the high quality sellers yields a positive
utility that is smaller than the utility from buying from the low quality sellers.
Hence, in policy B, these buyers buy from the high quality sellers, while in
policy K they buy from the low quality sellers. Thus, the demand for high
quality sellers under the price pKH exceeds the supply. Because the supply is
increasing and the demand is decreasing in the price, we must have pBH ≥ pKH .

Before proceeding with the second stage of the analysis, we note that for
some models it is the case that pBH = pKH , like in the Bertrand competition
model that we study in Section 1.6. In this model, because supply is perfectly
elastic prices drop down all the way to marginal cost independently of whether
low quality sellers participate in the platform. In this case, this second stage
of the analysis is not necessary.

Now, if the platform shows the buyers the menu (qH , p) only the buyers
whose valuations satisfy mqH − p ≥ 0 buy the product from the high quality
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sellers. Thus, pDB
H(p) = p(1−F (p/qH)). When the density function’s elastic-

ity is bounded below by −2, the function F (m)m is convex (see Section 1.3),
and hence, the revenue function RH(p) := p (1− F (p/qH))) is concave in the
price p. Thus, as shown in Figure 1.1 below, policy B yields more revenue than
policy I if the equilibrium price pBH is lower than the monopoly price pMH , i.e.,
the unconstrained price that maximizes the platform’s revenue pMH ignoring
equilibrium conditions:

pMH = argmaxp≥0 p

(
1− F

(
p

qH

))
.
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Figure 1.1: The platform’s revenue as a function of the price.

Intuitively, the equilibrium price pHB is lower than the price that maximizes
the platform’s revenue pMH if the total supply of high quality sellers is large
enough. In particular, if the total supply of high quality sellers exceeds the
total demand under the price pMH , then the equilibrium price pBH must be lower
than pMH to ensure the market clears. In many two-sided markets, competition
between platforms and between sellers, platform subsidies on the supply side,
penetration pricing strategies, and other factors decrease equilibrium prices
considerably. Hence, in our context it is natural to assume that the monopoly
price is higher than or equal to the equilibrium price, i.e., pHB ≤ pMH . In
addition, if the equilibrium price was higher than the price that maximizes
the platform’s revenue the platform could introduce balanced transfers for
each side of the market, i.e., paying suppliers and charging buyers in order to
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decrease the equilibrium price.
In the general two-sided market models that we study in Sections 1.5 and

1.6, the qualities are also determined in equilibrium and the set of possible
menus that the platform can choose from can be very large. We will call this
set regular if it satisfies a general version of the conditions pMH ≥ pBH ≥ pKH

discussed above. That is, the set is regular if removing low quality sellers
increases the equilibrium price for high quality sellers; and if, in addition, the
monopoly price is higher than this equilibrium price. These conditions give rise
to natural constraints on the equilibria that can arise in the two-sided market
models that we study (see the discussion after Definition 1.1 in Section 1.3).

We conclude that when the elasticity of the density function is not too low,
and the monopoly price is higher than the equilibrium price, then policy B

yields more revenue than policy K. That is, banning low quality sellers and
keeping only the high quality sellers yields more revenue than keeping both
low quality and high quality sellers on the platform and distinguishing them
for buyers. In the next sections we study this and other structural results in
the context of general two-sided market models and information structures.

1.3 A Constrained Price Discrimination Prob-
lem

In the simple model of the previous section, we observed that the platform’s
problem of choosing how much information to share with the buyers about the
sellers’ quality transforms into a price discrimination problem with constraints
on the menu that can be chosen by the platform. In this section, we study
a general constrained price discrimination problem; the simple model in the
previous section is a special case. In the price discrimination problem we
consider, the platform chooses a subset of price-quality pairs, i.e., a menu,
from a feasible space of possible menus (referred to as the constraint set). The
constraint set restricts the possible choices of menus available to the platform.
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In the two-sided market models that we study in Sections 1.5 and 1.6, the
constraint set is determined by the endogenously-determined equilibrium in
these markets: i.e., the price-quality pairs in the menu must form an equi-
librium, in the sense that the prices and qualities agree with the buyers’ and
sellers’ optimal actions, and supply equals demand. Different two-sided market
models generate different constraint sets. In this section, we consider a general
constraint set. The platform’s problem is to choose a subset of price-quality
pairs (the menu) that belongs to the constraint set in order to maximize the
total transaction value, while knowing only the distribution of valuations of
possible buyers. As previewed in the simple model of the previous section, in
Sections 1.5 and 1.6 we will show that the platform’s information disclosure
problem in our two-sided market models transforms into the constrained price
discrimination problem that we study in this section.

1.3.1 Preliminaries

In this subsection we collect together basic concepts needed for our subsequent
development.
Menus. A menu C is a finite set of price-quality pairs.
Constraint set. We denote by C the nonempty set of all possible menus from
which the platform can choose. C is called a constraint set.
Buyers. We assume a continuum of buyers. Given a menu, the buyers choose
whether to buy a unit of the product and if so, at which price-quality pair to
buy it. Each buyer has a type that determines how much they value quality
relative to price. The utility of a type m buyer over price-quality combi-
nations is mq − p. The type distribution is given by a continuous cumula-
tive distribution function F . We assume that F is supported on an interval
[a, b] ⊆ R+ := [0,∞).3 Our results also hold in the case that the support of F

3All the results in the paper can be extended to the case that the utility of a type m
buyer over price-quality combinations is z(m)q − p for some strictly increasing function
z. In this case we can define the distribution function F̄ := F (z−1) and our results hold
when the assumptions on F are replaced by the same assumptions on F̄ .
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is unbounded.
Platform optimization problem and optimal menus. Given the con-
straint set C, the platform chooses a menu C = {(p1, q1) , . . . , (pk, qk)} ∈ C
to maximize the total transaction value, subject to the standard incentive
compatibility and individual rationality constraints.

In other words, the platform chooses a menu C ∈ C to maximize:

π (C) :=
∑

(pi,qi)∈C
piDi(C),

where Di(C) is the total mass of buyers that choose the price-quality pair
(pi, qi) when the platform chooses the menu C ∈ C. That is,4

Di(C) :=
∫ b

a
1{m:mqi−pi≥0}(m)1{m:mqi−pi=max(pi,qi)∈C mqi−pi}

(m)F (dm),

where 1A is the indicator function of the set A. A menu C ′ ∈ C is called
optimal if it maximizes the total transaction value, i.e., C ′ = argmaxC∈C π(C).
k-separating menus. Let Cp = {C ∈ C : Di(C) > 0 for all (pi, qi) ∈ C}
be the set that contains all the menus C such that the mass of buyers that
choose the price-quality pair (pi, qi) is positive for every (pi, qi) ∈ C. A menu
C = {(p1, q1) , . . . , (pk, qk)} ∈ Cp is said to be k-separating for a positive integer
k if C contains exactly k different price-quality pairs. That is, a k-separating
menu C satisfies |C| = k where |C| is the number of price-quality pairs on the
menu C. We let C1 ⊆ Cp be the set of all 1-separating menus. For the rest of
the section, we assume without loss of generality that prices are labeled so that
p1 ≤ p2 ≤ . . . ≤ pk for every k-separating menu C = {(p1, q1) , . . . , (pk, qk)}.

4If there is a subset of price-quality pairs C ′ such that for some type m buyer we have
mqi − pi ≥ 0 and mqi − pi = maxi∈C mqi − pi for all (pi, qi) ∈ C ′ then we assume that
the buyer chooses the price-quality pair with the highest index. This assumption does not
change our analysis because we assume that F does not have atoms.
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1.3.2 Optimality of 1-Separating Menus

The main result of this section (Theorem 1.1) shows that under certain condi-
tions, a 1-separating menu is optimal. Translating this to the two-sided market
model, it means that the platform bans a portion of the sellers and provides no
further information to buyers about the quality of the remaining sellers that
participate in the platform.

Our theorem shows that this result holds under two key conditions on the
model, each of which is related to conditions discussed in Section 1.2. The
first is a regularity condition that will be satisfied by a wide range of two-
sided market models, including those we consider in this paper. The second is
the convexity of F (m)m which relates to demand elasticities. We now discuss
each condition in turn.
Regularity. The first condition that we introduce is regularity. This condi-
tion imposes natural restrictions on the possible equilibria that can arise in the
two-sided market models. As we discussed in Section 1.2, the constraint set in
the price discrimination problem describes the set of equilibrium menus in the
two-sided market models that we study in Sections 1.5 and 1.6. Hence, the
condition on the constraint set that we describe next relates to the equilibrium
properties of the two-sided market models.

Definition 1.1. We say that the constraint set C is regular if the following
two conditions hold:

(i) If C = {(p1, q1) , . . . , (pk, qk)} ∈ Cp then there exists a feasible 1-separating
menu {(p, q)} ∈ C1 such that p ≥ pk and q ≥ qk.5

(ii) Let {(p, q)} ∈ C1 be such that p ≥ p′ for all {(p′, q′)} ∈ C1. Then
p ≤ pM(q).6

5Recall that we assume without loss of generality that p1 ≤ p2 ≤ . . . ≤ pk for every
menu C = {(p1, q1) , . . . , (pk, qk)}.

6Recall that given some quality q, the monopoly price ignoring equilibrium conditions,
pM (q) is given by

pM (q) = inf argmaxp≥0 p

(
1− F

(
p

q

))
.
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Condition (i) in Definition 1.1 can be interpreted in the two-sided market
models as follows: For a feasible menu (i.e., a menu that can arise in equilib-
rium), banning all sellers other than the highest quality sellers in that menu
increases the equilibrium price and the equilibrium quality of those sellers.
This is a natural condition in markets as decreasing the supply of low quality
sellers increases the equilibrium price and quality. Condition (ii) in Defini-
tion 1.1 means that when the platform uses a 1-separating menu, the highest
equilibrium price that can arise in the two-sided market model is lower than
the monopoly price. As we discussed in Section 1.2, this is also a natural
condition because market factors such as competition and supply subsidizing
suggest that the equilibrium price is lower than the monopoly price. In the
two-sided market models that we study, a sufficient condition that implies
condition (ii) in Definition 1.1 is that the supply of high quality sellers is not
very low. In this case, the equilibrium price is not very high and condition
(ii) holds (see Section 1.5). The two conditions in Definition 1.1 generalize the
regularity condition discussed in the simple model we presented in Section 1.2.
We believe that regularity is a mild condition over two-sided market models;
hence, we think of the demand elasticity condition that we introduce next as
the primary determinant of the optimality of 1-separating menus.
Convexity of F (m)m. The second condition that we require is the convexity
of F (m)m. If we suppose that F has a strictly positive and continuously
differentiable density f , then an elementary calculation shows that F (m)m is
convex if and only if:

∂f(m)
∂m

m

f(m) = f ′(m)m
f(m) ≥ −2.

In words, the elasticity of the density function must be bounded below by
−2. A number of distributions satisfy this condition, e.g., power law distri-
butions (F (m) = d + cmk for some constants k > 0, c, d); beta distributions
(f (m) = Γ(α+β)

Γ(α)Γ(β)m
α−1 (1−m)β−1 with β ≤ 1, where Γ is the gamma func-

tion); and Pareto distributions (F (m) = 1−
(
c
m

)α
on [c,∞), where c ≥ 1 is a
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constant and α ≤ 1). It is also worth noting that the condition that F (m)m
is convex is distinct from monotonicity of the so-called virtual value function
r(m) := m− (1− F (m))/f(m), a condition that plays a key role in the price
discrimination literature.7

To see the dependence on the density function’s elasticity, consider a simple
price discrimination setting inspired by the example of Section 1.2. In par-
ticular, suppose that the platform has only two price-quality pairs available:
(pL, qL) = (1, 1.5) and (pH , qH) = (2, 4), and the platform can either choose
the 1-separating menu {(pH , qH)} consisting of high quality only, or the full
(2-separating) menu {(pL, qL), (pH , qH)} consisting of both qualities. In Fig-
ure 1.2 we demonstrate the consequences of different elasticities of f . In the
figures in the left column, the platform chooses the full menu, the black color
represents the buyers that choose not to participate in the platform, the green
color represents the buyers that choose L, and the red color represents the
buyers that choose H. In the figures in the right column, the platform chooses
the 1-separating high quality menu, the black color represents the buyers that
choose to not participate in the platform, and the orange color represents the
buyers that choose to buy the product.

The 1-separating high quality menu yields more revenue than the full menu
if and only if the area between the points B and C times pH is greater than or
equal to the area between the points A and C times pL, that is, the revenue
losses from losing the participation in the platform of buyers whose valuations
are between 1.5 and 2 are smaller than the revenue gains from charging the
participating buyers whose valuations are between 2 and 2.5 the higher price.
Intuitively, when the elasticity is lower, this difference is higher. In other
words, when the elasticity is lower, the full menu is more attractive because the
platform loses too much revenue when choosing the 1-separating high quality
menu instead.

7See Mussa and Rosen (1978) and Maskin and Riley (1984), and more generally the
mechanism design literature (e.g., Myerson (1981)), for use of the monotonicity of the
virtual valuation function. Convexity of F (m)m can be shown to be equivalent to mono-
tonicity of the product of the virtual valuation with the density, r(m)f(m).
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The density functions in Figure 1.2 illustrates this point. The density
function in the figures in the first row has a constant elasticity of −1.5 and
the density function in the figures in the second row has a constant elasticity
of −4.
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Figure 1.2: Density functions with low and high elasticities.

Main result. We can now state our main result using the previous two condi-
tions. The following theorem states that our constrained price discrimination
problem admits an optimal solution that is 1-separating. All the proofs in the
paper are deferred to the Appendix.

Theorem 1.1. Suppose that F (m)m is a strictly8 convex function on [a, b] and
that C is regular. Assume that the set of all 1-separating menus C1 is a compact
subset of R2.9 Then there is an optimal 1-separating menu. In addition, the
optimal 1-separating menu {(p, q)} is maximal in C1: for every {(p′, q′)} ∈ C1

such that (p′, q′) 6= (p, q) we have p > p′ or q > q′.

8The assumption that F (m)m is strictly convex implies that the monopoly price is
unique. This assumption is for mathematical convenience and does not influence the re-
sult.

9In the two-sided market models that we study the constraint set is finite, and hence,
C1 is compact.
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In the Appendix we also show that we can slightly weaken the regularity
condition.

We note that if for every menu C = {(p1, q1) , . . . , (pk, qk)} that belongs to
C, the 1-separating menu C ′ = {pk, qk} belongs to C then the second condition
in Definition 1.1 is not needed in order to prove the optimality of a 1-separating
menu. The proof of this follows immediately from the proof of Theorem 1.1.
The intuition for this result follows from the argument in Section 1.2 that
shows that the second stage of the analysis of the example provided there
is not needed when such menu C ′ belongs to C. As we discussed in Section
1.2, this is useful for the two-sided market model where sellers compete in a
Bertrand competition (see Section 1.6). We use the next Corollary to prove
the optimality of a 1-separating menu in that model.

Corollary 1.1. Suppose that F (m)m is a convex function on [a, b] and that
for every menu C = {(p1, q1) , . . . , (pk, qk)} ∈ C we have C ′ = {pk, qk} ∈ C.
Assume that the set of all 1-separating menus C1 ∈ C is compact. Then there
is an optimal 1-separating menu.

Corollary 1.1 can be applied for some important constraint sets as the
following example shows.

Example 1.1. (i) In this example, the platform can choose any subset of price-
quality pairs from a pre-fixed set of price-quality pairs. Suppose that there is
a given set P of R price-quality pairs, P = {(p1, q1) , . . . , (pR, qR)}. Then the
constraint set is CP = 2P where 2X is the set of all subsets of a set X .

(ii) In this example, the platform can choose any finite string (p1, q1, . . . , pk, qk)
in R2k for k ≤ N where N ≥ 1, pi ∈ [0, p] and qi ∈ [0, q] for all 1 ≤ i ≤ k.
That is, the constraint set is given by
CN = {C : C is a k-separating menu for k ≤ N such that (p, q) ∈ [0, p] ×

[0, q] for all (p, q) ∈ C}.

In the two-sided market model in Section 1.6, the constraint set that the
platform faces is the same as the constraint set in Example 1.1 part (i) (see
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Theorem 1.3). The constraint set in Example 1.1 part (ii) is standard in the
price discrimination literature (see for example Bergemann et al. (2011)).

We now discuss two additional results that expand on Theorem 1.1. First,
the following corollary shows that for some menus C ∈ C, it is enough to show
that the function F (m)m is convex on a subset of [a, b] in order to prove that
there exists a 1-separating menu that yields more total transaction value than
the menu C. Thus, the menu that maximizes the total transaction value can
still be 1-separating for a distribution function that is convex on a subset of the
distribution’s support. For a k-separating menu C = {(p1, q1), . . . , (pk, qk)} ∈
Cp, let mi(C) = (pi − pi−1) / (qi − qi−1) for i = 1, . . . , k where p0 = q0 = 0.
Corollary 1.2 follows immediately from the proof of Theorem 1.1.

Corollary 1.2. Let C = {(p1, q1), . . . , (pk, qk)} ∈ Cp be a k-separating menu
where pi < pj if i < j. Suppose that F (m)m is convex on10 [m1(C),mk(C)]
and that C is regular. Then there exists a 1-separating menu C∗ that yields
more revenue than C, i.e., π(C) ≤ π(C∗).

In addition, if F (m)m is convex on [m1(C),mk(C)] for every menu and
C1 is compact, then there is a 1-separating menu that maximizes the total
transaction value.

We can also show that when the function F (m)m is not convex, we can
find a constraint set C that satisfies the condition of Corollary 1.1 such that no
1-separating menu exists that maximizes the total transaction value. In partic-
ular, we can find a simple constraint set C = 2C where C = {(p1, q1) , (p2, q2)}
(see Example 1.1 part (i)), for which a 1-separating menu is not optimal.

Proposition 1.1. Suppose that F (m)m is not convex on (a, b). Then there
exists a menu C = {(p1, q1) , (p2, q2)} and a constraint set C = 2C such that
the menu C ∈ C maximizes the total transaction value and yields strictly more
revenue than any 1-separating menu in C.

10Note that C ∈ Cp implies mi(C) < mj(C) for i < j and that [m1(C),mk(C)] ⊆ [a, b]
(see the proof of Theorem 1.1).
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When F (m)m is not convex on (a, b), Proposition 1.1 shows that we can
construct a constraint set where a 2-separating menu yields more total transac-
tion value than any 1-separating menu. Similarly, when F (m)m is not concave
on (a, b), we can construct a constraint set where a 1-separating menu yields
more total transaction value than any 2-separating menu. Thus, in the case
that F (m)m is not convex or concave everywhere on [a, b], a general character-
ization of the optimal menu for an arbitrary constraint set is not achievable.
However, in the next subsection we derive some positive results that depend
only on local convexity properties.

1.3.3 Local Results

In practice, because of operational considerations or other constraints, a plat-
form might only consider a small number of options. For example, an e-
commerce platform can introduce a new top rated sellers category or remove
an existing category. In this section we show that our main result holds also
locally. That is, the values of the density function’s elasticity on some local
region remain the key condition when deciding which option will yield more
total transaction value.

For simplicity, suppose that the platform considers only two menus C =
{(p1, q1), . . . , (pn, qn)} ∈ Cp and C ′ = C \ {(p1, q1)} where pi < pj, qi < qj

if i < j. In our two sided-market model where sellers choose prices, the
menu C ′ is feasible and can be obtained from the menu C by banning some
low quality sellers (see Section 1.6). The platform does not seek to find the
optimal menu across all menus but only to determine which menu yields more
total transaction value: C or C ′. In Proposition 1.2 we show that the menu C
yields lower (higher) total transaction value than the menu C ′ if the density
function’s elasticity is bounded below (above) by −2 on the interval A :=
[p1/q1, (p2 − p1)/(q2 − q1)].

Proposition 1.2. Let C = {(p1, q1), . . . , (pn, qn)} ∈ Cp and let C ′ = C \
{(p1, q1)}. Assume without loss of generality that pi < pj whenever i < j.
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Then, π(C) ≤ π(C ′) if F (m)m is convex on [p1/q1, (p2 − p1)/(q2 − q1)] and
π(C) ≥ π(C ′) if F (m)m is concave on [p1/q1, (p2 − p1)/(q2 − q1)].

We can obtain some intuition for the preceding result as follows. A type
m buyer chooses the price-quality pair (p1, q1) under the menu C if and only
if m ∈ A. Thus, in order to compare C and C ′, the density function’s elas-
ticity must be bounded below or above −2 on the set of buyers’ types that
choose the price-quality pair (p1, q1). Further, the elasticity of many standard
density functions is decreasing. In such a case, we can check the density func-
tion’s elasticity at just one point to determine which menu yields more total
transaction value: C or C ′ (see more details in Section 1.6).

In the Appendix we prove a general version of Proposition 1.2 (see Propo-
sition 5.1). We compare any two menus C and C ′ such that C ′ ∈ 2C where
2C is the power set of C. In the two-sided market model the menu C ′ can
be obtained by removing some sellers from the platform (not necessarily the
lowest quality sellers). We show that C ′ yields more (less) total transaction
value than C under convexity (concavity) of F (m)m on a certain relevant local
region.

A similar “local” analysis can be applied to the two-sided market model
where sellers choose quantities (see Section 1.5) but this requires additional
conditions on the set feasible menus. These conditions are similar to the
regularity condition (see Definition 1.1).

1.4 Information Structures

Having described our constrained price discrimination problem, we are now
in a position to describe how we apply that framework to design information
disclosure policies in two-sided markets. We begin in this section by describing
the information the platform has about the sellers’ quality levels and the set
of information structures from which the platform can choose.
Seller quality. Let X be the set of possible sellers’ quality levels. We assume
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that X is the interval11 [0, x] for some x > 0. We denote by B(X) the Borel
sigma-algebra on X and by P(X) the space of all Borel probability measures
onX. The distribution of the sellers’ quality levels is described by a probability
measure φ ∈ P(X).
Platform’s information. The platform’s information is summarized by a
finite (measurable) partition Io = {A1 . . . , Al} of X. We assume that φ(Ai) >
0 for all Ai ∈ Io. The platform has no information about the sellers’ quality
levels if |Io| = 1 where |Io| is the number of elements in the partition Io.
Information structures. Given the platform’s information Io, the platform
chooses an information structure to share with buyers. We now define an
information structure.

Definition 1.2. An information structure I is a family of disjoint sets such
that every set in I is a union of sets in Io, i.e., B ∈ I implies ∪iAi = B for
some sets Ai ∈ Io.

While the class of information structures we study is relatively simple, it
provides enough richness for our analysis. An interesting direction for future
work is to expand our analysis to other information structures. We now provide
examples of information structures.12

Example 1.2. Suppose that X = [0, 1], Io = {A1, A2, A3, A4}, Aj = [0.25(j −
1), 0.25j), j = 1, . . . , 4.

0 0.25A1 0.5A2 0.75A3 1A4

Two examples of information structures are the information structure I1 =
{A3, A4}

11All our results can be easily generalized for the case that X is any compact set in
Rn+.

12Note that equilibrium conditions will be required to fully specify buyers’ beliefs on
seller quality within each element of the information structure.
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0 0.25A1 0.5A2 0.75A3 1A4

and the information structure I2 = {A3 ∪ A4}

0 0.25A1 0.5A2 0.75A3 1A4

In the information structure I1, the sellers whose quality levels belong to
the sets A1 and A2 are “banned” from the platform, and the sellers whose
quality levels belong to the sets A3 and A4 can participate in the platform. The
platform shares the information it has about the sellers whose quality levels
belong to the sets A3 and A4, i.e., the buyers know that the quality level of a
seller in the set A4 is between 0.75 and 1, and the quality level of a seller in
the set A3 is between 0.5 and 0.75. In the information structure I2, the sellers
whose quality levels belong to the sets A1 and A2 are banned from the platform
and the platform does not share the information it has about the other sellers.
Hence, buyers cannot distinguish between sellers in A3 and A4.

Note that the platform’s information structure I = {B1, . . . , Bn} deter-
mines both which sellers are banned from the platform (in particular, sellers
in X\∪Bi∈IBi are banned from the platform), as well as the amount of informa-
tion that the platform shares with buyers regarding the sellers that participate
in the platform.

Given an information structure I, we define the measure space ΩI =
(X, σ(I)) where σ(I) is the sigma-algebra generated by I. Recall that a func-
tion p : (X, σ(I))→ R is σ(I) measurable if and only if p is constant on each
element of I, i.e., x1, x2 ∈ B and B ∈ I imply that p(x1) = p(x2) := p(B).

Given the platform’s initial information on the sellers’ quality levels Io, we
denote by I(Io) the set of all possible information structures.
k-separating information structures. We say that an information struc-
ture I is k-separating if I contains exactly k elements, i.e., |I| = k. For exam-
ple, the information structure I1 described in Example 1.2 is 2-separating and
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the information structure I2 is 1-separating.

1.4.1 Remarks On The Assumptions

We now provide a few remarks on our assumptions.
Exogenous quality. In our two-sided market models we assume that sellers
choose quantities or prices while their qualities are their types. In some plat-
forms sellers can choose or improve their quality. In those cases, the sellers’
types can be their opportunity cost, investment cost, or another feature. In
principle, we could incorporate this into our model and the transformation to
a constrained price discrimination problem would still hold. However, the set
of feasible menus (equilibrium menus) is determined by the specific two-sided
market model we study and by the market arrangement. Hence, the set of
feasible menus would be different and harder to characterize when sellers can
also choose their quality.
The platform’s initial information. As we discussed in the introduction,
platforms collect information about the sellers’ quality from many sources. In
this paper we abstract away from the data collection process and assume that
the platform has already collected some information about the sellers’ quality
and classified the sellers’ quality (the partition Io represents this classification).
We focus on how much of this information the platform should share with
buyers to maximize its revenues. An interesting future research direction is
to incorporate dynamic considerations that are related to learning, such as
learning the sellers’ quality, into our framework.
Information structures. The information structures available to the plat-
form in our model are more limited than the information structures available
to the platform (sender) in the standard information design literature. For
example, we do not allow the platform to use a mixed strategy (i.e., mix over
sets in the platform’s initial information Io). Allowing for mixed strategies
would actually simplify our analysis as is typically the case in the information
design literature. However, in our context of quality selection we think that
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platform’s pure strategies are more realistic. Also, because we assume that
the platform’s information about the sellers’ quality is partial and is given by
a finite partition, every information structure that the platform can choose as
well as the set of possible information structures that the platform can choose
from are finite. The analysis of the constrained price discrimination problem
in Section 1.3 shows that our framework can be generalized to the case of
uncountable information structures.

1.5 Two-Sided Market Model 1: Sellers Choose
Quantities

In this section we consider a model in which the platform chooses the prices,
and the sellers choose the quantities.

The platform chooses an information structure I ∈ I(Io) and a σ(I) mea-
surable pricing function p. The measurability of the pricing function means
that if the platform does not reveal any information about the quality of two
sellers, i.e., the two sellers belong to the same set B in the information struc-
ture I, then these sellers are given the same price under the platform’s pricing
function. The measurability condition is natural because the buyers do not
have any information on the sellers’ quality except the information provided
by the platform, so any rational buyer will not buy from a seller x whose price
is higher than a seller y when x and y have the same expected quality.

With slight abuse of notation, for an information structure I = {B1, . . . , Bn},
we denote a σ(I) measurable pricing function by p = (p(B1), . . . , p(Bn))
where p(Bi) is the price that every seller x in Bi charges. A pricing func-
tion p = (p(B1), . . . , p(Bn)) is said to be positive if p(Bi) > 0 for all Bi ∈ I.

An information structure I = {B1, . . . , Bn} and a pricing function p gen-
erate a game between the sellers and the buyers. The platform’s decisions and
the structure of the game are common knowledge at the start of the game.
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In the game, the sellers choose quantities,13 and the buyers choose whether
to buy a product and if so, from which set of sellers Bi ∈ I to buy it. Each
equilibrium of the game induces a certain revenue for the platform. The plat-
form’s goal is to choose an information structure and prices that maximize
the platform’s equilibrium revenue. We now describe the buyers’ and sellers’
decisions in detail.

1.5.1 Buyers

Buyers are heterogeneous in how much they value the quality of the product
relative to its price; in particular, every buyer has a type in [a, b] ⊆ R+ :=
[0,∞), with buyers’ types distributed according to the probability distribution
function F on [a, b], with continuous probability density function f . The
buyers do not know the sellers’ quality levels, but they know the information
structure I = {B1, . . . , Bn} and the pricing function p that the platform has
chosen.

The buyers choose whether to buy a product and if so, from which set
of sellers Bi ∈ I to buy it. A type m ∈ [a, b] buyer’s utility from buying a
product from a type x ∈ Bi seller is given by

Z(m,Bi, p(Bi)) = mEλBi (X)− p(Bi).

The probability measure λBi describes the buyers’ beliefs about the quality
levels of sellers in the set Bi, and EλBi (X) is the seller’s expected quality given
the buyers’ beliefs λBi .14 In equilibrium, the buyers’ beliefs are consistent with
the sellers’ quantity decisions and with Bayesian updating.

A typem buyer buys a product from a type x ∈ Bi seller if Z(m,Bi, p(Bi)) ≥

13Here quantities can correspond, for example, to how many hours the sellers choose to
work.

14All of our results hold if a type m ∈ [a, b] buyer’s utility is given by
Z(m,Bi, p(Bi)) = mv(λBi) − p(Bi) for some function v : P(X) → R+ that is increas-
ing with respect to stochastic dominance. For example, the function v can capture buyers’
risk aversion.
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0 and Z(m,Bi, p(Bi)) = maxB∈I Z(m,B, p(B)), and does not buy it other-
wise.15 The total demand in the market for products sold by type x ∈ Bi

sellers given the information structure I and the pricing function p, DI(Bi,p)
is given by

DI(Bi,p) =
∫ b

a
1{Z(m,Bi,p(Bi))≥0}1{Z(m,Bi,p(Bi))=maxB∈I Z(m,B,p(B))}F (dm).

1.5.2 Sellers

Given the information structure I and the pricing function p, a type x ∈ Bi ⊆
X seller’s utility is given by

U(x, h, p(Bi)) = hp(Bi)−
k(x)hα+1

α + 1 .

Each seller chooses a quantity h ∈ R+ in order to maximize their utility. For
a type x seller, the cost of producing h units is given by k(x)hα+1/(α + 1).
The seller’s cost function depends on their type and on the quantity that they
sell. We assume that k is measurable and is bounded below by a positive
number. We also assume that the cost of producing h units is strictly convex
in the quantity, i.e., α > 0. This cost structure is quite general and simplifies
the characterization of the constraint set, i.e., the set of equilibrium menus
(see Proposition 1.3 and Lemma 5.1 in the Appendix) but showing that the
constraint set is regular can be done under more general cost structures.

Let g(x, p(Bi)) = argmaxh∈R+ U(x, h, p(Bi)) be the quantity that a type
x ∈ Bi seller chooses when the pricing function is p = (p(B1), . . . , p(Bn)).
Note that g is single-valued because U is strictly convex in h. Let

SI(Bi, p(Bi)) =
∫
Bi
g(x, p(Bi))φ(dx)

15If there are multiple sets {Bi}Bi∈P such that for some type m buyer we have
Z(m,Bi, p(Bi)) ≥ 0 and Z(m,Bi, p(Bi)) = maxB∈I Z(m,B, p(B)), then we break ties
by assuming that the buyer chooses to buy from the set of sellers with the highest index,
i.e., maxi∈{i:Bi∈P̄} i.
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be the total supply in the market of sellers with types x ∈ Bi.

1.5.3 Equilibrium

Given the information structure and the pricing function that the platform
chooses, there are four equilibrium requirements. First, the sellers choose
quantities in order to maximize their utility. Second, the buyers choose whether
to buy a product and if so, from which set of sellers to buy it in order to max-
imize their own utility. Third, the buyers’ beliefs about the sellers’ quality are
consistent with Bayesian updating and with the sellers’ actions. Fourth, de-
mand equals supply for each set Bi that belongs to the information structure.
We now define an equilibrium formally.

Definition 1.3. Given an information structure I = {B1, . . . , Bn} and a pos-
itive pricing function p = (p(B1), . . . , p(Bn)), an equilibrium is given by the
buyers’ demand {DI(Bi,p)}ni=1, sellers’ supply {SI(Bi, p(Bi))}ni=1, and buyers’
beliefs {λBi}ni=1 that satisfy the following conditions:

(i) Sellers’ optimality: The sellers’ decisions are optimal. That is,

g(x, p(Bi)) = argmax
h∈R+

U(x, h, p(Bi))

is the optimal quantity for each seller x ∈ Bi ∈ I.
(ii) Buyers’ optimality: The buyers’ decisions are optimal. That is, for each

buyer m ∈ [a, b] that buys from type x ∈ Bi sellers, we have Z(m,Bi, p(Bi)) ≥
0 and Z(m,Bi, p(Bi)) = maxB∈I Z(m,B, p(B)).

(iii) Rational expectations: λBi(A) is the probability that a buyer is matched
to sellers whose quality levels belong to the set A given the sellers’ optimal
decisions, i.e.,

λBi(A) =
∫
A g(x, p(Bi))φ(dx)∫
Bi
g(x, p(Bi))φ(dx) (1.2)

for all Bi ∈ I and for all measurable sets A ⊆ Bi.16

16We assume uniform matching within each set Bi. Further, If
∫
Bi
g(x, p(Bi))φ(dx) = 0
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(iv) Market clearing: For all Bi ∈ I the total supply equals the total de-
mand, i.e.,

SI(Bi, p(Bi)) = DI(Bi,p) ,

where DI(Bi,p) and SI(Bi, p(Bi)) are defined in Sections 1.5.1 and 1.5.2 re-
spectively.

The equilibrium requirements limit the platform’s ability to design the
market. The buyers’ beliefs about the expected sellers’ quality depends on
the sellers’ quantity decisions, which the platform cannot control. Thus, the
platform’s ability to influence the buyers’ beliefs by choosing an information
structure is constrained. Furthermore, the prices and the expected sellers’
qualities must form an equilibrium (i.e., supply equals demand) in each set of
the information structure. This equilibrium requirement is in addition to the
more standard requirement in the market design literature that the buyers’
and sellers’ decisions are optimal. Hence, the platform cannot implement
every pair of an information structure and pricing function. This motivates
the following definition.

Definition 1.4. An information structure and pricing function pair (I,p) is
called implementable if there exists an equilibrium (D,S, λ) under (I,p) where
D = {DI(Bi,p)}Bi∈I , S = {S(Bi, p(Bi)}Bi∈I , and λ = {λBi}Bi∈I . We say that
(D,S, λ) implements (I,p) if (D,S, λ) is an equilibrium under (I,p).

We denote by WQ the set of all implementable pairs of an information
structure and pricing function (I,p). The platform’s goal is to choose an in-
formation structure I = {B1, . . . , Bn} and a pricing function p that maximize
the total transaction value πQ given by

πQ(I,p) :=
∑
Bi∈I

p(Bi) min{DI(Bi,p), SI(Bi, p(Bi))}

under the constraint that (I,p) is implementable. That is, the platform’s

then we define λBi
to be the Dirac measure on the point 0 = minX.
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revenue maximization problem is given by max(I,p)∈WQ πQ(I,p).17

1.5.4 Equivalence with Constrained Price Discrimina-
tion

The main motivation for studying the constrained price discrimination prob-
lem that we analyzed in Section 1.3 is that the platform’s revenue maximiza-
tion problem described above transforms into this constrained price discrim-
ination problem. To see this, let (I,p) be an information structure-pricing
function pair where I = {B1, B2, . . . , Bn} and p = (p(B1), . . . , p(Bn)). Let
D = {DI(Bi,p)}Bi∈I , S = {S(Bi, p(Bi)}Bi∈I , and λ = {λBi}Bi∈I be an equilib-
rium under (I,p). Then (I,p) induces a subset of price-expected quality pairs
C. The menu C is given by C = {(p(B1),EλB1

(X)), . . . , (p(Bn),EλBn (X))}
where EλBi (X) is the equilibrium expected quality of the sellers that belong
to the set Bi.

Denoting, qi := EλBi (X), the menu C yields the total transaction value

π (C) :=
∑

(pi,qi)∈C
piDi(C)

=
∑
Bi∈I

p(Bi)DI(Bi,p)

=
∑
Bi∈I

p(Bi) min{DI(Bi,p), SI(Bi, p(Bi))}

= πQ(I,p).

The first equality follows from the definition of π (see Section 1.3). The third
equality follows from the fact that (I,p) is implementable. We conclude that
the implementable information structure-pricing function pair (I,p) yields the

17We can easily incorporate into the model commissions γ1, γ2 on
each side of the market. In this case the platform’s revenue is given by∑
Bi∈I p(Bi) min{DI(Bi,p), SI(Bi, p(Bi))}(γ1 + γ2). Hence, for fixed commissions, the

platform’s revenue maximization problem is equivalent to maximizing the total transac-
tion value.
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same revenue as the menu C that it induces.
We denote by CQ the set of all menus C that are induced by some imple-

mentable (I,p) ∈ WQ. With this notation, the platform’s revenue maximiza-
tion problem is equivalent to the constrained price discrimination problem of
choosing a menu C ∈ CQ to maximize ∑ piDi(C) that we studied in Section
1.3. That is, we have max(I,p)∈WQ πQ(I,p) = maxC∈CQ π(C).

An information structure is optimal if it induces a menu that maximizes
the platform’s revenue. The next subsection studies optimal information struc-
tures in this model, leveraging the equivalence with the constrained price dis-
crimination problem.

1.5.5 Results

In this section we present our main results regarding the two-sided market
model where the sellers choose quantities and the platform choose prices.

Note that if (I,p) induces the menu C and I is a k-separating informa-
tion structure, then C is a k-separating menu. We let CQk ⊆ CQ be the set of
k-separating menus. From the fact that the platform’s revenue maximization
problem transforms into the constrained price discrimination problem, Theo-
rem 1.1 implies that if CQ is regular and F (m)m is convex, then the optimal
information structure is 1-separating, i.e., the optimal information structure
consists of one element. In this subsection, we establish certain natural condi-
tions on the market model primitives that ensure regularity; these conditions
then imply that if in addition mF (m) is convex, then a 1-separating informa-
tion structure is optimal.

Let ϕQ : I(Io) ⇒ CQ be the set-valued mapping from the set I(Io) of all
possible information structures to the set of menus CQ such that C ∈ ϕQ(I)
if and only if C is a menu that is induced by some implementable (I,p).
That is, ϕQ(I) contains all the menus that can be induced when the platform
uses the information structure I. We note that the mapping ϕQ is generally
complicated and there is no simple characterization of this mapping. However,
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we make substantial progress via the following proposition. In particular,
it can be shown that associated to every information structure I there is a
strictly convex program over the space of pricing functions p, such that (I,p)
is implementable if and only if the solution to the program is p. Since every
strictly convex program has at most one solution, this result also implies that
the cardinality of ϕQ(I) is at most one; in other words, there is no more than
one menu C such that C ∈ ϕQ(I).

Proposition 1.3. For every information structure I ∈ I(Io), there exists a
strictly convex program over pricing functions such that (I,p) is implementable
if and only if the solution to the program is p. Therefore, there is at most one
menu C such that C ∈ ϕQ(I).

To construct the claimed convex program in the preceding proposition, for
every information structure I = {B1, . . . , Bn} we define an associated excess
supply function. We show that the excess supply function satisfies the law of
supply, i.e., the excess supply function is strictly monotone18 on a convex and
open set P ⊆ Rn such that if p is an equilibrium price vector then p ∈ P . The
excess supply function is the gradient of some function ψ. Thus, minimizing ψ
over P is a strictly convex program that has a solution (minimizer) if and only
if the solution is a zero of the excess supply function, i.e., an equilibrium price
vector. The result is helpful because it introduces a tractable convex program
that for a given information structure provides an implementable price vector
as its solution.

In the remainder of this subsection, we establish conditions for regularity
of the space of menus induced under ϕQ; these conditions are analogous to
those discussed for the simple model in Section 1.2. First, note that in the

18A function ζ : P → Rn is strictly monotone on P if for all p = (p1, . . . , pn) and
p′ = (p′1, . . . , p′n) that belong to P and satisfy p 6= p′, we have

〈ζ(p)− ζ(p′),p− p′〉 > 0

where 〈x,y〉 :=
∑n
i=1 xiyi denotes the standard inner product between two vectors x and

y in Rn.
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Appendix we prove Lemma 5.1 that states that given an information structure,
the sellers’ expected qualities do not depend on the prices as long as the prices
are positive. This follows from the sellers’ cost functions which imply that the
sellers’ optimal quantity decisions are homogeneous in the prices. We assume
for the rest of the section that EλA1

(X) < . . . < EλAl (X). Let EλB(X) be the
resulting sellers’ expected quality under the 1-separating information structure
{B}; then

pM(B) = argmax
p≥0

p

(
1− F

(
p

EλB(X)

))

is the price that maximizes the platform’s revenue under the 1-separating
information structure {B} ignoring equilibrium conditions.

We denote by {BH} ∈ {{A1}, {A2}, . . . , {Al}} the information structure
that generates the highest equilibrium price among the 1-separating informa-
tion structures {A1}, . . . , {Al}. That is, {(p(BH),Eλ

BH
(X))} ∈ ϕQ({BH})

and {(p(B),EλB(X))} ∈ ϕQ({B}) imply p(BH) ≥ p(B) for every 1-separating
information structure {B} such that {B} ∈ {{A1}, . . . , {Al}}.

Theorem 1.2 shows that if

S{BH}(BH , pM(BH)) ≥ D{BH}(BH , pM(BH)) (1.3)

and F (m)m is strictly convex, then the optimal information structure is 1-
separating. Inequality (1.3) says that under the information structure {BH}
and the price pM(BH), the supply exceeds the demand. This implies that
under the information structure {BH}, the equilibrium price is lower than the
optimal monopoly price that maximizes the platform’s revenue, similarly to the
condition discussed in Section 1.2. Hence, inequality (1.3) implies condition
(ii) of the regularity definition (see Definition 1.1) holds. In order to prove that
the optimal information structure is 1-separating we show that condition (i) of
the regularity definition also holds, and hence, the set of equilibrium menus CQ

is regular. As we discussed in Section 1.3, condition (i) means that removing
low quality sellers increases the equilibrium price for high quality sellers. This
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is a natural condition in the context of two-sided market models. In the two-
sided market model that we study in this Section we show that condition (i)
holds without any further assumptions on the model’s primitives. Thus, under
the mild condition that ensures that the supply of high quality sellers is not
too low (inequality (1.3)), we can apply Theorem 1.1 to prove that the optimal
information structure is 1-separating under the convexity of F (m)m.

Theorem 1.2. Assume that F (m)m is strictly convex on [a, b]. Assume that
inequality (1.3) holds. Then,

(i) The set CQ is regular.
(ii) There exists a 1-separating information structure I∗ such that

(I∗,p∗) = argmax
(I,p)∈WQ

πQ(I,p).

That is, there exists a 1-separating information structure I∗ that maximizes
the platform’s revenue.

(iii) The pair (I∗, p∗) induces a menu that is maximal in CQ1 and B∗ ∈ Io =
{A1, . . . , Al} where I∗ = {B∗} is the optimal information structure.19

Theorem 1.2 shows that there exists a unique equilibrium price peq(Aj) that
the platform can induce when it chooses the 1-separating information structure
I = {Aj}, i.e., ϕQ(I) is single-valued when I is a 1-separating information
structure. Further, under the natural condition that the equilibrium price is
increasing in the sellers’ quality, i.e., peq(Aj) ≤ peq(Ak) whenever EλAj (X) <
EλAk (X), it is simple to show that there exists only one information structure-
price pair ({Al}, peq(Al)) that induces a maximal menu in CQ1 . Hence, in this
case, Theorem 1.2 implies that the optimal 1-separating information structure
is {Al}. That is, banning all sellers except the highest quality sellers is optimal
for the platform.

19Recall that a menu {(p, q)} ∈ CQ1 is maximal in CQ1 if for every menu {(p′, q′)} ∈ CQ1
such that (p′, q′) 6= (p, q) we have p > p′ or q > q′
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Checking if inequality (1.3) holds is straightforward given the model’s prim-
itives. The following example illustrates that inequality (1.3) holds if the sell-
ers’ costs in BH are low enough and/or the size of the supplier set BH is large
enough. We note that if we introduce transfers or subsidies for each side of the
market then the platform can always charge buyers and pay sellers in a way
that inequality (1.3) holds and the subsidies do not influence the platform’s
revenue.

Example 1.3. Suppose that F (m) is the uniform distribution on [0, 1], i.e.,
F (m) = m on [0, 1]. Assume also that α = 1. A direct calculation shows that
pM(B) = EλB(X)/2. Hence, inequality (1.3) holds if and only if

1− pM(BH)
Eλ

BH
(X) ≤ pM(BH)

∫
BH

k(x)−1φ(dx) ⇔ 1 ≤
∫
BH

xk(x)−1φ(dx)

(1.4)
where we use the fact that Eλ

BH
(X)

∫
BH k(x)−1φ(dx) =

∫
BH xk(x)−1φ(dx) (see

Lemma 5.1 in the Appendix). Thus, the size of the set BH , the sellers’ qual-
ities in BH , and the sellers’ costs in BH determine whether inequality (1.3)
holds. In order to determine the information structure {BH} with the highest
equilibrium price we can solve for the equilibrium price:

1− peq(B)
EλB(X) = peq(B)

∫
B
k(x)−1φ(dx)⇔ peq(B) =

∫
B xk(x)−1φ(dx)∫

B k(x)−1φ(dx)(1 +
∫
B xk(x)−1φ(dx))

(1.5)
and choose the set B ∈ {A1, . . . , Al} with the highest equilibrium price.

When the support of F is unbounded it can be the case that inequality
(1.3) trivially holds because the supply under the price that maximizes the
platform’s revenue tends to infinity. For example, suppose that F has the
Pareto distribution, i.e., F (m) = 1− 1/mβ on [1,∞). Then F (m)m is convex
for β < 1. In this case, the support of F is unbounded so pM is not necessarily
well defined. Indeed, for every q > 0 we have

lim
p→∞

p

(
1− F

(
p

q

))
= lim

p→∞
p

(
qβ

pβ

)
=∞.
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Thus, the price that maximizes the platform’s revenue tends to infinity which
means that the supply under this price tends to infinity and inequality (1.3)
trivially holds.

1.6 Two-Sided Market Model 2: Sellers Choose
Prices

In this section we consider a model in which the sellers choose the prices and
the quantities are determined in equilibrium.

The platform chooses an information structure I ∈ Io (see Section 1.4).
An information structure generates a game between buyers and sellers. In this
game, sellers make entry decisions first. After the entry decisions, in each set
of sellers that belongs to the information structure, the participating sellers
engage in Bertrand competition. Buyers form beliefs about the sellers’ quality
and choose whether to buy a product and if so, from which set of sellers to
buy it.

Each equilibrium of the game induces a certain revenue for the platform.
The platform’s goal is to choose the information structure that maximizes
the platform’s equilibrium revenue. We now describe the sellers’ and buyers’
decisions in detail.

1.6.1 Buyers

In this section we describe the buyers’ decisions. The buyers make their deci-
sions after the sellers’ entry and pricing decisions have been made. We denote
by H(Bi) ⊆ Bi the set of quality x ∈ Bi sellers that participate in the platform
and by px the price that a quality x ∈ ∪Bi∈IH(Bi) seller charges.

As in Section 1.5.1, the buyers’ heterogeneity is described by a type space
[a, b] ⊂ R+, and buyers’ types are distributed according to a probability distri-
bution function F on [a, b]. The buyers do not know the sellers’ quality levels,
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but they know the information structure I = {B1, . . . , Bn} that the platform
has chosen. Because the buyers do not have any information about the sellers’
quality aside from the information structure I, and there are no search costs or
frictions, the buyers that decide to buy a product from quality x ∈ Bi sellers
buy it from the seller (or one of the sellers) with the lowest price in Bi.

The preceding requirement implies that sellers cannot use prices in order
to signal quality. That is, two sellers with quality levels x1, x2 such that
x1 ∈ Bi, x2 ∈ Bi for some set Bi in the information structure I cannot disclose
information about their quality level to the buyers. Because the main focus of
this section is examining the platform’s quality selection decisions, we abstract
away from information that sellers can disclose to buyers. In particular, our
model abstracts away from the possibility that the sellers signal their quality
through higher prices. This may be an interesting avenue for future research.

Given the information structure I = {B1, . . . , Bn} and the sets of sellers
that participate in the platform {H(Bi)}Bi∈I , H(Bi) ⊆ Bi, the buyers form
beliefs λBi ∈ P(X) about the quality level of type x ∈ Bi sellers.20 In equi-
librium, the buyers’ beliefs are consistent with the sellers’ entry decisions and
with Bayesian updating. That is, λBi describes the conditional distribution of
φ given H(Bi), i.e., λBi(A) = φ(A|H(Bi)) where φ(A|H(Bi)) := φ(A∩H(Bi))

φ(H(Bi)) for
every (measurable) set A and all Bi ∈ I such that φ(H(Bi)) > 0.

We denote by p(Bi) = infx∈H(Bi) px the lowest price among the sellers in the
set Bi. A type m ∈ [a, b] buyer’s utility from buying a product from quality
x ∈ Bi sellers is given by

Z(m,Bi, p(Bi)) = mEλBi (X)− p(Bi).

EλBi (X) is the sellers’ expected quality given the buyers’ beliefs λBi . A type
m buyer buys a product from a quality x ∈ Bi seller if Z(m,Bi, p(Bi)) ≥ 0
and Z(m,Bi, p(Bi)) = maxB∈I Z(m,B, p(B)), and does not buy a product
otherwise.

20With slight abuse of notations we use similar notations to those of Section 1.5.1.



CHAPTER 1. QUALITY SELECTION IN TWO-SIDED MARKETS 41

The total demand in the market for products that are sold by type x ∈ Bi

sellers DI(Bi, p(B1), . . . , p(Bn)) who charge the lowest price in Bi is given by

DI(Bi, p(B1), . . . , p(Bn)) =
∫ b

a
1{Z(m,Bi,p(Bi))≥0}1{Z(m,Bi,p(Bi))=maxB∈P Z(m,B,p(B))}F (dm).

(1.6)
The total demand in the market for products that are sold by type x ∈ Bi

sellers that do not charge the lowest price in Bi is zero.

1.6.2 Sellers

In this section we describe the sellers’ decisions. Sellers first choose whether
to participate in the platform or not. In each set Bi ∈ I that belongs to the
information structure, participating sellers price their products simultaneously
and engage in price competition with other sellers whose quality levels belong
to the set Bi ∈ I. Because a buyer that decides to buy a product from a quality
x ∈ Bi seller buys it from the seller (or one of the sellers) who charges the
lowest price in the set Bi, the price competition between the sellers resembles
Bertrand competition.

A quality x ∈ Bi ⊆ X seller that participates in the platform sells a
quantity given by
hI(Bi, H(Bi), px, p(B1), . . . , p(Bn)) units if the set of participating sellers is
H(Bi), the price that x charges is px ∈ R+, and p(Bi) = infx∈H(Bi)\{x} px

is the lowest price among the other sellers in the set H(Bi). We denote by
MI(Bi, p(B1), . . . , p(Bn)) the total mass of sellers whose quality levels belong
to Bi and who charge the price p(Bi). The quantity allocation function hI is
determined in equilibrium and is given by

hI(Bi, H(Bi), px,p) =


∞ if px < p(Bi), DI(Bi,p) > 0

DI(Bi,p)
MI(Bi,p) if px = p(Bi), DI(Bi,p) > 0

0 if px > p(Bi), or DI(Bi,p) = 0
(1.7)

where p := (p (B1) , . . . , p(Bn)) and we define DI(Bi,p)/MI(Bi,p) = ∞ if
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MI(Bi,p) = 0 and DI(Bi,p) > 0. This quantity allocation resembles the
quantity allocation in the standard Bertrand competition model with a con-
tinuum of sellers. In particular, when multiple active sellers’ charge the same
lowest price within a set, the buyers’ demand splits evenly between those sell-
ers.

A quality x ∈ Bi ⊆ X seller’s utility from participating in the platform is
given by

U(x,H(Bi), px, p(B1), . . . , p(Bn)) = hI(Bi, H(Bi), px, p(B1), . . . , p(Bn))(px−c(x)).

We assume that the cost function c is positive and constant on each element
of the partition Io, i.e., x1, x2 ∈ Ai and Ai ∈ Io imply c(x1) = c(x2) =
c(Ai). The assumption that the cost function c is constant on each element
of the partition Io means that the cost function is measurable with respect to
the platform’s information, i.e., the platform knows the sellers’ costs but not
the sellers’ quality levels. This assumption simplifies the analysis but is not
essential to our results. We also assume that the cost function is increasing, i.e.,
c(Ai) < c(Aj) for i < j. This assumption means that producing higher quality
products costs more. A quality x ∈ X seller’s utility from not participating in
the platform is normalized to 0.

1.6.3 Equilibrium

In this section we define the equilibrium concept that we use for the game
described above. For simplicity, we focus on a symmetric equilibrium in the
sense that for all Bi ∈ I, all the sellers that participate in the platform charge
the same price. With slight abuse of notation, we denote this price by p(Bi),
i.e., px = p(Bi) for all x ∈ H(Bi), Bi ∈ I.

Definition 1.5. Given an information structure I = {B1, . . . , Bn}, an equi-
librium consists of a vector of positive prices p = (p(B1), . . . , p(Bn)) ∈ R|I|,
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positive masses of sellers that participate in the platform {MI(Bi,p)}Bi∈I , pos-
itive masses of demand {DI(Bi,p)}Bi∈I , and buyers’ beliefs λ = (λBi)Bi∈I such
that

(i) Sellers’ optimality: The sellers’ decision are optimal. That is,

p(Bi) = argmax
px∈R+

U(x,H(Bi), px,p)

is the price that seller x ∈ H(Bi) charges. In addition, seller x ∈ Bi enters
the market, i.e., x ∈ H(Bi), if and only if U(x,H(Bi), p(Bi),p) ≥ 0.

(ii) Buyers’ optimality: The buyers’ decisions are optimal. That is, for each
buyer m ∈ [a, b] that buys from type x ∈ Bi sellers, we have Z(m,Bi, p(Bi)) ≥
0 and Z(m,Bi, p(Bi)) = maxB∈I Z(m,B, p(B)).

(iii) Rational expectations: λBi(A) is the probability that a buyer is matched
to sellers whose quality levels belong to the set A given the sellers’ entry deci-
sions, i.e.,

λBi(A) = φ(A|H(Bi)) = φ(A ∩H(Bi))
φ(H(Bi))

for every (measurable) set A and for all Bi ∈ I.
(iv) Market clearing: For all Bi ∈ I we have

MI(Bi,p)hI(Bi, H(Bi), p(Bi),p) = DI(Bi,p) ,

where MI(Bi,p) = φ(H(Bi)) is the mass of sellers in Bi that participate in the
platform; DI(Bi,p) and hI(Bi, H(Bi), p(Bi),p) are defined in Sections 1.6.1
and 1.6.2, respectively.

We say that an information structure I is implementable if there exists an
equilibrium (p, D,M, λ) under I whereD = {DI(Bi,p)}Bi∈I , M = {M(Bi,p}Bi∈I ,
and λ = {λBi}Bi∈I . We denote byWP the set of all implementable information
structures.

The platform’s goal is to choose an implementable information structure
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to maximize the total transaction value πP given by

πP (I) :=
∑
Bi∈I

p(Bi) min{DI(Bi,p),MI(Bi,p)hI(Bi, H(Bi), p(Bi),p)}.

1.6.4 Equivalence with Constrained Price Discrimina-
tion

As in Section 1.5.4, the platform’s revenue maximization problem described
above transforms into the constrained price discrimination problem that we
analyzed in Section 1.3. To see this, note that an implementable information
structure I = {B1, B2, . . . , Bn} and an associated equilibrium price vector p

induce a menu C that is given by

C = {(p(B1),EλB1
(X)), . . . , (p(Bn),EλBn (X))}

where EλBi (X) is the equilibrium expected quality of the sellers that belong to
the set Bi and p = (p(B1), . . . , p(Bn)) is the vector of equilibrium prices. The
implementable information structure I yields the same revenue as the menu
C that it induces (see Section 1.5.4). We denote by CP the set of all menus C
that are induced by some implementable information structure I ∈ WP . With
this notation, the platform’s revenue maximization problem is equivalent to
the constrained price discrimination problem of choosing a menu C ∈ CP to
maximize ∑ piDi(C) that we studied in Section 1.3.

1.6.5 Results

In this section we present our main results regarding the two-sided market
model in which the sellers choose the prices.

Let ϕP : I(Io) ⇒ CP be the set-valued mapping from the set I(Io) of all
possible information structures to the set of menus CP such that C ∈ ϕP (I)
if and only if C is a menu that is induced by the information structure I.
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As opposed to the two-sided market model that we study in Section 1.5, the
mapping ϕP can be explicitly characterized in the current setting. This is
because Bertrand competition pins down the equilibrium prices (to the lowest
marginal costs within a set in the information structure).

For an information structure I = {B1, . . . , Bn} let L(I) = {G1, . . . , Gn} be
an information structure such that Gj ∈ Io for all Gj ∈ L(I) and Gj is the set
with the lowest index among the blocks of Bj, i.e., among the sets {Ak} such
that Bj = ∪kAk. For example, if B1 = A1 ∪ A2, then G1 = A1. We assume
without loss of generality that c(G1) < . . . < c(Gn) for every information
structure I. The following theorem shows that for every implementable infor-
mation structure I and for every set Bi ∈ I, the equilibrium price for sellers
in Bi equals c(Gi). This fact follows directly from our Bertrand competition
assumption. Further, using this characterization of the equilibrium prices it
follows directly that CP satisfies the condition of Corollary 1.1.

Theorem 1.3. Let I be any information structure. Suppose that C ∈ ϕP (I).
(i) We have

C = {(c(G1),EλG1
(X)), . . . , (c(Gn),EλGn (X))}

where L(I) = {G1, . . . , Gn} and λGi(A) = φ(A ∩Gi)/φ(Gi) for every measur-
able set A.

(ii) We have {(c(Gn),EλGn (X))} ∈ ϕP ({Bn}).
(ii) Suppose that Io is implementable and Co ∈ ϕP (Io). Then CP = 2Co.

The proof of the following Corollary follows immediately from Theorem 1.3
and Corollary 1.1.

Corollary 1.3. Assume that F (m)m is convex on [a, b]. Then there exists a
1-separating information structure that maximizes the platform’s revenue.

Note that the only 1-separating information structure that induces a menu
that is maximal in CP1 is {Al}. Thus, when Io is implementable and the con-
straint set CP = 2Co is regular (i.e., the equilibrium price is lower than the
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monopoly price under the information structure {Al}), Theorem 1.1 implies
that the optimal information structure is {Al}. That is, the optimal informa-
tion structure bans all sellers except the highest quality sellers.

As we discussed in Section 1.3.3, in practice, a platform might consider
only a small number of options, e.g., removing the lowest quality sellers or
keeping them. In order to determine whether banning these low quality sellers
is beneficial, the platform needs to measure the density function’s elasticity
only locally. If the density function’s elasticity is bounded below by −2 (i.e.,
F (m)m is convex) on some local region that depends on the prices and qualities
of the low quality sellers, then it is beneficial to ban these sellers. Conversely,
if the density function’s elasticity is bounded above by −2 (i.e., F (m)m is
concave) on this local region, then it is beneficial to keep these sellers (see
Corollary 1.4). For many distribution functions the density function’s elasticity
is decreasing. In this case Corollary 1.4 implies that the platform needs to
check the density function’s elasticity only at one point. For example, if at the
highest point of the relevant interval (this point depends on the equilibrium
prices and qualities) the density function’s elasticity is greater than −2, then
it is greater than −2 over the relevant interval. In practice, the platform might
be able to estimate this elasticity with price experimentation.

Corollary 1.4. Let I = {B1, . . . , Bn} be an implementable information struc-
ture.

Let C = {(p(G1),EλG1
(X)), . . . , (p(Gn),EλGn (X)))} ∈ ϕP (I) where L(I) =

{G1, . . . , Gn}. Consider the (implementable) information structure I ′ = {B2, . . . , Bn}.
Then

πP (I) ≤ πP (I ′) if F (m)m is convex on
[
p(G1)
EλG1

(X) ,
p(G2)− p(G1)

EλG2
(X)− EλG1

(X)

]

πP (I) ≥ πP (I ′) if F (m)m is concave on
[
p(G1)
EλG1

(X) ,
p(G2)− p(G1)

EλG2
(X)− EλG1

(X)

]

We also show that when F (m)m is concave and Io is implementable, the
optimal information structure is Io, i.e., the platform reveals all the information
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it has about the sellers’ quality. The proof of the following Corollary follows
from Theorem 1.3 and Proposition 1.2.

Corollary 1.5. Assume that Io is implementable.
Let Co = {(p(A1),EλA1

(X)), . . . , (p(Al),EλAl (X))} ∈ ϕP (Io). Suppose that
F (m)m is concave on

 p(A1)
EλA1

(X) ,
p(Al)− p(Al−1)

EλAl (X)− EλAl−1
(X)

 .
Then the optimal information structure is Io.

1.7 Conclusions

In this paper we study optimal information disclosure policies for online plat-
forms. We introduce two distinct two-sided market models. In the first model
the sellers choose quantities, and in the second model the sellers make en-
try and pricing decisions. A key element of our analysis is showing that the
platform’s information disclosure problem transforms into a constrained price
discrimination problem, where the constraints are given by the equilibrium
requirements and depend on the specific two-sided market model being stud-
ied. We use this equivalence to provide conditions that are related to demand
elasticities, under which a simple information structure where the platform
removes a certain portion of low quality sellers and does not share any infor-
mation about the other sellers is revenue-optimal for the platform.

There are some interesting potential extensions for future work. For ex-
ample, in practice, the platform and the buyers learn the sellers’ quality as
they make their decisions. One possible extension of our work would be to
incorporate learning into our setting. Another direction for future work is to
introduce competition between platforms. In many industries, fierce compe-
tition between platforms has a first order effect on the market design choices
made by platforms.
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Finally, a third interesting direction for future research is to incorporate
search frictions in our setting. In some platforms (e.g., e-commerce platforms)
search frictions play a significant role. In some of these platforms, because of
rating inflation, the sellers’ star rating does not provide substantial informa-
tion about the sellers’ quality (see, e.g., Tadelis (2016)). In this case, the menu
observed in practice sometimes looks similar to a 2-separating menu: certified
sellers, sellers that are not certified, and sellers that are banned. While the
results in this paper show that a 1-separating menu is optimal under an appro-
priate condition on demand elasticity, we conjecture that extending our setting
to incorporate search costs would change the optimal menu. In particular, in
order to mitigate the impact of search, a 2-separating menu might be more
attractive.



Chapter 2

Mean Field Equilibrium:
Uniqueness, Existence, and
Comparative Statics

Abstract
The standard solution concept for stochastic games is Markov perfect equi-

librium (MPE); however, its computation becomes intractable as the number
of players increases. Instead, we consider mean field equilibrium (MFE) that
has been popularized in the recent literature. MFE takes advantage of av-
eraging effects in models with a large number of players. We make three
main contributions. First, our main result provides conditions that ensure
the uniqueness of an MFE. We believe this uniqueness result is the first of
its nature in the class of models we study. Second, we generalize previous
MFE existence results. Third, we provide general comparative statics results.
We apply our results to dynamic oligopoly models and to heterogeneous agent
macroeconomic models commonly used in previous work in economics and
operations.

49
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2.1 Introduction

In this paper we consider a general class of stochastic games in which every
player has an individual state that impacts payoffs. Historically, Markov per-
fect equilibrium (MPE) has been a standard solution concept for this type of
stochastic games (Maskin and Tirole, 2001). However, in realistically-sized
applications, MPE suffers from two drawbacks. First, because in MPE players
keep track of the state of every competitor, the state space grows very quickly
as the number of players grows, making the analysis and computation of MPE
infeasible in many applications of practical interest. Second, as the number of
players increases, it becomes difficult to believe that players can in fact track
the exact state of the other players and optimize their strategies accordingly.

As an alternative, mean field equilibrium (MFE) has received extensive at-
tention in the recent literature. In an MFE, each player optimizes her expected
discounted payoff, assuming that the distribution of the other players’ states is
fixed. Given the players’ strategy, the distribution of the players’ states is an
invariant distribution of the stochastic process that governs the states’ dynam-
ics. As a solution concept for stochastic games, MFE offers several advantages
over MPE. First, because players only condition their strategies on their own
state (the competitors’ state is assumed to be fixed), MFE is computationally
tractable. Second, as several of the papers we cite below prove, due to aver-
aging effects MFE provides accurate approximations of optimal behavior as
the number of players grows. As a result, it provides an appealing behavioral
model in games with many players.

MFE models have many applications in economics, operations research,
and optimal control; e.g., studies of anonymous sequential games (Jovanovic
and Rosenthal, 1988), continuous-time mean field models (Huang et al. (2006)
and Lasry and Lions (2007)), dynamic user equilibrium (Friesz et al., 1993),
auction theory (Iyer et al. (2014), Balseiro et al. (2015), and Bimpikis et al.
(2018)), dynamic oligopoly models (Weintraub et al. (2008) and Adlakha et al.
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(2015)), heterogeneous agent macro models (Hopenhayn (1992) and Heathcote
et al. (2009)), matching markets (Kanoria and Saban (2019) and Arnosti et al.
(2018)), spatial competition (Yang et al., 2018), and evolutionary game theory
(Tembine et al., 2009).

We provide three main contributions regarding MFE. First, we provide
conditions that ensure the uniqueness of an MFE. This novel result is impor-
tant because it implies sharp counterfactual predictions. Second, we generalize
previous existence results to a general state space setting. Our existence result
includes the case of a countable state space and a countable number of play-
ers, as well as the case of a continuous state space and a continuum of players.
In addition, we provide novel comparative statics results for stochastic games
that do not exhibit strategic complementarities.

We apply our results to well-known dynamic oligopoly models in which in-
dividual states represent the firms’ ability to compete in the market (Doraszel-
ski and Pakes, 2007). MFE and the related concept of oblivious equilibrium
have previously been used to analyze such models.1 In the models we study,
for each firm, being in a larger state is more profitable, while if competitors’
states are larger it is less profitable. This structure is quite natural in dynamic
models of competition that have been studied in the operations research and
economics literature, and we leverage it to prove our uniqueness result. We
provide examples of dynamic investments models of quality, capacity, and ad-
vertising, as well as a dynamic reputation model of an online market. We
also apply our results to commonly used heterogeneous agent macroeconomic
models.

We now explain our contributions in more detail and compare them to
previous work on MFE.

Uniqueness. We do not know of any general uniqueness result regarding

1For example, Adlakha et al. (2015) use MFE, which they call stationary equilibrium.
Adlakha et al. (2015) was motivated by Hopenhayn (1992) who introduced the term to
study models with infinite numbers of firms. Weintraub et al. (2008) introduce oblivious
equilibrium to study settings with finite numbers of firms.
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MFE in discrete-time mean field equilibrium models.2 Only a few papers
have obtained uniqueness results in specific applications. Hopenhayn (1992)
proves the uniqueness of an MFE in a specific dynamic competition model.
Light (2020) proves the uniqueness of an MFE in a Bewley-Aiyagari model
under specific conditions on the model’s primitives (see a related result in Hu
and Shmaya (2019)). Our main theorem in this paper is a novel result that
provides conditions ensuring the uniqueness of an MFE for broader classes of
models. Informally, under mild additional technical conditions, we show that
if the probability that a player reaches a higher state in the next period is
decreasing in the other players’ states, and is increasing in the player’s own
state in the current period, then the MFE is unique (see Theorem 2.1). Hence,
the conditions reduce the difficulty of showing that a stochastic game has a
unique MFE to proving properties of the players’ optimal strategies.

In many applications, one can show that these properties of the optimal
strategies arise naturally. For example, in several dynamic models of compe-
tition in operations research and economics, a higher firm’s state (e.g., the
quality of the firm’s product or the firm’s capacity) implies higher profitabil-
ity, and the firm can make investments in each period in order to improve its
state. In this setting, one can show that a firm invests less when its competi-
tors’ states are higher; hence, competitors’ higher states induce a lower state
for the firm in the next period. In contrast, if the firm’s own current state
is higher, it induces a higher state in the next period. Another example is
heterogeneous agent macro models where each agent solves a consumption-
savings problem. The agents’ states correspond to their current savings level
and current labor productivity. Under certain conditions it can be shown that
an agent saves less when the other agents save more. On the other hand, the
agents’ next period’s savings are increasing in their current savings.

We apply our uniqueness result to a general class of dynamic oligopoly
2Lasry and Lions (2007) prove the uniqueness of an MFE in a continuous time set-

ting under a certain monotonicity condition (see also Carmona and Delarue (2018)). This
monotonicity condition is different and does not hold in the applications studied in the
present paper.



CHAPTER 2. MEAN FIELD EQUILIBRIUM 53

models and heterogeneous agent macroeconomic models for which MFE has
been used to perform counterfactual predictions implied by a policy or sys-
tem change. In the past, in the absence of this result, previous work mostly
focused on a particular MFE selected by a given algorithm, or on one with a
specific structure. In the absence of uniqueness, the predictions often depend
on the choice of the MFE, and therefore, uniqueness significantly sharpens
such counterfactual analysis. We also show that the uniqueness results proved
in Hopenhayn (1992) and Light (2020) can be obtained using our approach.

Existence. Prior literature has considered the existence of equilibria in
stochastic games. Some prior work considered the existence of Markov perfect
equilibria (MPE) (see Doraszelski and Satterthwaite (2010) and He and Sun
(2017)). Adlakha et al. (2015) prove the existence of an MFE for the case of a
countable and unbounded state space. Acemoglu and Jensen (2015a) consider
a closely related notion of equilibrium that is called stationary equilibrium
and prove its existence for the case of a compact state space and a specific
transition dynamic that is commonly used in economics (see Stokey and Lucas
(1989)). Stationary equilibrium in the sense of Acemoglu and Jensen (2015a)
is an MFE where the players’ payoff functions depend on the other players’
states through an aggregator. Our existence result applies for a general com-
pact state space, more general dependence on the payoff function, and more
general transitions. In this sense, it is more closely related to the result of
Adlakha and Johari (2013). Adlakha and Johari (2013) prove the existence
of an MFE for the case of a compact state space in stochastic games with
strategic complementarities using a lattice-theoretical approach. Instead, we
do not assume strategic complementarities and our state space can be any
compact separable metric space. For our existence result, we assume the stan-
dard continuity conditions on model primitives that are assumed in the papers
mentioned above. In addition, we assume that the optimal stationary strategy
of the players is single-valued.3 Concavity conditions on the profit function

3In the dynamic oligopoly models and the heterogeneous agent macro models that
we study in Sections 2.4 and 2.5, previous literature assumes that the players use pure
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and the transition function can be imposed in order to ensure that the opti-
mal stationary strategy is indeed single-valued. The main technical difficulty
in proving existence is to prove the weak continuity of the nonlinear MFE
operator (see Theorem 2.3).

Comparative statics. While some papers contain certain specific results
on how equilibria change with the parameters of the model (for example, see
Hopenhayn (1992) and Aiyagari (1994a)), only a few papers have obtained
general comparative results in large dynamic economies (see Acemoglu and
Jensen (2015a) for a discussion of the difficulties associated with deriving such
results). Three notable exceptions are Adlakha and Johari (2013), Acemoglu
and Jensen (2015a), and Acemoglu and Jensen (2018). Adlakha and Johari
(2013) use the techniques for comparing equilibria developed in Milgrom and
Roberts (1994) to derive general comparative statics results, and essentially
rely on results about the monotonicity of fixed points. The direct application
of these results requires that the MFE operator (see Equation (2.1)) be in-
creasing. Our comparative statics results are different because they rely on
the uniqueness of an MFE. In particular, the MFE operator is not increasing
in our setting (see more details in Section 3). In this sense, our comparative
static results are more similar to the results in Acemoglu and Jensen (2015a);
however, our model has more general dynamics that include, for example,
investment decisions with random outcomes that are typically considered in
dynamic oligopoly models (see Section 2.4). Our results are useful because
they establish the directional changes of MFE when important model param-
eters, such as the discount factor and the investment cost, change.

strategies. Motivated by this fact, we focus on pure strategy MFE. In this case, if the
optimal stationary strategy of the players is not single-valued then the MFE operator may
not be convex-valued. Similar problems arise in proving the existence of a pure-strategy
Nash equilibrium.
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2.2 The Model

In this section we define our general model of a stochastic game and define
mean field equilibrium (MFE). The model and the definition of an MFE are
similar to Adlakha and Johari (2013) and Adlakha et al. (2015).

2.2.1 Stochastic Game Model

In this section we describe our stochastic game model. Differently to standard
stochastic games in the literature (see Shapley (1953)), in our model, every
player has an individual state. Players are coupled through their payoffs and
state transition dynamics. A stochastic game has the following elements:

Time. The game is played in discrete time. We index time periods by
t = 1, 2, . . . .

Players. There are m players in the game. We use i to denote a particular
player.

States. The state of player i at time t is denoted by xi,t ∈ X where X is a
separable metric space. Typically, we assume that the state space X is in Rn

or that X is countable. We denote the state of all players at time t by xt and
the state of all players except player i at time t by x−i,t.

Actions. The action taken by player i at time t is denoted by ai,t ∈ A

where A ⊆ Rq. We use at to denote the action of all players at time t. The
set of feasible actions for a player in state x is given by Γ(x) ⊆ A.

States’ dynamics. The state of a player evolves in a Markov fashion. For-
mally, let ht = {x0,a0, . . . ,xt−1,at−1} denote the history up to time t. Con-
ditional on ht, players’ states at time t are independent of each other. This
assumption implies that random shocks are idiosyncratic, ruling out aggregate
random shocks that are common to all players. Player i’s state xi,t at time t
depends on the past history ht only through the state of player i at time t− 1,
xi,t−1; the states of other players at time t − 1, x−i,t−1; and the action taken
by player i at time t− 1, ai,t−1.
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If player i’s state at time t− 1 is xi,t−1, the player takes an action ai,t−1 at
time t− 1, the states of the other players at time t− 1 are x−i,t−1, and ζi,t is
player i’s realized idiosyncratic random shock at time t, then player i’s next
period’s state is given by

xi,t = w(xi,t−1, ai,t−1,x−i,t−1, ζi,t).

We assume that ζ is a random variable that takes values ζj ∈ E with prob-
ability pj for j = 1, . . . , n. w : X × A × Xm−1 × E → X is the transition
function.

Payoff. In a given time period, if the state of player i is xi, the state of the
other players is x−i, and the action taken by player i is ai, then the single-
period payoff to player i is π(xi, ai,x−i) ∈ R. In Section 2.2.2 we extend our
model to a model in which players are also coupled through actions, that is,
the functions w and π can also depend on the rivals’ current actions.

Discount factor. The players discount their future payoff by a discount
factor 0 < β < 1. Thus, a player i’s infinite horizon payoff is given by:∑∞
t=1 β

t−1π(xi,t, ai,t,x−i,t).
In many games, coupling between players is independent of the identity of

the players. This notion of anonymity captures scenarios where the interaction
between players is via aggregate information about the state (see Jovanovic
and Rosenthal (1988)). Let s(m)

−i,t(y) denote the fraction of players excluding
player i that have their state as y at time t. That is,

s
(m)
−i,t(y) = 1

m− 1
∑
j 6=i

1{xj,t=y}

where 1D is the indicator function of the set D. We refer to s
(m)
−i,t as the

population state at time t (from player i’s point of view).

Definition 2.1. (Anonymous stochastic game). A stochastic game is called
an anonymous stochastic game if the payoff function π(xi,t, ai,t,x−i,t) and the
transition function w(xi,t, ai,t,x−i,t, ζi,t+1) depend on x−i,t only through s

(m)
−i,t.
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In an abuse of notation, we write π(xi,t, ai,t, s(m)
−i,t) for the payoff to player i,

and w(xi,t, ai,t, s(m)
−i,t, ζi,t+1) for the transition function for player i.

For the remainder of the paper, we focus our attention on anonymous
stochastic games. For ease of notation, we often drop the subscripts i and t

and denote a generic transition function by w(x, a, s, ζ) and a generic payoff
function by π(x, a, s) where s represents the population state of players other
than the player under consideration. Anonymity requires that a player’s single-
period payoff and transition function depend on the states of other players via
their empirical distribution over the state space, and not on their specific
identify. In anonymous stochastic games the functional form of the payoff
function and transition function are the same, regardless of the number of
players m.4 In that sense, we often interpret the profit function π(x, a, s) as
representing a limiting regime in which the number of players is infinite.

We now provide a simple model of capacity competition that illustrates
some of the notation presented above. This is one of the dynamic competition
models that we study in Section 2.4.1.

Example 2.1. Our example is based on the capacity competition models of
Besanko and Doraszelski (2004) and Besanko et al. (2010). We consider an
industry with homogeneous products, where each firm’s state variable deter-
mines its production capacity. If the firm’s state is x, then its capacity is q̄(x).
In each period, each firm takes a costly action to improve its capacity in the
next period. Further, in each period, firms compete in a capacity-constrained
quantity setting game. The inverse demand function is given by P (Q), where
Q represents the total industry output. For simplicity, we assume that the
marginal costs of all the firms are equal to zero. Given the total quantity pro-
duced by its competitors Q−i, the profit maximization problem for firm i is
given by max

0≤qi≤q̄(xi)
P (qi +Q−i)qi.

4Our results also generalize for models in which the primitives depend on the number
of players m like in the study of oblivious equilibria (Weintraub et al., 2008)).
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In general, one could solve for the equilibrium of the capacity-constrained
static quantity game played by firms, and these static equilibrium actions would
determine the single-period profits. However, we focus on the limiting regime
with a large number of firms with out market power, that is, firms take Q as
fixed. In this case, each firm produces at full capacity and the limiting profit
function is given by:

π(x, a, s) = P
(∫

X
q̄(y)s(dy)

)
q̄(x)− da,

where a is the firm’s investment and d is the unit investment cost (see also
Ifrach and Weintraub (2016)). The next period’s state depends on the amount
of investment, the current state, and a random shock. For example, assuming
that the state depreciates at rate δ, a possible transition function is given by:

w(x, a, s, ζ) = ((1− δ)x+ k(a))ζ,

where k is an increasing function that determines the impact of the firm’s
investment and ζ represents uncertainty in the investment process.

Now, we let P(X) be the set of all possible population states on X, that
is P(X) is the set of all probability measures on X. We endow P(X) with
the weak topology. Since P(X) is metrizable, the weak topology on P(X) is
determined by weak convergence (for details see Aliprantis and Border (2006)).
We say that sn ∈ P(X) converges weakly to s ∈ P(X) if for all bounded and
continuous functions f : X → R we have

lim
n→∞

∫
X
f(x)sn(dx) =

∫
X
f(x)s(dx).

For the rest of the paper, we assume the following conditions on the prim-
itives of the model:

Assumption 2.1. (i) π is bounded and (jointly) continuous. w is continuous.5

5Recall that we endow P(X) with the weak topology.
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(ii) X is compact.
(iii) The correspondence Γ : X → 2A is compact-valued and continuous.6

2.2.2 Extensions To The Basic Model

We note two extensions that can be important in applications for which we
can extend our results.

First, in our basic mean field model, we assume that the players are coupled
through their states: both the transition function and the payoff function of
each player depend on the states of all other players. We note that even in
this setting, a player’s payoff function can depend on rivals’ actions as long as
these actions do not affect the evolution of their own state nor the evolution
of the population state. For instance, the players’ payoff functions can depend
on the static pricing or quantity decisions of the other players. In Section
2.4.1 we study models in which the firms’ (static) actions affect other players’
current payoffs but do not affect the evolution of future states.

In certain models of interest such as learning-by-doing and dynamic adver-
tising, however, players’ states are coupled through the dynamic actions, ai,t.
That is, the actions of other players, a−i,t, affect a player’s transition function
and payoff function. For these cases, we consider a model where the transition
function and the payoff function of each player depend on both the states and
the actions of all other players. The model is like our original model except
that now the probability measure s describes the joint distribution of players
over actions and states and not only over states, that is, s ∈ P(X×A). Thus,
the transition function w(x, a, s, ζ) and the payoff function π(x, a, s) depend
on the joint distribution over state-action pairs s ∈ P(X × A).

All the results in the paper can be extended to this setting where the
population state is a measure on P(X×A) (see Section 5.2.1 in the Appendix
for more details). The monotonicity conditions that are needed in order to
prove the uniqueness of an MFE in the case that the population is a measure

6By continuous we mean both upper hemicontinuous and lower hemicontinuous.



CHAPTER 2. MEAN FIELD EQUILIBRIUM 60

on P(X×A) are similar to the conditions that are needed in the case that the
population is a measure on P(X). In Section 2.4.2 we prove the uniqueness of
an MFE for a dynamic advertising model where the players’ payoff functions
depend on the other players’ actions (advertising expenditures), and thus, the
population state is a measure on P(X × A).

Our second extension relaxes the assumption on our base model that play-
ers are ex-ante homogeneous. To consider players that may be ex-ante het-
erogeneous with different model primitives, we extend our model to a setting
in which each player has a fixed type through out the time horizon that is
drawn from a finite set. Then, the payoff function and transition function can
depend on this type. We show that all our results hold in this more general
setting (see Section 5.2.2 for more details). In particular, we show that if the
conditions that we use in order to prove our results hold for every type, then
the results are valid for the model with ex-ante heterogeneous players.

2.2.3 Mean Field Equilibrium

In Markov perfect equilibrium (MPE), players’ strategies are functions of the
population state. However, MPE quickly becomes intractable as the number
of players grows, because the number of possible population states becomes
too large. Instead, in a game with a large number of players, we might expect
that idiosyncratic fluctuations of players’ states “average out”, and hence the
actual population state remains roughly constant over time. Because the effect
of other players on a single player’s payoff and transition function is only via
the population state, it is intuitive that, as the number of players increases,
a single player’s effect on the outcome of the game is negligible. Based on
this intuition, related schemes for approximating Markov perfect equilibrium
(MPE) have been proposed in different application domains via a solution
concept we call mean field equilibrium (MFE).

Informally, an MFE is a strategy for the players and a population state
such that: (1) Each player optimizes her expected discounted payoff assuming
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that this population state is fixed; and (2) Given the players’ strategy, the
fixed population state is an invariant distribution of the states’ dynamics.
The interpretation is that a single player conjectures the population state to
be s. Therefore, in determining her future expected payoff stream, a player
considers a payoff function and a transition function evaluated at the fixed
population state s. In MFE, the conjectured s is the correct one given the
strategies being played. MFE alleviates the complexity of MPE, because in
the former the population state is fixed, while in the latter players keep track of
the exact evolution of the population state. We refer the reader to the papers
cited in Section 2.1 for a more detailed motivation and rigorous justifications
for using MFE.

Let X t := X × . . .×X︸ ︷︷ ︸
t times

. For a fixed population state, a nonrandomized

pure strategy σ is a sequence of (Borel) measurable functions (σ1, σ2, . . . , )
such that σt : X t → A and σt(x1, . . . , xt) ∈ Γ(xt) for all t ∈ N. That is, a
strategy σ assigns a feasible action to every finite string of states. Note that a
single player’s strategy depends only on her own history of states and does not
depend on the population state. This strategy is called an oblivious strategy
(see Weintraub et al. (2008) and Adlakha et al. (2015)).

For each initial state x ∈ X and long run average population state s ∈
P(X), a strategy σ induces a probability measure over the spaceXN, describing
the evolution of a player’s state.7 We denote the expectation with respect to
that probability measure by Eσ, and the associated states-actions stochastic
process by {x(t), a(t)}∞t=1.

When a player uses a strategy σ, the population state is fixed at s ∈ P(X),
and the initial state is x ∈ X, then the player’s expected present discounted
value is

Vσ(x, s) = Eσ
( ∞∑
t=1

βt−1π(x(t), a(t), s)
)
.

7The probability measure on XN is uniquely defined (see for example Bertsekas and
Shreve (1978)).
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Denote
V (x, s) = sup

σ
Vσ(x, s).

That is, V (x, s) is the maximal expected payoff that the player can achieve
when the initial state is x and the population state is fixed at s ∈ P(X). We
call V the value function and a strategy σ attaining it optimal.

Standard dynamic programming arguments (see Bertsekas and Shreve (1978))
show that the value function satisfies the Bellman equation:

V (x, s) = max
a∈Γ(x)

π(x, a, s) + β
n∑
j=1

pjV (w(x, a, s, ζj), s).

Under Assumption 1, there exists an optimal stationary Markov strategy (see
Lemma 5.3 in the Appendix). Let G(x, s) be the optimal stationary strategy
correspondence, i.e.,

G(x, s) = argmax
a∈Γ(x)

π(x, a, s) + β
n∑
j=1

pjV (w(x, a, s, ζj), s).

Let B(X) be the Borel σ-algebra on X. For a strategy g ∈ G and a fixed
population state s ∈ P(X), the probability that player i’s next period’s state
will lie in a set B ∈ B(X), given that her current state is x ∈ X and she takes
the action a = g(x, s), is:

Qg(x, s, B) = P(w(x, g(x, s), s, ζ) ∈ B).

Now suppose that the population state is s, and all players use a stationary
strategy g ∈ G. Because of averaging effects, we expect that if the number of
players is large, then the long run population state should in fact be an invari-
ant distribution of the Markov kernel Qg on X that describes the dynamics of
an individual player.

We can now define an MFE. In an MFE, every player conjectures that s is
the fixed long run population state and plays according to a stationary strategy
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g. On the other hand, if every agent plays according to g when the population
state is s, then the long run population state of all players, s, should constitute
an invariant distribution of Qg.

Definition 2.2. A stationary strategy g and a population state s ∈ P(X)
constitute an MFE if the following two conditions hold:

1. Optimality: g is optimal given s, i.e., g(x, s) ∈ G(x, s).
2. Consistency: s is an invariant distribution of Qg. That is,

s(B) =
∫
X
Qg(x, s, B)s(dx).

for all B ∈ B(X), where we take Lebesgue integral with respect to the measure
s.

Under Assumption 2.1 it can be shown that G(x, s) is nonempty, compact-
valued and upper hemicontinuous. The proof is a standard application of the
maximum theorem. We provide the proof for completeness (see Lemma 5.3).
In Theorem 2.3 we prove the existence of a population state that satisfies the
consistency requirement in Definition 2.2.

2.3 Main Results

In this section we present our main results. In Section 3.1 we provide conditions
that ensure the uniqueness of an MFE. In Section 3.2 we prove the existence
of an MFE. In Section 3.3 we provide conditions that ensure unambiguous
comparative statics results regarding MFE.

2.3.1 The Uniqueness of an MFE

In this section we present our uniqueness result.
We recall that a stationary strategy-population state pair (g, s) is an MFE if

and only if g is optimal and s is a fixed point of the operator Φ : P(X)→ P(X)
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defined by
Φs(B) =

∫
X
Qg(x, s, B)s(dx), (2.1)

for all B ∈ B(X).
We prove uniqueness by showing that the operator Φ has a unique fixed

point. In order to prove uniqueness we will assume that G is single-valued.
For the rest of the section we will assume that g ∈ G is the unique selection
from the optimal strategy correspondence G. In the next section we provide
conditions that ensure that G is indeed single-valued (see Lemma 2.1). G being
single-valued and Theorem 2.3 (see Section 3.2) imply that Φ has at least one
fixed point. In Theorem 2.1 we will show that under certain conditions the
operator Φ has at most one fixed point.

We omit the reference to g in Qg(x, s, B), i.e., we write Q(x, s, B) instead
of Qg(x, s, B). Since the Markov kernel Q depends on s, it is complicated
to work directly with the operator Φ. Thus, to prove the uniqueness of an
MFE and to prove our comparative statics results, we introduce an auxiliary
operator that is easier to work with. For each s ∈ P(X), define the operator
Ms : P(X)→ P(X) by

Msθ(B) =
∫
X
Q(x, s, B)θ(dx).

We introduce the following useful definition.

Definition 2.3. We say that Q is X-ergodic if the following two conditions
hold:

(i) For any s ∈ P(X), the operator Ms has a unique fixed point µs.
(ii) Mn

s θ converges weakly to µs for any probability measure θ ∈ P(X).

Note that s is an MFE if and only if µs = s is a fixed point of the operator
Ms. X-ergodicity means that for every population state s ∈ P(X) the players’
long-run state is independent of the initial state. The X-ergodicity of Q can be
established using standard results from the theory of Markov chains in general
state spaces (see Meyn and Tweedie (2012)). When Q is increasing in x, which
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we assume in order to prove the uniqueness of an MFE (see Assumption 2.2),
then the X-ergodicity of Q can be established using results from the theory of
monotone Markov chains. These results usually require a splitting condition
(see Bhattacharya and Lee (1988) and Hopenhayn and Prescott (1992a)) that
typically holds in applications of interest. Specifically, in Sections 2.4 and 2.5
we show that X-ergodicity holds in important classes of dynamic models.

We now introduce other notation and definitions that are helpful in proving
uniqueness. We assume that X is endowed with a closed partial order ≥. In
the important case X = Rn, x, y ∈ X we write x ≥ y if xi ≥ yi for each
i = 1, .., n. Let S ⊆ X. We say that a function f : S → R is increasing
if f(y) ≥ f(x) whenever y ≥ x and we say that f is strictly increasing if
f(y) > f(x) whenever y > x.

For s1, s2 ∈ P(X) we say that s1 stochastically dominates s2 and we write
s1 �SD s2 if for every increasing function f : X → R we have

∫
X
f(x)s1(dx) ≥

∫
X
f(x)s2(dx),

when the integrals exist. We say that B ∈ B(X) is an upper set if x1 ∈ B and
x2 ≥ x1 imply x2 ∈ B. Recall from Kamae et al. (1977) that s1 �SD s2 if and
only if for every upper set B we have s1(B) ≥ s2(B).

In addition, for the rest of the section we will assume that there exists a
binary relation � on P(X), such that s2 ∼ s1 (i.e., s2 � s1 and s1 � s2))
implies π(x, a, s1) = π(x, a, s2) for all (x, a) ∈ X × A and w(x, a, s1, ζ) =
w(x, a, s2, ζ) for all (x, a, ζ) ∈ X × A× E.

Note that such binary relation always exists, for example one can take
s2 ∼ s1 ⇔ s2 = s1. For our uniqueness result we will further require that the
binary relation � on P(X) is complete, that is, for all s1, s2 ∈ P(X) we either
have s1 � s2 or s2 � s1. In many applications (see Section 2.4 and Section
2.5) there exists a function H : P(X)→ R such that π̃(x, a,H(s)) = π(x, a, s)
and w̃(x, a,H(s), ζ) = w(x, a, s, ζ), where H is continuous and increasing with
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respect to the stochastic dominance order �SD. In this case, a natural com-
plete order � on P(X) arises by defining s1 � s2 if and only if H(s1) ≥ H(s2).
Below, we also discuss the case of a non-complete order. We say that � agrees
with �SD if for any s1, s2 ∈ P(X), s1 �SD s2 implies s1 � s2.

We say thatQ is increasing in x if for each s ∈ P(X), we haveQ(x2, s, ·) �SD
Q(x1, s, ·) whenever x2 ≥ x1. In addition, we say that Q is decreasing in s if
for each x ∈ X, we have Q(x, s1, ·) �SD Q(x, s2, ·) whenever s2 � s1. We now
state the main theorem of the paper. We show that if Q is X-ergodic, Q is
increasing in x and decreasing in s, and � is complete and agrees with �SD,
then if an MFE exists, it is unique.

Intuitively, Q decreasing in s implies that the probability that a player will
move to a higher state in the next period is decreasing in the current period’s
population state. If there are two MFEs, s2 and s1, such that s2 � s1 (i.e., s2

is “higher” than s1), then the probability of moving to a higher state under s2

is lower than under s1, which is not consistent with s2 � s1, with the definition
of an MFE, and the fact that � agrees with �SD.8

Assumption 2.2. (i) Q is X-ergodic. Q is increasing in x and decreasing in
s.

(ii) � agrees with �SD.
(iii) G is single-valued.

Theorem 2.1. Suppose that Assumption 2.2 holds. If the binary relation �
is complete, then if an MFE exists, it is unique.

Proof. Let θ1, θ2 ∈ P(X) and assume that θ1 �SD θ2. Let B be an upper set

8In some models, the condition that Q is decreasing in s follows from the fact that the
policy function g is decreasing in the population state s (see Section 2.4). Xu and Hajek
(2013) prove the uniqueness of an equilibrium in a supermarket mean field game under a
similar monotonicity condition on the policy function. Their setting is different from ours
because the players do not have individual states nor they dynamically optimize.
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and let s1, s2 be two MFEs such that s2 � s1. We have

Ms2θ2(B) =
∫
X
Q(x, s2, B)θ2(dx)

≤
∫
X
Q(x, s1, B)θ2(dx)

≤
∫
X
Q(x, s1, B)θ1(dx)

= Ms1θ1(B).

Thus, for any upper set B we have Ms2θ2(B) ≤ Ms1θ1(B) which implies that
Ms1θ1 �SD Ms2θ2. The first inequality follows from the fact that Q(x, s, B)
is decreasing in s for an upper set B and all x. The second inequality follows
from the fact that θ1 �SD θ2 and Q(x, s, B) is increasing in x for an upper set
B and any s.

We conclude that Mn
s1θ1 �SD Mn

s2θ2 for all n ∈ N. Q being X-ergodic
implies that Mn

si
θi converges weakly9 to µsi = si. Since �SD is closed under

weak convergence (see Kamae et al. (1977)), we have s1 �SD s2.
We conclude that if s1 and s2 are two MFEs such that s2 � s1, then

s1 �SD s2. Since � agrees with �SD, we have s1 � s2. That is, s1 ∼ s2, which
implies that π(x, a, s1) = π(x, a, s2) and w(x, a, s1, ζ) = w(x, a, s2, ζ). Thus,
under s1 the players play according to the same strategy as under s2 (i.e.,
g(x, s1) = g(x, s2) for all x ∈ X). We conclude that Q(x, s1, B) = Q(x, s2, B)
for all x ∈ X and B ∈ B(X). X-ergodicity of Q implies that Ms1 and Ms2

have a unique fixed point. Thus, µs1 = µs2 , i.e., s1 = s2. Similarly, we can
show that s1 � s2 implies that s1 = s2.

Since � is complete if s1 and s2 are two MFEs we have s2 � s1 or s1 � s2.
Thus, we proved that if s1 and s2 are two MFEs then s1 = s2. We conclude
that if an MFE exists, it is unique.

The assumptions on Q in Theorem 2.1 involve assumptions on the optimal
strategy g. Thus, these assumptions are not over the primitives of the model.

9Recall that µs is the unique fixed point of Ms and that s is an MFE if and only if
µs = s.
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In Section 2.4 we introduce conditions on the primitives of dynamic oligopoly
models that guarantee the uniqueness of an MFE. In particular, we show that
the monotonicity conditions over Q arise naturally in important classes of these
models. In Section 2.5 we apply our result to prove the uniqueness of an MFE
in heterogeneous agent macro models.

In some applications the assumption that the binary relation � is complete
is restrictive. In the case that � is not complete and Assumption 2.2 holds, the
following Corollary shows that the MFEs are not comparable by the binary
relation �. This Corollary can be used to derive properties on the MFE
when there are multiple MFEs. For example, suppose that there exist two
functions Hi : P(X) → R, i = 1, 2 such that π̃(x, a,H1(s)) = π(x, a, s) and
w̃(x, a,H2(s), ζ) = w(x, a, s, ζ), where Hi is continuous and increasing with
respect to the stochastic dominance order �SD. We can define an order � on
P(X) by defining s1 � s2 if H1(s1) ≥ H1(s2) and H2(s1) ≥ H2(s2). Clearly,
this may not be a complete order. The following Corollary provides conditions
that imply that if s1 and s2 are two MFEs, then it cannot be the case that
H1(s1) > H1(s2) and H2(s1) > H2(s2). We write s1 � s2 if s1 � s2 and
s2 � s1.

Corollary 2.1. Suppose that Assumption 2.2 holds. If s1 and s2 are two MFEs
then s1 � s2 and s2 � s1.

Proof. Suppose, in contradiction, that s2 � s1. The argument in the proof
of Theorem 2.1 implies that s1 �SD s2. Since � agrees with �SD, we have
s1 � s2, which is a contradiction. We conclude that s2 � s1. Similarly, we can
show that s1 � s2.

When the state space X is given by the product space X = X1×X2 where
X1 and X2 are separable metric spaces, a modification of our uniqueness result
can be applied to prove the uniqueness of an MFE under slightly different
conditions than the conditions of Assumption 2.2.

Assumption 2.2 requires that Q be increasing in x on X. However, when
X = X1×X2, and Xi is endowed with the closed partial order ≥i, it is enough



CHAPTER 2. MEAN FIELD EQUILIBRIUM 69

to assume that Q is increasing in xi on Xi for some i = 1, 2 to prove that
the MFE is unique. We say that Q is increasing in x1 if for all functions
f : X1 × X2 → R that are increasing in x1 on X1, for all s ∈ P(X), and for
all x2 ∈ X2, the function

∫
X
f(y1, y2)Q((x1, x2), s, d(y1, y2)) (2.2)

is increasing in x1. Similarly, Q is decreasing in s with respect to x1 if for all
functions f : X1 ×X2 → R that are increasing in x1 on X1 and for all x ∈ X
the function in (2.2) is decreasing in s. In Sections 2.4.3 and 2.5 we show the
usefulness of Theorem 2.2. We establish the uniqueness of an MFE for dynamic
reputation models and heterogeneous agent macro models by proving that Q
is increasing in xi for some i = 1, 2. In these models it is not necessarily true
that Q is increasing in x on X, so Theorem 2.1 cannot be applied directly.
The Appendix contains the proofs not presented in the main text.

Theorem 2.2. Suppose that X = X1 × X2. Suppose that Assumption 2.2
holds, apart from the condition that Q is increasing in x and decreasing in s.
Suppose that Q is increasing in xi and decreasing in s with respect to xi for
some i = 1, 2. If the binary relation � is complete, then if an MFE exists, it
is unique.

2.3.2 The Existence of an MFE

In this section we study the existence of an MFE. We show that if G is single-
valued, then the operator Φ defined in Equation (2.1) has a fixed point and
thus, there exists an MFE.

Theorem 2.3. Assume that G is single-valued. There exists a mean field
equilibrium.

Note that we do not impose Assumption 2.2 for this result. Also note
that X can be any compact separable metric space in the proof of Theorem
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2.3, so the existence result holds for the important cases of finite state spaces,
countable state spaces, and X ⊆ Rn. In addition, the proof of existence does
not depend on the number of players in the game; the number of players in
the game can be finite, countable or uncountable. Finally, we note that we do
not require X-ergodicity (see Definition 2.3) to show existence; instead we use
compactness and continuity (see Assumption 2.1). The main challenge to prove
existence is to prove the weak continuity of the nonlinear MFE operator. To
do so, we leverage a generalized version of the bounded convergence theorem
by Serfozo (1982).

We now provide conditions over the model primitives that guarantee that
G is single-valued when X is a convex set in Rn. Similar conditions have been
used in dynamic oligopoly models.10

Assumption 2.3. Suppose that X ⊆ Rn and is convex.
(i) Assume that π(x, a, s) is concave in (x, a), strictly concave in a and

increasing in x for each s ∈ P(X).
(ii) Assume that w is increasing in x and concave in (x, a) for each ζ ∈ E.
(iii) Γ(x) is convex-valued and increasing in the sense that x2 ≥ x1 implies

Γ(x2) ⊇ Γ(x1).

The following Lemma shows that the preceding conditions on the primitives
of the model ensure that G is single-valued.

Lemma 2.1. Suppose that Assumption 2.3 holds. Then G is single-valued.

The previous results can be summarized by the following Corollary that
imposes conditions over the primitives of the model which guarantee the exis-
tence of an MFE.

Corollary 2.2. Suppose that Assumption 2.3 holds. Then, there exists an
MFE.

10For similar results in a countable state space setting see Adlakha et al. (2015) and
Doraszelski and Satterthwaite (2010)).
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2.3.3 Comparative Statics

In this section we derive comparative statics results. Let (I,�I) be a partially
ordered set that influences the players’ optimal decisions. We denote a generic
element in I by e. For example, e can be the discount factor, a parameter
that influences the players’ payoff functions, or a parameter that influences
the players’ transition dynamics. Throughout this section we slightly abuse
notation and when the parameter e influences the players’ optimal decisions we
add it as a parameter. For instance, we write Q(x, s, e, ·) instead of Q(x, s, ·).
We say that Q is increasing in e if Q(x, s, e2, ·) �SD Q(x, s, e1, ·) for all x, s,
and all e2, e1 ∈ I such that e2 �I e1. We prove that under the assumptions
of Theorem 2.1, if Q is increasing in e then e2 �I e1 implies that the unique
MFE under e2 is higher than the unique MFE under e1 with respect to �.

Adlakha and Johari (2013) derive comparative statics results for MFE in
the case that Q is increasing in s, x and e. They prove that e2 �I e1 implies
s(e2) �SD s(e1) where s(e) is the maximal MFE with respect to �SD under e.
Adlakha and Johari (2013) use the techniques to compare equilibria developed
in Milgrom and Roberts (1994) (see also Topkis (2011)). We note that under
the assumptions of Theorem 2.1, Q is increasing in x but decreasing in s. Thus,
the results in Adlakha and Johari (2013) do not apply to our setting. However,
with the help of the uniqueness of an MFE, we derive a general comparative
statics result.

Theorem 2.4. Let (I,�I) be a partial order. Assume that Q is increasing in
e on I. Then, under the assumptions of Theorem 2.1, the unique MFE s(e) is
increasing in the following sense: e2 �I e1 implies s(e2) � s(e1).

The same result can be shown with a similar argument under the assump-
tions of Theorem 2.2. We omit the details for sake of brevity. We note that
our comparative statics result is with respect to the order � and not with
respect to the usual stochastic dominance order. The machinery mentioned in
the paragraph above is not directly applicable in our models, and without it
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we believe that comparative statics results with respect to the usual stochastic
dominance order are much harder to obtain. We discuss the usefulness of our
comparative static result with respect to the order � in the context of dynamic
oligopoly models below.

2.4 Dynamic Oligopoly Models

In this section we study various dynamic models of competition or dynamic
oligopoly models that capture a wide range of phenomena in economics and
operations research.11 We leverage our results to provide conditions under
which a broad class of dynamic oligopoly models admit a unique MFE. We
also provide comparative statics results.

More specifically, we show that under concavity assumptions and a natural
substitutability condition, the MFE is unique. The substitutability condition
requires that the firms’ profit function has decreasing differences in each firm’s
own state and the states of the other firms. This condition implies that the
marginal profit of a firm (with respect to its own state) is decreasing in the
other firms’ states. It arises naturally in many dynamic oligopoly models. In
Section 2.4.1 we consider well studied capacity competition and quality ladder
models. In Section 2.4.2 we consider a dynamic advertising model. In Section
2.4.3 we introduce a dynamic reputation model of an online market. In all
of these models, it holds that the firms’ actions are higher when their own
state is higher and the firms’ actions are lower when the competitors’ states
(or the competitors’ actions) are higher. These are essentially the conditions
that imply the uniqueness of an MFE for dynamic oligopoly models.

11Even though we study models with potentially large numbers of firms, we keep the
name dynamic oligopoly to be consistent with previous literature in which MFE or its
variants have been used to approximate oligopolistic behavior (for example, see Qi (2013),
Adlakha et al. (2015), and Onishi (2016)).
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2.4.1 Capacity Competition and Quality Ladder Mod-
els

In this section we consider dynamic capacity competition models and dynamic
quality ladder models which have received significant attention in the recent
operations research and economics literature. In these models, firms’ states
correspond to a variable that affects their profits. For example, the state can
be the firm’s capacity or the quality of the firm’s product. Per-period profits
are based on a static competition game that depends on the heterogeneous
firms’ state variables. Firms take actions in order to improve their individual
state over time.

We now describe the models we consider.
States. The state of firm i at time t is denoted by xi,t ∈ X where X ⊆ R+

and is convex.
Actions. At each time t, firm i invests ai,t ∈ A = [0, ā] to improve its state.

The investment changes the firm’s state in a stochastic fashion.
States’ dynamics. A firm’s state evolves in a Markov fashion. Let 0 < δ < 1

be the depreciation rate. If firm i’s state at time t− 1 is xi,t−1, the firm takes
an action ai,t−1 at time t− 1, and ζi,t is firm i’s realized idiosyncratic random
shock at time t, then firm i’s state in the next period is given by:

xi,t = ((1− δ)xi,t−1 + k(ai,t−1))ζi,t

where k : A→ R is typically an increasing function that determines the impact
of investment a. We assume that ζ takes positive values 0 < ζ1 < . . . < ζn,
where ζ1 < 1, ζn > 1, p1, pn > 0. That is, there exists a positive probability
for a bad shock ζ1 and a positive probability for a good shock ζn. In each
period, the firm’s state is naturally depreciating at rate δ, but the firm can
make investments in order to improve it. Further, the outcome of depreci-
ation and investment is subject to an idiosyncratic random shock (ζ) that,
for example, could capture uncertainty in R&D or a marketing campaign.
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Related dynamics have been used in previous literature. Further, our unique-
ness result for capacity competition and quality ladder models holds under
other states’ dynamics. For example, we could also assume additive dynamics
xi,t = (1− δ)xi,t−1 + k(ai,t−1) + ζi,t.12 We make the following assumption over
the dynamics that we discuss later before Theorem 2.5.

Assumption 2.4. (i) k(a) is strictly concave, continuously differentiable,
strictly increasing and k(0) > 0.13

(ii) (1− δ)ζn < 1.

Payoff. The cost of a unit of investment is d > 0.14 We assume there is a
single-period profit function u(x, s) derived from a static game. When a firm
invests a ∈ A, the firm’s state is x ∈ X, and the population state is s ∈ P(X),
then the firm’s single-period payoff function is given by π(x, a, s) = u(x, s)−da.

We assume that there exists a complete and transitive binary relation � on
P(X) such that s1 ∼ s2 implies that u(x, s1) = u(x, s2) for all s1, s2 ∈ P(X)
and x ∈ X. Furthermore, we assume that � agrees with �SD (cf. Section
2.3.1).

To prove the uniqueness of an MFE for capacity competition and qual-
ity ladder models, we introduce the following conditions on the primitives of
the model. It is simple to verify that both of the dynamic oligopoly models
introduced in the examples below satisfy these assumptions. We believe the
conditions are quite natural, and thus other commonly used dynamic oligopoly
models may satisfy them as well.

Recall that a function f(x, s) is said to have decreasing differences in (x, s)
on X × S if for all x2 ≥ x1 and s2 � s1 we have f(x2, s2) − f(x1, s2) ≤

12For our results to hold we need to impose some constraints on these additive dynam-
ics so that the state space remains compact. We can also assume an exogenous bound
on the state as in Section 2.4.3. We believe that our results also hold if we drop the as-
sumption that X is compact, under some additional conditions over model primitives that
ensure some form of “decreasing returns to larger states” (see Adlakha et al. (2015)).

13The differentiability assumptions can be relaxed. We assume differentiability of u
and k in order to simplify the proof of Theorem 2.5.

14The investment cost could be a convex function, but linearity simplifies the compara-
tive static results in the parameter d.
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f(x2, s1)−f(x1, s1). f is said to have increasing differences if −f has decreasing
differences.

Assumption 2.5. u(x, s) is jointly continuous. Further, it is concave and
continuously differentiable in x, for each s ∈ P(X). In addition, u(x, s) has
decreasing differences in (x, s).

We now provide two classic examples of profit functions u(x, s) that are
commonly used in the literature. For these examples, we explicitly define the
binary relation �.

The first one is the capacity competition model described in Example 2.1.
Recall that if the firm’s state is x, then its capacity is q̄(x). We assume that
q̄ is an increasing, continuously differentiable, concave, and bounded function.
We also assume that the inverse demand function P (·) is decreasing and con-
tinuous. In this model,

u(x, s) = P
(∫

X
q̄(y)s(dy)

)
q̄(x).

For the capacity competition model, we define s2 � s1 if and only if
∫
q̄(y)s2(dy) ≥∫

q̄(y)s1(dy). Since q̄ is an increasing function, � agrees with �SD. It can be
verified that u satisfies the conditions of Assumption 2.5.

Our second example is a classic quality ladder model, where individual
states represent the quality of a firm’s product (see, e.g., Pakes and McGuire
(1994) and Ericson and Pakes (1995)). Consider a price competition under a
logit demand system. There are N consumers in the market. The utility of
consumer j from consuming the good produced by firm i at period t is given
by

uijt = θ1 ln(xit + 1) + θ2 ln(Y − pit) + vijt,

where θ1 < 1, θ2 > 0, pit is the price of the good produced by firm i, Y
is the consumer’s income, xit is the quality of the good produced by firm i,
and {vijt}i,j,t are i.i.d Gumbel random variables that represent unobserved
characteristics for each consumer-good pair.
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There are m firms in the market and the marginal production cost is con-
stant and the same across firms. There is a unique Nash equilibrium in pure
strategies of the pricing game (see Caplin and Nalebuff (1991)). These equi-
librium static prices determine the single-period profits. Now, the limiting
profit function that we focus on can be obtained from the asymptotic regime
in which the number of consumers N and the number of firms m grow to
infinity at the same rate. The limiting profit function corresponds to a logit
model of monopolistic competition given by:

u(x, s) = c̃(x+ 1)θ1∫
X(y + 1)θ1s(dy)

(see Besanko et al. (1990)). c̃ is a constant that depends on the limiting
equilibrium price, the marginal production cost, the consumer’s income, and
θ2. For the quality ladder model, we define s2 � s1 if and only if

∫
(y +

1)θ1s2(dx) ≥
∫

(y+ 1)θ1s1(dy). It is easy to see that � agrees with �SD. It can
also be verified that u satisfies the conditions of Assumption 2.5.

The proof of our uniqueness result for the capacity competition and qual-
ity ladder models consists of showing that Assumptions 2.4 and 2.5 imply
Assumptions 2.1 and 2.2, and that � is a complete order. These are the con-
ditions we use to show the existence of a unique MFE in Sections 2.3.1 and
2.3.2.

Specifically, similarly to Lemma 2.1, one can show that the concavity as-
sumptions in Assumptions 2.4 and 2.5 imply that G is single-valued. The
assumption that k(0) > 0 (see condition (i) in Assumption 2.4) is used to
prevent the pathological case that the Dirac measure on the point 0 is an in-
variant distribution of Ms which could violate X-ergodicity (see Section 2.3.1).
In addition, condition (ii) in Assumption 2.4 is used to control the growth of
firms, so that one can show that the state space remains compact. We believe
our results hold with a milder version of this assumption. With this, the only
remaining assumption that we need to show in order to prove the uniqueness
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of an MFE for our capacity competition and quality ladder models is Assump-
tion 2.2(i). For this, we use the fact that the profit function has decreasing
differences in the state x and the population state s. This implies that firms
invest less when the population state is higher. We use this fact to show the
desired monotonicity of Q.

Our main result for dynamic capacity competition and dynamic quality
ladder models is the following:

Theorem 2.5. Suppose that Assumptions 2.4 and 2.5 hold. Then there exists
a unique MFE for the capacity competition and quality ladder models.

Under Assumptions 2.4 and 2.5 we can also derive comparative statics re-
sults for our capacity competition and quality ladder models. In particular, we
show that an increase in the cost of a unit of investment decreases the unique
MFE population state. Note that an increase in the investment cost decreases
firms incentives to invest. However, a lower population state incentivizes the
firms to invest more. As a consequence, our model does not have the proper-
ties of a supermodular game (e.g., Topkis (1979)). Despite this, relying on the
uniqueness of an MFE and on Theorem 2.4 we are able to show that in fact
the unique MFE decreases when the cost of a unit of investment increases.

We also derive comparative statics results regarding a change in a param-
eter that influences the profit function and a change in the discount factor.
We show that if there is a parameter c such that the marginal profit of the
firms is decreasing in that parameter, then the unique MFE decreases in the
parameter c. For example, in the quality ladder model, as the marginal cost of
production goes up, the unique MFE decreases. In the capacity competition
model, as the potential market size increases, the MFE increases. In addition,
we show that an increase in the discount factor increases the unique MFE.

We note that all of our comparative statics results are with respect to
the order � and not with respect to the usual stochastic dominance order as
one would typically obtain using supermodularity arguments (e.g., Adlakha
and Johari (2013)). We believe that these results provide helpful information
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because the order � relates to the single-period profit function, and therefore,
MFE can be ordered in terms of firms’ payoffs. Further, � typically orders a
variable of economic interest, such as the average capacity level in the capacity
competition model or the average quality level in the quality ladder model.

Theorem 2.6. Suppose that Assumptions 2.4 and 2.5 hold. We denote by s(e)
the unique MFE when the parameter that influences the firms’ decisions is e.

(i) If the cost of a unit of investment increases, then the unique MFE
decreases, i.e., d2 ≤ d1 implies s(d2) � s(d1).

(ii) Let c ∈ I ⊆ R be a parameter that influences the firms’ profit function.
If the profit function u(x, s, c) has decreasing differences in (x, c), then the
unique MFE decreases in c, i.e., c1 ≥ c2 implies s(c2) � s(c1).

(iii) Assume that u(x, s) is increasing in x. If the discount factor β in-
creases, then the unique MFE s(β) increases, i.e., β2 ≥ β1 implies s(β2) �
s(β1).

2.4.2 Dynamic Advertising Competition Models

In this section we consider dynamic advertising competition models. In these
models, firms’ states correspond to customer goodwill or market share. In each
period, the firms decide on their advertising expenditures a. The probability
that the next period’s customer goodwill is higher increases when the firms
spend more on advertising. The firms’ payoff functions depend on their own
spending on advertising, on their own state, on the other firms’ states, and
on the other firms’ spending on advertising. Thus, a firm’s payoff function
depends on the other firms’ dynamic actions (in Sections 2.2.2 and 5.2.1 we
extend the model and the results presented in Sections 2 and 3 to the case
in which each player’s payoff function depends on the other players’ actions).
Variants of dynamic models with this structure have been studied in the oper-
ations research literature in contexts other than advertising (for example, see
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Hall and Porteus (2000)). We now describe our specific model.15

States. The state of firm i at time t is denoted by xi,t ∈ X where X = R+.
The state of a firm xi,t ∈ X represents the customer goodwill.

Actions. At each time t, firm i chooses an amount of money to spend on
advertising ai,t ∈ A = [1, ā] where ā > 1.

States’ dynamics. When the firm spends more on advertising, the customer
goodwill increases. The customer goodwill depreciates over time at rate 0 <
δ < 1. If firm i’s state at time t − 1 is xi,t−1, the firm takes an action ai,t−1

at time t− 1, and ζi,t is firm i’s realized idiosyncratic random shock at time t,
then firm i’s state in the next period is given by

xi,t = (1− δ)(xi,t−1 + ai,t−1)ζi,t.

We assume that ζ takes positive values 0 < ζ1 < . . . < ζn. To ensure com-
pactness we also assume that (1 − δ)ζn < 1 (see Section 2.4.1). We slightly
modify the transition dynamics from Section 2.4.1 to remain consistent with
the models used in the papers that motivate this section.

Payoff. When a firm chooses to spend a ∈ A on advertising, the firm’s
state is x ∈ X, and the population action-state profile is s ∈ P(X × A), then
the firm’s single-period payoff function is given by

π(x, a, s) = r
(x+ a)γ1

(
∫

(x′ + a′)s(d(x′, a′)))γ2
− a

where (x+a)γ1

(
∫

(x′+a′)s(d(x′,a′)))γ2
is the expected demand, r > 0 is the price, and

0 < γ1 < 1, 0 < γ2 < 1 are parameters. The expected demand is increasing in
the firm’s current advertising expenditure and in the firm’s current state, and
is decreasing in the other firms’ advertising expenditures and the other firms’
states.

We define a complete binary relation � on P(X × A), by s1 � s2 if and

15Our model is a mean field version of the dynamic advertising model presented in
Heyman and Sobel (2004) and in Section 4.3 in Olsen and Parker (2014)).
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only if (
∫

(x′ + a′)s1(d(x′, a′)))γ2 ≥ (
∫

(x′ + a′)s2(d(x′, a′)))γ2 . Clearly, � agrees
with �SD (see Section 2.3.1). We can also derive comparative statics results
for the dynamic advertising model. For example, using similar arguments to
the arguments in Section 2.4.1 we can show that when the discount factor β
increases, then the unique MFE increases in the following sense: if β2 > β1,
then s(β2) � s(β1) where s(β) is the unique MFE under discount factor β. We
also show that the unique MFE increases when the market price r increases.

Theorem 2.7. (i) The dynamic advertising competition model has a unique
MFE.

(ii) Let s(β) be the unique MFE under the discount factor β. Then β2 > β1

implies s(β2) � s(β1).
(iii) Let s(r) be the unique MFE under the price r. Then r2 > r1 implies

s(r2) � s(r1).

2.4.3 A Dynamic Reputation Model

In this section we consider a dynamic reputation model. Motivated by the
proliferation of online markets, reputation models and the design of reputation
systems have recently been widely studied in the operations and management
science literature.16 These systems can mitigate the mistrust between buyers
and sellers participating in the marketplace (see Tadelis (2016)). Further,
online markets typically consist of many small sellers, and therefore, assuming
an MFE limit is natural.

We study a dynamic reputation model in which sellers improve their rep-
utation level over time. The state of each seller consists of the average review
given to her in the past history and the total number of reviews she has re-
ceived.17 In each period, each seller receives a review from buyers.18 A seller’s

16For example, see Dellarocas (2003), Aperjis and Johari (2010), Bolton et al. (2013),
Papanastasiou et al. (2017), and Besbes and Scarsini (2018).

17Typically, review systems report simple averages; the number of reviews may also be
relevant as it may signal more sales and more experience from a seller.

18This assumption is made only for simplicity. We can also assume that reviews arrive
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ranking is a simple average of her past reviews. Sellers invest in their products
in order to improve their reviews over time. For example, Airbnb hosts can
invest in cleaning their apartments, and sellers on eBay can invest in their
packaging. Higher investments increase the probability of receiving a good re-
view. Sellers’ payoffs depend on their rankings and on the number of reviews
they receive as well as on the other sellers’ rankings and number of reviews.
Each seller’s payoff function increases in her ranking and in her number of
reviews and decreases in the other sellers’ rankings and number of reviews.
This can capture, for example, the fact that a seller with a higher ranking can
charge a higher price or garner more demand.

The dynamic reputation model we consider in this section assumes that
sellers arrive and depart over time. We make this modeling choice because
of its realistic appeal, and to ensure that the number of reviews does not
tend to infinity. Because we study a stationary setting, we assume that the
sellers’ rates of arrival and departure balance, so that the market size remains
constant over time (in expectation). After each review, a seller departs the
market and never returns with probability 1 − β where 0 < β < 1. For each
seller i that departs, a new seller immediately arrives. We assign the new seller
the same label i, and a 0 ranking, and 0 reviews. Under this assumption,
it is straightforward to show that the seller’s decision problem is the same
stationary, infinite horizon, expected discounted reward maximization problem
that we introduced in Section 2.2, where the discount factor is the probability
of remaining in the market.19

We now describe the dynamic reputation model in more detail.
States. The state of seller i at time t is denoted by xi,t = (xi,t,1, xi,t,2) ∈

X1×X2 = X. xi,t,1 represents seller i’s average numerical review rating up to
time t. We call xi,t,1 seller i’s ranking at period t. xi,t,2 represents the number
of reviews seller i has received up to period t.

according to a Poisson process.
19For example, Iyer et al. (2014) provide a similar regenerative model of arrivals and

departures.
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Actions. At each time t, seller i chooses an action ai,t ∈ A = [0, ā] in order
to improve her ranking. The action changes the seller’s state in a stochastic
fashion.

States’ dynamics. If seller i’s state at time t − 1 is xi,t−1, the seller takes
an action ai,t−1 at time t− 1, and ζi,t is seller i’s realized idiosyncratic random
shock at time t, then seller i’s state in the next period is given by:

xi,t =
(

min
(

xi,t−1,2

1 + xi,t−1,2
xi,t−1,1 + 1

1 + xi,t−1,2
(k(a) + ζi,t),M1

)
,min (xi,t−1,2 + 1,M2)

)
,

where k : A → R is a strictly increasing and strictly concave function that
determines the impact of the seller’s investment on the next period’s review.
The next period’s numerical review, k(a)+ζ, is assumed to be non-negative.20

M1 > 0 is the upper bound on the sellers’ ranking and M2 > 0 is the upper
bound on the sellers’ number of reviews. The latter are useful to keep the state
space compact. The first term in the dynamics represents the simple average
of the numerical reviews received so far, while the second term represents the
total number of reviews. Similarly to the previous models, the random shocks
represent uncertainty in the review process.

Payoff. The cost of a unit of investment is d > 0. When the seller’s ranking
is x1, the seller’s number of reviews is x2, the seller chooses an action a ∈ A,
and the population state is s ∈ P(X), then the seller’s single-period payoff is
given by

π(x, a, s) = ν(x1, x2)∫
ν(x1, x2)s(d(x1, x2)) − da

where ν is increasing in x1 and x2, concave, continuously differentiable in x1,
and positive. The functional form resembles the logit model studied in Section
2.4.1.

The cost of a unit of investment can be seen as a lever that a platform

20In order to simplify the analysis and preserve Assumption 2.1, we assume that the
numerical value of a review k(a) + ζ can be any non-negative number and not a discrete
number. In a model where k(a) + ζ is discrete our results still hold as long as the optimal
strategy is single-valued.
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may impact by design. In particular, a platform can reduce the cost of a
unit of investment for the sellers by introducing tools to improve the buyers’
experience of using the sellers’ products. For example, an e-commerce platform
could help facilitating logistics for its sellers, and a rental sharing platform
could help its hosts connecting cleaning services.

We define a complete and transitive binary relation � on P(X) by s1 � s2

if and only if
∫
ν(x1, x2)s1(d(x1, x2)) ≥

∫
ν(x1, x2)s2(d(x1, x2)). It is easy to

see that � agrees with �SD (see Section 2.3.1).
We use Theorem 2.2 to prove that the dynamic reputation model admits

a unique MFE.21 We also show that when the platform reduces the cost of a
unit of investment then the MFE increases.

Theorem 2.8. (i) The dynamic reputation model has a unique MFE.
(ii) Let s(d) be the unique MFE under the unit of investment cost d. Then

d2 ≥ d1 implies s(d2) � s(d1).

2.5 Heterogeneous Agent Macroeconomic Mod-
els

In this section we consider heterogeneous agent macro models. In these mod-
els, there is a continuum of agents facing idiosyncratic risks only (and no
aggregate risks). The heterogeneous agents make decisions given certain mar-
ket prices (in Aiyagari (1994a), for example, the market prices are the interest
rate and the wage rate). The market prices are determined by the aggregate
decisions of all the agents in the market. We consider a setting similar to
the one presented in Acemoglu and Jensen (2015a). We note that this setting
encompasses many important models in the economics literature. Examples
include Bewley-Aiyagari models (see Bewley (1986), and Aiyagari (1994a)),
and models of industry equilibrium (see Hopenhayn (1992)). While Acemoglu

21For this model we are able to show the monotonicity of the kernel Q with respect to
x1 but not with respect to x2.
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and Jensen (2015a) derive important existence and comparative statics results
for these models, to the best of our knowledge there are no general uniqueness
results. In this Section we show that if the agents’ strategy is decreasing in
the aggregator (in the sense of Acemoglu and Jensen (2015a)), there exists a
unique equilibrium.

We now describe our specific model.
States. The state of player i at time t is denoted by xi,t = (xi,t,1, xi,t,2) ∈

X1 ×X2 = X where X1 ⊆ R and X2 ⊆ Rn−1. For example, in Bewley models
xi,t,1 typically represents agent i’s savings at period t and x2 represents agent
i’s income or labor productivity at period t (in this case n = 2).

Actions. At each time t, player i chooses an action ai,t ∈ Γ(xi,t) ⊂ R.
States’ dynamics. The state of a player evolves in a Markovian fashion. If

player i’s state at time t − 1 is xi,t−1, player i takes an action ai,t−1 at time
t− 1, and ζi,t is player i’s realized idiosyncratic random shock at time t, then
player i’s state in the next period is given by

(xi,t,1, xi,t,2) = (ai,t−1,m(xi,t−1,2, ζi,t)),

where m : X2 × E → X2 is a continuous function. For example, in Bewley
models, in each period agents choose how much to save for future consumption
and how much to consume in the current period. The agents’ labor produc-
tivity evolves exogenously and the labor productivity function m determines
the next period’s labor productivity given the current labor productivity. So
if an agent chooses to save a, ζ is the realized random shock, and her cur-
rent labor productivity is x2, then the agent’s next period state (savings-labor
productivity pair) is given by (a,m(x2, ζ)).

Payoff. As in Acemoglu and Jensen (2015a), we assume that the payoff
function depends on the population state through an aggregator. That is, if
the population state is s, then the aggregator is given by H(s) where H :
P(X) → R is a continuous function. If the aggregator is H(s), the player’s
state is x ∈ X, and the player takes an action a ∈ Γ(x), then the player’s
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single-period payoff function is given by π̃(x, a,H(s)).
We define a complete and transitive binary relation � on P(X) by s1 � s2

if and only if H(s1) ≥ H(s2). We assume that � agrees with �SD. This
assumption holds in most of the heterogeneous agent macro models, where
H is usually assumed to be increasing with respect to first order stochastic
dominance (see Acemoglu and Jensen (2015a)).

Note that under the states’ dynamics defined above, and assuming that
g(x, s) = g̃(x,H(s)) is the optimal stationary strategy, the transition kernel Q
is given by

Q(x1, x2, s, B1 ×B2) = 1B1(g̃(x1, x2, H(s))
∑
j

pj1B2(m(x2, ζj)),

where B1 ×B2 ∈ B(X1 ×X2).
We show that the model has a unique MFE if the optimal strategy is de-

creasing in the aggregator, i.e., if H(s2) ≥ H(s1) implies g̃(x1, x2, H(s2)) ≤
g̃(x1, x2, H(s1)), Q is X-ergodic, and g̃ is increasing in x1. We note that we
cannot apply Theorem 2.1 to this model, since in most applications the op-
timal stationary strategy g̃ is not increasing in x2, and thus Q may not be
increasing in x2. However, in most applications (for example, all the applica-
tions discussed in Acemoglu and Jensen (2015a)) g̃ is increasing in x1. Thus,
we can use Theorem 2.2 to show that the heterogeneous agent macro model
has a unique MFE under the conditions stated above.22

Corollary 2.3. Assume that G is single-valued, Q is X-ergodic, and g̃ is
increasing in x1 and decreasing in the aggregator. Then the heterogeneous
agent macro model has a unique MFE.

In most applications, the payoff function π̃ has increasing differences in
(x1, a) which ensures that g̃ is increasing in x1. The condition that Q is
X-ergodic also usually holds in applications. For example, Aiyagari (1994a)

22Note that an MFE is usually called a stationary equilibrium in the economics litera-
ture (e.g., Acemoglu and Jensen (2015a)).



CHAPTER 2. MEAN FIELD EQUILIBRIUM 86

proves that Q is X-ergodic in his model. Thus, in many applications, in
order to ensure uniqueness, one only needs to check that g̃ is decreasing in
the aggregator. In the next section we illustrate this in a Bewley-type model
introduced in Aiyagari (1994a).
A Bewley-Aiyagari Model. Bewley models are widely studied and used
in the modern macroeconomics literature (for a survey see Heathcote et al.
(2009)). As previously mentioned, in Bewley models agents receive a state-
dependent income in each period and they solve an infinite horizon consumption-
savings problem; that is, the agents must decide how much to save and how
much to consume in each period. The agents can transfer assets from one pe-
riod to another only by investing in a risk-free bond, and have some borrowing
limit. Aiyagari (1994a) extends the Bewley model to a general equilibrium
model with production. We now describe the model of Aiyagari (1994a) in the
setting of a mean field game.

In a Bewley-Aiyagari model, x1 represents the agents’ savings and x2 repre-
sents the agents’ labor productivity. m(x2, ζ) represents the labor productivity
function. That is, if the current labor productivity is x2 then the next period’s
labor productivity is given by m(x2, ζj) with probability pj. If the agents’ la-
bor productivity is x2 then their income is given by wx2 where w > 0 is the
wage rate. The agents’ savings rate of return is R > 0.

In each period t, the agents choose their next period’s savings level a ∈
Γ(x1, x2) where Γ(x1, x2) = [−b,min{Rx1 + wx2, b̄}], and consume c = Rx1 +
wx2−a. That is, the agents’ savings are lower than their cash-on-hand Rx1 +
wx2 and higher than the borrowing constraint b ≥ 0. b̄ is an upper bound on
savings that ensures compactness.

The wage rate and the interest rate are determined in general equilibrium.
There is a representative firm with a production function F (K,N) that is
homogeneous of degree one. N is the labor supply and K is the capital. We
assume that F is twice continuously differentiable, strictly concave, and strictly
increasing. The first order conditions of the firm’s maximization problem
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yield23 Fk(K,N) = R+δ−1 and FN(K,N) = w where δ > 0 is the depreciation
rate and Fi(K,N) denotes the partial derivative of F with respect to i = K,N .
A standard argument24 shows that R = f ′(K)−δ+1 and w = f(K)−f ′(K)K
where F (K, 1) = f(K).

In equilibrium we have
∫
X x1s(d(x1, x2)) = K where s is an invariant

savings-labor productivities distribution. That is, the aggregate supply of
savings equals the total capital. We define H(s) =

∫
X x1s(d(x1, x2)). It is easy

to see that � agrees with �SD (see Section 2.3.1).
The agents’ utility from consumption is given by a utility function u which

is assumed to be strictly concave and strictly increasing. If the agents choose
to save a then their consumption in the current period is Rx1 +wx2−a. Thus,
using the equilibrium conditions R = f ′(H(s)) − δ + 1 and w = f(H(s)) −
f ′(H(s))H(s), in a Bewley-Aiyagari model the payoff function π̃ is given by

π̃(x, a,H(s)) = u ((f ′(H(s))− δ + 1)x1 + (f(H(s))− f ′(H(s))H(s))x2 − a) .

It is easy to establish that G is single-valued and that Assumption 2.1 holds.
Thus, the existence of an equilibrium in a Bewley-Aiyagari model follows from
Theorem 2.3.25

Under mild technical conditions on the utility function (for example, if u
is bounded or if u belongs to the constant relative risk aversion class), the
X-ergodicity of Q can be proven in a similar manner to Acikgoz (2018). It can
be established also that the next period’s savings are increasing in the current
period’s savings, i.e., g̃ is increasing in x1. Thus, to prove the uniqueness of an
MFE in a Bewley-Aiyagari model, one needs to prove that g̃ is decreasing in

23The firm’s maximization problem is given by maxK,N F (K,N)− (R− 1 + δ)K −wN .
For more details see, for example, Acemoglu and Jensen (2015a) and Light (2020).

24Since F is homogeneous of degree one we have F (K, 1) = KFK(K, 1) + FN (K, 1).
Using the first order conditions we have f(K) = Kf ′(K) + w.

25Some of the previous existence results rely on the X-ergodicity of Q (e,g., Acikgoz
(2018)) or on monotonicity arguments (e.g., Acemoglu and Jensen (2015a)). The proof
presented in this paper shows that these conditions are not needed in order to establish
the existence of an equilibrium.
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the aggregator H(s). In a recent paper, Light (2020) proves the uniqueness of
an MFE for the special case that the agents’ utility function is in the CRRA
(constant relative risk aversion) class with a relative risk aversion coefficient
that is less than or equal to one, and the production function’s elasticity of
substitution is bounded below by 1. Under these assumptions, we can use the
results in Light (2020) to show that g̃ is decreasing in the aggregator H(s).
Then, we can use Corollary 2.3 to prove the uniqueness of an MFE. As a note
for future research, our results suggest that the result in Light (2020) could be
generalized, weakening the conditions on the relative risk aversion and on the
production function. With this, we believe our approach could be used to show
uniqueness for a broader class of heterogeneous agent macro models. Finally,
we note that the uniqueness result in Hopenhayn (1992) can be obtained from
Corollary 2.3 also. For the sake of brevity we omit the details here.

2.6 Conclusions

This paper studies the existence and uniqueness of an MFE in stochastic games
with a general state space. We provide conditions that ensure the uniqueness
of an MFE. We also prove that there exists an MFE under continuity and
concavity conditions on the primitives of the model. We show that a general
class of dynamic oligopoly models satisfies these conditions, and thus, these
models have a unique MFE. Furthermore, we prove the existence of a unique
MFE in heterogeneous agent macro models. We also derive general compara-
tive statics results regarding the MFE and apply them to dynamic oligopoly
models.

We believe that our results can be applied to other models in operations
research and economics. For example, in order to analyze market design prob-
lems in online platforms, like in the reputation model we studied, it is natural
to assume a large-scale MFE limit. Typical questions of interest in these con-
texts involve the market’s response to platforms’ market design choices. Hence,
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knowing that this response is unique and that one can predict its directional
changes could significantly strengthen the analysis of these platforms.

We believe our results can be extended to prove the uniqueness of an in-
variant distribution for a general Markov chain where the next period’s state
depends on the previous state and on the previous state’s distribution. These
Markov chains can capture other interesting applications in operations re-
search, such as strategic queueing systems. We leave this direction for future
work.



Chapter 3

Stochastic Comparative Statics
in Markov Decision Processes

Abstract
In multi-period stochastic optimization problems, the future optimal de-

cision is a random variable whose distribution depends on the parameters of
the optimization problem. We analyze how the expected value of this ran-
dom variable changes as a function of the dynamic optimization parameters
in the context of Markov decision processes. We call this analysis stochastic
comparative statics. We derive both comparative statics results and stochastic
comparative statics results showing how the current and future optimal deci-
sions change in response to changes in the single-period payoff function, the
discount factor, the initial state of the system, and the transition probability
function. We apply our results to various models from the economics and
operations research literature, including investment theory, dynamic pricing
models, controlled random walks, and comparisons of stationary distributions.
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3.1 Introduction

A question of interest in a wide range of problems in economics and operations
research is whether the solution to an optimization problem is monotone with
respect to its parameters. The analysis of this question is called comparative
statics.1 Following Topkis’ seminal work (Topkis, 1978a), comparative statics
methods have received significant attention in the economics and operations
research literature.2 While comparative statics methods are usually applied to
static optimization problems, they can also be applied to dynamic optimization
problems. In particular, these methods can be used to study how the policy
function3 changes with respect to the current state of the system or with
respect to other parameters of the dynamic optimization problem.4 That is,
for multi-period optimization models, comparative statics methods can be used
to determine how the current period’s optimal decision changes with respect
to the parameters of the optimization problem. For example, in a Markov
decision process, under suitable conditions on the payoff function and on the
transition function, comparative statics methods can be applied to show that
the optimal decision is increasing in the discount factor when the state of the
system is fixed. But since the model is dynamic and includes uncertainty, the
states’ evolution is different under different discount factors, and thus, it is not
clear whether the future optimal decision is increasing in the discount factor
even when the current optimal decision is increasing in the discount factor for

1See Topkis (2011) for a comprehensive treatment of comparative statics methods.
2See for example LiCalzi and Veinott (1992), Milgrom and Shannon (1994), Athey

(2002), Echenique (2002), Antoniadou (2007), Quah (2007), Quah and Strulovici (2009),
Shirai (2013), Nocetti (2015), Wang and Li (2015), Barthel and Sabarwal (2018), and
Koch (2019).

3Müller (1997a) and Smith and McCardle (2002) study how the optimal value func-
tion changes with respect to the parameters of the dynamic optimization problem, such
as the single-period payoff function and the transition probability function. In contrast, in
this paper, we analyze the optimal policy function.

4For comparative statics results in dynamic optimization models see Serfozo (1976),
Lovejoy (1987), Amir et al. (1991), Hopenhayn and Prescott (1992b), Mirman et al.
(2008), Topkis (2011), Krishnamurthy (2016), Smith and Ulu (2017), Lehrer and Light
(2018), and Dziewulski and Quah (2019).
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a fixed state.
The state of the system in period t > 1 is a random variable from the

point of view of period 1, and thus, the optimal decision in period t, which
depends on the state of the system in period t, is a random variable given
the information available in period 1. In this paper, we analyze how the
expected value of the optimal decision in period t changes as a function of the
optimization problem parameters in the context of Markov decision processes
(MDP). We call this analysis stochastic comparative statics. More precisely,
let (E,�) be a partially ordered set that contains some parameters of the
MDP. For example, E can be the set of all transition probability functions,
the set of all discount factors, and/or a set of parameters that influence the
payoff function. Suppose that under the parameters e ∈ E a stationary policy
function is given by g(s, e) where s is the state of the system. Given the policy
function g and the system’s initial state, the system’s states follow a stochastic
process. Suppose that the states’ distribution in period t is described by the
probability measure µt(ds, e). We are interested in finding conditions that
ensure that the expected decision in period t, Et(g(e)) =

∫
g(s, e)µt(ds, e) is

increasing in the parameters e on E.
The expected value Et(g(e)) is interpreted in two different ways. From a

probabilistic point of view, Et(g(e)) is the expected optimal decision in period
t as a function of the parameters e. For example, in investment theory, this
expected value usually represents the expected capital accumulation in the
system in period t (Stokey and Lucas, 1989). In inventory management, it
represents the expected inventory in period t (Krishnan and Winter, 2010),
and in income fluctuation problems it represents the expected wealth accumu-
lation (see Huggett (2004) and Bommier and Grand (2018)) in period t. From
a deterministic point of view, if we consider a population of ex-ante identical
agents whose states evolve independently according to the stochastic process
that governs the states’ dynamics, then µt represents the empirical distribution
of states in period t. In this case, Et(g(e)) corresponds to the average decision
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in period t of this population given the parameters e. This latter interpre-
tation is common in the growing literature on stationary equilibrium models
and mean field equilibrium models. In this literature, while the focus is on the
analysis of equilibrium, some stochastic comparative statics results have been
obtained (see Adlakha and Johari (2013) and Acemoglu and Jensen (2015a)).
These stochastic comparative statics results are useful in analyzing the equi-
librium of these models. In particular, proving comparative statics results and
establishing the uniqueness of an equilibrium (see Hopenhayn (1992), Light
(2020), Acemoglu and Jensen (2018), and Light and Weintraub (2019)).

The goal of this paper is to provide general stochastic comparative statics
results in the context of an MDP. In particular, we provide various sufficient
conditions on the primitives of MDPs that guarantee stochastic comparative
statics results with respect to important parameters of MDPs, such as the dis-
count factor, the single-period payoff function, and the transition probability
function. We also provide novel comparative statics results with respect to
these parameters. For example, we show that under a standard set of condi-
tions that implies that the policy function is increasing in the state, the policy
function is increasing the discount factor also (see Section 3.3.2). We apply our
results in capital accumulation models with adjustment costs (Hopenhayn and
Prescott, 1992b), in dynamic pricing models with reference effects (Popescu
and Wu, 2007), and in controlled random walks. As an example, consider the
following controlled random walk st+1 = st + at + εt+1 where st is the state
of the system in period t, at is the action chosen in period t, and {εt}∞t=1 are
random variables that are independent and identically distributed across time.
In each period, a decision maker receives a reward that depends on the current
state of the system and incurs a cost that depends on the action that the de-
cision maker chooses in that period. The reward function is increasing in the
state of the system and the cost function is increasing in the decision maker’s
action. The decision maker’s goal is to maximize the expected sum of rewards.
We provide sufficient conditions on the reward function and on the cost func-
tion that guarantee that the decision maker’s current action and the expected
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future actions increase when the distribution of the random noise ε is higher
in the sense of stochastic dominance. Since our results are intuitive and the
sufficient conditions that we provide in order to derive stochastic comparative
statics results are satisfied in some dynamic programs of interest, we believe
that our results hold in other applications as well.

The rest of the paper is organized as follows. Section 3.2 presents the
dynamic optimization model. Section 3.2.1 presents definitions and notations
that are used throughout the paper. In Section 3.3.1 we present our main
stochastic comparative statics results. In Section 3.3.2 we study changes in
the discount factor and in the single-period payoff function. In Section 3.3.3
we study changes in the transition probability function. In Section 3.4 we
apply our results to various models. In Section 3.5 we provide a summary,
followed by an Appendix containing proofs.

3.2 The model

In this section we present the main components and assumptions of the model.
For concreteness, we focus on a standard discounted dynamic programming
model, sometimes called a Markov decision process.5 For a comprehensive
treatment of dynamic programming models, see Feinberg and Shwartz (2012)
and Puterman (2014).

We define a discounted dynamic programming model in terms of a tuple of
elements (S,A,Γ, p, r, β). S ⊆ Rn is a Borel set called the state space. B(S)
is the Borel σ-algebra on S. A ⊆ R is the action space. Γ is a measurable
subset of S × A. For all s ∈ S, the non-empty and measurable s-section Γ(s)
of Γ is the set of feasible actions in state s ∈ S. p : S × A × B(S) → [0, 1]
is a transition probability function. That is, p(s, a, ·) is a probability measure
on S for each (s, a) ∈ S × A and p(·, ·, B) is a measurable function for each
B ∈ B(S). r : S × A → R is a measurable single-period payoff function.

5All our results can be applied to other dynamic programming models, such as posi-
tive dynamic programming and negative dynamic programming.
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0 < β < 1 is the discount factor.
There is an infinite number of periods t ∈ N := {1, 2, ...}. The process

starts at some state s(1) ∈ S. Suppose that at time t the state is s(t). Based
on s(t), the decision maker (DM) chooses an action a(t) ∈ Γ(s(t)) and receives
a payoff r(s(t), a(t)). The probability that the next period’s state s(t+ 1) will
lie in B ∈ B(S) is given by p(s(t), a(t), B).

Let H = S × A and H t := H × . . .×H︸ ︷︷ ︸
t−1 times

×S. A policy σ is a sequence

(σ1, σ2, . . .) of Borel measurable functions σt : H t → A such that σt(s(1), a(1), . . . , s(t)) ∈
Γ(s(t)) for all t ∈ N and all (s(1), a(1), . . . , s(t)) ∈ H t. For each initial state
s (1), a policy σ and a transition probability function p induce a probability
measure over the space of all infinite histories H∞.6 We denote the expectation
with respect to that probability measure by Eσ, and the associated stochastic
process by {s(t), a(t)}∞t=1. The DM’s goal is to find a policy that maximizes
his expected discounted payoff. When the DM follows a strategy σ and the
initial state is s ∈ S his expected discounted payoff is given by

Vσ(s) = Eσ
∞∑
t=1

βt−1r(s(t), a(t)).

Define
V (s) = sup

σ
Vσ(s).

We call V : S → R the value function.
Define the operator T : B(S) → B(S) where B(S) is the space of all

functions f : S → R by

Tf(s) = max
a∈Γ(s)

h(s, a, f),

6The probability measure on the space of all infinite histories H∞ is uniquely defined
by the Ionescu Tulcea theorem (for more details, see Bertsekas and Shreve (1978) and
Feinberg (1996)).
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where
h(s, a, f) = r(s, a) + β

∫
S
f(s′)p(s, a, ds′). (3.1)

Under standard assumptions on the primitives of the MDP,7 standard dynamic
programming arguments show that the value function V is the unique function
that satisfies TV = V . In addition, there exists an optimal stationary policy
and the optimal policies correspondence

G(s) = {a ∈ Γ(s) : V (s) = h(s, a, V )}

is nonempty, compact-valued and upper hemicontinuous. Define g(s) = maxG(s).
We call g(s) the policy function. For the rest of the paper, we assume that the
value function is the unique and continuous function that satisfies TV = V ,
T nf converges uniformly to V for every f ∈ B(S), and that the policy function
exists.8

3.2.1 Notations and definitions

In this paper we consider a parameterized dynamic program. Let (E,�) be a
partially ordered set that influences the DM’s decisions. We denote a generic
element in E by e. Throughout the paper, we slightly abuse the notations and
allow an additional argument in the functions defined above. For instance, the
value function of the parameterized dynamic program V is denoted by

V (s, e) = max
a∈Γ(s,e)

h(s, a, e, V ).

Likewise, the policy function is denoted by g(s, e); r(s, a, e) is the single-period
payoff function; and h(s, a, e, V ) is the h function associated with the dynamic

7The state and action spaces can be continuous or discrete. When we discuss convex
functions on S we assume that S is a convex set.

8These conditions are usually satisfied in applications. Conditions that ensure the
existence and continuity of the value function and the existence of a stationary policy
function are widely studied in the literature. See Hinderer et al. (2016) for a textbook
treatment. For recent results, see Feinberg et al. (2016) and references therein.
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program problem with parameters e, as defined above in Equation (3.1). For
the rest of the paper, we let Ep be the set of all transition functions p :
S × A× B(S)→ [0, 1].

When the DM follows the policy function g(s) and the initial state is s(1),
the stochastic process (s(t)) is a Markov process. The transition function of
(s(t)) can be described by the policy function g and by the transition function p
as follows: For all B ∈ B(S), define µ1(B) = 1 if s(1) ∈ B and 0 otherwise, and
µ2(B) = p(s(1), g(s(1)), B). µ2(B) is the probability that the second period’s
state s(2) will lie in B. For t ≥ 3, define µt(B) =

∫
S p(s, g(s), B)µt−1(ds) for

all B ∈ B(S). Then µt(B) is the probability that s(t) will lie in B ∈ B(S)
in period t when the initial state is s(1) ∈ S and the DM follows the policy
function g. For notational convenience, we omit the reference to the initial
state. All the results in this paper hold for every initial state s(1) ∈ S.

We write µti(B) to denote the probability that s will lie in B ∈ B(S) in
period t, when ei ∈ E are the parameters that influence the DM’s decisions
and the DM follows the policy function g(s, ei), i = 1, 2. For ei ∈ E, define

Eti(g(ei)) =
∫
S
g(s, ei)µti(ds).

As we discussed in the introduction, Eti(g(ei)) can be interpreted in two ways.
According to the first interpretation, the DM’s optimal decision in period t

is a random variable from the point of view of period 1. The expected value
Eti(g(ei)) is the DM’s expected decision in period t, given that the parameters
that influence the DM’s decisions are ei ∈ E. Alternately, the expected value
Eti(g(ei)) can be interpreted as the aggregate of the decisions of a continuum
of DMs facing idiosyncratic shocks. In the latter interpretation, each DM has
an individual state and µt is the distribution of the DMs over the states in
period t. This interpretation is often used in stationary equilibrium models
and in mean field equilibrium models (see more details in Section 3.4.4). We
are interested in the following stochastic comparative statics question: is it
true that e2 � e1 implies Et2(g(e2)) ≥ Et1(g(e1)) for all t ∈ N (and for each
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initial state)? We note that for t = 1, the stochastic comparative statics
question reduces to a comparative statics question: is it true that e2 � e1

implies g(s, e2) ≥ g(s, e1)?
We now introduce some notations and definitions that will be used in the

next sections.
For two elements x, y ∈ Rn we write x ≥ y if xi ≥ yi for each i = 1, ..., n.

We say that f : Rn → R is increasing if x ≥ y implies f(x) ≥ f(y).
Let D ⊆ RS where RS is the set of all functions from S to R. When µ1

and µ2 are probability measures on (S,B(S)), we write µ2 �D µ1 if
∫
S
f(s)µ2(ds) ≥

∫
S
f(s)µ1(ds)

for all Borel measurable functions f ∈ D such that the integrals exist.
In this paper we will focus on two important stochastic orders: the first

order stochastic dominance and the convex stochastic order. When D is the
set of all increasing functions on S, we write µ2 �st µ1 and say that µ2 first
order stochastically dominates µ1. If D is the set of all convex functions on
S, we write µ2 �CX µ1 and say that µ2 dominates µ1 in the convex stochastic
order. If D is the set of all increasing and convex functions on S, we write
µ2 �ICX µ1. Similarly, for p1, p2 ∈ Ep, we write p2 �D p1 if

∫
S
f(s′)p2(s, a, ds′) ≥

∫
S
f(s′)p1(s, a, ds′)

for all Borel measurable functions f ∈ D ⊆ RS and all (s, a) ∈ S×A such that
the integrals exist.9 If D is the set of all increasing functions, convex functions,
and convex and increasing functions, we write p2 �st p1, p2 �CX p1, and
p2 �ICX p1, respectively. For comprehensive coverage of stochastic orders and
their applications, see Müller and Stoyan (2002) and Shaked and Shanthikumar
(2007).

Definition 3.1. (i) We say that p ∈ Ep is monotone if for every increasing
9In the rest of the paper, all functions are assumed to be integrable.
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function f the function
∫
S f(s′)p(s, a, ds′) is increasing in (s, a).

(ii) We say that p ∈ Ep is convexity-preserving if for every convex function
f the function

∫
S f(s′)p(s, a, ds′) is convex in (s, a).

(iii) Define Pi(s, B) =: pi(s, g(s, ei), B). Let D ⊆ RS. We say that Pi
is D-preserving if f ∈ D implies that

∫
S f(s′)Pi(s, ds′) ∈ D. If D is the

set of all increasing functions, convex functions, and convex and increasing
functions, we say that Pi is I-preserving, CX-preserving, and ICX-preserving,
respectively.

3.3 Main results

In this section we derive our main results. In Section 3.1 we provide stochas-
tic comparative statics results. In Section 3.2 and in Section 3.3 we provide
conditions on the primitives of the MDP that guarantee comparative statics
and stochastic comparative statics results.

3.3.1 Stochastic comparative statics

In this section we provide conditions that ensure stochastic comparative stat-
ics. Our approach is to find conditions that imply that the states’ dynamics
generated under e2 stochastically dominate the states’ dynamics generated un-
der e1 whenever e2 � e1. Theorem 3.1 shows that if P2 is D-preserving and
P2(s, ·) �D P1(s, ·) for all s ∈ S, then µt2 �D µt1 for all t ∈ N. A proof of The-
orem 3.1 can be found in Chapter 5 in Müller and Stoyan (2002) where the
authors study stochastic comparisons of general Markov chains. For complete-
ness, because our setting is slightly different, we provide the proof of Theorem
3.1 in the Appendix for completeness.10

The focus of the rest of the paper is on finding sufficient conditions on
the primitives of the MDP in order to apply Theorem 3.1. Corollary 3.1

10A similar result to Theorem 3.1 for the case of �st and �ICX can be found in
Huggett (2004), Adlakha and Johari (2013), and Acemoglu and Jensen (2015a).
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and Theorem 3.2 provide sufficient conditions for P2 to be D-preserving and
P2(s, ·) �D P1(s, ·) when D is the set of increasing functions or the set of
increasing and convex functions. The results in this section require conditions
on the policy function and on the primitives of the MDP. In Sections 3.3.2
and 3.3.3, we provide comparative statics and stochastic comparative statics
results that depend only on the primitives of the model (e.g., the transition
probabilities and the single-period payoff function).

Theorem 3.1. Let (E,�) be a partially ordered set and let D ⊆ RS. Let
e1, e2 ∈ E and suppose that e2 � e1. Assume that P2 is D-preserving and that
P2(s, ·) �D P1(s, ·) for all s ∈ S. Then µt2 �D µt1 for all t ∈ N.

In the case that p2 = p1 = p and (E,�) is a partially ordered set that
influences the agent’s decisions, Theorem 3.1 yields a simple stochastic com-
parative statics result. Corollary 3.1 shows that if g(s, e) is increasing in e,
g(s, e2) is increasing in s, and p is monotone, then Et2(g(e2)) ≥ Et1(g(e1)) when-
ever e2 � e1. This result is useful when E is the set of all possible discount
factors between 0 and 1, or is a set that includes parameters that influence the
single-period payoff function (see Section 3.3.2).

Corollary 3.1. Let e1, e2 ∈ E and suppose that e2 � e1. Assume that g(s, e)
is increasing in e for all s ∈ S, g(s, e2) is increasing in s, p1 = p2 = p, and p
is monotone. Then

Et2(g(e2)) ≥ Et1(g(e1))

for all t ∈ N and for each initial state s(1) ∈ S.

In some dynamic programs we are interested in knowing how a change in
the initial state will influence the DM’s decisions in future periods. Corollary
3.2 shows that a higher initial state leads to higher expected decisions if the
policy function is increasing in the state of the system and the transition
probability function is monotone. The proof follows from the same arguments
as those in the proof of Corollary 3.1. Recall that we denote the initial state
by s(1).
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Corollary 3.2. Consider two MDPs that are equivalent except for the initial
states si(1), i = 1, 2. Assume that s2(1) ≥ s1(1), g(s) is increasing in s, and
p is monotone. Then Et2(g(s2(1))) ≥ Et1(g(s1(1))) for all t ∈ N.

We now derive stochastic comparative statics results with respect to the
transition probability function that governs the states’ dynamics. Part (i) of
Theorem 3.2 provides conditions that ensure that p2 �st p1 implies Et2(g(p2)) ≥
Et1(g(p1)) for all t ∈ N. Part (ii) provides conditions that ensure that p2 �CX p1

implies Et2(g(p2)) ≥ Et1(g(p1)) for all t ∈ N. In Section 4 we apply these results
to various commonly studied dynamic optimization models.

Theorem 3.2. Let p1, p2 ∈ Ep.
(i) Assume that p2 is monotone, g(s, p2) is increasing in s, and g(s, p2) ≥

g(s, p1) for all s ∈ S. Then p2 �st p1 implies that Et2(g(p2)) ≥ Et1(g(p1)) for
all t ∈ N.

(ii) Assume that p2 is monotone and convexity-preserving, g(s, p2) is in-
creasing and convex in s, and g(s, p2) ≥ g(s, p1) for all s ∈ S. Then p2 �CX p1

implies that Et2(g(p2)) ≥ Et1(g(p1)) for all t ∈ N.

3.3.2 A change in the discount factor or in the payoff
function

In this section we provide sufficient conditions for the monotonicity of the
policy function in the state variable, and for the monotonicity of the policy
function in other parameters of the MDP, including the discount factor and
the parameters that influence the single-period payoff function. Our stochastic
comparative statics results in Section 3.3.1 rely on these monotonicity prop-
erties. Thus, we provide conditions on the model’s primitives that ensure
stochastic comparative statics results.

The monotonicity of the policy function in the state variable follows from
the conditions on the model’s primitives provided in Topkis (2011). We note
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that these conditions are not necessary for deriving monotonicity results re-
garding the policy function, and in some specific applications one can still
derive these monotonicity results using different techniques or under different
assumptions.11

Recall that a function f : S ×E → R is said to have increasing differences
in (s, e) on S × E if for all e2, e1 ∈ E and s2, s1 ∈ S such that e2 � e1 and
s2 ≥ s1, we have

f(s2, e2)− f(s2, e1) ≥ f(s1, e2)− f(s1, e1).

A function f has decreasing differences if −f has increasing differences.
A set B ∈ B(S) is called an upper set if s1 ∈ B and s2 ≥ s1 imply s2 ∈ B.

The transition probability p ∈ Ep has stochastically increasing differences if
p(s, a, B) has increasing differences for every upper setB. See Topkis (2011) for
examples of transition probabilities that have stochastically increasing differ-
ences. The optimal policy correspondence G is said to be ascending if s2 ≥ s1,
b ∈ G(s1), and b′ ∈ G(s2) imply max{b, b′} ∈ G(s2) and min{b, b′} ∈ G(s1).
In particular, if G is ascending, then minG(s) and maxG(s) are increasing
functions. Topkis (2011) provides conditions under which the optimal pol-
icy correspondence G is ascending. These conditions are summarized in the
following assumption:

Assumption 3.1. (i) r(s, a) is increasing in s and has increasing differences.
(ii) p is monotone and has stochastically increasing differences.
(iii) For all s1, s2 ∈ S, s1 ≤ s2 implies Γ(s1) ⊆ Γ(s2).

Theorem 3.3 shows that under Assumption 3.1, the policy function g(s, β)
is increasing in the discount factor. Furthermore, if the single period payoff
function r(s, a, c) depends on some parameter c and has increasing differences,
then the policy function is increasing in the parameter c.

11For example, see Lovejoy (1987) and Hopenhayn and Prescott (1992b). See also
Smith and McCardle (2002) for conditions that guarantee that the value function is
monotone and has increasing differences.
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Theorem 3.3. Suppose that Assumption 3.1 holds and that Γ(s) is ascending.
(i) Let 0 < β1 ≤ β2 < 1. Then g(s, β2) ≥ g(s, β1) for all s ∈ S and

Et2(g(β2)) ≥ Et1(g(β1)) for all t ∈ N.
(ii) Let c ∈ E be a parameter that influences the payoff function. If the

payoff function r(s, a, c) has increasing differences in (a, c) and in (s, c), then
g(s, c2) ≥ g(s, c1) for all s ∈ S, and Et2(g(c2)) ≥ Et1(g(c1)) for all t ∈ N
whenever c2 � c1.

3.3.3 A change in the transition probability function

In this section we study stochastic comparative statics results related to a
change in the transition function. We provide conditions on the transition
function and on the payoff function that ensure that p2 �st p1 implies com-
parative statics results and stochastic comparative statics results. We assume
that the transition function pi is given by pi(s, a, B) = P(m(s, a, ε) ∈ B) for
all B ∈ B(S), where ε is a random variable with law v and support V ⊆ Rk.
Theorem 3.4 provides conditions on the function m that imply that the policy
function is higher when v is higher in the sense of stochastic dominance. In
Section 3.4.3, we provide an example of a controlled random walk where the
conditions on m are satisfied.

Theorem 3.4. Suppose that pi(s, a, B) = P(m(s, a, εi) ∈ B) where m is con-
vex, increasing, continuous, and has increasing differences in (s, a), (s, ε) and
(a, ε); and εi has the law vi, i = 1, 2. r(s, a) is convex and increasing in s and
has increasing differences. For all s1, s2 ∈ S, we have Γ(s1) = Γ(s2).

If v2 �st v1 then
(i) g(s, p2) ≥ g(s, p1) for all s ∈ S and g(s, p2) is increasing in s.
(ii) Et2(g(p2)) ≥ Et1(g(p1)) for all t ∈ N.
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3.4 Applications

In this section we apply our results to several dynamic optimization models
from the economics and operations research literature.

3.4.1 Capital accumulation with adjustment costs

Capital accumulation models are widely studied in the investment theory liter-
ature (Stokey and Lucas, 1989). We consider a standard capital accumulation
model with adjustment costs (Hopenhayn and Prescott, 1992b). In this model,
a firm maximizes its expected discounted profit over an infinite horizon. The
single-period revenues depend on the demand and on the firm’s capital. The
demand evolves exogenously in a Markovian fashion. In each period, the firm
decides on the next period’s capital level and incurs an adjustment cost that
depends on the current capital level and on the next period’s capital level.
Using the stochastic comparative statics results developed in the previous sec-
tion, we find conditions that ensure that higher future demand, in the sense
of first order stochastic dominance, increases the expected long run capital
accumulated. We provide the details below.

Consider a firm that maximizes its expected discounted profit. The firm’s
single-period payoff function r is given by

r(s, a) = R(s1, s2)− c(s1, a)

where s = (s1, s2). The revenue function R depends on an exogenous demand
shock s2 ∈ S2 ⊆ Rn−1, and on the current firm’s capital stock s1 ∈ S1 ⊆ R+.
The state space is given by S = S1×S2. The demand shocks follow a Markov
process with a transition functionQ. The firm chooses the next period’s capital
stock a ∈ Γ(s1) and incurs an adjustment cost of c(s1, a). The transition
probability function p is given by

p(s, a, B) = 1D(a)Q(s2, C),
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where D×C = B, D is a measurable set in R, C is a measurable set in Rn−1,
and Q is a Markov kernel on S2 ⊆ Rn−1.

It is easy to see that if Q is monotone then p(s, a, B) = 1D(a)Q(s2, C) is
monotone and that Q2 �st Q1 implies p2 �st p1.

Assume that the revenue function R is continuous and has increasing dif-
ferences, that c is continuous and has decreasing differences, and that Γ(s)
is ascending. Under these conditions, Hopenhayn and Prescott (1992b) show
that the policy function g(s, p) is increasing in s if Q is monotone. If, in
addition, Q2 �st Q1, then g(s, p2) ≥ g(s, p1) for all s (see Corollary 7 in
Hopenhayn and Prescott (1992b)). Thus, part (i) in Theorem 3.2 implies that
Et2(g(p2)) ≥ Et1(g(p1)) for all t ∈ N.

Proposition 3.1. Let Q1 and Q2 be two Markov kernels on S2. Assume
that R is continuous and has increasing differences, c is continuous and has
decreasing differences, Γ(s) is ascending, and Γ(s1) ⊇ Γ(s′1) whenever s1 ≥ s′1.
Assume that Q2 is monotone and that Q2 �st Q1. Then under Q2 the expected
capital accumulation is higher than under Q1, i.e., Et2(g(p2)) ≥ Et1(g(p1)) for
all t ∈ N.

3.4.2 Dynamic pricing with a reference effect and an
uncertain memory factor

In this section we consider a dynamic pricing model with a reference effect as
in Popescu and Wu (2007). In this model the demand is sensitive to the firm’s
pricing history. In particular, consumers form a reference price that influences
their demand. As in Popescu and Wu (2007), we consider a profit-maximizing
monopolist who faces a homogeneous stream of repeated customers over an
infinite time horizon. In each period, the monopolist decides on a price a ∈
A := [0, a] to charge the consumers. Assume for simplicity that the marginal
cost is 0. The resulting single-period payoff function is given by

r(s, a) = aD(s, a)
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where s ∈ S ⊆ R is the current reference price and D(s, a) is the demand func-
tion that depends on the reference price s and on the price that the monopoly
charges a. We assume that the function D(s, a) is continuous, non-negative,
decreasing in p, increasing in s, has increasing differences, and is convex in s.
If the current reference price is s and the firm sets a price of a then the next
period’s reference price is given by γs+ (1− γ)a (see Popescu and Wu (2007)
for details on the micro foundations of this structure). γ is called the memory
factor. In contrast to the model of Popescu and Wu (2007), we assume that
the memory factor γ is not deterministic. More precisely, we assume that the
memory factor γ is a random variable on [0, 1] with law v. So the transition
probability function p is given by

p(s, a, B) = v{γ ∈ [0, 1] : (γs+ (1− γ)a) ∈ B}

for all B ∈ B(S). We show that even when the memory factor γ is a random
variable, the result of Popescu and Wu (2007) holds in expectation, i.e., the
long run expected prices are increasing in the current reference price. We also
show that an increase in the discount factor increases the current optimal price
and the long run expected prices.

Proposition 3.2. Suppose that the function D(s, a) is continuous, non-negative,
decreasing in p, increasing and convex in s, and has increasing differences.

(i) The optimal pricing policy g(s) is increasing in the reference price s.
(ii) The expected optimal prices in each period are higher when the initial

reference price is higher.
(iii) 0 < β1 ≤ β2 < 1 implies that g(s, β2) ≥ g(s, β1) for all s ∈ S and

Et2(g(β2)) ≥ Et1(g(β1)) for all t ∈ N.

3.4.3 Controlled random walks

Controlled random walks are used to study controlled queueing systems and
other phenomena in applied probability (for example, see Serfozo (1981)). In
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this section we consider a simple controlled random walk on R. At any period,
the state of the system s ∈ R determines the current period’s reward c1(s).
The next period’s state is given by m(s, a, ε) = a+ s+ ε where ε is a random
variable with law v and support V ⊆ R, and a ∈ A is the action that the
DM chooses. Thus, the process evolves as a random walk s+ ε plus the DM’s
action a. When the DM chooses an action a ∈ A, a cost of c2(a) is incurred.
We assume that A ⊆ R is a compact set, c1(s) is an increasing and convex
function, and c2 is an increasing function. That is, the reward and the marginal
reward are increasing in the state of the system and the costs are increasing
in the action that the DM chooses.

The single-period payoff function is given by r(s, a) = c1(s)−c2(a) and the
transition probability function is given by

p(s, a, B) = v{ε ∈ V : a+ s+ ε ∈ B}

for all B ∈ B(R). In this setting, when choosing an action a, the DM faces
the following trade-off between the current payoff and future payoffs: while
choosing a higher action a has higher current costs, it increases the probability
that the state of the system will be higher in the next period, and thus, a higher
action increases the probability of higher future rewards.

We study how a change in the random variable ε affects the DM’s current
and future optimal decisions. When c1(s) is convex and increasing in s, it is
easy to see that the transition function m(s, a, ε) = a + s + ε and the single-
period function r(s, a) = c1(s) − c2(a) satisfy the conditions of Theorem 3.4.
Thus, the proof of the following proposition follows immediately from Theorem
3.4.

Proposition 3.3. Suppose that pi(s, a, B) = P(a + s + εi ∈ B) where εi has
the law vi, i = 1, 2. Suppose that c1(s) is convex and increasing in s. Assume
that v2 �st v1.

Then g(s, p2) ≥ g(s, p1) for all s ∈ S, g(s, p2) is increasing in s, and
Et2(g(p2)) ≥ Et1(g(p1)) for all t ∈ N.
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3.4.4 Comparisons of stationary distributions

Stationary equilibrium is the preferred solution concept for many models that
describe large dynamic economies (see Acemoglu and Jensen (2015a) for ex-
amples of such models). In these models, there is a continuum of agents. Each
agent has an individual state and solves a discounted dynamic programming
problem given some parameters e (usually prices). The parameters are de-
termined by the aggregate decisions of all agents. Informally, a stationary
equilibrium of these models consists of a set of parameters e, a policy function
g, and a probability measure λ on S such that (i) g is an optimal station-
ary policy given the parameters e, (ii) λ is a stationary distribution of the
states’ dynamics P (s, B) given the parameters e, and (iii) the parameters e
are determined as a function of λ and g.12

The existence and uniqueness of a stationary probability measure λ on S

in the sense that
λ(B) =

∫
S
p(s, g(s), B)λ(ds)

for all B ∈ B(S) are widely studied.13 We now derive comparative statics re-
sults relating to how the stationary distribution λ changes when the transition
function p changes. We denote the least stationary distribution by λ and the
greatest stationary distribution by λ.

Proposition 3.4. Suppose that S is a compact set in R.
(i) Let Ep,i be the set of all monotone transition probability functions p.

Assume that g(s, p) is increasing in (s, p) on S × Ep,i where Ep,i is endowed
with the order �st. Then the greatest stationary distribution λ and the least
stationary distributions λ are increasing in p on Ep,i with respect to �st.14

12Stationary equilibrium models are used to study a wide range of economic phenom-
ena. Examples include models of industry equilibrium (Hopenhayn, 1992), heterogeneous
agent macro models (Huggett, 1993) and (Aiyagari, 1994b), and many more.

13For example, see Hopenhayn and Prescott (1992b), Kamihigashi and Stachurski
(2014), and Foss et al. (2018).

14The existence of the greatest fixed point is guaranteed from the Tarski fixed-point
theorem. For more details, see the Appendix and Topkis (2011).
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(ii) Let Ep,ic be the set of all monotone and convexity-preserving transition
probability functions p. Assume that g(s, p) is convex in s and is increasing
in (s, p) on S × Ep,ic where Ep,ic is endowed with the order �CX . Then the
greatest stationary distribution λ and the least stationary distributions λ are
increasing in p on Ep,ic with respect to �ICX .

We apply Proposition 3.4 to a standard stationary equilibrium model (Huggett,
1993).

There is a continuum of ex-ante identical agents with mass 1. The agents
solve a consumption-savings problem when their income is fluctuating. Each
agent’s payoff function is given by r(s, a) = u(s − a) where s denotes the
agent’s current wealth, a denotes the agent’s savings, s − a is the agent’s
current consumption, and u is the agent’s utility function. Thus, when an
agent consumes s−a, his single-period payoff is given by u(s−a).15 Recall that
a utility function is in the class of hyperbolic absolute risk aversion (HARA)
utility functions if its absolute risk aversion A (c) is hyperbolic. That is, if
A(c) := −u′′(c)

u′(c) = 1
ac+b for c > −b

a
. We assume that u is in the HARA class and

that the utility function’s derivative u′ is convex.
Savings are limited to a single risk-free bond. When the agents save an

amount a their next period’s wealth is given by Ra+y where R is the risk-free
bond’s rate of return and y ∈ Y = [y, y] ⊂ R+ is the agents’ labor income in
the next period. The agents’ labor income is a random variable with law ν.
Thus, the transition function is given by

p(s, a, B) = ν{y ∈ Y : Ra+ y ∈ B}.

The set from which the agents can choose their savings level is given by
Γ(s) = [s,min{s, s}] where s < 0 is a borrowing limit and s > 0 is an upper
bound on savings.

15For simplicity we assume that all the agents are ex-ante identical, i.e., the agents
have the same utility function and transition function. The model can be extended to the
case of ex-ante heterogeneity.
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A stationary equilibrium is given by a probability measure λ on S = [s, (1+
r)s + y], a rate of return R, and a stationary savings policy function g such
that (i) g is optimal given R, (ii) λ is a stationary distribution given R, i.e.,
λ(B) =

∫
S p(s, g(s), B)λ(ds), and (iii) markets clear in the sense that the total

supply of savings equals the total demand for savings, i.e.,
∫
g(s)λ(ds) = 0.

If the agents’ utility function is in the HARA class then the savings policy
function g(s) is convex and increasing (see Jensen (2017)). It is easy to see
that p is convexity-preserving and monotone. Furthermore, when u′ is convex
then the policy function g(s, p) is increasing in p with respect to the convex
order, i.e., g(s, p2) ≥ g(s, p1) whenever p2 �CX p1 (see Light (2018)). Thus,
part (ii) of Proposition 3.4 implies that when the labor income uncertainty
increases (i.e., p2 �CX p1), both the highest partial equilibrium (when R is
fixed) wealth inequality and the lowest partial equilibrium wealth inequality
increase (i.e., λ2 �ICX λ1).

3.5 Summary

This paper studies how the current and future optimal decisions change as a
function of the optimization problem’s parameters in the context of Markov
decision processes. We provide simple sufficient conditions on the primitives of
Markov decision processes that ensure comparative statics results and stochas-
tic comparative statics results. We show that various models from different
areas of operations research and economics satisfy our sufficient conditions.



Chapter 4

The Family of Alpha,[a,b]
Stochastic Orders: Risk vs.
Expected Value

Abstract
In this paper we provide a novel family of stochastic orders that gener-

alizes second order stochastic dominance, which we call the α, [a, b]-concave
stochastic orders. These stochastic orders are generated by a novel set of
“very” concave functions where α parameterizes the degree of concavity. The
α, [a, b]-concave stochastic orders allow us to derive novel comparative statics
results for important applications in economics that cannot be derived us-
ing previous stochastic orders. In particular, our comparative statics results
are useful when an increase in a lottery’s riskiness changes the agent’s opti-
mal action in the opposite direction to an increase in the lottery’s expected
value. For this kind of situation, we provide a tool to determine which of
these two forces dominates – riskiness or expected value. We apply our results
in consumption-savings problems, self-protection problems, and in a Bayesian
game.

111
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4.1 Introduction

Stochastic orders are fundamental in the study of decision making under un-
certainty and in the study of complex stochastic systems. They have been used
in various fields, including economics, finance, operations research, and statis-
tics (for a textbook treatment of stochastic orders and their applications, see
Müller and Stoyan (2002), Shaked and Shanthikumar (2007), or Levy (2015)).
In this paper we provide a family of stochastic orders that is based on a novel
family of utility functions, which allows us to compare two random variables,
where one random variable has a higher expected value and is also riskier than
the other random variable.

For instance, consider the following two simple random variables (also
called lotteries) Ỹ and X̃ described in Figure 4.1.

λα 1 − λα

Ỹ

a b

1

1

X̃

λa + (1 − λ)b

1

Figure 4.1: Example 1

Lottery Ỹ yields a dollars with probability λα and b dollars with probabil-
ity 1− λα where b > a, λ ∈ [0, 1], and α ≥ 1. Lottery X̃ yields λa+ (1− λ) b
dollars with probability 1. If α is not very high, it is reasonable to assume
that most risk-averse decision makers would prefer lottery X̃ over lottery Ỹ .
For example, if α = 1.152, λ = 0.5, a = 0, and b = 1, 000, 000, then lottery
X̃ yields 500, 000 dollars with probability 1 while lottery Ỹ yields 1, 000, 000
dollars with probability 0.55 and 0 dollars with probability 0.45. Lottery Ỹ

has a higher expected value (550, 000 dollars) than lottery X̃ but a high prob-
ability (a probability of 0.45) of receiving 0 dollars. Thus, in this case, it seems
reasonable that most risk-averse decision makers would prefer lottery X̃ over
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lottery Ỹ . Note that for every α > 1, lottery Ỹ has a higher expected value
and is riskier than lottery X̃. Thus, standard stochastic orders cannot compare
the two lotteries. In particular, since the expected value of Ỹ is higher than
the expected value of X̃, X̃ does not dominate Ỹ in most popular stochas-
tic orders because these stochastic orders impose a ranking over expectations
to determine whether X̃ dominates Ỹ . In particular, X̃ does not dominate
Ỹ in the second order stochastic dominance (Hadar and Russell (1969) and
Rothschild and Stiglitz (1970)), third order stochastic dominance (Whitmore,
1970), higher order stochastic dominance (Ekern, 1980), decreasing absolute
risk aversion stochastic dominance (Vickson, 1977), or in the almost second
order stochastic dominance (Leshno and Levy, 2002). In Section 4.2, however,
we show that the stochastic orders provided in this paper that are based on a
novel set of risk-averse decision makers can compare X̃ and Ỹ .

In this paper we provide a family of stochastic orders indexed by α, [a, b]
where α ≥ 1 and [a, b] is a subset of R, which we call the α, [a, b]-concave
stochastic orders. The family of α, [a, b]-concave stochastic orders generalizes
second order stochastic dominance (SOSD),1 which corresponds to the 1, [a, b]-
concave stochastic order. The main idea of the α, [a, b]-concave stochastic
orders is that the inequality E[u(Y )] ≥ E[u(X)] is required to hold only for
a subset of the concave and increasing functions (and not for all of them) in
order to determine that a random variable Y dominates a random variable X
in the α, [a, b]-concave stochastic order. In particular, the inequality E[u(Y )] ≥
E[u(X)] is not required to hold for a function u that is affine or for a function
u that is nearly affine in the sense that the elasticity of u′ with respect to u is
bounded below by a number that depends on α. This elasticity measures the
function’s concavity degree in a natural way and relates to the coefficients of
prudence and risk aversion (see Section 4.2 for more details).

An important feature of the α, [a, b]-concave stochastic orders is that for
α > 1, Y dominating X in these orders does not imply that E[Y ] has to be

1Recall that Y dominates X in the second order stochastic dominance if E[u(Y )] ≥
E[u(X)] holds for every concave and increasing function u : [a, b]→ R.
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lower than E[X], nor does it imply the opposite. In Section 4.2 we provide
examples of random variables X and Y where X has a higher expected value
and is riskier than Y , and Y dominates X in the α, [a, b]-concave stochastic
order. For instance, we show that X̃ dominates Ỹ in the α, [a, b]-concave
stochastic order for the example presented in Figure 4.1. Another feature of
the α, [a, b]-concave stochastic orders is their dependence on the support of
the distribution. We show that this dependence is helpful for applications
where agents’ behavior depends on their wealth level. We illustrate this in a
consumption-savings example (see Section 4.1.1).

For general random variables it is not trivial to check whether a random
variable dominates another random variable in the α, [a, b]-concave stochastic
orders. Finding a simple integral condition to characterize stochastic orders
that generalize SOSD is impossible or not trivial (see Gollier and Kimball
(2018)). However, we provide a sufficient condition for domination in the
α, [a, b]-concave stochastic order that is based on a simple integral inequality
(see Section 4.2). Similar integral conditions are used to determine whether a
random variable dominates another random variable in other popular stochas-
tic orders. The sufficient condition generates a stochastic order that is of
independent interest and can be easily used in applications. We partially
characterize the maximal generator of this new stochastic order (see Appendix
5.4.1) for α = 2.

To illustrate the usefulness of the family of α, [a, b]-concave stochastic or-
ders, we derive novel comparative statics results in three applications from the
economics literature. The first application is a consumption-savings problem
with labor income uncertainty. It is established in previous literature that a
prudent agent (i.e., an agent whose utility function has a positive third deriva-
tive) saves more if the labor income risk increases in the sense of SOSD (see
Leland (1968)). It is also easy to establish that the agent’s current savings
increase if the labor income’s expected present value increases. We do not
know of any comparative statics results for the case when both the present
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value and the risk of future labor income increase. We show that under cer-
tain conditions on the agent’s marginal utility (the marginal utility must be
“very convex”), an increase in the risk of future labor income together with
an increase in the expected present value of future labor income increase sav-
ings. That is, the precautionary saving motive is stronger than the permanent
income motive.

The second application deals with self-protection problems. We consider
a standard self-protection problem (e.g., Ehrlich and Becker (1972)) where
choosing a higher action is more costly but reduces the probability of a loss.
Stochastic orders can be used as a tool to decide whether the level of self-
protection should be higher or lower. For a decision maker that makes decisions
according to the decision rule implied by the α, [a, b]-concave stochastic order,
we provide conditions that imply a change in the level of self-protection.

In our third application, we show that the α, [a, b]-concave stochastic order
can be used in a non-cooperative framework as well. We study a Bayesian
game which is a variant of the search model studied in Diamond (1982) and
in Milgrom and Roberts (1990). In this game, there are two players that exert
a costly effort to achieve a match, and the probability of a match occurring
depends on the effort exerted by both. We analyze how different beliefs affect
the equilibrium probability of matching.

Our α, [a, b]-concave stochastic orders are also useful in proving inequalities
that involve convex functions. To show the usefulness of these stochastic orders
in proving inequalities, we prove a novel Hermite-Hadamard type inequality
for decreasing functions u : [a, b]→ R such that the square root of u(x)− u(b)
is convex (see Section 4.3.4).

There is extensive literature on stochastic orders and their applications
(for a survey see Müller and Stoyan (2002) and Shaked and Shanthikumar
(2007)). The stochastic orders we study in this paper are integral stochastic
orders (Müller, 1997b). Integral stochastic orders �F are binary relations over
the set of random variables that are defined by a set of functions F in the
following way: for two random variables X and Y we have Y �F X if and
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only if E[u(Y )] ≥ E[u(X)] for every u ∈ F and the expectations exist. Many
important stochastic orders are integral stochastic orders. For example, SOSD
corresponds to the stochastic order �F where F is the set of all concave and
increasing functions.

The integral stochastic orders we present in this paper are related to
stochastic orders that weaken SOSD by restricting the set of utility functions
under consideration. Third order stochastic dominance (Whitmore, 1970) re-
quires that the functions have a positive third derivative. Higher stochastic
orders (see Ekern (1980), Denuit et al. (1998), and Eeckhoudt and Schlesinger
(2006)) restrict the sign of the functions’ higher derivatives. Leshno and Levy
(2002), Tsetlin et al. (2015), and Müller et al. (2016) restrict the values of
the functions’ derivatives. Vickson (1977) and Post et al. (2014) add the as-
sumption that the functions are in the decreasing absolute risk aversion class.
Post (2016) requires additional curvature conditions on the functions’ higher
derivatives.

The above stochastic orders are significantly different from the stochastic
orders we introduce in this paper. All these stochastic orders impose a ranking
over expectations, while the stochastic orders presented in this paper do not
impose a ranking over expectations. Other known stochastic orders that do
not impose a ranking over expectations are introduced in Fishburn (1976) and
in Meyer (1977a). Meyer (1977a) imposes a lower and an upper bound on the
Arrow-Pratt absolute risk-aversion measure (see more details on this stochastic
order in Appendix 5.4.1). Fishburn (1976, 1980) studies a stochastic order that
is based on lower partial moments. While these stochastic orders are based on
an integral condition, the main disadvantage of these stochastic orders is that
their maximal generator is not known (see more details in Appendix 5.4.1).

The paper is organized as follows. In Section 4.1.1 we study a consumption-
savings problem that illustrates the usefulness of our stochastic orders. In
Section 4.2 we define the α, [a, b]-concave stochastic orders and study their
properties. In Section 4.3 we study the applications discussed above. Sec-
tion 4.4 contains concluding remarks. The Appendix contains the proofs not
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presented in the main text and a discussion on the maximal generator of
stochastic orders.

4.1.1 A motivating application: A consumption-savings
problem

Researchers have devoted a great deal of attention to analyzing the impact
of future income uncertainty, in particular, on savings decisions.2 In their
seminal papers, Leland (1968) and Sandmo (1970) show that in a two-period
consumption-savings problem for a prudent agent (i.e., an agent whose marginal
utility is convex), if the labor income risk increases in the sense of second order
stochastic dominance, then the agent’s savings increase. The agent’s savings
are also affected by the expected present value of future labor income: an in-
crease in the expected present value decreases current savings. Up to now, to
the best of our knowledge, no stochastic order has been provided that can be
used to derive comparative statics results for the case when both the present
value and the risk of future income increase. For instance, consider the two
labor income distributions described in Figure 2.

1
2

1
2

Ỹ

10 20

1

1

X̃

c

1

Figure 4.2: Future labor income

2For recent results see Crainich et al. (2013), Nocetti (2015), Light (2018), Lehrer and
Light (2018), Bommier and Grand (2018), and Baiardi et al. (2019). We note that our
comparative statics results are significantly different from the results in the papers above,
because we consider the case that both the present value and the risk of future income
increase. In the papers mentioned above, stochastic orders that impose a ranking over
expectations such as the second order stochastic dominance or higher order stochastic
dominance are used.
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Under which distribution should we expect to observe higher savings? For
c ≥ 15, Ỹ is riskier than X̃, in the sense of SOSD. Thus, in the expected
utility framework, savings are higher under Ỹ than under X̃ (see Sandmo
(1970)). In the case that c < 15, it is easy to see that X̃ and Ỹ cannot
be compared by SOSD. In this case, there is a trade-off between the agent’s
future income risk versus the agent’s future income present value. Using the
techniques developed in this paper we derive comparative statics results in
the presence of this trade-off. We now describe the two-period consumption-
savings problem that we study.

An agent decides how much to save and how much to consume while his
next period’s income is uncertain. If the agent has an initial wealth of x
and he decides to save 0 ≤ s ≤ x, then the first period’s utility is given by
u(x − s) and the second period’s utility is given by u(Rs + y) where y is the
next period’s income, R is the rate of return, and u describes the agent’s utility
from consumption. The agent chooses a savings level to maximize his expected
utility:

h(s, F ) := u(x− s) +
∫ y

0
u(Rs+ y)dF (y)

where the distribution of the next period’s income y is given by F . The support
of F is given by [0, y]. We assume that the agent’s utility function u is strictly
increasing, strictly concave, and continuously differentiable.

Let g(F ) = argmaxs∈C(x) h(s, F ) be the optimal savings under the distri-
bution F where we denote by C(x) := [0, x] the interval from which the agent
may choose his level of savings when his wealth is x.

Let�I be the first order stochastic dominance order and�CX be the convex
stochastic order.3 Two well known facts about the effect of the future income’s
distribution on savings decisions are the following:

Proposition 4.1. (i) If F �I G then g(G) ≥ g(F ).

3Recall that F �I G if and only if
∫
u(x)dF (x) ≥

∫
u(x)dG(x) for every increasing

function u and F �CX G if and only if
∫
u(x)dF (x) ≥

∫
u(x)dG(x) for every convex

function u.
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(ii) If F �CX G and u′ is convex then g(F ) ≥ g(G).

Part (i) of the last Proposition states that if the future income’s distribution
is better in the sense of first order stochastic dominance, then the current
savings are lower. The additional consumption follows from the permanent
income motive, i.e., the agent wants to smooth consumption. Part (ii) of the
last Proposition states that when the future income’s distribution is riskier in
the sense of the convex stochastic order, then the current savings are higher.
The additional savings are called precautionary saving.

In the Proposition 4.5 in Section 3.1 we consider the case that the in-
come’s distribution is better (it has an higher expected value) and riskier. We
show that when the agent’s marginal utility is a 2, [0, Rx+ y]-convex function
then the precautionary saving motive is stronger than the permanent income
motive. The condition that u′ is a 2, [0, Rx + y]-convex function guarantees
that the agent’s marginal utility is “very” convex (that is, the agent is “very”
prudent) so that the agent prefers to save more under the riskier income distri-
bution even though it has a higher expected value. This condition is satisfied
by a large class of utility functions (see Section 4.3 for examples).

Our results show the potential importance of prudence as a first order
consideration in policy design. If the agents are “very” prudent, then an
increase in an agent’s permanent income together with an increase in future
income uncertainty reduces consumption. Thus, in an economy where agents
are “very” prudent, reducing the agents’ future income uncertainty can be
the focus of a policy maker who aims to increase the short-run consumption.
When the labor income uncertainty increases (which is a typical feature of a
recession), a policy that focuses only on increasing permanent income might
lead to a decrease in consumption.

The application presented in this section uncovers two key advantages of
the stochastic orders presented in this paper. First, we derive comparative
statics results when an increase in the lottery’s (future labor income) riskiness
increases the agent’s optimal action (savings), but an increase in the lottery’s
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expected value decreases the agent’s optimal action that cannot be derived
using previous results. We relate these results to the convexity of the agent’s
marginal utility (prudence). Second, the comparative statics results depend
on the support of the distribution. The agent’s marginal utility needs to be
“very” convex only on a relevant local region of possible outcomes that de-
pends on the agent’s initial wealth level. Hence, savings decisions’ dependence
on future labor income could depend on agent’s wealth under our approach.
Furthermore, because the α, [a, b]-concave stochastic orders are stronger when
b is lower (see Section 4.2) we can obtain sharper results for lower wealth
level, i.e., we show that the precautionary motive is stronger as the wealth
level decreases.

4.2 The α, [a, b]-concave stochastic order

In this section we introduce and study the family of α, [a, b]-concave stochastic
orders. We first introduce the set of α-convex functions.4

Definition 4.1. Let α ≥ 1. We say that u : R → R+ is α-convex, if u 1
α is a

convex function.

If u is α-convex and twice differentiable, then u is α-convex if and only if
(u(x) 1

α )′′ ≥ 0. Thus, a twice differentiable function u : R→ R+ is α-convex if
and only if

u(x)u′′(x) ≥ u′(x)2α− 1
α

for every x.

We now introduce the set of functions that generate the family of stochastic
orders that we study in this paper.5 Let B[a,b] be the set of bounded and

4The space of α-convex functions has been studied in the field of convex geometry (see
Lovász and Simonovits (1993) and Fradelizi and Guédon (2004)). The α-convex functions
are also used in Acemoglu and Jensen (2015b) and Jensen (2017) to derive comparative
statics results in consumption-savings problems.

5In the context of stochastic orders, one disadvantage of the set of α-convex functions
is that this set does not include the negative constant functions. This fact implies that
the maximal generator of the stochastic order generated by the set of α-convex functions
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measurable functions from [a, b] to R. For the rest of the paper we say that a
function u is decreasing if it is weakly decreasing, i.e., x < y implies u(x) ≥
u(y). We say that u is increasing if −u is decreasing.

Definition 4.2. Fix α ≥ 1 and [a, b] ⊆ R. Let

Iα,[a,b] = {u ∈ B[a,b] | u is increasing, u(b)− u(x) is α-convex}. (4.1)

Let F and G be two cumulative distribution functions on [a, b].6 We say that F
dominates G in the α, [a, b]-concave stochastic order, denoted by F �α,[a,b]−I G,
if for every u ∈ Iα,[a,b] we have

∫ b

a
u(x)dF (x) ≥

∫ b

a
u(x)dG(x).

For the rest of the paper we say that u is a α, [a, b]-concave function if
u ∈ Iα,[a,b] and that u is a α, [a, b]-convex function if −u ∈ Iα,[a,b]. For two
random variables X and Y with distribution functions F and G, respectively,
we write X �α,[a,b]−I Y if and only if F �α,[a,b]−I G.

The family of α, [a, b]-concave stochastic orders generalizes second order
stochastic dominance (SOSD), which corresponds to the 1, [a, b]-concave stochas-
tic order. For α > 1, the α, [a, b]-concave stochastic order is weaker than SOSD
in the sense that if X dominates Y in the SOSD, then X dominates Y in the
α, [a, b]-concave stochastic order but the converse is not true. The idea of the
α, [a, b]-concave stochastic orders is that the inequality E[u(Y )] ≥ E[u(X)] is
required to hold only for a subset of the concave and increasing functions (and
not for all of them as in SOSD) in order to determine that a random variable
Y dominates a random variable X in the α, [a, b]-concave stochastic order.

might not be equal to the set of α-convex functions. In Appendix 5.4.1 we show that the
stochastic order generated by the set of α-convex functions is essentially equivalent to
the second order stochastic dominance. Importantly, the set Iα,[a,b] that generates the
stochastic orders we introduce in this paper is convex, closed and contain all the constant
function, and hence, the set Iα,[a,b] equals its maximal generator (see Appendix 5.4.1).

6In the rest of the paper, all functions are assumed to be integrable. All the results in
this paper can be extended to the case that a = −∞.
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The inequality E[u(Y )] ≥ E[u(X)] is required to hold for all the functions
that belong to the set Iα,[a,b] of α, [a, b]-concave functions which is a subset
of the concave and increasing functions. As we explain below, the set Iα,[a,b]
contains “very” risk aversion decision makers where the degree of risk aversion
is parameterized by α.

Motivation for introducing the set Iα,[a,b]. When α increases there
are fewer decision makers that need to prefer Y to X in order to conclude
that Y dominates X in the α, [a, b]-concave stochastic order. That is, for
α2 > α1 we have Iα2,[a,b] ⊂ Iα1,[a,b] (see Proposition 5.10 in the appendix).
Informally, the decision makers u ∈ Iα1,[a,b]\Iα2,[a,b] that are excluded from
the set Iα1,[a,b] when using the α2, [a, b]-concave stochastic order instead of
using the α1, [a, b]-concave stochastic order are the decision makers that are
the closest to being risk neutral in the set Iα1,[a,b]. In other words, the decision
makers u ∈ Iα1,[a,b]\Iα2,[a,b] have the least concave function in the set Iα1,[a,b]

where the degree of concavity is measured by the elasticity of the marginal
utility function with respect to the utility function. To see this, note that for
a twice continuously differentiable function u with the normalization u(b) = 0,7

we have u ∈ Iα,[a,b] if and only if

∂ ln(u′(x))
∂ ln(u(x)) = u(x)u′′(x)

(u′(x))2 ≥
α− 1
α

for all x ∈ (a, b). That is, the elasticity of the marginal utility function with
respect to the utility function is bounded below by (α − 1)/α. The elasticity
of u′ with respect to u is a natural measure of the concavity of u. When the
elasticity at a point x is 0, then u is essentially linear around x. When the
elasticity at a point x is large, then u is “very” concave around x. When α

is higher, the effect of a change in the utility function on the marginal utility
function is bounded below uniformly by a higher number.

This measure of concavity has the following economic interpretation. To

7From a decision theory point of view, we can normalize u(b) = 0 without changing
the preferences of the decision maker.
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see this, notice that the previous inequality is equivalent to

−u′′(x)
u′(x)

−u′(x)
u(x)

= u(x)u′′(x)
(u′(x))2 ≥

α− 1
α

for all x ∈ (a, b). Thus, for an agent with an α, [a, b]-concave utility function
the sensitivity to risk, measured by the coefficient of risk aversion, is at least
(1 − 1/α) times the sensitivity to reward, measured by the marginal utility
divided by the level of utility. In other words, the parameter (1−1/α) bounds
how much the agent prefers an increase in reward when it is accompanied by
an increase in risk.

Furthermore, in many of our applications (e.g., the consumption-savings
problem) we impose that the agents’ marginal utility function is positive and
α, [a, b]-convex (i.e., −u′ ∈ Iα,[a,b]) to derive our comparative statics results.
For such agents, their utility functions u satisfy

−u′′′(x)
u′′(x)

−u′′(x)
u′(x)

≥ (u′(x)− u′(b))u′′′(x)
(u′′(x))2 ≥ α− 1

α

for all x ∈ (a, b).8 Thus, for this class of agents we have that their coefficient
of prudence is at least (1 − 1/α) times their coefficient of risk aversion. We
show in the applications that this condition implies sharp comparative statics
results. Also, using this inequality, we can bound the degree of convexity α

by using estimates of the coefficients of prudence and risk aversion.
Examples. The following examples show that the family of α, [a, b]-

concave stochastic orders allows us to compare simple lotteries that are not
comparable by other popular stochastic orders.

In Example 4.1 we show that Y �α,[a,b]−I X for the random variables in
Figure 4.1 (see Section 1). This example is simple and can be used in order to
design a simple experiment to determine if the decision maker’s utility function

8The first inequality holds since u′ is positive and convex. The second inequality
comes from the characterization of α convexity for smooth functions.
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is not α, [a, b]-concave function for some α.
We provide two more examples of random variables X and Y where X

has a higher expected value and is riskier than Y , and Y dominates X in
the α, [a, b]-concave stochastic order. The second example involves compound
lotteries and the third example involves a uniform distribution.

Example 4.1. Consider two lotteries X and Y . Lottery X yields a dollars
with probability λα and b dollars with probability 1−λα where b > a and α ≥ 1.
Lottery Y yields λa+(1− λ) b dollars with probability 1. Then Y �α,[a,b]−I X.9

Example 4.2. (Compound lotteries). Consider two lotteries Y and X. Lot-
tery Y yields xi := λia + (1− λi) b with probability 0 < pi < 1, i = 1, . . . , n
where 0 < λ1 < . . . < λn < 1. Lottery X yields a with probability ∑i piλ

α
i and

b with probability 1−∑i piλ
α
i . Then Y �α,[a,b]−I X.

Example 4.3. (Uniform distribution). Consider two lotteries Y and X. Lot-
tery X yields a dollars with probability 1

α+1 and b dollars with probability α
α+1

where b > a and α ≥ 1. Lottery Y is uniformly distributed on [a, b]. Then
Y �α,[a,b]−I X.

For general distribution functions F and G it is not trivial to check whether
F dominates G in the α, [a, b]-concave stochastic order. Below we provide
a sufficient condition which is given by a simple integral inequality which
guarantees that F dominates G in the α, [a, b]-concave stochastic order.

Properties of the α, [a, b]-concave stochastic orders. In Proposition
4.2 we provide some properties of the α, [a, b]-concave stochastic order. The
first property is intuitive and shows that F �α,[a,b]−I G implies F �β,[a,b]−I G
whenever β > α. This is immediate because for α2 > α1 we have Iα2,[a,b] ⊂
Iα1,[a,b]. Importantly, F �1,[a,b]−I G, implies F �α,[a,b]−I G for every α ≥
1. That is, the α, [a, b]-concave stochastic order is weaker than the second
order stochastic dominance for every α > 1. The second property relates to

9The proofs of this assertion and the assertions in Example 2 and 3 are presented in
the appendix.
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translation invariance. We note that if X �α,[a,b]−I Y then X + c �α,[a,b]−I
Y + c is not necessarily well defined for c ∈ R. This is because the α, [a, b]-
concave stochastic orders are defined on a specific support. Hence, translation
invariance for the α, [a, b]-concave stochastic orders means that X �α,[a,b]−I Y
implies X + c �α,[a+c,b+c]−I Y + c for every c ∈ R. This is exactly the second
property. Translation invariance is an important property for a stochastic
order because it means that comparisons between random variables that are
based on this stochastic order are invariant for currency conversions and for
the addition of a sure amount of wealth (many important stochastic orders
satisfy the translation invariance property, e.g., SOSD). The third property
shows that F �α,[a,b′]−I G implies F �α,[a,b]−I G whenever b′ ≥ b. This is
important in applications because we can choose a support such that all the
random variables of interest are defined on this support. For example, we use
Property 3 to prove our results in the consumption-savings problem discussed
in the introduction (see Proposition 4.5).

Proposition 4.2. The following properties hold:
1. Let β > α. Then F �α,[a,b]−I G implies F �β,[a,b]−I G.
2. Suppose that X �α,[a,b]−I Y . Then X + c �α,[a+c,b+c]−I Y + c for every

c ∈ R.
3. Suppose that F and G are distributions on [a, b]. Then for every b′ ≥ b

we have

F �α,[a,b′]−I G =⇒ F �α,[a,b]−I G.

A sufficient condition for domination in the α, [a, b]-concave stochas-
tic order. Even though the set of α, [a, b]-concave functions has a clear eco-
nomic motivation as we explained above, the geometry of this set is compli-
cated. Therefore, a simple characterization is unlikely to exist. For this reason
we now introduce a simple integral condition to check whether a distribution
F dominates a distribution G in the α, [a, b]-concave stochastic order.10 This

10We note that we cannot use similar numerical methods to the ones developed in Post
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integral condition generates a new stochastic order �n,[a,b]−S for n ∈ N, which
we call the n, [a, b]-sufficient stochastic order and is of independent interest.

Definition 4.3. Consider two distributions F and G over [a, b] and a positive
integer n. We say that F dominates G in the n, [a, b]-sufficient stochastic order,
and write F �n,[a,b]−S G for n ∈ N, if and only if for all c = (c1, . . . , cn) ∈
[a, b]n we have

∫ b

a

n∏
i=1

max{ci − x, 0}dF (x) ≤
∫ b

a

n∏
i=1

max{ci − x, 0}dG(x).

Note that F dominates G in the 1, [a, b]-sufficient stochastic order if and
only if F dominatesG in the second order stochastic dominance, i.e.,

∫ b
a u(x)dF (x) ≥∫ b

a u(x)dG(x) for every concave and increasing function u (see Theorem 1.5.7.
in Müller and Stoyan (2002)). In Proposition 4.3 we extend this result. We
show that if F dominates G in the n, [a, b]-sufficient stochastic order, then F

dominates G in the n, [a, b]-concave stochastic order for all n ∈ N. Combining
this with Proposition 4.2 part (i) we conclude that if F dominates G in the
n, [a, b]-sufficient stochastic order, then F dominates G in the α, [a, b]-concave
stochastic order for all 1 ≤ α ≤ n.

Thus, Proposition 4.3 provides a simple integral condition that guarantees
domination in the α, [a, b]-concave stochastic orders.

Proposition 4.3. Consider two distributions F and G over [a, b] and n = dαe.
Then F �n,[a,b]−S G implies F �α,[a,b]−I G.

For n > 1 the converse of Proposition 4.3 does not hold. That is, F �n,[a,b]−I
G does not imply F �n,[a,b]−S G. For example, for n = 2 it can be checked that
the function −max{c1− x, 0}max{c2− x, 0} is not a 2, [a, b]-concave function
for c2 6= c1. Because the maximal generator of the 2, [a, b]-concave stochastic

and Kopa (2013) and Fang and Post (2017) to characterize the α, [a, b]-concave stochastic
order. The reason is that the methods in Post and Kopa (2013) and Fang and Post (2017)
are developed for stochastic orders generated by functions that are defined by inequalities
that are linear with respect to the functions’ derivatives. In contrast, the α, [a, b]-concave
functions cannot be defined by inequalities that are linear with respect to derivatives.
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order is the set of 2, [a, b]-concave functions (see Section 5.4.1 in the appendix)
we conclude that F �2,[a,b]−I G does not imply F �2,[a,b]−S G. On the other
hand, in Section 5.4.1 in the appendix we formally prove a partial characteri-
zation of the 2, [a, b]-sufficient stochastic. We show that this stochastic order
generates an appealing set of functions (in particular, it is not equivalent to
SOSD as our examples show).

The n, [a, b]-sufficient stochastic order is particularly useful for the case
n = 2. We now provide a sufficient condition that ensures that F dominates
G in the 2, [a, b]-concave stochastic order by applying Proposition 4.3. Similar
conditions are used to determine if F dominates G in other popular stochastic
orders such as the second order stochastic dominance and the third order
stochastic dominance.

Proposition 4.4. Consider two distributions F and G over [a, b]. We have
that F �2,[a,b]−S G if and only if for all c ∈ [a, b] the following two inequalities
hold:

(b− c)
[ ∫ c

a
F (x)dx−

∫ c

a
G(x)dx

]
+ 2

∫ c

a

(∫ x

a
F (z)dz −

∫ x

a
G(z)dz

)
dx ≤ 0

(4.2)∫ c

a

(∫ x

a
F (z)dz −

∫ x

a
G(z)dz

)
dx ≤ 0 . (4.3)

Interestingly, the conditions of Proposition 4.4 inherently relate to SOSD
and third order stochastic dominance. Third order stochastic dominance cor-
responds to inequality (4.3) and to the condition EG[X] ≤ EF [X]. SOSD
corresponds to

∫ c
a F (x)dx−

∫ c
a G(x)dx ≤ 0 for all c (which also implies a rank-

ing over expectations and inequality (4.3)). In contrast, the 2, [a, b]-sufficient
stochastic order does not imply a ranking over expectations, but the left-
hand-side of inequality (4.2) is bounded from above by a number smaller than
0 for any value of c that implies a violation of SOSD, i.e., any c that satisfies∫ c
a F (x)dx −

∫ c
a G(x)dx > 0. Thus, the 2-sufficient stochastic order does not

imply the second or the third stochastic order.
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In some cases, the 2-sufficient stochastic order provides a necessary and
sufficient integral condition to conclude that F �2,[a,b]−I G. If condition (4.3)
implies condition (4.2) then condition (4.3) holds if and only if F �2,[a,b]−I G.
To see this, note that for c ∈ [a, b] the function −max{c− x, 0}2 is a 2, [a, b]-
concave function and that

∫ b

a
max{c− x, 0}2dF (x) = 2

∫ c

a

(∫ x

a
F (z)dz

)
dx

(see Lemma 5.9 in the appendix). Thus, if F �2,[a,b]−I G holds, then condi-
tion (4.3) holds. On the other hand, if condition (4.3) implies condition (4.2),
then from Proposition 4.4 we have F �2,[a,b]−I G. We summarize this result in
the following Corollary.

Corollary 4.1. Let F and G be two distributions over [a, b]. Suppose that
if condition (4.3) holds then condition (4.2) also holds. Then condition (4.3)
holds if and only if F �2,[a,b]−I G.

Corollary 4.1 provides a tool to show that a random variable dominates an-
other random variable in the 2, [a, b]-concave stochastic order. We will provide
applications of Corollary 4.1 in Section 4.3).

4.3 Applications

In this section, we discuss four applications in which we use the α, [a, b]-concave
stochastic orders: a consumption-savings problem with an uncertain future
income, self-protection problems, a Diamond-type search model with one-sided
incomplete information, and comparing uniform distributions.
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4.3.1 Precautionary saving when the future labor in-
come is riskier and has a higher expected value

Consider the consumption-savings problem described in Section 4.1.1. Recall
that

g(F ) = argmax
s∈C(x)

h(s, F )

is the optimal savings under the distribution F where we denote by C(x) :=
[0, x] the interval from which the agent may choose his level of savings when
his wealth is x (see Section 4.1.1).

In the following Proposition we show that when the agent’s marginal utility
is a 2, [0, Rx + y]-convex function, then the precautionary saving motive is
stronger than the permanent income motive, i.e., F �2,[0,Rx+y]−I G implies
g(G) ≥ g(F ). That is, when F is better and riskier than G in terms of the
2, [0, Rx + y]-concave stochastic order, then savings under G are higher than
under F .

Proposition 4.5 uncovers the potential importance of prudence and future
income uncertainty as first order considerations in policy design. If the agents
are “very” prudent, then an increase in an agent’s permanent income together
with an increase in future income uncertainty reduces consumption. Hence,
in an economy where agents have “very” convex marginal utilities, i.e., agents
are “very” prudent, reducing the agents’ future income uncertainty can be the
major focus of a policy maker who aims to increase the short-run consumption.
A policy that increases permanent income can lead to a decrease in the short-
run consumption when the future labor income uncertainty increases (which
is a typical feature of a recession).

The condition that u′ is a 2, [0, Rx+ y]-convex function is not satisfied by
the important class of constant relative risk aversion functions. However, a
closely related class of utility functions satisfies this condition. It can be shown
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that u′ is a 2, [a, b]-convex function for the utility function

u(x) = x1−γ

1− γ + γx2

2bγ+1

for γ > 0, γ 6= 1 and u(x) = log(x) + x2/2b2 for γ = 1. Note that for a large b
the utility function defined above is close to a constant relative risk aversion
utility function.

Proposition 4.5. Suppose that u′ is a 2, [0, Rx+ y]-convex function.
(i) If F �2,[0,Rx+y]−S G then g(G) ≥ g(F ), i.e., the savings under G are

greater than or equal to the savings under F .
(ii) If F �2,[0,Rx+y]−I G then g(G) ≥ g(F ), i.e., the savings under G are

greater than or equal to the savings under F .

For a thrice differentiable utility function, the condition that u′ is a 2, [0, b]-
convex decreasing function is equivalent to the condition that (u′(x)−u′(b))u′′′(x)/(u′′(x))2 ≥
0.5 for all x ∈ [a, b]. The last expression means that the ratio between the
coefficient of relative prudence and the coefficient of relative risk aversion is
bounded below by 1/2 (see the discussion in Section 4.2). In this case, the
precautionary effect is stronger than the permanent income effect.

We stated the result in Proposition 4.5 also with respect to the sufficient
stochastic order (see part (i)). This can be useful in applications because it
easy to check whether F dominates G in the sufficient stochastic order.

4.3.2 Self-protection problems

Self-protection is a costly action that reduces the probability for a loss (see
Ehrlich and Becker (1972)). Since the work of Ehrlich and Becker (1972),
self-protection problems are widely studied in the literature on decision mak-
ing under uncertainty.11 Should a decision maker choose more or less self-
protection? One way to answer this question is based on stochastic orders.

11For example, see Dionne and Eeckhoudt (1985), Eeckhoudt and Gollier (2005), Meyer
and Meyer (2011), Denuit et al. (2016), and Liu and Meyer (2017).
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A risk-averse decision maker can decide to prefer less self-protection if most
risk-averse decision makers prefer less self-protection. In this section we study
a standard self-protection problem and provide a decision rule to answer the
question above based on the 2, [a, b]-concave stochastic order. We find condi-
tions that imply that an agent prefers to decrease the level of self-protection
even when the increase in self-protection is profitable in expectation.

We study a simple self-protection problem (as in Ehrlich and Becker (1972)
and Eeckhoudt and Gollier (2005)) where there are two possible outcomes: a
loss of fixed size or no loss at all. We now provide the formal details.

There are two lotteries X and Y . Lottery X yields w − L − ex with
probability p and w − ex with probability 1− p. Lottery Y yields w − L− ey
with probability q and w − ey with probability 1 − q. The wealth that the
decision maker has is given by w, the fixed loss is given by L, and p and q

are the probabilities of loss that depend on the level of expenditure on self-
protection ei for i = x, y. We assume that ex > ey and q > p. That is, if
the decision maker chooses a higher expenditure on self-protection, then the
probability of a loss decreases. We also assume that w − ex > w − L− ey. If
the last inequality does not hold, every rational decision maker would clearly
prefer Y to X. The following Proposition follows immediately from Lemma
5.11 and part (i) of Proposition 4.2.

Proposition 4.6. Suppose that the expected value of X is higher than the
expected value of Y , i.e., −pL− ex ≥ −qL− ey. Then

p(ex − ey + L)2 + (1− p)(ex − ey)2 ≥ qL2 (4.4)

if and only if Y �2,[w−L−ex,w−ey ]−I X, i.e., Y dominates X in the 2, [w − L−
ex, w − ey]-concave stochastic order.

The interpretation of inequality (4.4) is straightforward. For simplicity,
normalize ey to be 0 so ex is the amount that the agent can spend on self-
protection to decrease the probability of a loss to p. In this case, the agent
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has a wealth of w in any realization. If the agent does not spend on self-
protection, then the random variable Ỹ that yields L with probability q and
0 with probability 1 − q represents the agent’s future loss. When the agent
chooses to spend ex on self-protection then the random variable X̃ that yields
ex + L with probability p and ex with probability 1− p represents the future
loss (in this case the agent loses the expenditure on self-protection ex in any
outcome). Our results show that if the expected loss under Ỹ is higher than
under X̃ and the second moment of X̃ is higher than the second moment of
Ỹ then the decision maker should not spend on self-protection according to
the decision rule that is based on the 2, [w − L − ex, w]-concave stochastic
order. That is, if spending on self-protection increases the risk (captured by
the second moment) of future loss, then the decision maker does not increase
the expenditure on self-protection even when the increase in self-protection
increases the expected value of the decision maker’s final wealth.

In the self-protection problem that we study in this section, a simple con-
dition that relates to the distributions’ first and second moments captures the
trade off between expected value and riskiness that the 2-concave stochastic
order provides. We show in the appendix that this is true for general distri-
butions whose supports contain exactly two elements.12

4.3.3 A Diamond-type search model with one-sided in-
complete information

In this section we a study a Diamond-type search model studied in Diamond
(1982) and Milgrom and Roberts (1990) to a one-sided incomplete information
framework. Consider the case of two agents that benefit from a match. We
analyze the case where one player has better information than the other. For
instance, one player has been in the market for a long time and his type

12In the special case of distributions whose supports contain exactly two elements, con-
ditions on the first two moments imply domination in the 2, [a, b]-concave stochastic order
(see Lemma 5.11 in the appendix). This is somewhat intuitive because information on the
first two moments essentially determines the distributions.
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is known, whereas the second player just entered the market, so his type is
unknown. We show that a shift (in the sense of the α, [a, b]-concave stochastic
order) in the uninformed player’s beliefs about the informed player’s type
leads to an increase in the highest equilibrium probability of matching. We
now describe the Bayesian game.

There are two players who exert efforts in order to find a match. Each
player exerts a costly effort ei ∈ E := [0, 1], in order to achieve a match. For
each player, the value of a match is one. The probability of matching is e1e2,
given the efforts e1, e2. The cost of Player 1’s (the uninformed player) effort is
given by a strictly convex and strictly increasing function c1(e) that is known
to both players. The cost of Player 2’s effort is given by c2(e, θ) := ek+1

2
(k+1)(1−θ)l

where θ ∈ [0, 1) is Player 2’s type which is not known to Player 1, and k, l > 0
are some parameters. Player 1’s beliefs about the value of θ are given by a
distribution F with support on [0, 1).

Standard arguments show that this game is a supermodular game, and thus
the highest and the lowest equilibria exist (see Topkis (1979) and the Appendix
for more details).13 Define m̄(F ) = ē∗1ē

∗
2(θ) to be the highest equilibrium

probability of matching. Under certain parameters, we show that a shift in
Player 1’s beliefs, in the sense of the α, [0, 1]-concave stochastic order, leads to
an increase in the highest equilibrium probability of matching.

Proposition 4.7. Fix α ≥ 1. Suppose that l ≥ αk. If F ′ �α,[0,1]−I F then
m̄(F ′) ≤ m̄(F ). That is, the highest equilibrium probability of matching is
decreasing with respect to the α, [0, 1]-concave stochastic order.

We note that Proposition 4.7 allows us to derive non-trivial comparative
statics results. Assume that F ′ �α,[0,1]−I F . F ′ might have a lower expected
value than F , which means that the uninformed player thinks that the in-
formed player’s cost has a lower expected value. Thus, the uninformed player
should increase his effort, since he is expecting that the informed player will

13The solution concept we use is the standard Bayesian Nash equilibrium. We define it
formally in the appendix.
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increase his effort. On the other hand, F ′ is less riskier than F and this in-
duces the uninformed player to decrease his effort. Proposition 4.7 shows that
ultimately, in equilibrium, the latter effect is stronger. Thus, the efforts of
both players decrease and the equilibrium probability of matching decreases.

4.3.4 Uniform distributions and inequalities for 2, [a, b]-
convex decreasing functions

Convex functions are fundamental in proving many well-known inequalities.
The convex stochastic order is a powerful tool for proving inequalities that
involve convex functions (see Rajba (2017) for a survey). In this section we
prove inequalities for convex functions that belong to the set I2,[a,b] using
the 2, [a, b]-concave stochastic order. We first compare two general uniform
distributions that are of independent interest.

We consider two uniform random variables. Suppose that G ∼ U [a1, b1]
and F ∼ U [a2, b2] where U [a, b] is the continuous uniform random variable on
[a, b]. The following Lemma provides a necessary and sufficient condition on
the parameters (a1, b1, a2, b2) so that F �2,[a1,b1]−I G.

Lemma 4.1. Suppose that G ∼ U [a1, b1] and F ∼ U [a2, b2]. Assume that
a1 < a2 < b2 < b1 and a1+b1

2 > a2+b2
2 .14 Then F �2,[a1,b1]−I G if and only if

b1 ≤
3(a2 + b2)− 2a1 +

√
a2

2 + 10a2b2 + b2
2 − 12a1(a2 + b2 − a1)

4 . (4.5)

Lemma 4.1 can be used to prove non-trivial inequalities that involve con-
cave functions. The lemma implies that if inequality (4.5) holds, then for every
2, [a1, b1]-concave function u we have

∫ b2

a2
u(x)dF (x) ≥

∫ b1

a1
u(x)dG(x).

14If this does not hold then the expected value of F is higher or equal to the expected
value of G, so we clearly have F �1,[a1,b1]−I G. That is, F dominates G in the second
order stochastic dominance.
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We leverage Lemma 4.1 to prove Hermite-Hadamard inequalities for 2, [a, b]-
concave functions. Hermite-Hadamard inequalities are important in the liter-
ature on inequalities and have numerous applications in various fields of math-
ematics (see Peajcariaac and Tong (1992) and Dragomir and Pearce (2003)).
Recall that the classical Hermite-Hadamard inequality states that for a convex
function f : [a, b]→ R we have

f

(
a+ b

2

)
≤ 1
b− a

∫ b

a
f(x)dx ≤ f (a) + f(b)

2 . (4.6)

Inequality (4.6) is an easy consequence of the convex stochastic order. The
left-hand-side of the inequality states that the uniform random variable on
[a, b] dominates the random variable that yields an amount of (a + b)/2 with
probability 1 in the sense of the convex stochastic order. The right-hand-side of
the inequality states that the uniform random variable on [a, b] is dominated by
the random variable that yields a and b with probability 1/2 each in the sense
of the convex stochastic order. Using a similar stochastic orders approach, we
now extend and improve this inequality for functions f ∈ −I2,[a,b].

Proposition 4.8. Suppose that f ∈ −I2,[a,b] where a < b. Then

f (γb+ (1− γ) a) ≤ 1
b− a

∫ b

a
f (x) dx ≤ tf (a) + (1− t) f(b) (4.7)

for all t ≥ 1
3 and for all γ ≥ 2

3+
√

3 .

4.4 Concluding Remarks

In this paper, we introduce the α, [a, b]-concave stochastic orders, a new fam-
ily of stochastic orders that generalizes the second order stochastic dominance.
The α, [a, b]-concave stochastic orders provide a tool for deriving comparative
statics results in applications from the economics literature that cannot be
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obtained using previous stochastic orders. We illustrate this in three differ-
ent applications: Consumption-savings problems, self-protection problems and
Bayesian games. We provide a simple sufficient conditions to ensure domina-
tion in the α, [a, b]-concave stochastic order when α is a positive integer. We
foresee additional beneficial applications of α, [a, b]-concave stochastic orders,
especially for comparing lotteries that have different expected values and dif-
ferent levels of risk.



Chapter 5

Appendix

5.1 Appendix: Chapter 1

5.1.1 Proofs of Section 1.3

We first introduce some definitions. A menu C ∈ Cp is called price-M if for
all (p, q) ∈ [0,∞) × [0,∞) such that C ∪ {p, q} ∈ Cp, we have p ≤ p′ for
some (p′, q′) ∈ C. In words, a menu C is price-M if it is not feasible to add a
price-quality pair to C with positive demand and a higher price than all the
other prices in the menu C.

Step 4 in the proof of Theorem 1.1 shows that the optimal menu (if it
exists) is price-M. This also shows that Theorem 1.1 holds under the following
weaker version of the first condition of Definition 1.1 (the regularity condition):
For every price-M menu C = {(p1, q1) , . . . , (pk, qk)} there exists a 1-separating
menu {p, q} ∈ C1 such that p ≥ pk and q ≥ qk.

Recall that given some quality q > 0, the price that maximizes the plat-
form’s revenue pM(q) is given by

pM(q) = argmaxp≥0 p

(
1− F

(
p

q

))
.

Note that pM(q) is single-valued under the assumptions of Theorem 1.1. A

137
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1-separating menu {(p, q)} is maximal in C1 if for every {(p′, q′)} ∈ C1 such
that (p′, q′) 6= (p, q) we have p > p′ or q > q′.
Proof of Theorem 1.1. Let C = {(pi, qi)ni=1} ∈ C be a menu such that
pk ≤ pj for all k < j and n > 1. We can assume1 that the demand for each
price-quality pair in C has a positive mass. That is

Di(C) =
∫ b

a
1{mqi−pi≥0}1{mqi−pi=maxi=1,...,nmqi−pi}F (dm) > 0

for all 1 ≤ i ≤ n. Note that Di(C) > 0 for all 1 ≤ i ≤ n implies that qk < qj

for all k < j.
Step 1. The total transaction value from the menu C is given by

π (C) =
n∑
i=1

pi (F (mi+1)− F (mi))

where mn+1 = b and the numbers {mi}ni=2 satisfy mi ∈ [a, b] for all 2 ≤ i ≤ n

and
miqi − pi = miqi−1 − pi−1

where q0 = p0 = 0. The number m1 satisfies m1 = max{a, p1/q1}.
Proof of Step 1. The proof of Step 1 is standard (see Maskin and Riley

(1984)). We provide it here for completeness.
Because qn > qj for all 1 ≤ j ≤ n − 1, if for some 1 ≤ j ≤ n − 1 and

m ∈ [a, b] we have
m (qn − qj) ≥ pn − pj

then
m′ (qn − qj) ≥ pn − pj

1If for some (pk, qk) in C we have Dk(C) = 0, then the menu C\{(pk, qk)} has the
same total transaction value as the menu C. Thus, we can consider the menu C\{(pk, qk)}
instead of the menu C.
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for all m′ ∈ [m, b]. Thus, if for some m ∈ [a, b] we have

mqn − pn ≥ max{ max
1≤j≤n−1

mqj − pj, 0} (5.1)

then inequality (5.1) holds for all m′ ∈ [m, b]. In other words, if a type m
chooses the price-quality pair (pn, qn), then every type m′ with m ≤ m′ ≤ b

chooses the price-quality pair (pn, qn).
Let

Wn := {m ∈ [a, b] : mqn − pn ≥ max{ max
1≤j≤n−1

mqj − pj, 0}}

be the set of types that choose the price-quality pair (pn, qn). Define mn =
minWn. Dn(C) > 0 implies that the set Wn is not empty. From the fact that
m ∈ Wn implies m′ ∈ Wn for all m ≤ m′ ≤ b, Wn equals the interval [mn, b].
Thus,

Dn(C) =
∫ b

a
1Wn(m)F (dm) = F (b)− F (mn) = F (mn+1)− F (mn)

where mn+1 := b so F (mn+1) = 1.
Define mi = minWi where we define the sets

Wi := {m ∈ [a,mi+1] : mqi − pi ≥ max{ sup
1≤j≤i−1

mqj − pj, 0}

for all 1 ≤ i ≤ n−1. Di(C) > 0 implies that Wi is not empty. Thus, mi is well
defined. From the same argument as the argument above, if a type m ∈ Wi

chooses the price-quality pair (pi, qi), then every type m′ with m ≤ m′ ≤ mi+1

chooses the price-quality pair (pi, qi). Thus, Wi equals the interval [mi,mi+1]
and

Di(C) =
∫ b

a
1Wi

(m)F (dm) = F (mi+1)− F (mi) > 0

for all 1 ≤ i ≤ n.
Note that W1 = {m ∈ [a,m2] : mq1 − p1 ≥ 0}. The continuity of the
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function mq1 − p1 implies that m1 = minW1 satisfies m1 = max{a, p1/q1}.
Using continuity again and the definition of m2 we conclude that m2q2− p2 =
m2q1 − p1. Similarly, miqi − pi = miqi−1 − pi−1 for all 2 ≤ i ≤ n.

Thus, the total transaction value from the menu C is given by

π(C) =
n∑
i=1

piDi(C) =
n∑
i=1

pi (F (mi+1)− F (mi))

where mn+1 = b and the numbers {mi}ni=1 satisfy mi ∈ [a, b] for all 1 ≤ i ≤ n

and miqi − pi = miqi−1 − pi−1, q0 = p0 = 0.
Step 2. The function f(x, y) = xF

(
x
y

)
is convex on E = {(x, y) : x/y ∈

[a, b], y > 0}.
Proof of Step 2. Recall that the perspective function f(x, y) = yg

(
x
y

)
is convex on E whenever g is convex on [a, b]. Suppose that g (x) = F (x)x.
Then g is convex on [a, b] from the theorem’s assumption. Thus,

f(x, y) = yg

(
x

y

)
= yF

(
x

y

)
x

y
= xF

(
x

y

)
= f(x, y)

is convex on E.
Step 3. Let 0 = d0 < d1 < . . . < dk and 0 = z0 < . . . < zk. Assume that

(zi − zi−1) / (di − di−1) ∈ [a, b] for all 1 ≤ i ≤ k. Then

zkF

(
zk
dk

)
≤

k∑
i=1

(zi − zi−1)F
(
zi − zi−1

di − di−1

)
. (5.2)

Proof of Step 3. From Step 2 the function f(x, y) = xF
(
x
y

)
is convex on

E. From Jensen’s inequality we have

k−1
k∑
i=1

xiF

(
k−1∑k

i=1 xi

k−1∑k
i=1 yi

)
= f

(
k−1

k∑
i=1

(xi, yi)
)
≤ k−1

k∑
i=1

f (xi, yi) = k−1
k∑
i=1

xiF

(
xi
yi

)

for all (x1, . . . , xk) and (y1, . . . , yk) such that (xi, yi) ∈ E for all i = 1, . . . , k.
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Thus,
k∑
i=1

xiF

(∑k
i=1 xi∑k
i=1 yi

)
≤

k∑
i=1

xiF

(
xi
yi

)
.

Let zi − zi−1 = xi ≥ 0 and di − di−1 = yi > 0. Note that ∑k
i=1 xi = zk and∑k

i=1 yi = dk to conclude that inequality (5.2) holds.
Step 4 The menu that maximizes the total transaction value is price-M.
Proof of Step 4. Assume that C is not price-M. Then there exists a price-

quality pair {pn+1, qn+1} such that pn+1 > pn and C ∪ {pn+1, qn+1} belongs to
Cp, i.e., Di(C) > 0 for all 1 ≤ i ≤ n + 1. From Step 1, we have miqi − pi =
miqi−1 − pi−1 for all i (recall that q0 = p0 = 0). This implies that

mi = pi − pi−1

qi − qi−1
.

for all i. We have

π(C ∪ {pn+1, qn+1})− π(C) =
n∑
i=1

pi (F (mi+1)− F (mi)) + pn+1(1− F (mn+1))

−
n−1∑
i=1

pi (F (mi+1)− F (mi))− pn(1− F (mn))

= pn

(
F

(
pn+1 − pn
qn+1 − qn

)
− F

(
pn − pn−1

qn − qn−1

))

+ pn+1

(
1− F

(
pn+1 − pn
qn+1 − qn

))

− pn
(

1− F
(
pn − pn−1

qn − qn−1

))
> 0.

Thus, C is not optimal. The inequality follows from the facts that pn+1 > pn

and
Dn+1 = 1− F ((pn+1 − pn)/(qn+1 − qn)) > 0.

We conclude that the menu that maximizes the total transaction value (if it
exists) is price-M.
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Step 5. Let C∗ = {(pn, qn)}. We have

π(C) ≤ π(C∗).

Proof of Step 5. From Step 1 we have

π(C) =
n∑
i=1

pi (F (mi+1)− F (mi))

=
n−1∑
i=1

pi

(
F

(
pi+1 − pi
qi+1 − qi

)
− F

(
pi − pi−1

qi − qi−1

))
+ pn

(
1− F

(
pn − pn−1

qn − qn−1

))

= pn −
n∑
i=1

(pi − pi−1)F
(
pi − pi−1

qi − qi−1

)
.

The first equality follows from Step 1. In the second equality we use the fact
that F (mn+1) = F (b) = 1.

Let C∗ = {(pn, qn)}. Using Step 1 again we have

π (C∗) = pn

(
1− F

(
pn
qn

))

Thus, we have π(C) ≤ π(C∗) if and only if

pnF

(
pn
qn

)
≤

n∑
i=1

(pi − pi−1)F
(
pi − pi−1

qi − qi−1

)
. (5.3)

From Step 1, mi = (pi − pi−1) / (qi − qi−1) ∈ [a, b] for all 1 ≤ i ≤ n. Thus,
from Step 3, inequality (5.3) holds. We conclude that π(C) ≤ π(C∗).

Step 6. We have pM(q) ≥ p for every 1-separating menu {(p, q)} that is
maximal in C1.

Proof of Step 6. We first show that for any two 1-separating menus
{(p, q)} and {(p′, q′)} we have pM(q) ≥ pM(q′) whenever q ≥ q′ > 0.
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Because F (m)m is strictly convex on [a, b], pM(q) is single-valued. In ad-
dition, we clearly have a ≤ pM(q)/q < b. Hence, we have

max
p≥0

p

(
1− F

(
p

q

))
= max

qa≤p
p

(
1− F

(
p

q

))
.

Assume in contradiction that pM(q) < pM(q′) and q ≥ q′. Then pM(q)/q <
pM(q′)/q′. The first order conditions for the optimality of pM and the fact that
the strict convexity of F (m)m on [a, b] implies that the function F (m)+mf(m)
is strictly increasing on [a, b] yield

0 ≥ 1−
(
F

(
pM(q)
q

)
+ pM(q)

q
f

(
pM(q)
q

))

> 1−
(
F

(
pM(q′)
q′

)
+ pM(q′)

q′
f

(
pM(q′)
q′

))
= 0

which is a contradiction. We conclude that pM(q) ≥ pM(q′) whenever q ≥ q′ >

0.
Let {(pH , qH)} ∈ C1 be such that pH ≥ p′ for all {(p′, q′)} ∈ C1. and

let {(p, q)} be a maximal element in C1. From the definition of pH we have
pH ≥ p. Because {(p, q)} is maximal in C1 we have q ≥ qH . Thus, we have
pM(q) ≥ pM(qH). Because C is regular we have pM(qH) ≥ pH . We conclude
that

p ≤ pH ≤ pM(qH) ≤ pM(q)

which proves Step 6.
Step 7. There exists a 1-separating menu C ′ ∈ C such that π(C∗) ≤ π(C ′)

where C∗ = {(pn, qn)}.
Proof of Step 7. Because C is regular and C = {(pi, qi)ni=1} ∈ Cp, there

exists a 1-separating menu {(p′, q′)} ∈ C1 such that p′ ≥ pn and q′ ≥ qn. We
consider two cases.

Case 1. {(p′, q′)} is maximal in C1.
From Step 6 we have p′ ≤ pM(q′). We conclude that pn ≤ p′ ≤ pM(q′).
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The convexity of F (m)m on [a, b] implies that p
(
1− F

(
p
q′

))
is increasing in

p on [pn, pM(q′)]. Thus,

pn

(
1− F

(
pn
qn

))
≤ pn

(
1− F

(
pn
q′

))
≤ p′

(
1− F

(
p′

q′

))
.

Thus, the menu {(p′, q′)} ∈ C1 yields more total transaction value than the
menu {(pn, qn)}.

Case 2. {(p′, q′)} is not maximal in C1.
In this case, because C1 is compact, there exists a menu {(p, q)} ∈ C1 such

that p ≥ p′ and q ≥ q′, and {(p, q)} is maximal in C1. From Step 6 we have
p ≤ pM(q).

Hence, we have pn ≤ p ≤ pM(q) which implies

pn

(
1− F

(
pn
qn

))
≤ pn

(
1− F

(
pn
q

))
≤ p

(
1− F

(
p

q

))
.

That is, the menu {(p, q)} ∈ C1 yields more total transaction value than the
menu {(pn, qn)}. This proves Step 7.

Step 5 and Step 7 prove that for any menu C = {(pi, qi)ni=1} ∈ C there
exists a 1-separating menu C ′ ∈ C such that π(C) ≤ π(C ′). Thus,

sup
C∈C

π (C) ≤ max
C∈C1

π (C)

which proves the Theorem. The maximum on the right side of the last in-
equality is attained because the distribution function F is continuous and C1

is a compact set.
From Case 2 in Step 7, for every 1-separating menu C that is not maximal

in C1 there exists a 1-separating menu that is maximal in C1 that yields more
total transaction value than C. We conclude that the optimal 1-separating
menu is maximal in C1.
Proof of Proposition 1.1. Suppose that g (z) = F (z)z is not convex
on (a, b). Then there exist non-negative numbers z1 ∈ (a, b), z2 ∈ (a, b) and
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0 < λ < 1 such that

g (λz1 + (1− λ) z2) > λg (z1) + (1− λ) g (z2) .

Let k1, k2, d1, d2, and 0 < θ < 1 be such that k1 ≥ 0, k2 ≥ 0, d1 > 0, d2 > 0,
d1z1 = k1, d2z2 = k2, and θd1 = λ (θd1 + (1− θ) d2).

Note that 1− λ = (1− θ) d2/ (θd1 + (1− θ) d2).
Denote dθ := θd1 + (1− θ) d2 and kθ := θk1 + (1− θ) k2. Note that

λz1 + (1− λ) z2 = θd1

dθ

k1

d1
+ (1− θ) d2

dθ

k2

d2
= kθ
dθ
.

We have

θd1g

(
k1

d1

)
+(1− θ) d2g

(
k2

d2

)
= dθ

(
θd1

dθ
g

(
k1

d1

)
+ (1− θ) d2

dθ
g

(
k2

d2

))
< dθg

(
kθ
dθ

)
.

We conclude that the function f(x, y) := yg
(
x
y

)
= xF

(
x
y

)
is not convex on

E∗ = {(x, y) : x/y ∈ (a, b), y > 0}.
Since f is continuous and not convex it is not midpoint convex.2

Thus, there exists (x1, y1) ∈ E∗ and (x2, y2) ∈ E∗ such that

f

(
(x1, y1)

2 + (x2, y2)
2

)
>
f (x1, y1)

2 + f (x2, y2)
2 . (5.4)

If x1 = x2 = 0 then the left-hand-side and the right-hand-side of the last
inequality equal 0 which is a contradiction, so we have x1 + x2 > 0.

2Recall that the function f : E∗ → R is midpoint convex if for all e1, e2 ∈ E∗ we have
f ((e1 + e2) /2) ≤ (f(e1) + f(e2)) /2. A continuous midpoint convex function is convex.
We conclude that f is not midpoint convex.
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Assume in contradiction that x2
y2

= x1
y1

. We have

f

(
(x1, y1)

2 + (x2, y2)
2

)
>
f (x1, y1)

2 + f (x2, y2)
2

⇔ (x1 + x2)F
(
x1 + x2

y1 + y2

)
> x1F

(
x1

y1

)
+ x2F

(
x2

y2

)

⇔ F

(
x1 + x2

y1 + y2

)
> F

(
x1

y1

)

⇒ x1 + x2

y1 + y2
>
x1

y1
⇔ x2

y2
>
x1

y1
,

which is a contradiction. Thus, x2
y2
6= x1

y1
.

Assume without loss of generality that x2
y2
> x1

y1
. Then x2 > 0.

Let p2 > p1 and q2 > q1 be such that p2−p1 = x2 > 0, p1 = x1, q2−q1 = y2

and y1 = q1. Define the menus C = {(p1, q1) , (p2, q2)}, C∗ = {(p1, q1)},
and C∗∗ = {(p2, q2)}. Let C = {C,C∗, C∗∗}. We now show that D1(C) >
0, D2 (C) > 0 and that C yields more total transaction value than the 1-
separating menus C∗ and C∗∗.

Note that x2
y2
> x1

y1
implies

m2 = p2 − p1

q2 − q1
>
p1

q1
= m1

where m1 and m2 are defined in Step 1 in the proof of Theorem 1.1.
Since F is supported on [a, b], F is strictly increasing on [a, b]. Note that

m1 and m2 belong to (a, b) so m2 > m1 implies that F (m2) > F (m1). We
have D1(C) = F (m2) − F (m1) > 0. In addition, because m2 = x2/y2 and
(x2, y2) ∈ E∗ we have m2 < b, so D2 (C) = 1− F (m2) > 0.

Inequality (5.4) implies that

p2F

(
p2

q2

)
> (p2 − p1)F

(
p2 − p1

q2 − q1

)
+ p1F

(
p1

q1

)
.

Because D1(C) > 0 and D2 (C) > 0, from Step 5 in the proof of Theorem 1.1,
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the last inequality implies π(C) > π(C∗) where C∗∗ = {(p2, q2)}.
The menu C∗ = {(p1, q1)} does not maximize the total transaction value

because

π(C∗∗) = p1

(
1− F

(
p1

q1

))
< p2

(
1− F

(
p2 − p1

q2 − q1

))
+p1

(
F

(
p2 − p1

q2 − q1

)
− F

(
p1

q1

))
= π (C)

where the equalities follow from Step 1 in the proof of Theorem 1.1.
We conclude that the 2-separating menu C yields more total transaction

value than the 1-separating menus C∗ and C∗∗.
Recall that for a menu C = {(p1, q1), . . . , (pn, qn)} ∈ Cp we define mi(C) =

(pi − pi−1) / (qi − qi−1) for i = 1, . . . , n where p0 = q0 = 0. We now prove the
following general version of Proposition 1.2.

Proposition 5.1. Let C = {(p1, q1), . . . , (pn, qn)} ∈ Cp and let
C ′ = {(pµ(1), qµ(1)), . . . , (pµ(k), qµ(k))} ∈ 2C. Assume without loss of gener-

ality that pi < pj and µ(i) < µ(j) whenever i < j. Define µ0 = 0.
Assume that µ(k) = n.3 Then, π(C) ≤ π(C ′) if F (m)m is convex on

[mµ(j−1)+1(C),mµ(j)(C)] for all j = 1, . . . , n such that µ(j) − µ(j − 1) > 1.
Further, π(C) ≥ π(C ′) if F (m)m is concave on [mµ(j−1)+1(C),mµ(j)(C)] for
all j = 1, . . . , n such that µ(j)− µ(j − 1) > 1.

Proof of Proposition 5.1. Clearly C ∈ Cp implies C ′ ∈ Cp. From Step 1 in
the proof of Theorem 1.1 and using the fact that µ(k) = n we have

π(C)− π(C ′) = pn −
n∑
i=1

(pi − pi−1)F
(
pi − pi−1

qi − qi−1

)

−
(
pµ(k) −

k∑
i=i

(pµ(i) − pµ(i−1))F
(
pµ(i) − pµ(i−1)

qµ(i) − qµ(i−1)

))

= −
n∑
i=1

(pi − pi−1)F
(
pi − pi−1

qi − qi−1

)
+

k∑
i=1

(pµ(i) − pµ(i−1))F
(
pµ(i) − pµ(i−1)

qµ(i) − qµ(i−1)

)
.

3If µ(k) < n then C ′ is not price-M. Hence, the menu C ′ ∪ {pn, qn} yields more total
transaction value than C ′ (see the proof of Theorem 1.1).
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Let j be such that µ(j)−µ(j−1) = d > 1 and assume that F (m)m is convex on
[mµ(j−1)+1(C),mµ(j)(C)]. From Step 2 in the proof of Theorem 1.1 the function
f(x, y) = xF

(
x
y

)
is convex on E = {(x, y) : x/y ∈ [mµ(j−1)+1(C),mµ(j)(C)],

y > 0}. Hence, using Jensen’s inequality with the points (xi, yi) = (pi −
pi−1, qi − qi−1) ∈ E for i = µ(j − 1) + 1, . . . , µ(j) yields

µ(j)∑
i=µ(j−1)+1

d−1f(xi, yi) ≥ f

d−1
µ(j)∑

i=µ(j−1)+1
xi, d

−1
µ(j)∑

i=µ(j−1)+1
yi

 ,
i.e.,

µ(j)∑
i=µ(j−1)+1

(pi − pi−1)F
(
pi − pi−1

qi − qi−1

)
≥ (pµ(j) − pµ(j−1))F

(
pµ(j) − pµ(j−1)

qµ(j) − qµ(j−1)

)
.

Summing the last inequality over all j such that µ(j)−µ(j−1) > 1 shows that
π(C ′) ≥ π(C). The case where F (m)m is concave is proven by an analogous
argument.

5.1.2 Proofs of Section 1.5

We first prove the following Lemma:

Lemma 5.1. Fix an information structure I = {B1, B2, . . . , Bn} in I(Io).
Then, for every positive pricing function p we have

EλBi (X) =
∫
Bi
x(k(x))−1/αφ(dx)∫

Bi
(k(x))−1/αφ(dx) .

The probability measure λBi is given in Equation (1.2) in Section 1.5. That
means the expected sellers’ qualities do not depend on the prices.

Proof of Lemma 5.1. Fix an information structure I = {B1, B2, . . . , Bn}
in I(Io).

Given a positive pricing function p, the optimal quantity of a seller x in
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Bi, g(x, p(Bi)) = argmaxh∈R+ U(x, h, p(Bi)) is given by

g(x, p(Bi)) =
(
p(Bi)
k(x)

)1/α

. (5.5)

Hence, we have

EλBi (X) =
∫
Bi
xλBi(dx) =

∫
Bi
xg(x, p(Bi))φ(dx)∫

Bi
g(x, p(Bi))φ(dx) =

∫
Bi
x(k(x))−1/αφ(dx)∫

Bi
(k(x))−1/αφ(dx) .

Thus, the expected sellers’ quality EλBi (X) does not depend on the prices
when the pricing function is positive.
Proof of Proposition 1.3. For the rest of the proof except for Step 3,
we fix an information structure I = {B1, B2, . . . , Bn} in I(Io) and assume that
EλB1

(X) < . . . < EλBn (X) where the expected sellers’ quality EλBi (X) is given
in Lemma 5.1.

Let P be the set of all pricing functions such that the demand for each set
Bi ∈ I, DI(Bi,p) is greater than 0, each price is greater than 0, and the prices
are ordered according to an ascending order. That is,

P = {p ∈ Rn+ : DI(Bi,p) > 0 for all i = 1, . . . , n, 0 < p(B1) < . . . < p(Bn)}.

To simplify notation, for the rest of the proof we denote pi = p(Bi), p′i =
p′(Bi), si(pi) = SI(Bi, p(Bi)), EλBi (X) = qi, and di(p) = DI(Bi,p). Note that
p ∈ P implies 0 < q1 < . . . < qn (recall that Lemma 5.1 implies that the
expected sellers’ quality qi does not depend on the prices).

Define the function ψ : P → R by

ψ(p) =
n∑
i=1

p
α+1
α

i

∫
Bi
k(x)−1/αφ(dx)

(1 + 1/α) − pn +
n−1∑
i=0

F2

(
pi+1 − pi
qi+1 − qi

)
(qi+1 − qi) (5.6)

where F2(x) =
∫ x
a F (m)dm is the antiderivative of F and q0 = p0 = 0. Note

that p ∈ P implies that for every 1 ≤ i ≤ n−1 we have a ≤ (pi+1−pi)/(qi+1−
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qi) ≤ b (see Step 1 in the proof of Theorem 1.1). Because the function F is
continuous, the fundamental theorem of calculus implies that the function F2

is differentiable and F ′2 = F Thus, ψ is continuously differentiable.
Let ∇ψ be the gradient of ψ and let ∇iψ be the ith element of the gradient.

A direct calculation shows that for 1 ≤ i ≤ n− 1 we have

∇iψ(p) = p
1/α
i

∫
Bi
k(x)−1/αφ(dx)− F ′2

(
pi+1 − pi
qi+1 − qi

)
+ F ′2

(
pi − pi−1

qi − qi−1

)

= p
1/α
i

∫
Bi
k(x)−1/αφ(dx)− F

(
pi+1 − pi
qi+1 − qi

)
+ F

(
pi − pi−1

qi − qi−1

)

= si(pi)− di(p).

The last equality follows from Step 1 and Step 5 in the proof of Theorem 1, the
fact that p ∈ P , and Equation (5.5) (see the proof of Lemma 5.1). Similarly,

∇nψ(p) = p1/α
n

∫
Bn
k(x)−1/αφ(dx)− 1 + F

(
pn − pn−1

qn − qn−1

)
= sn(pi)− dn(p).

Thus, the excess supply function is given by ∇ψ(p) = (∇1ψ(p), . . . ,∇nψ(p))
where ∇iψ(p) = si(pi) − di(p) for all i from 1 to n. Note that ∇ψ(p) = 0
implies that (I,p) is implementable.

Our goal is to prove that (I,p) is implementable if and only if p is the
unique minimizer of ψ. To show that ψ has at most one minimizer we prove
that ψ is strictly convex on the convex set P . We proceed with the following
steps:

Step 1. The set P is bounded, convex and open in Rn.
Proof of Step 1. We first show that P is bounded. Let p = qnb and let

p = (p1, . . . , pn) be a vector such that pi > p for some 1 ≤ i ≤ n. Then

mqi − pi ≤ bqn − pi < bqn − p.

Hence di(p) = 0. That is, p does not belong to P . We conclude that (p, . . . , p)
is an upper bound of P under the standard product order on Rn. Clearly, P
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is bounded from below. Hence, P is bounded.
We now show that P is a convex set in Rn. Let p,p′ ∈ P and 0 < λ < 1.
We need to show that λp + (1− λ)p′ ∈ P . First note that

0 < λp1 + (1− λ)p′1 < . . . < λpn + (1− λ)p′n

so we only need to show that di(λp+(1−λ)p′) > 0 for all i = 1, . . . , n. Let 1 ≤
i ≤ n−1. Because di(p) > 0 and di(p′) > 0 we have F

(
pi+1−pi
qi+1−qi

)
−F

(
pi−pi−1
qi−qi−1

)
> 0

and F
(
p′i+1−p

′
i

qi+1−qi

)
− F

(
p′i−p

′
i−1

qi−qi−1

)
> 0. Strict monotonicity of F on its support

implies pi+1−pi
qi+1−qi >

pi−pi−1
qi−qi−1

and p′i+1−p
′
i

qi+1−qi >
p′i−p

′
i−1

qi−qi−1
. Hence,

λpi+1 + (1− λ)p′i+1 − (λpi + (1− λ)p′i)
qi+1 − qi

>
λpi + (1− λ)p′i − (λpi−1 + (1− λ)p′i−1)

qi − qi−1
.

Using again the strict monotonicity of F we conclude that

F

(
λpi+1 + (1− λ)p′i+1 − (λpi + (1− λ)p′i)

qi+1 − qi

)
−F

(
λpi + (1− λ)p′i − (λpi−1 + (1− λ)p′i−1)

qi − qi−1

)
> 0.

That is, di(λp+(1−λ)p′) > 0. Similarly we can show that dn(λp+(1−λ)p′) >
0. Thus, P is a convex set.

Because di(p) is continuous on P for all 1 ≤ i ≤ n, it is immediate that
the set P is an open set in Rn.

Step 2. The function ψ is strictly convex on P .
Proof of Step 2. We claim that ∇ψ is strictly monotone on P , i.e., for

all p = (p1, . . . , pn) and p′ = (p′1, . . . , p′n) that belong to P and satisfy p 6= p′,
we have

〈∇ψ(p)−∇ψ(p′),p− p′〉 > 0

where 〈x,y〉 := ∑n
i=1 xiyi denotes the standard inner product between two

vectors x and y in Rn. Because P is a convex set it is well known that ∇ψ is
strictly monotone on P if and only if ψ is strictly convex on P .

Let p,p′ ∈ P and assume that p 6= p′.
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Because g is strictly increasing in pi, k is a positive function, and φ(Bi) > 0,
the supply function si(pi) = p

1/α
i

∫
Bi
k(x)−1/αφ(dx) is strictly increasing in the

price pi. Thus, si(pi) > si(p′i) if and only if pi > p′i. Combining the last
inequality with the fact that p 6= p′ implies

n∑
i=1

(pi − p′i)(si(pi)− si(p′i)) > 0.

Let p0 = p′0 = 0. We have

n∑
i=1

(pi − p′i)(di(p)− di(p′)) =
n−1∑
i=1

(pi − p′i)
(
F

(
pi+1 − pi
qi+1 − qi

)
− F

(
pi − pi−1

qi − qi−1

))

−
n−1∑
i=1

(pi − p′i)
(
F

(
p′i+1 − p′i
qi+1 − qi

)
− F

(
p′i − p′i−1
qi − qi−1

))

+ (pn − p′n)
(
F

(
p′n − p′n−1
qn − qn−1

)
− F

(
pn − pn−1

qn − qn−1

))

=
n∑
i=1

(pi − pi−1 − (p′i − p′i−1))
(
F

(
p′i − p′i−1
qi − qi−1

)
− F

(
pi − pi−1

qi − qi−1

))

≤ 0.

The last inequality follows from the monotonicity of F . Thus,

〈∇ψ(p)−∇ψ(p′),p− p′〉 =
n∑
i=1

(si(pi)− di(p)− (si(p′i)− di(p′))(pi − p′i)

=
n∑
i=1

(pi − p′i)(si(pi)− si(p′i))−
n∑
i=1

(pi − p′i)(di(p)− di(p′))

> 0.

We conclude that ∇ψ is strictly monotone on the convex set P . Hence, ψ is
strictly convex on P .

Step 3. (I,p) is implementable if and only if p is the unique minimizer of
ψ.
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Proof of Step 3. Suppose that (I,p) is implementable where I =
{B1, B2, . . . , Bn} and p = (p(B1), . . . , p(Bn)). Let D = {DI(Bi,p)}Bi∈I ,
S = {S(Bi, p(Bi)}Bi∈I , and λ = {λBi}Bi∈I be an equilibrium under (I,p).

Because (I,p) is implementable we have p(Bi) > 0 for all Bi ∈ I and

DI(Bi,p) = SI(Bi, p(Bi)) =
∫
Bi
g(x, p(Bi))φ(dx) > 0

where the last inequality follows because g is positive (see the proof of Lemma
5.1) and φ(Bi) > 0. We can assume without loss of generality that EλB1

(X) <
. . . < EλBn (X). To see this, note that if EλBi (X) = EλBj (X) for some i < j

then min{DI(Bi,p), DI(Bj,p)} = 0 which contradicts the implementability
of (I,p). Thus, relabeling if needed, we can assume EλBi (X) < EλBj (X) for
all i < j. This implies that p(Bi) < p(Bj) for all i < j. Thus, p belongs to
P . Hence, ∇ψ(p) = 0 for some p ∈ P . Because ψ is strictly convex on the
convex set P , there is at most one p ∈ P such that ∇ψ(p) = 0. We conclude
that for every information structure I ∈ I(Io) there exists at most one pricing
function p such that (I,p) is implementable.

Furthermore, because the set P is an open set, we have ∇ψ(p) = 0 if and
only if p is the unique minimizer of the strictly convex function ψ on P . We
conclude that (I,p) is implementable if and only if p is the unique minimizer
of ψ.
Proof of Theorem 1.2. We show that CQ is regular. Then, Theorem 1.1
implies that the optimal menu is 1-separating, and hence, the optimal infor-
mation structure consists of one set of sellers. We proceed with the following
steps:

Step 1. Let {B} be a 1-separating information structure and let {(p(B),EλB(X))} ∈
ϕQ({B}). Then for every p > 0 we have S{B}(B, p) ≥ D{B}(B, p) if and only
if p ≥ p(B).

Proof of Step 1. Assume in contradiction that p(B) > p > 0 and
S{B}(B, p) ≥ D{B}(B, p). Recall that the sellers’ expected quality EλB(X)
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does not depend on the price (see Lemma 5.1). We have

1− F
(

p

EλB(X)

)
= D{B}(B, p) ≤ S{B}(B, p)

=
∫
B
g(x, p)φ(dx)

<
∫
B
g(x, p(B))φ(dx)

= 1− F
(

p(B)
EλB(X)

)

which is a contradiction to the fact that F is increasing. The strict in-
equality follows because g is strictly increasing in the price and φ(B) > 0
(see the proof of Lemma 5.1). The last equality follows from the fact that
{(p(B),EλB(X))} ∈ ϕQ({B}). This proves that S{B}(B, p) ≥ D{B}(B, p) im-
plies p ≥ p(B). The other direction is proven in a similar manner.

Step 2. Suppose that ({B}, p(B)) induces a menu that is maximal in CQ1 .
Then B ∈ Io = {A1, . . . , Al}.

Proof of Step 2. Let I = {B} be a 1-separating information structure
and assume that B 6= Ai for all Ai ∈ Io. Thus, B is a union of at least
two elements of Io. Let k be highest index among these elements. Hence,
EλAj (X) ≤ EλAk (X) for all Aj ⊆ B, Aj ∈ Io. We have

EλB(X) =
∫
B x(k(x))−1/αφ(dx)∫
B(k(x))−1/αφ(dx)

=
∑
Ai:Ai⊆B,Ai∈Io

∫
Ai
x(k(x))−1/αφ(dx)∑

Ai:Ai⊆B,Ai∈Io
∫
Ai

(k(x))−1/αφ(dx)

≤
∫
Ak
x(k(x))−1/αφ(dx)∫

Ak
(k(x))−1/αφ(dx)

= EλAk (X).

The first and last equalities follow from Lemma 5.1. The inequality follows
from the elementary inequality ∑n

i=1 xi/
∑n
i=1 yi ≤ max1≤i≤n xi/yi for positive

numbers x1, . . . , xn and y1, . . . , yn.
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Assume that (I, p(B)) is implementable and that it induces the menu
{(p(B),EλB(X))}. Then the arguments above imply EλB(X) ≤ EλAk (X).

We claim that p(B) < p(Ak) where p(Ak) is the (unique) equilibrium price
under the information structure {Ak} (the existence of this equilibrium price
follows from the arguments in Step 3). To see this, note that

SAk(B, p(B)) =
∫
Ak

(
p(B)
k(x)

)1/α

φ(dx)

<
∫
B

(
p(B)
k(x)

)1/α

φ(dx)

= SI(B, p(B)) = DI(B, p(B))

= 1− F
(

p(B)
EλB(X)

)

≤ 1− F
(

p(B)
EλAk (X)

)

= DAk(B, p(B)).

The first inequality follows from the facts that k is a positive function, B ⊇ Ak,
and φ(B \ Ak) > 0. The second inequality follows from the fact that F

is increasing. Hence, the demand exceeds the supply under the price p(B).
From Step 1 we have p(B) < p(Ak). Thus, the information structure-price
pair ({B}, p(B)) does not induce a menu that is maximal in CQ1 .

Step 3. CQ is regular.
Proof of Step 3. Let (I,p) be implementable where I = {B1, B2, . . . , Bn}.

Let
C = {(p(B1),EλB1

(X)), . . . , (p(Bn),EλBn (X))}

be the menu that is induced by (I,p). Suppose that (D,S, λ) implements
(I,p). We can assume that D(Bi,p) > 0 for all Bi ∈ I and 0 < p(B1) < . . . <

p(Bn) (see the proof of Proposition 1.3). Note that D(Bi, p) > 0 for Bi ∈ I
implies 0 < EλB1

(X) < . . . < EλBn (X).
Consider the 1-separating information structure I ′ = {Bn}.
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We claim that there exists a peq(Bn) ≥ p(Bn) such that (I ′, peq(Bn)) is
implementable and (I ′, peq(Bn)) induces the menu {(peq(Bn),EλBn (X))}.

From Step 1 in the proof of Theorem 1.1, we have DI′(Bn, p(Bn)) = 1 −
F
(

p(Bn)
EλBn (X)

)
. Note that there exists a p > p(Bn) such that DI′(Bn, p) = 0 (for

example we can choose p = EλBn (X)b).
Define the excess demand function τ : [p(Bn), p]→ R by τ(·) = DI′(Bn, ·)−

SI′(Bn, ·). From the definition of p we have τ(p) < 0.
Note that

τ(p(Bn)) = DI′(Bn, p(Bn))− SI′(Bn, p(Bn))

= DI′(Bn, p(Bn))− SI(Bn, p(Bn))

≥ DI(Bn,p)− SI(Bn, p(Bn)) = 0

The first equality follows from the definition of τ . The second equality follows
from the fact that SI(Bn, p(Bn)) = SI′(Bn, p(Bn)) =

∫
Bn
g(x, p(Bn))φ(dx),

i.e., seller x’s optimal quantity decision does not change when the information
structure changes. The inequality follows from the definition of the demand
function. The last equality follows from the fact that (I,p) is implementable.

Because the distribution function F and the optimal quantity function g

are continuous in the price, the excess demand function τ is continuous on
[p(Bn), p]. Thus, from the intermediate value theorem, there exists a peq(Bn)
in [p(Bn), p] such that τ(peq(Bn)) = 0. We conclude that (I ′, peq(Bn)) is im-
plementable and that peq(Bn) ≥ p(Bn). Thus, the menu {(peq(Bn),EλBn (X))}
is a 1-separating menu that belongs to CQ1 and condition (i) of Definition 1.1
holds.

Condition (ii) of Definition 1.1 immediately follows from using Step 2 to
conclude that BH ∈ Io, and applying Step 1 to the information structure
{BH}. Thus, CQ is regular.

Theorem 1.1 implies that the optimal 1-separating menu is maximal. Com-
bining this with Step 2 imply that the optimal 1-separating information structure-
price pair induces a menu that is maximal in CQ1 and B∗ ∈ Io = {A1, . . . , Al}
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where I∗ := {B∗} is the optimal information structure. This concludes the
proof of the Theorem.

5.1.3 Proofs of Section 1.6

Proof of Theorem 1.3. Let I = {B1, . . . , Bn} be an information structure
and let L(I) = {G1, . . . , Gn}.

(i) Suppose that C ∈ ϕP (I). Let p = (p(B1), . . . , p(Bn)) be the equilibrium
price vector that is associated with the menu C. We claim that p(Bi) = c(Gi).

If p(Bi) < c(Gi) then for every seller x ∈ Bi we have U(x,H(Bi), p(Bi),p) <
0 so the mass of sellers that participate in the platform equals to 0 which
contradicts the implementability of I. If p(Bi) > c(Gi) then the sellers’ pric-
ing decisions are not optimal. Sellers in Gi ⊆ Bi can decrease their price
and increase their utility. Thus, I is not implementable. We conclude that
p(Bi) = c(Gi) for all Bi ∈ I.

LetBi ∈ I. Because c(Ai) < c(Aj) whenever i < j we have U(x,H(Bi), p(Bi),p) <
0 for sellers x ∈ Bi\Gi under the equilibrium price vector p = (c(G1), . . . , c(Gn)).
Thus, sellers in Bi \Gi do not participate in the platform and only the sellers
in Gi ⊆ Bi participate in the platform. This completes the proof of part (i).

(ii) First note that D{Bn}(Bn, c(Gn)) ≥ DI(Bn, (c(G1), . . . , c(Gn))) > 0
(see the proof of Theorem 1.2). Furthermore, under the price c(Gn), it is
optimal for all the sellers in Gn ⊆ Bn to participate in the platform and for
all the sellers in Bn \ Gn to not participate in the platform. So EλGn (X)
is the sellers’ expected quality given the sellers’ optimal entry decisions and
the price c(Gn). Also, it is easy to see that the price c(Gn) maximizes the
participating sellers’ utility. From the quantity allocation function hI it follows
immediately that the market clearing condition is satisfied. We conclude that
{(c(Gn),EλGn (X))} ∈ ϕP ({Bn}).

(iii) From part (i) we have Co = {(c(A1),EλA1
(X)), . . . , (c(Al),EλAl (X))}.

Let C ∈ ϕP (I). Then part (i) implies that C = {(c(G1),EλG1
(X)), . . . , (c(Gn),EλGn (X))}.

Thus C ∈ 2Co . We conclude that CP ⊆ 2Co . Now consider a menu C ′ =
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{(c(Aµ1),EλAµ1
(X)), . . . , (c(Aµj),EλAµj (X))} ∈ 2Co for sum increasing num-

bers {µk}jk=1. Consider the information structure I ′ = {Aµ1 , . . . , Aµj}. Be-
cause Io is implementable we haveDI′(Aµi , (c(Aµ1), . . . , c(Aµj))) ≥ DIo(Aµi , (c(A1), . . . , c(Al))) >
0 for all Aµi ∈ I ′. An analogous argument to the argument in part (ii) shows
that I ′ is implementable and C ′ ∈ ϕP (I ′). That is, 2Co ⊆ CP . We conclude
that 2Co = CP which proves part (iii).

5.2 Appendix: Chapter 2

In this section we extend the model presented in Section 2.2. In Section 5.2.1
we study a model where the players are coupled through actions and in Section
5.2.2 we study a model where the players are ex-ante heterogeneous.

5.2.1 Coupling Through Actions

In this section we consider a model where the transition function and the payoff
function of each player depend on both the states and the actions of all other
players. The model is the same as the original model in Section 2.2 except
that now the probability measure s describes the joint distribution of players
over actions and states and not only over states, that is, s ∈ P(X×A). Thus,
the transition function w(x, a, s, ζ) and the payoff function π(x, a, s) depend
on the joint distribution over state-action pairs s ∈ P(X × A). We refer
to s ∈ P(X × A) as the population action-state profile and to the marginal
distribution of the population action-state profile over X as the population
state (i.e., the population state’s distribution is described by the probability
measure s (·, A)).

An MFE is defined similarly to the definition in Section 2.2. In an MFE,
every player conjectures that s is the fixed long run population action-state
profile, and plays according to a stationary strategy g. If every player plays
according to the strategy g when the population action-state profile is s, then
s constitutes an invariant distribution.
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Given the stationary strategy g, s ∈ P(X ×A) is an invariant distribution
if

s (B ×D) =
∫
X

∫
B

1D(g (y, s))Q (x, s, dy) s (dx,A) =
∫
X
Q(x, s, B×D)s(dx,A),

(5.7)
for all B ×D ∈ B(X × A) where Q(x, s, B) = P(w(x, s, g(x, s), ζ) ∈ B) and4

Q (x, s, B ×D) =
∫
B

1D(g (y, s))Q (x, s, dy) .

To see that Equation (5.7) holds, first assume that X and A are discrete sets.
The joint probability mass function of a stationary distribution s (y, a) is given
by

s(y, a) = s(y, A)s(a|y) = s(y, A)1{a}(g(y, s))

where s(a|y) is the probability of playing the action a ∈ A given that the
state is y ∈ X. Since the players use the pure strategy g we have s(a|y) =
1{a}(g(y, s)). Thus,

s(B ×D) =
∑
y∈B

∑
a∈D

s(y, A)1{a}(g(y, s)) =
∑
y∈B

s(y, A)1D(g(y, s)).

In addition, since s is invariant, the marginal distribution s (·, A) must
satisfy s(y, A) = ∑

x∈X s(x,A)Q(x, s, y). Thus,

s(B ×D) =
∑
x∈X

∑
y∈B

1D (g (y, s))Q(x, s, y)s(x,A).

Similarly, Equation (5.7) holds in the general state space.
If A is compact then X × A is compact, and thus, P (X × A) is compact

in the weak topology. Similar arguments to the arguments in the proof of
Theorem 2.3 show that the operator Φ : P(X)→ P(X) defined by

Φs(B ×D) =
∫
X
Q(x, s, B ×D)s(dx,A).

4Note that Q is a Markov kernel on X ×A.



CHAPTER 5. APPENDIX 160

is continuous (see more details in the proof of Theorem 5.1). Thus, as in the
proof of Theorem 2.3, we can apply Schauder-Tychonoff’s fixed point theorem
to prove that Φ has a fixed point.

The uniqueness result holds under the same conditions as the conditions in
Theorem 2.1 except that the assumptions on the Markov kernel Q in Assump-
tion 2.2 part (i) are assumed on the Markov kernel Q. The proof of Theorem
5.1 part (i) is essentially the same as the proof of Theorem 2.1. Similarly,
Theorem 5.1 part (iii) holds when the assumptions on the Markov kernel Q
are assumed on the Markov kernel Q.

We summarize the discussion in the following Theorem.

Theorem 5.1. Consider the model described in this section. Suppose that the
action set A is compact.

(i) Under the assumptions of Theorem 2.1 where Q is replaced by Q the
MFE is unique.

(ii) Under the assumptions of Theorem 2.3 there exists an MFE.
(iii) Let (I,�I) be a partially ordered set. Assume that Q is increasing

in e on I.Then, under the assumptions of part (i), the unique MFE s(e) is
increasing in the following sense: e2 �I e1 implies s(e2) � s(e1).5

The assumptions on Q that are needed in order to guarantee the uniqueness
of an MFE can be verified in a similar manner to the assumptions on Q.
In particular, in some models it is enough to show that the policy function
g(x, s) is increasing in the state x and decreasing in the population action-
state profile state s which is a natural property in many dynamic oligopoly
models (see Section 2.4). In Section 2.4.2 we prove that the policy function
g(x, s) is increasing in x and decreasing in s in a dynamic advertising model
where each player’s payoff function depends on the other players’ actions, and
we use Theorem 5.1 to prove that the model has a unique MFE.

5Recall that we say that Q is increasing in e if Q(x, s, e2, ·) �SD Q(x, s, e1, ·) for all x,
s, and all e2, e1 ∈ I such that e2 �I e1. Note that the orders �SD and � are on measures
over state-action pairs.
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5.2.2 Ex-ante Heterogeneity

In this section we study a mean field model with ex-ante heterogeneous players.
We assume that the players are heterogeneous in their payoff functions and in
their transition functions. Assume that before the time horizon, each player
has a type θ ∈ Θ, where Θ is a finite partially ordered set. Each player’s type
is fixed throughout the horizon. Let Υ be the probability mass function over
the type space; Υ(θ) is the mass of players whose type is θ ∈ Θ, which is
common knowledge. Adding the argument θ ∈ Θ to the functions defined in
Section 2.2, we can modify the definitions of Section 2.2 to include the ex-ante
heterogeneity of the players. In particular, we denote by w(x, a, s, ζ, θ) the
transition function of type θ ∈ Θ and by π(x, a, s, θ) the payoff function of
type θ ∈ Θ.

Let Xh = X ×Θ be an extended state space for the mean field model with
ex-ante heterogeneous players. If a player’s extended state is xh = (x, θ) ∈ Xh

then the player’s state is x and the player’s type is θ. Let sh be the population
state over the extended state space, i.e., sh ∈ P(X ×Θ).

For a probability measure sh ∈ P(X × Θ), define a probability measure
S (sh) ∈ P(X) by

S (sh) (B) =
∑
θ∈Θ

sh(B, θ)

for all B ∈ B(X). That is, S(sh) is the marginal distribution of sh that
describes the population state.

For the model with ex-ante heterogeneous players we define the payoff
function πh (xh, a, sh) = π(x, a, S (sh) , θ). Note that we consider a model
where each player’s payoff function depends on the other players’ states (the
population state) and not on the other players’ types. This seems reasonable
in most applications, as types usually represent ex-ante heterogeneity in the
payoff functions, discount factors, etc. We now define the transition function.

For a fixed extended population state sh ∈ P(X × Θ) and a strategy
g(x, S (sh) , θ), the probability that player i’s next period’s state will lie in a



CHAPTER 5. APPENDIX 162

set B ×D ∈ B(X)× 2Θ, given that her current state is xh = (x, θ) ∈ Xh, her
type is θ, and she takes the action a = g(x, S (sh) , θ), is:

Qh(xh, sh, B ×D) = P(w(x, g(x, S (sh) , θ), S (sh) , ζ, θ) ∈ B)1D (θ) .

These definitions map the payoff function and transition function in the
model with ex-ante heterogeneous players to the model with ex-ante homoge-
neous players that we considered in Section 2.2. Thus, all the results in this
paper hold also in the case of ex-ante heterogeneity where the assumptions
that we made on π, w and Q are now assumed on πh, wh and Qh. Thus, all
our results can easily be extended to the case of ex-ante heterogeneous play-
ers. Note that in this model, players of different types may play different MFE
strategies. We now provide more details.

Similarly to Section 2.2, in an MFE every player plays according to the
strategy g when the extended population state is sh and sh constitutes an
invariant distribution given the strategy g. That is, sh satisfies

sh(B ×D) =
∫
Xh

Qh(xh, sh, B ×D)sh(dxh)

for all B ×D ∈ B(X)× 2Θ.
The following theorem follows immediately from the results in the main

text when Q is replaced by Qh. Note that Xh = X ×Θ is a product space so
we can use Theorem 2.2 instead of Theorem 2.1 to prove the uniqueness of an
MFE.

Theorem 5.2. Consider the model described in this section.
(i) Under the assumptions of Theorem 2.2 (with the state space X × Θ)

where Q is replaced by Qh, the MFE is unique.
(ii) Under the assumptions of Theorem 2.3 there exists an MFE.
(iii) Let (I,�I) be a partially ordered set. Assume that Qh is increasing

in e on I. Then, under the assumptions of part (i), the unique MFE sh(e) is
increasing in the following sense: e2 �I e1 implies sh(e2) � sh(e1).
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We define the X-transition function of a type θ player by

Qθ(x, sh, B) = P(w(x, g(x, S (sh) , θ), S (sh) , ζ, θ) ∈ B)

for all B ∈ B(X). As discussed in Section 2.3.1, the key assumption that
implies the uniqueness of an MFE is related to the transition function’s mono-
tonicity properties. In particular, the assumption is that the transition func-
tion is increasing in the players’ own states and decreasing in the extended
population state. In the case of ex-ante heterogeneity, the next Lemma shows
that if the transition function of each player Qθ is increasing in x and de-
creasing in sh for every type θ then Qh is increasing in x and decreasing in sh
with respect to x. This fact is useful for applications when we want to verify
the monotonicity conditions needed in Theorem 5.2 part (i) that imply the
uniqueness of an MFE.

Lemma 5.2. Assume that Qθ is increasing in x and decreasing in sh for every
type θ. Then Qh is increasing in x and decreasing in sh with respect to x.

5.2.3 Uniqueness: Proof of Theorem 2.2

Proof of Theorem 2.2. Assume without loss of generality that Q is in-
creasing in x1 and decreasing in s with respect to x1.

For s1, s2 ∈ P(X) we write s1 �SD,X1 s2 if for all functions f : X1×X2 → R
that are increasing in the first argument (i.e., x′1 ≥ x1 implies that f(x′1, x2) ≥
f(x1, x2) for all x2 ∈ X) we have

∫
X
f(x1, x2)s1(d(x1, x2)) ≥

∫
X
f(x1, x2)s2(d(x1, x2)).

We note that if � agrees with �SD, then � agrees with �SD,X1 (recall that
s2 �SD s1 if the last inequality holds for every increasing function f : X1 ×
X2 → R).

Let f : X1 × X2 → R be increasing in the first argument, θ1, θ2 ∈ P(X)
and assume that θ1 �SD,X1 θ2. Let s1, s2 be two MFEs such that s2 � s1. We
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have
∫
X
f(y1, y2)Ms2θ2(d(y1, y2)) =

∫
X

∫
X
f(y1, y2)Q((x1, x2), s2, d(y1, y2))θ2(d(x1, x2))

≤
∫
X

∫
X
f(y1, y2)Q((x1, x2), s2, d(y1, y2))θ1(d(x1, x2))

≤
∫
X

∫
X
f(y1, y2)Q((x1, x2), s1, d(y1, y2))θ1(d(x1, x2))

=
∫
f(x1, x2)Ms1θ1(d(x1, x2)).

Thus, Ms1θ1 �SD,X1 Ms2θ2. The first inequality follows from the facts that f
is increasing in the first argument, Q is increasing in x1, and θ1 �SD,X1 θ2. The
second inequality follows from the fact that Q is decreasing in s with respect
to x1.

We conclude that Mn
s1θ1 �SD,X1 M

n
s2θ2 for all n ∈ N. Q being X-ergodic

implies that Mn
si
θi converges weakly to µsi = si. Since �SD,X1 is a closed order,

we have s1 �SD,X1 s2 which implies that s1 � s2. The rest of the proof is the
same as the proof of Theorem 2.1.

5.2.4 Existence: Proofs of Theorem 2.3 and Lemma 2.1

We first introduce preliminary notation and results.
Let B(X × P(X)) be the space of all bounded functions on X × P(X).

Define the operator T : B(X × P(X))→ B(X × P(X)) by

Tf(x, s) = max
a∈Γ(x)

h(x, a, s, f)

where
h(x, a, s, f) = π(x, a, s) + β

n∑
j=1

pjf(w(x, a, s, ζj), s).

The operator T is called the Bellman operator.

Lemma 5.3. The optimal strategy correspondence G(x, s) is non-empty, compact-
valued and upper hemicontinuous.
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Proof. Assume that f ∈ B(X × P(X)) is (jointly) continuous. Then for
each ζ ∈ E, f(w(x, a, s, ζ), s) is continuous as the composition of continuous
functions. Thus, h(x, a, s, f) is continuous as the sum of continuous func-
tions. Since Γ(x) is continuous, the maximum theorem (see Theorem 17.31 in
Aliprantis and Border (2006)) implies that Tf(x, s) is jointly continuous.

We conclude that for all n = 1, 2, 3 . . ., T nf is continuous. Under As-
sumption 2.1, standard dynamic programming arguments (see Bertsekas and
Shreve (1978)) show that T nf converges to V uniformly. Since the set of con-
tinuous functions is closed under uniform convergence, V is continuous. Thus,
h(x, a, s, V ) is continuous. From the maximum theorem, G(x, s) is non-empty,
compact-valued and upper hemicontinuous.

We say that kn : X → R converges continuously to k if kn(xn) → k(x)
whenever xn → x. The following Proposition is a special case of Theorem 3.3
in Serfozo (1982).

Proposition 5.2. Assume that kn : X → R is a uniformly bounded sequence
of functions. If kn : X → R converges continuously to k and sn converges
weakly to s then

lim
n→∞

∫
X
kn(x)sn(dx) =

∫
X
k(x)s(dx).

In order to establish the existence of an MFE, we will use the following
Proposition (see Corollary 17.56 in Aliprantis and Border (2006)).

Proposition 5.3. (Schauder-Tychonoff) Let K be a nonempty, compact, con-
vex subset of a locally convex Hausdorff space, and let f : K → K be a con-
tinuous function. Then the set of fixed points of f is compact and nonempty.

Proof of Theorem 2.3. Let g(x, s) = G(x, s) be the unique optimal
stationary strategy. From Lemma 5.3, g is continuous.

Consider the operator Φ : P(X)→ P(X) defined by

Φs(B) =
∫
X
Qg(x, s, B)s(dx).
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If s is a fixed point of Φ then s is an MFE. Since X is compact P(X) is compact
(i.e., compact in the weak topology, see Aliprantis and Border (2006)). Clearly
P(X) is convex. P(X) endowed with the weak topology is a locally convex
Hausdorff space. If Φ is continuous, we can apply Schauder-Tychonoff’s fixed
point theorem to prove that Φ has a fixed point. We now show that Φ is
continuous.

First, note that for every bounded and measurable function f : X → R
and for every s ∈ P(X) we have

∫
X
f(x)Φs(dx) =

∫
X

∑
j

pjf(w(x, g(x, s), s, ζj)s(dx). (5.8)

To see this, first assume that f = 1B where 1B is the indicator function of
B ∈ B(X). Then

∫
X
f(x)Φs(dx) =

∫
X

1BΦs(dx)

=
∫
X
Qg(x, s, B)s(dx)

=
∫
X

∑
j

pj1B(w(x, g(x, s), s, ζj)s(dx)

=
∫
X

∑
j

pjf(w(x, g(x, s), s, ζj)s(dx).

A standard argument shows that (5.8) holds for every bounded and measurable
function f .

Assume that sn converges weakly to s. Let f : X → R be a continuous
and bounded function. Since w is jointly continuous and g is continuous(see
Lemma 5.3), we have

f(w(xn, g(xn, sn), sn, ζ))→ f(w(x, g(x, s), s, ζ)

whenever xn → x. Let kn(x) := ∑n
j=1 pjf(w(x, g(x, sn), sn, ζj) and

k(x) := ∑n
j=1 pjf(w(x, g(x, s), s, ζj). Then kn converges continuously to k,
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i.e., kn(xn)→ k(x) whenever xn → x. Since f is bounded, the sequence kn is
uniformly bounded. Using Proposition 5.2 and equality (5.8), we have

lim
n→∞

∫
X
f(x)Φsn(dx) = lim

n→∞

∫
X
kn(x)sn(dx)

=
∫
X
k(x)s(dx)

=
∫
X
f(x)Φs(dx) .

Thus, Φsn converges weakly to Φs. We conclude that Φ is continuous. Thus,
by the Schauder-Tychonoff’s fixed point theorem, Φ has a fixed point.

Proof of Lemma 2.1. Assume that f ∈ B(X × P(X)) is concave and
increasing in x. Since the composition of a concave and increasing function
with a concave function is a concave function, the function f(w(x, a, s, ζ), s)
is concave in (x, a) for all s and ζ. Since w and f are increasing in x then
f(w(x, a, s, ζ), s) is increasing in x for all a, s and ζ. Thus, h(x, a, s, f) is
concave in (x, a) and increasing in x as the sum of concave and increasing
functions. A standard argument shows that Tf is increasing in x. Proposition
2.3.6 in Bertsekas et al. (2003) and the fact that Γ(x) is convex-valued imply
that Tf(x, s) = max

a∈Γ(x)
h(x, a, s, f) is concave in x.

We conclude that for all n = 1, 2, 3 . . ., T nf is concave and increasing
in x. Standard dynamic programming arguments (see Bertsekas and Shreve
(1978)) show that T nf converges to V uniformly. Since the set of concave and
increasing functions is closed under uniform convergence, V is concave and
increasing in x.

Since π is strictly concave in a, h(x, a, s, V ) is strictly concave in a. This
implies that G(x, s) = argmaxa∈Γ(x) h(x, a, s, V ) is single-valued which proves
the Lemma.
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5.2.5 Comparative statics: Proof of Theorem 2.4

Proof of Theorem 2.4. Under the assumptions of Theorem 2.1, the oper-
ator Ms : P(X)× I → P(X) defined by

Ms(θ, e)(·) =
∫
X
Q(x, s, e, ·)θ(dx)

has a unique fixed point µs,e for each s ∈ P(X) and e ∈ I.
Fix s ∈ P(X). Let θ2 �SD θ1 and e2 �I e1 and let B be an upper set. We

have

Ms(θ2, e2)(B) =
∫
X
Q(x, s, e2, B)θ2(dx)

≥
∫
X
Q(x, s, e2, B)θ1(dx)

≥
∫
X
Q(x, s, e1, B)θ1(dx) = Ms(θ1, e1)(B).

Thus, Ms(θ2, e2) �SD Ms(θ1, e1). The first inequality holds because θ2 �SD θ1

and Q is increasing in x when B is an upper set. The second inequality follows
from the fact that Q is increasing in e when B is an upper set.

We conclude that Ms is an increasing function from P(X) × I into P(X)
when P(X) is endowed with �SD. Thus, Mn

s (θ2, e2) �SD Mn
s (θ1, e1) for all

n ∈ N. Q being X-ergodic implies that Mn
s (θi, ei) converges weakly to µs,ei .

Since �SD is closed under weak convergence (see Kamae et al. (1977)), we
have µs,e2 �SD µs,e1 .

Now assume that e2 �I e1 and let s(e2), s(e1) be the corresponding MFEs.
Assume in contradiction that s(e2) ≺ s(e1). From the same argument as in
Theorem 2.1 we can conclude that µs(e2),e �SD µs(e1),e for each e ∈ I. Note
that s(e) is an MFE if and only if s(e) = µs(e),e. We have

s(e2) = µs(e2),e2 �SD µs(e2),e1 �SD µs(e1),e1 = s(e1).

Transitivity of �SD implies s(e2) �SD s(e1). But since �SD agrees with �,
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s(e2) �SD s(e1) implies s(e2) � s(e1) which is a contradiction. We conclude
that s(e2) � s(e1).

5.2.6 Dynamic Oligopoly Models: Proofs of Theorems
2.5, 2.6, 2.7, and 2.8

Proof of Theorem 2.5. The idea of the proof is to show that the conditions
of Theorem 2.1 and Theorem 2.3 hold. In Lemma 5.4 we prove that the optimal
stationary investment strategy is single-valued. In Lemma 5.5 we prove that
Q is increasing in x and decreasing in s. In Lemma 5.7 we prove that the
state space can be chosen to be compact. That is, there exists a compact set
X̄ = [0, x̄] such that Q(x, s, X̄) = 1 whenever x ∈ X̄ and all s ∈ P(X). This
means that if a firm’s initial state is in X̄, then the firm’s state will remain
in X̄ in the next period with probability 1. In Lemma 5.8 we prove that Q is
X̄-ergodic. Thus, all conditions from Theorem 2.1 and Theorem 2.3 hold and
we conclude that the model has a unique MFE.

We first introduce some notations.
Let B(X×P(X)) be the space of all bounded functions on X×P(X). For

f ∈ B(X × P(X)) define

fx(x, s) := ∂f(x, s)
∂x

.

For the rest of the paper we say that f ∈ B(X×P(X)) is differentiable if it is
differentiable in the first argument. Similarly, we write ux(x, s) to denote the
derivative of u with respect to x.

For the proof of the theorem, it will be convenient to change the decision
variable in the Bellman equation. Define

z = (1− δ)x+ k(a),

and note that we can write a = k−1(z−(1−δ)x), which is well defined because
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k is strictly increasing. The resulting Bellman operator is given by

Kf(x, s) = max
z∈Γ(x)

J(x, z, s, f),

where Γ(x) = [(1− δ)x+ k(0), (1− δ)x+ k(ā)] and

J(x, z, s, f) = π(x, z, s) + β
∑
j

pjf(zζj, s),

where π(x, z, s) = u(x, s)− dk−1(z − (1− δ)x).
Let µf (x, s) = argmaxz∈Γ(x) J(x, z, s, f) and µ(x, s) = argmaxz∈Γ(x) J(x, z, s, V ).

Note that µ(x, s) = (1− δ)x+ k(g(x, s)) where g is the optimal stationary in-
vestment strategy. With this change of variables, we can use the envelope
theorem (see Benveniste and Scheinkman (1979)). Since u and k are continu-
ously differentiable, then J(x, z, s, f) is continuously differentiable in x. The
envelope theorem implies that Kf is differentiable and

Kfx(x, s) = ∂π(x, µf (x, s), s)
∂x

= ux(x, s) + d(1− δ)(k−1)′(µf (x, s)− (1− δ)x).

Lemma 5.4. µ(x, s) is single-valued, increasing in x and decreasing in s.

Proof. The main step of the proof is to show that if f ∈ B(X×P(X)) has de-
creasing differences then Kf ∈ B(X ×P(X)) has decreasing differences. This
implies that the value function V has decreasing differences. An application
of a Theorem by Topkis implies that µ(x, s) is increasing in x and decreasing
in s. Single-valuedness of µ follows from the concavity of the value function.
We provide the details below.

Assume that f ∈ B(X × P(X)) is concave in x, differentiable, and has
decreasing differences. The function f(zζ, s) is concave and increasing in z

for all s and ζ. Since k is strictly concave and strictly increasing, k−1 is
strictly convex and strictly increasing. This implies that −k−1(z− (1− δ)x) is
concave in (x, z). Thus, J(x, z, s, f) is concave in (x, z) as the sum of concave
functions. Proposition 2.3.6 in Bertsekas et al. (2003) and the fact that Γ(x)
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is convex-valued imply that Kf(x, s) is concave in x.
Since f has decreasing differences, then f(zζ, s) has decreasing differences

in (z, s) for all ζ. Thus, J has decreasing differences in (z, s) as the sum of
functions with decreasing differences. From Theorem 6.1 in Topkis (1978a),
µf (x, s) is decreasing in s for every x.

Let x2 ≥ x1, z2 ≥ z1, y′ = z1− (1− δ)x2, y = z1− (1− δ)x1 and t = z2−z1.
Note that y ≥ y′. Convexity of k−1 implies that for y ≥ y′ and t ≥ 0, we have
k−1(y + t) − k−1(y) ≥ k−1(y′ + t) − k−1(y′). That is, k−1(z − (1 − δ)x) has
decreasing differences in (x, z). Thus, π(x, z, s) = u(x, s)− k−1(z − (1− δ)x)
has increasing differences in (x, z).

Let s2 � s1. For every x ∈ X we have

Kfx(x, s1) = πx(x, µf (x, s1), s1)

≥ πx(x, µf (x, s1), s2)

≥ πx(x, µf (x, s2), s2) = Kfx(x, s2). (5.9)

The first and last equality follow from the envelope theorem. The first in-
equality follows since π has decreasing differences in (x, s). The second in-
equality follows from the facts that π has increasing differences in (x, z) and
µf (x, s1) ≥ µf (x, s2). Thus, Kf has decreasing differences.

Define fn = Knf := K(Kn−1f) for n = 1, 2, . . . where K0f := f . By
iterating the previous argument we conclude that fnx (x, s) is decreasing in s

and fn(x, s) is concave in x for every n ∈ N.
Standard dynamic programming arguments (see Bertsekas and Shreve (1978))

show that fn converges uniformly to V . Since the set of concave functions is
closed under uniform convergence, V is concave in x. The envelope theorem
implies that fnx (x, s) = πx(x, µfn(x, s), s) for every n ∈ N. Since J(x, z, s, fn)
is strictly concave in z when fn is concave, µfn is single-valued. Theorem
3.8 and Theorem 9.9 in Stokey and Lucas (1989) show that µfn → µ. Thus,
fnx (x, s) = πx(x, µfn(x, s), s) → πx(x, µ(x, s), s) = Vx(x, s). Using (5.9), we
conclude that Vx(x, s) is decreasing in s; hence, V has decreasing differences.
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The same argument as above shows that J(x, z, s, V ) has decreasing differ-
ences in (z, s) and increasing differences in (x, z). Since J(x, z, s, V ) is strictly
concave in z, then µ is single-valued. It is easy to see that Γ(x) is ascending in
the sense of Topkis (1978a) (i.e., for x2 ≥ x1 if z ∈ Γ(x2) and z′ ∈ Γ(x1) then
max{z, z′} ∈ Γ(x2) and min{z, z′) ∈ Γ(x1)). Theorem 6.1 in Topkis (1978a)
implies that µ(x, s) is increasing in x and decreasing in s which proves the
Lemma.

Lemma 5.5. Q is increasing in x for each s ∈ S and decreasing in s for each
x ∈ X.

Proof. For each s ∈ P(X), x2 ≥ x1 and any upper set B we have

Q(x2, s, B) = P(((1− δ)x2 + k(g(x2, s))ζ) ∈ B)

= P(µ(x2, s)ζ ∈ B)

≥ P(µ(x1, s)ζ ∈ B) = Q(x1, s, B),

where the inequality follows since µ is increasing in x. Thus, Q(x2, s, ·) �SD
Q(x1, s, ·).

Similarly since µ(x, s) is decreasing in s, Q is decreasing in s for each
x ∈ X.

We prove the following useful auxiliary lemma.

Lemma 5.6. (i) µ(x, s) is strictly increasing in x.
(ii) For all s ∈ P(X), µ is Lipschitz-continuous in the first argument with

a Lipschitz constant 1. That is,

|µ(x2, s)− µ(x1, s)| ≤ |x2 − x1|,

for all x2, x1 and s ∈ P(X).

Proof. (i) Fix s ∈ P(X). Assume in contradiction that x2 > x1 and µ(x1, s) =
µ(x2, s). First note that µ(x1, s) = µ(x2, s) ≥ (1 − δ)x2 + k(0) > (1 − δ)x1 +
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k(0) := min Γ(x1). Thus, min Γ(x1) < µ(x1, s) ≤ max Γ(x1) < max Γ(x2). We
have

0 ≤ −d(k−1)′(µ(x1, s)− (1− δ)x1) + β
n∑
j=1

pjζjVx(µ(x1, s)ζj, s)

< −d(k−1)′(µ(x2, s)− (1− δ)x2) + β
n∑
j=1

pjζjVx(µ(x2, s)ζj, s),

which contradicts the optimality of µ(x2, s), since µ(x2, s) < max Γ(x2). The
first inequality follows from the first order condition (recall that min Γ(x1) <
µ(x1, s)). The second inequality follows from the fact that k−1 is strictly
convex, which implies that (k−1)′ is strictly increasing. Thus, µ is strictly
increasing in x.

(ii) Fix s ∈ P(X). Let x2 > x1. If µ(x1, s) = max Γ(x1) = (1− δ)x1 +k(ā),
then

µ(x2, s)− µ(x1, s) ≤ (1− δ)(x2 − x1) + k(ā)− k(ā) ≤ x2 − x1.

So we can assume that µ(x1, s) < max Γ(x1). Assume in contradiction that
µ(x2, s)− µ(x1, s) > x2− x1. Then µ(x2, s)− (1− δ)x2 > µ(x1, s)− (1− δ)x1.
We have

0 ≥ −d(k−1)′(µ(x1, s)− (1− δ)x1) + β
n∑
j=1

pjζjVx(µ(x1, s)ζj, s)

> −d(k−1)′(µ(x2, s)− (1− δ)x2) + β
n∑
j=1

pjζjVx(µ(x2, s)ζj, s).

The first inequality follows from the first order condition. The second inequal-
ity follows from the facts that (k−1) is strictly convex and V is concave (see the
proof of Lemma 5.4). The last inequality implies that µ(x2, s) = min Γ(x2) =
(1− δ)x2 + k(0). But µ(x1, s) ≥ min Γ(x1) implies

µ(x2, s)− µ(x1, s) ≤ (1− δ)(x2 − x1) < x2 − x1,
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which is a contradiction. We conclude that µ is Lipschitz-continuous in the
first argument with a Lipschitz constant 1.

Lemma 5.7. The state space can be chosen to be compact: There exists a
compact set X̄ = [0, x̄] such that Q(x, s, X̄) = 1 whenever x ∈ X̄ and all
s ∈ P(X).

Proof. Fix s ∈ P(X). Since max Γ(x) = (1 − δ)x + k(ā), for all x > 0, we
have

µ(x, s)ζn
x

≤ (1− δ)ζn + k(ā)ζn
x

.

The last inequality and the fact that (1 − δ)ζn < 1 imply that there exists x̄
(that does not depend on s) such that µ(x, s)ζn < x for all x ≥ x̄.

Let X̄ = [0, x̄]. For all s ∈ P(X) and ζ ∈ E, if x ∈ X̄ we have

µ(x, s)ζ ≤ µ(x̄, s)ζn < x̄.

That is, µ(x, s)ζ ∈ X̄. Thus, Q(x, s, X̄) = P(µ(x, s)ζ ∈ X̄) = 1 whenever
x ∈ X̄.

Lemma 5.8. Q is X̄-ergodic.

Proof. Fix s ∈ P(X). Define the sequences xk+1 = µ(xk, s)ζn and yk+1 =
µ(yk, s)ζ1 where x1 = 0 and y1 = x̄. Note that {xn}∞n=1 is strictly increasing,
i.e., xk+1 > xk for all k. To see this, first note that x2 = µ(x1, s)ζn ≥ k(0)ζn >
0 = x1. Now if xk > xk−1, then µ being strictly increasing in x (see Lemma
5.6 part (i)) implies that xk+1 = µ(xk, s)ζn > µ(xk−1, s)ζn = xk. Let Cs =
min{x ∈ R+ : µ(x, s)ζn = x}. From the facts that µ(0, s)ζn ≥ k(0)ζn > 0,
µ(x̄, s)ζn < x̄ (see Lemma 5.7), and µ is continuous (see Lemma 5.3), by
Brouwer fixed point theorem Cs is well defined. Similarly, the sequence {yn}∞n=1

is strictly decreasing and therefore converges to a limit C∗s .
We claim that Cs > C∗s . To see this, first note that Lemma 5.7 implies

that the function fs, defined by fs(x, ζ) = µ(x, s)ζ, is from X̄ × E into X̄.
Note that fs is increasing in both arguments and that X̄ is a complete lattice.
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Thus, Corollary 2.5.2 in Topkis (2011) implies that the greatest and least fixed
points of fs are increasing in ζ. Lemma 5.6 part (ii) and ζ1 < 1 imply that
fs(x, ζ1) = µ(x, s)ζ1 is a contraction mapping from X̄ to itself. Thus, fs(x, ζ1)
has a unique fixed point which equals the limit of the sequence {yn}∞n=1, C∗s .
Since the least fixed point of fs is increasing in ζ we conclude that Cs ≥ C∗s .
Since µ is increasing and positive we have Cs = µ(Cs, s)ζn > µ(Cs, s)ζ1 ≥
µ(C∗s , s)ζ1 = C∗s

Let x∗ = (Cs + C∗s )/2. Since xk ↑ Cs and yk ↓ C∗s , there exists a finite N1

such that xk > x∗ for all k ≥ N1, and similarly, there exists a finite N2 such
that yk < x∗ for all k ≥ N2. Let m = max{N1, N2}. Thus, after m periods
there exists a positive probability (ζm1 ) to move from the state x̄ to the set
[0, x∗], and a positive probability to move from the state 0 to the set [x∗, x̄].
That is, we found x∗ ∈ [0, x̄] and m > 0 such that Qm(x̄, s, [0, x∗]) > 0 and
Qm(0, s, [x∗, x̄]) > 0. Since X̄ is compact and Q is increasing in x, then Q is
X̄-ergodic (see Theorem 2 in Hopenhayn and Prescott (1992a) or Theorem 2.1
in Bhattacharya and Lee (1988)).

Now, we prove Theorem 2.6. The main idea behind the proof is to show
that the optimal stationary strategy g is increasing or decreasing in the relevant
parameter using a lattice-theoretical approach and then to conclude that the
conditions of Theorem 2.4 hold.

Let (I,�I) be a partial order set that influences the firms’ decisions. We
denote a generic element in I by e. For instance, e can be the discount factor
or the cost of a unit of investment. Throughout the proof of Theorem 2.6 we
allow an additional argument in the functions that we consider. For instance,
the value function V is denoted by:

V (x, s, e) = max
a∈[0,ā]

h(x, a, s, e, V ).

Likewise, the optimal stationary strategy is denoted by g(x, s, e), and u(x, s, e)



CHAPTER 5. APPENDIX 176

is the one-period profit function. Here, we come back to the original formula-
tion over actions a.
Proof of Theorem 2.6. i) Assume that f ∈ B(X × P(X) × I) is concave
in the first argument and has decreasing differences in (x, d) where I ⊆ R+ is
the set of all possible unit investment costs endowed with the natural order,
d2 ≥ d1.

Fix s ∈ P(X). Note that da has increasing differences in (a, d). Thus,
u(x, s)− da has decreasing differences in (a, d), (x, a) and (x, d). Since f has
decreasing differences and k is increasing, the function f(((1−δ)x+k(a))ζ, s, d)
has decreasing differences in (a, d) and (x, d) for every ζ ∈ E. Since f is
concave in the first argument and k is increasing, it can be shown that the
function f(((1−δ)x+k(a))ζ, s, d) has decreasing differences in (x, a) for every
ζ ∈ E. Thus, the function

h(x, a, s, d, f) = u(x, s)− da+ β
n∑
j=1

pjf(((1− δ)x+ k(a))ζj, s, d)

has decreasing differences in (x, a), (x, d) and (a, d) as the sum of functions
with decreasing differences.

A similar argument to Lemma 1 in Hopenhayn and Prescott (1992a) or
Lemma 2 in Lovejoy (1987) implies that if h(x, a, s, d, f) has decreasing dif-
ferences in (x, a), (x, d) and (a, d), then Tf(x, s, d) = max

a∈[0,ā]
h(x, a, s, d, f) has

decreasing differences in (x, d). The proof of Lemma 5.4 implies that Tf is
concave in x. We conclude that for all n = 1, 2, 3..., T nf is concave in x

and has decreasing differences. Standard dynamic programming arguments
(see Bertsekas and Shreve (1978)) show that T nf converges to V uniformly.
Since the set of functions with decreasing differences is closed under uniform
convergence, V has decreasing differences in (x, d). From the same argument
as above, h(x, a, s, d, V ) has decreasing differences in (a, d). Theorem 6.1 in
Topkis (1978a) implies that g(x, s, d) is decreasing in d.

Define the order �I by d2 �I d1 if and only if d1 ≥ d2. Thus d2 �I d1
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implies that

Q(x, s, d2, B) = P(((1− δ)x+ k(g(x, s, d2))ζ ∈ B)

≥ P(((1− δ)x+ k(g(x, s, d1))ζ ∈ B)

= Q(x, s, d1, B)

for all x, s and every upper set B, because g(x, s, d) is decreasing in d. That
is, Q(x, s, d2, ·) �SD Q(x, s, d1, ·) for all x, s and d2, d1 ∈ I such that d2 �I
d1. From Theorem 2.4 and Theorem 2.5 we conclude that d2 �I d1 implies
s(d2) � s(d1), i.e., d2 ≤ d1 implies s(d2) � s(d1).

(ii) The proof of part (ii) is the same as the proof of part (i) and is therefore
omitted.

(iii) Assume that f ∈ B(X ×P(X)× I) is increasing in the first argument
and has decreasing differences in (x, β) where I = (0, 1) is the set of all possible
discount factors endowed with the reverse order; β2 �I β1 if and only if β1 ≥ β2.
A standard argument shows that Tf is increasing in the first argument. We will
only show that h(x, a, s, β, f) has decreasing differences in (a, β) and (x, β); the
rest of the proof is the same as the proof of part (i). Fix s, x and let β2 �I β1

(i.e., β1 ≥ β2), and a2 ≥ a1. Decreasing differences of f and the fact that k is
increasing imply that f(((1− δ)x+k(a2))ζ, s, β)−f(((1− δ) +k(a1))ζ, s, β) is
decreasing in β for all ζ ∈ E. Since β1 ≥ β2, f and k are increasing, we have

β2

n∑
j=1

pj(f(((1− δ)x+ k(a2))ζj, s, β2)− f(((1− δ)x+ k(a1))ζj, s, β2))

≤ β1

n∑
j=1

pj(f(((1− δ)x+ k(a2))ζj, s, β1)− f(((1− δ)x+ k(a1))ζj, s, β1)).

Thus h(x, a, s, β, f) has decreasing differences in (a, β). A similar argument
shows that h(x, a, s, β, f) has decreasing differences in (x, β).

Proof of Theorem 2.7. (i) The proof of the Theorem is similar to the
proof of Theorem 2.5. The idea of the proof is to show that the conditions of
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Theorem 5.1 hold. We now show that Q is increasing in x and decreasing in
s (see Section 5.2.1 for the definition of Q).

We use the same change of variables and notation as in the proof of The-
orem 2.5. Define

z = (1− δ)(x+ a) (5.10)

and note that a = (1− δ)−1z − x. The resulting Bellman operator is given by

Kf(x, s) = max
z∈Γ(x)

J(x, z, s, f),

where Γ(x) = [(1− δ)(x+ 1), (1− δ)(x+ a)],

J(x, z, s, f) = π(x, z, s) + β
∑
j

pjf (zζj, s) ,

and

π(x, z, s) = r
(x+ (1− δ)−1z − x)γ1

(
∫

(x′ + (1− δ)−1z′ − x′)s(dx′, dz′))γ2 − (1− δ)−1z − x

= r
((1− δ)−1z)γ1

(
∫

(1− δ)−1z′s(dx′, dz′))γ2 − x− (1− δ)−1z.

Let µ(x, s) = argmaxz∈Γ(x) J(x, z, s, V ). Since π is concave in (x, z), Lemma
5.4 implies that the policy function µ(x, s) is single-valued.

It is immediate that π has increasing differences in (x, z), and decreasing
differences in (z, s) and (x, s). Here s2 � s1 if and only if

∫
(1− δ)−1z′s2(dx′, dz′) ≥

∫
(1− δ)−1z′s1(dx′, dz′).

From Lemma 5.4, we can show that µ is increasing in x and decreasing in s.
Thus, for each s ∈ P(X×A), x2 ≥ x1 and any upper set B×D ∈ B(X×A)
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we have

Q(x2, s, B ×D) =
n∑
j=1

pj1B×D(µ(x2, s)ζj, µ (µ(x2, s)ζj, s))

≥
n∑
j=1

pj1B×D(µ(x1, s)ζj, µ(µ(x1, s)ζj, s))

= Q(x1, s, B ×D).

The equalities follow from the proof of Theorem 5.1. The inequality follows be-
cause µ is increasing in x. Thus, Q(x2, s, ·) �SD Q(x1, s, ·), i.e., Q is increasing
in x.

Similarly, because µ(x, s) is decreasing in s, we can show that Q is decreas-
ing in s for each x ∈ X.

We conclude that Q is decreasing in s and increasing in x. Compactness
of the state space X and X-ergodicity of Q can be established using similar
arguments to the arguments in Theorem 2.5. Thus, all the conditions of The-
orem 5.1 parts (i) and (ii) hold. We conclude that the dynamic advertising
model has a unique MFE.

The proofs of parts (ii) and (iii) are similar to the proof of Theorem 2.6
and are therefore omitted.

Proof of Theorem 2.8. (i) First note that the state space X = [0,M1] ×
[0,M2] is compact. We now show that Q is increasing in x1 and decreasing in
s with respect to x1.

For the proof of the theorem, it will be convenient to change the decision
variable in the Bellman equation. Define

z = x2

1 + x2
x1 + 1

1 + x2
k(a),

and note that we can write a = k−1(z(1 + x2) − x2x1), which is well defined
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because k is strictly increasing. The resulting Bellman operator is given by

Kf(x1, x2, s) = max
z∈Γ(x1,x2)

J(x1, x2, z, s, f),

where Γ(x1, x2) = [ x2
1+x2

x1 + 1
1+x2

k(0), x2
1+x2

x1 + 1
1+x2

k(ā)],

J(x1, x2, z, s, f) = π(x1, x2, z, s)+β
∑
j

pjf

(
min

(
z + ζj

1 + x2
,M1

)
,min(x2 + 1,M2), s

)
,

and

π(x1, x2, z, s) = ν(x1, x2)∫
ν(x1, x2)s(d(x1, x2)) − dk

−1(z(1 + x2)− x2x1).

Let µ(x1, x2, s) = argmaxz∈Γ(x1,x2) J(x1, x2, z, s, V ). From the arguments as
the arguments in Lemma 5.4, the optimal stationary strategy µ(x1, x2, s) is
single-valued.

Let x′1 ≤ x1 and s2 � s1. Because ν is increasing, we have

ν(x1, x2)
(

1∫
ν(x1, x2)s2(d(x1, x2)) −

1∫
ν(x1, x2)s1(d(x1, x2))

)

≤ ν(x′1, x2)
(

1∫
ν(x1, x2)s2(d(x1, x2)) −

1∫
ν(x1, x2)s1(d(x1, x2))

)
.

Thus, π has decreasing differences in (x1, s). In addition, π has decreasing
differences in (z, s) and increasing differences in (x1, z) (see the proof of Lemma
5.4). From Lemma 5.4, we can show that µ is increasing in x1 and decreasing
in s.

Recall that in every period, with probability 1− β, each seller departs the
market and a new seller with state (0, 0) immediately arrives to the market.
With probability β, each seller stays in the market and moves to a new state
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according to the dynamics described in Section 2.4.3. Thus, we have

Q(x1, x2, s, B1 ×B2) = (1− β)δ{(0,0)}(B1 ×B2)

+ βP
(

(min
(
µ(x1, x2, s) + ζj

1 + x2
,M1

)
,min(x2 + 1,M2)) ∈ B1 ×B2

)

= (1− β)1B1×B2(0, 0)

+ β
n∑
j=1

pj1B1×B2(min
(
µ(x1, x2, s) + ζj

1 + x2
,M1

)
,min(x2 + 1,M2))

where δ{c} is the Dirac measure on the point c ∈ R2. Let f : X1 ×X2 → R be
increasing in the first argument. Assume that x′1 ≤ x1. We have
∫
X
f(y1, y2)Q((x′1, x2), s, d(y1, y2)) = (1− β)f(0, 0)

+ β
n∑
j=1

pjf

(
min

(
µ(x′1, x2, s) + ζj

1 + x2
,M1

)
,min(x2 + 1,M2)

)

≤ (1− β)f(0, 0)

+ β
n∑
j=1

pjf

(
min

(
µ(x1, x2, s) + ζj

1 + x2
,M1

)
,min(x2 + 1,M2)

)

=
∫
X
f(y1, y2)Q((x1, x2), s, d(y1, y2)).

The inequality follows from the facts that µ is increasing in x1, and f is
increasing in the first argument.

We conclude that Q is increasing in x1. Similarly, because µ is decreasing
in s, we can prove that Q is decreasing in s with respect to x1. We now show
that Q is X-ergodic.

The Markov chain Q is said to satisfy the Doeblin condition if there exists
a positive integer n0, ε > 0 and a probability measure υ on X such that
Qn0(x, s, B) ≥ ευ(B) for all x ∈ X and all measurable B. From the definition
of Q, we have Q(x, s, B) ≥ (1 − β)δ{(0,0)}(B) for every measurable B, so
Q satisfies the Doeblin condition. Thus, Q is X-ergodic (see Theorem 8 in
Roberts and Rosenthal (2004)).
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Thus, all the conditions of Theorem 2.2 and Theorem 2.3 are satisfied. We
conclude that the dynamic reputation model has a unique MFE.

(ii) The proof of part (ii) is similar to the proof of Theorem 2.6 and is
therefore omitted.

5.2.7 Heterogeneous Agent Macro Models: Proof of
Corollary 2.3

Proof of Corollary 2.3. From Theorem 2.2 we only need to show that Q
is increasing in x1 and decreasing in s in order to prove Corollary 2.3.

Let f : X1 × X2 → R be increasing in the first argument. Assume that
x′1 ≤ x1. We have

∫
X
f(y1, y2)Q((x′1, x2), s, d(y1, y2)) =

∑
j

pjf(g̃(x′1, x2, H(s)),m(x2, ζj))

≤
∑
j

pjf(g̃(x1, x2, H(s)),m(x2, ζj))

=
∫
X
f(y1, y2)Q((x1, x2), s, d(y1, y2)).

The inequality follows from the facts that g̃ is increasing in x1 and f is in-
creasing in the first argument. In a similar manner, because g̃ is decreasing in
the aggregator, we can show that Q is decreasing in s with respect to x1.

We conclude that Q is increasing in x1 and decreasing in s.

5.2.8 Extensions: Proofs of Theorem 5.1 and Lemma
5.2

Proof of Theorem 5.1. The proofs of part (i) and of part (iii) are the same
as the proofs of Theorem 2.1 and of Theorem 2.4. To prove part (ii) we need
to show that the operator Φ : P(X)→ P(X) defined by

Φs(B ×D) =
∫
X
Q(x, s, B ×D)s(dx,A).
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is continuous (the rest of the proof is the same as the proof of Theorem 2.3).
The continuity of Φ follows from a similar argument to the argument in the
proof of Theorem 2.3. We provide the proof for completeness.

Note that for every bounded and measurable function f : X ×A→ R and
for every s ∈ P(X × A) we have

∫
X×A

f (x, a) Φs (d (x, a)) =
∫
X

n∑
j=1

pjf (w (x, g(x, s), s, ζj) , g (w (x, g(x, s), s, ζj) , s)) s (dx,A) .

(5.11)
To see this, first assume that f = 1B×D for some measurable set B × D ∈
B(X × A). We have
∫
X×A

f (x, a) Φs (d(x, a)) = Φs (B ×D)

=
∫
X

∫
B

1D(g (y, s))Q (x, s, dy) s(dx,A)

=
∫
X

∫
X

1B (y) 1D (g(y, s))Q(x, s, dy)s(dx,A)

=
∫
X

∫
X

1B×D (y, g(y, s))Q(x, s, dy)s(dx,A)

=
∫
X

n∑
j=1

pj1B×D (w (x, g (x, s) , s, ζj) , g (w (x, g (x, s) , s, ζj) , s)) s (dx,A)

=
∫
X

n∑
j=1

pjf (w (x, g (x, s) , s, ζj) , g (w (x, g (x, s) , s, ζj) , s)) s (dx,A) .

A standard argument shows that Equation (5.11) holds for every bounded and
measurable function f .

Assume that sn converges weakly to s. Thus, the marginal distribution
sn(·, A) converges weakly to s(·, A). Let f : X × A→ R be a continuous and
bounded function. Because w and g are continuous, we have

f(w(xn, g(xn, sn), sn, ζ), g(w (xn, g (xn, sn) , sn, ζ) , sn))

→ f(w(x, g(x, s), s, ζ), g(w (x, g (x, s) , s, ζ) , s))

whenever xn → x.
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Let

kn (x) :=
n∑
j=1

pjf(w(x, g(x, sn), sn, ζj), g(w (x, g (x, sn) , sn, ζj) , sn))

and
k (x) :=

n∑
j=1

pjf(w(x, g(x, s), s, ζj), g(w (x, g (x, s) , s, ζj) , s)).

Then kn converges continuously to k, i.e., kn(xn)→ k(x) whenever xn → x.
Since f is bounded, the sequence kn is uniformly bounded. Using Proposition
5.2 yields

lim
n→∞

∫
X×A

f(x, a)Φsn(d(x, a)) = lim
n→∞

∫
X
kn(x)sn(dx,A)

=
∫
X
k(x)s(dx,A)

=
∫
X×A

f(x, a)Φs(d(x, a))).

Thus, Φsn converges weakly to Φs. We conclude that Φ is continuous.
Proof of Lemma 5.2. Let f : X ×Θ→ R be increasing in in the first. The
fact that Qθ is increasing in x implies that the function

∫
X×Θ

f(y, θ′)Qh(x, θ, sh, d(y, θ′)) =
∫
X×Θ

f(y, θ′)Qθ(x, sh, dy)1D(dθ′)

is increasing in x for every type θ and every extended population state sh.
That is, Qh is increasing in x. Similarly, Qh is decreasing in sh with respect
to x when Qθ is decreasing in sh.

5.3 Appendix: Chapter 3

5.3.1 Proofs of the results in Section 3.3.1

Proof of Theorem 3.1. For t = 1 the result is trivial since µ1
2 = µ1

1. Assume
that µt2 �D µt1 for some t ∈ N. First note that for every measurable function
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f : S → R and i = 1, 2 we have
∫
S
f(s′)µt+1

i (ds′) =
∫
S

∫
S
f(s′)Pi(s, ds′)µti(ds). (5.12)

To see this, assume first that f = 1B where B ∈ B(S) and 1 is the indicator
function of the set B. We have

∫
S
f(s′)µt+1

i (ds′) = µt+1
i (B)

=
∫
S
pi(s, g(s, ei), B)µti(ds)

=
∫
S

∫
S

1B(s′)pi(s, g(s, ei), ds′)µti(ds)

=
∫
S

∫
S
f(s′)Pi(s, ds′)µti(ds).

A standard argument shows that equality (5.12) holds for every measurable
function f .

Now assume that f ∈ D. We have
∫
S
f(s′)µt+1

2 (ds′) =
∫
S

∫
S
f(s′)P2(s, ds′)µt2(ds)

≥
∫
S

∫
S
f(s′)P2(s, ds′)µt1(ds)

≥
∫
S

∫
S
f(s′)P1(s, ds′)µt1(ds)

=
∫
S
f(s′)µt+1

1 (ds′).

The first inequality follows since f ∈ D, P2 is D-preserving and µt2 �D µt1 .
The second inequality follows since P2(s, ·) �D P1(s, ·). Thus, µt+1

2 �D µt+1
1 .

We conclude that µt2 �D µt1 for all t ∈ N.
Proof of Corollary 3.1. We show that P2 is I-preserving and that
P2(s, ·) �st P1(s, ·) for all s ∈ S. Let f : S → R be an increasing function and
let e2 � e1.
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Since p is monotone and g(s, e2) is increasing in s, if s2 ≥ s1 then
∫
S
f(s′)p(s2, g(s2, e2), ds′) ≥

∫
S
f(s′)p(s1, g(s1, e2), ds′).

Thus, P2 is I-preserving.
Let s ∈ S. Since g(s, e2) ≥ g(s, e1) and p is monotone, we have

∫
S
f(s′)p(s, g(s, e2), ds′) ≥

∫
S
f(s′)p(s, g(s, e1), ds′).

Thus, P2(s, ·) �st P1(s, ·).
From Theorem 3.1 we conclude that µt2 �st µt1 for all t ∈ N. We have

∫
S
g(s, e2)µt2(ds) ≥

∫
S
g(s, e2)µt1(ds) ≥

∫
S
g(s, e1)µt1(ds),

which proves the Corollary.
Proof of Theorem 3.2. (i) Assume that p2 �st p1. We show that P2 is
I-preserving and that P2(s, ·) �st P1(s, ·) for all s ∈ S. Let f : S → R be an
increasing function.

Assume that s2 ≥ s1. Since g(s2, p2) ≥ g(s1, p2) and p2 is monotone we
have ∫

S
f(s′)p2(s2, g(s2, p2), ds′) ≥

∫
S
f(s′)p2(s1, g(s1, p2), ds′),

which proves that P2 is I-preserving.
Let s ∈ S. Since p2 is monotone, g(s, p2) ≥ g(s, p1) for all s ∈ S, and

p2 �st p1 we have
∫
S
f(s′)p2(s, g(s, p2), s, ds′) ≥

∫
S
f(s′)p2(s, g(s, p1), ds′)

≥
∫
S
f(s′)p1(s, g(s, p1), ds′),

which proves that P2(s, ·) �st P1(s, ·) for all s ∈ S.
From Theorem 3.1 we conclude that µt2 �st µt1 for all t ∈ N. Since g(s, p2)



CHAPTER 5. APPENDIX 187

is increasing, we have
∫
S
g(s, p2)µt2(ds) ≥

∫
S
g(s, p2)µt1(ds) ≥

∫
g(s, p1)µt1(ds),

which proves part (i).
(ii) Assume that p2 �CX p1. We show that P2 is ICX-preserving and that

P2(s, ·) �ICX P1(s, ·) for all s ∈ S.
Let f : S → R be an increasing and convex function. Let s1, s2 ∈ S and

sλ = λs1 + (1− λ)s2 for 0 ≤ λ ≤ 1. We have

λ
∫
S
f(s′)p2(s1, g(s1, p2), ds′) + (1− λ)

∫
S
f(s′)p2(s2, g(s2, p2), ds′)

≥
∫
S
f(s′)p2(sλ, λg(s1, p2) + (1− λ)g(s2, p2), ds′)

≥
∫
S
f(s′)p2(sλ, g(sλ, p2), ds′).

The first inequality follows since p2 is convexity-preserving. The second in-
equality follows since g(s, p2) is convex and p2 is monotone. Thus,

∫
S f(s′)P2(s, ds′)

is convex. Part (i) shows that
∫
S f(s′)P2(s, ds′) is increasing. We conclude that

P2 is ICX-preserving.
Fix s ∈ S. We have

∫
S
f(s′)p2(s, g(s, p2), ds′) ≥

∫
S
f(s′)p2(s, g(s, p1), ds′)

≥
∫
S
f(s′)p1(s, g(s, p1), ds′).

The first inequality follows since g(s, p2) ≥ g(s, p1) and p2 is monotone. The
second inequality follows since p2 �CX p1. We conclude that P2(s, ·) �ICX
P1(s, ·).

From Theorem 3.1 we conclude that µt2 �ICX µt1 for all t ∈ N. Since g(s, p2)
is increasing and convex, we have

∫
S
g(s, p2)µt2(ds) ≥

∫
S
g(s, p2)µt1(ds) ≥

∫
g(s, p1)µt1(ds),
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which proves part (ii).

5.3.2 Proofs of the results in Section 3.3.2

In order to prove Theorem 3.3 we need the following two results:

Proposition 5.4. Suppose that Assumption 3.1 holds. Then
(i) h(s, a, f) has increasing differences whenever f is an increasing func-

tion.
(ii) G(s) is ascending. In particular, g(s) = maxG(s) is an increasing

function.
(iii) Tf(s) = maxa∈Γ(s) h(s, a, f) is an increasing function whenever f is

an increasing function. V (s) is an increasing function.

Proof. See Theorem 3.9.2 in Topkis (2011).

Proposition 5.5. Let (E,�) be a partially ordered set. Assume that Γ(s) is
ascending. If h(s, a, e, f) has increasing differences in (s, a), (s, e), and (a, e),
then

Tf(s, e) = max
a∈Γ(s)

h(s, a, e, f)

has increasing differences in (s, e).

Proof. See Lemma 1 in Hopenhayn and Prescott (1992b) or Lemma 2 in
Lovejoy (1987).
Proof of Theorem 3.3. (i) Let E = (0, 1) be the set of all possible discount
factors, endowed with the standard order: β2 ≥ β1 if β2 is greater than or
equal to β1. Assume that β1 ≤ β2. Let f ∈ B(S × E) and assume that f has
increasing differences in (s, β) and is increasing in s. Let a2 ≥ a1. Since f has
increasing differences, the function f(s, β2)− f(s, β1) is increasing in s. Since
p is monotone we have
∫
S
(f(s′, β2)− f(s′, β1))p(s, a2, ds

′) ≥
∫
S
(f(s′, β2)− f(s′, β1))p(s, a1, ds

′).
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Rearranging the last inequality yields
∫
S
f(s′, β2)p(s, a2, ds

′)−
∫
S
f(s′, β2)p(s, a1, ds

′) ≥
∫
S
f(s′, β1)p(s, a2, ds

′)−
∫
S
f(s′, β1)p(s, a1, ds

′).

Since f is increasing in s and p is monotone, the right-hand-side and the
left-hand-side of the last inequality are nonnegative. Thus, multiplying the
left-hand-side of the last inequality by β2 and the right-hand-side of the last
inequality by β1 preserves the inequality. Adding to each side of the last
inequality r(a2, s)− r(a1, s) yields

h(s, a2, β2, f)− h(s, a1, β2, f) ≥ h(s, a2, β1, f)− h(s, a1, β1, f).

That is, h has increasing differences in (a, β). An analogous argument shows
that h has increasing differences in (s, β). Proposition 5.4 guarantees that h
has increasing differences in (s, a) and that Tf is increasing in s.

Proposition 5.5 implies that Tf has increasing differences. We conclude
that for all n = 1, 2, 3...., T nf has increasing differences and is increasing in s.
From standard dynamic programming arguments, T nf converges uniformly to
V . Since the set of functions that has increasing differences and is increasing
in s is closed under uniform convergence, V has increasing differences and is
increasing in s. From the same argument as above, h(s, a, β, V ) has increasing
differences in (a, β). Theorem 6.1 in Topkis (1978a) implies that g(s, β) is
increasing in β for all s ∈ S. Proposition 5.4 implies that g(s, β) is increasing
in s for all β ∈ E. We now apply Corollary 3.1 to conclude that Et2(g(β2)) ≥
Et1(g(β1)) for all t ∈ N.

(ii) The proof is similar to the proof of part (i) and is therefore omitted.

5.3.3 Proofs of the results in Section 3.3.3

Proof of Theorem 3.4. Suppose that the function f ∈ B(S×Ep) is convex
and increasing in s, and has increasing differences where Ep is endowed with
the stochastic dominance order �st. Let v2 �st v1.
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Note that m has increasing differences in (s, a), (s, ε) and (a, ε) if and only
if m is supermodular (see Theorem 3.2 in Topkis (1978a)).

From the fact that the composition of a convex and increasing function with
a convex, increasing and supermodular function is convex and supermodular
(see Topkis (2011)) the function f(m(s, a, ε), p2) is convex and supermodular in
(s, a) for all ε ∈ V . Since convexity and supermodularity are preserved under
integration, the function

∫
f(m(s, a, ε), p2)v2(dε) is convex and supermodular

in (s, a). Thus,

h(s, a, p2, f) = r(s, a) + β
∫
V
f(m(s, a, ε), p2)v2(dε) (5.13)

is convex and supermodular in (s, a) as the sum of convex and supermodu-
lar functions. This implies that Tf(s, p2) = maxa∈Γ(s) h(s, a, p2, f) is convex.
Since h is increasing in s it follows that Tf(s, p2) is increasing in s.

Note that for any increasing function f : S → R we have
∫
S
f(s′)p2(s, a, ds′) =

∫
V
f(m(s, a, ε))v2(dε) ≥

∫
V
f(m(s, a, ε))v1(dε) =

∫
S
f(s′)p1(s, a, ds′),

so p2 �st p1.
Fix a ∈ A, and let s2 ≥ s1. Since f(m(s, a, ε), p2) is supermodular in (s, ε),

the function f(m(s2, a, ε), p2)− f(m(s1, a, ε), p2) is increasing in ε. We have
∫
V
(f(m(s2, a, ε), p2)− f(m(s1, a, ε), p2))v2(dε) ≥

∫
V
(f(m(s2, a, ε), p2)− f(m(s1, a, ε), p2))v1(dε)

≥
∫
V
(f(m(s2, a, ε), p1)− f(m(s1, a, ε), p1))v1(dε).

The first inequality follows since v2 �st v1. The second inequality follows from
the facts that m is increasing in s and f has increasing differences. Adding
r(s2, a)−r(s1, a) to each side of the last inequality implies that h has increasing
differences in (s, p). Similarly, we can show that h has increasing differences
in (a, p).
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Proposition 5.5 implies that Tf has increasing differences. We conclude
that for all n = 1, 2, 3...., T nf is convex and increasing in s and has increasing
differences. From standard dynamic programming arguments, T nf converges
uniformly to V . Since the set of functions that have increasing differences and
are convex and increasing in s is closed under uniform convergence, V has
increasing differences and is convex and increasing in s. From the same argu-
ment as above, h(s, a, p, V ) has increasing differences in (a, p) and (s, a). An
application of Theorem 6.1 in Topkis (1978a) implies that g(s, p2) ≥ g(s, p1)
for all s ∈ S and g(s, p2) is increasing in s. The fact that m is increasing
implies that p is monotone. We now apply Corollary 3.1 to conclude that
Et2(g(p2)) ≥ Et1(g(p1)) for all t ∈ N.

5.3.4 Proofs of the results in Sections 3.4.2 and 3.4.4

Proof of Proposition 3.2. (i) Let f ∈ B(S) be a convex function. The facts
that D(s, a) is convex in s and that convexity is preserved under integration
imply that the function aD(s, a) + β

∫
f(γs + (1 − γ)a)v(dγ) is convex in s.

Thus, the function Tf(s) given by

Tf(s) = max
a∈A

aD(s, a) + β
∫
f(γs+ (1− γ)a)v(dγ)

is convex in s. A standard dynamic programming argument (see the proof of
Proposition 3.3) shows that the value function V is convex. The convexity of V
implies that for all γ, the function V (γs+(1−γ)a) has increasing differences in
(s, a). Since increasing differences are preserved under integration,

∫ 1
0 V (γs+

(1−γ)a)v(dγ) has increasing differences in (s, a). Since D(s, a) is nonnegative
and has increasing differences, the function aD(s, a) has increasing differences.
Thus, the function

aD(s, a) + β
∫ 1

0
V (γs+ (1− γ)a)v(dγ)
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has increasing differences as the sum of functions with increasing differences.
Now apply Theorem 6.1 in Topkis (1978a) to conclude that g(s) is increasing.

(ii) Follows from Corollary 3.1.
(iii) Follows from a similar argument to the arguments in the proof of

Theorem 3.3.
We now introduce some notations and a result that is needed in order to

prove Proposition 3.4. Recall that a partially ordered set (Z,≥) is said to be
a lattice if for all x, y ∈ Z, sup{x, y} and inf{y, x} exist in Z. (Z,≥) is a
complete lattice if for all non-empty subsets Z ′ ⊆ Z the elements supZ ′ and
inf Z ′ exist in Z. We need the following Proposition regarding the comparison
of fixed points. For a proof, see Corollary 2.5.2 in Topkis (2011).

Proposition 5.6. Suppose that Z is a nonempty complete lattice, E is a
partially ordered set, and f(z, e) is an increasing function from Z ×E into Z.
Then the greatest and least fixed points of f(z, e) exist and are increasing in e

on E.

Proof of Proposition 3.4. Let P(S) be the set of all probability measures
on S. The partially ordered set (P(S),�st) and the partially ordered set
(P(S),�ICX) are complete lattices when S ⊆ R is compact (see Müller and
Scarsini (2006)).

(i) Define the operator Φ : P(S)× Ep,i → P(S) by

Φ(λ, p)(·) =
∫
S
p(s, g(s, p), ·)λ(ds).

The proof of Theorem 3.2 implies that Φ is an increasing function on P(S)×Ep,i
with respect to �st. That is, for p1, p2 ∈ Ep,i and λ1, λ2 ∈ P(S) we have
Φ(λ2, p2) �st Φ(λ1, p1) whenever p2 �st p1 and λ2 �st λ1. Proposition 5.6
implies the result.

(ii) The proof is analogous to the proof of part (i) and is therefore omitted.
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5.4 Appendix: Chapter 4

5.4.1 The maximal generator and other stochastic or-
ders

In this section we discuss the maximal generator of an integral stochastic
order and discuss other stochastic orders that do not impose a ranking over
the expectations of the random variables in consideration. We now define the
maximal generator of an integral stochastic order.

Define F �F G if

∫ b

a
u(x)dF (x) ≥

∫ b

a
u(x)dG(x)

for all u ∈ F where F ⊆ B[a,b]. The stochastic order �F is called an integral
stochastic order.

The maximal generator RF of the integral stochastic order �F is the set of
all functions u with the property that F �F G implies

∫ b

a
u(x)dF (x) ≥

∫ b

a
u(x)dG(x).

Müller (1997b) studies the properties of the maximal generator. In our
context, Muller’s results imply that the following Proposition holds.

Proposition 5.7. (Corollary 3.8 in Müller (1997b)). Suppose that F ⊆ B[a,b]

is a convex cone containing the constant functions and is closed under point-
wise convergence. Then RF = F.

From a decision theory point view, when using a stochastic order to de-
termine whether a random variable is better or riskier than another random
variable, it is important to characterize the maximal generator. If the maximal
generator is not known, it is not clear what utility functions are under con-
sideration when deciding if a random variable is better or riskier than another
random variable.
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From Proposition 5.10, we have that Iα,[a,b] is a convex cone that is closed
in the topology of pointwise convergence. Also, the set Iα,[a,b] contains all the
constant functions. Hence, from Proposition 5.7 we conclude that the maximal
generator of the α, [a, b]-concave stochastic order �α,[a,b]−I is the set Iα,[a,b].

We now show that a stochastic order that is based on the α-convex and
decreasing functions do not lead to an interesting new stochastic order. The
reason is that the maximal generator of this stochastic order includes all the
convex, positive, differentiable and decreasing functions (see Proposition 5.8
below). Hence, this stochastic order is essentially equivalent to SOSD. This
result shows that studying stochastic orders that their maximal generator is
unknown could be misleading.

Definition 5.1. Consider two distributions F and G on [a, b]. We say that F
dominates G in the α-convex stochastic order, denoted by F �α−DCX G, if for
every decreasing and α-convex function u : [a, b]→ R+, we have

∫ b

a
u(x)dF (x) ≥

∫ b

a
u(x)dG(x) .

Notice that the functions under consideration in this order have a constraint
over the range: every function u has to be non-negative.

Proposition 5.8. Let α > 1. Then F �α−DCX G implies that for every
convex and decreasing function u : [a, b] → R+ that is twice differentiable we
have ∫ b

a
u(x)dF (x) ≥

∫ b

a
u(x)dG(x).

The above proposition shows that the α-convex stochastic order is essen-
tially the same as the well studied convex and decreasing stochastic order.
Note that the set of decreasing α-convex functions is a closed convex cone
that is a strict subset of the set of decreasing convex functions. This, never-
theless, is not a contradiction of Proposition 5.7, because negative constant
functions do not belong to the set of α-convex functions. This fact also ex-
plains the proof of Proposition 5.8. Informally, for every convex function u,
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there exists a constant c > 0 such that u+ c is essentially α-convex.
The above discussion is the reason that we introduce the set of functions

Iα,[a,b] (and the related set −Iα,[a,b]) which include all the constant functions.
One limitation of these sets is that if u ∈ Iα,[a,b] and u is twice differentiable,
then u′(b) = 0 (see Proposition 5.10). That is, the decision makers under
consideration when comparing two random variables have a 0 marginal utility
at the point b. One way to overcome this is to choose a large b′ such that it is
plausible to assume that u′(b′) = 0. Then, if F and G are distributions on [a, b],
we can use the fact that F �α,[a,b′]−I G =⇒ F �α,[a,b]−I G (see Proposition
4.2) to conclude that F �α,[a,b]−I G.

5.4.2 The 2-sufficient stochastic order

In this section we provide a partial characterization of the 2-sufficient stochas-
tic order. Recall that F dominates G in the 2, [a, b]-sufficient stochastic order,
i.e., F �2,[a,b]−S G if and only if for all c = (c1, c2) ∈ [a, b]× [a, b] we have

∫ b

a
max{c1−x, 0}max{c2−x, 0}dF (x) ≤

∫ b

a
max{c1−x, 0}max{c2−x, 0}dG(x).

Hence, the 2, [a, b]-sufficient stochastic order is generated by a simple integral
inequality that naturally generalizes SOSD and is of independent interest. It
is interesting to know that the maximal generator of this stochastic order.
The following Proposition is a first step in this direction. We show that the
sum of 2, [a, b]-concave functions and functions with a bounded below Arrow-
Pratt measure of risk aversion essentially contains the maximal generator of
the 2, [a, b]-sufficient stochastic order.

Define the set of functions

AP 2,[a,b] := {u ∈ C2([a, b]) : u′(x) ≥ 0, u′′(x) ≤ 0, u′(x)+u′′(x)(b−x) ≤ 0 ∀x ∈ (a, b)}.

Note that if u′ > 0 and u ∈ AP2,[a,b], then −u′′/u′ ≥ 1/(b− x), i.e., the Arrow-
Pratt measure of risk aversion of u is bounded below by 1/(b − x). For two
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sets U and U ′ define U + U ′ := {u+ u′ : u ∈ U u′ ∈ U ′}.

Proposition 5.9. Suppose that
∫ b
a u(x)dF (x) ≥

∫ b
a u(x)dG(x) for all u ∈

AP2,[a,b] + I2,[a,b]. Then F �2,[a,b]−S G.

Note that the set AP2,[a,b] + I2,[a,b] contains the constant functions and is
convex as the sum of convex sets. It is clearly also a cone. Thus, the closure of
the set AP2,[a,b] + I2,[a,b] in the weak topology cl(AP2,[a,b] + I2,[a,b]) contains the
maximal generator of the 2, [a, b]-sufficient stochastic order (see Proposition
5.7). We summarize this result in the following Corollary.

Corollary 5.1. The set cl(AP2,[a,b] + I2,[a,b]) contains the maximal generator
of the 2, [a, b]-sufficient stochastic order.

5.4.3 Proofs of the results in Section 4.2

For the rest of the Appendix we let Dα,[a,b] = −Iα,[a,b]. We will call the stochas-
tic order that is generated by Dα,[a,b] the α, [a, b]-convex stochastic order. That
is, for two distribution functions F and G, we say that F dominates G in
the α, [a, b]-convex stochastic order, denoted by F �α,[a,b]−D G, if for every
u ∈ Dα,[a,b] we have

∫ b

a
u(x)dF (x) ≥

∫ b

a
u(x)dG(x).

Note that F �α,[a,b]−D G if and only if G �α,[a,b]−I F .
We first prove the following Proposition that provide some properties of

[a, b]-concave functions that will be used repeatedly in the proofs of our results.

Proposition 5.10. The following properties hold:

1. Iα,[a,b] is a convex cone and is closed in the pointwise topology.

2. Let β > α, then Iβ,[a,b] ⊆ Iα,[a,b].

3. If u ∈ Iα,[a,b] then for every c ∈ R, the function gc(x) := u(x − c) is in
Iα,[a+c,b+c].
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4. Consider u ∈ Iα,[a,b], twice differentiable with a continuous second deriva-
tive on [a, b].6 Then, u′(b) = 0.

5. For α > 1, the set Iα,[a,b] does not contain linear functions that are not
constants.

Proof. We prove the results for Dα,[a,b] which immediately implies the results
for −Dα,[a,b] = Iα,[a,b].

1. Consider u, v ∈ Dα,[a,b] and λ > 0. Clearly, u + λv is decreasing. Notice
that,

(u+ λv)(x)− (u+ λ)(b) = u(x)− u(b) + λ(v(x)− v(b)) ,

hence, (u + λv)(x) − (u + λ)(b) can be written as the sum of two α-
convex function. The sum of α-convex function is α-convex (see the
online Appendix of Jensen (2017)). Hence, u + λv ∈ Dα,[a,b], which
shows that Dα,[a,b] is a convex cone.

To show that Dα,[a,b] is closed under pointwise convergence consider a
sequence (un) in Dα,[a,b] such that un → u (pointwise). Clearly, u is
decreasing. The function u(x) − u(b) is the limit of the α-convex func-
tions un(x) − un(b), and hence, u(x) − u(b) is α-convex, (see the online
Appendix of Jensen (2017)). Thus, u ∈ Dα,[a,b].

2. Consider u ∈ Dβ,[a,b]. Then u is decreasing and f(x) := (u(x) − u(b))
1
β

is convex. Because β > α, the function g(x) := x
β
α is increasing and

convex. Therefore, g(f(x)) is convex. We conclude that, (u(x)− u(b)) 1
α

is convex. Thus, u ∈ Dα,[a,b].

3. Because u ∈ Dα,[a,b] the function gc is decreasing on [a + c, b + c]. Take
x1, x2 ∈ [a + c, b + c] and λ ∈ [0, 1]. Since u(x) − u(b) is α-convex we

6The derivatives at the extreme points a, b are defined by taking the left-side and
right-side limits, respectively (see Definition 5.1 Rudin (1964)).
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have
(
u(λ(x1−c)+(1−λ)(x2−c))−u(b)

) 1
α

≤ λ

(
u(x1−c)−u(b)

) 1
α

+(1−λ)
(
u(x2−c)−u(b)

) 1
α

.

Since gc(λx1 + (1 − λx2)) = u(λ(x1 − c) + (1 − λ)(x2 − c)), gc(b + c) =
u(b), gc(x1) = u(x1 − c), and gc(x2) = u(x2 − c), we conclude that
gc(x)− gc(b+ c) is α-convex. Thus, gc ∈ Dα,[a+c,b+c].

4. Suppose for the sake of a contradiction that u′(b) 6= 0. Because u′ is
continuous, a δ > 0 exists such that limx→b− u

′(x)2 > δ. Notice that

lim
x→b−

(u(x)− (b))u′′(x) = lim
x→b−

(u(x)− u(b))︸ ︷︷ ︸
0

lim
x→b−

u′′(x)︸ ︷︷ ︸
u′′(b)

= 0 .

Thus,

lim
x→b−

(u(x)− u(b))u′′(x)
u′(x)2 = limx→b−(u(x)− u(b))u′′(x)

limx→b− u′(x)2 = 0 .

Because u is twice differentiable with a continuous second derivative, a
ε > 0 exists such that for x ∈ (b−ε, b), (u(x)−u(b))u′′(x)

u′(x)2 < α−1
α

. Using the α-
convex characterization for a twice differentiable function, we conclude
that u(x) − u(b) is not α-convex. Therefore, u /∈ Dα,[a,b] which is a
contradiction. We conclude that u′(b) = 0.

5. Let α > 1. Consider u to be a linear function that is decreasing and
not a constant. Notice that u(x) − u(b) is twice-differentiable, and
that for every x ∈ [a, b] u′(x) < 0 and u′′(x) = 0. We conclude that
(u(x)−u(b))u′′(x)

u′(x)2 = 0. Thus, u(x)− u(b) is not α-convex, i.e., u /∈ Dα,[a,b].

Proof of Example 4.1. Let u ∈ Iα,[a,b], 0 < λ < 1 and α ≥ 1. The
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α-convexity of u (b)− u (x) implies

[u (b)− u (λa+ (1− λ) b)]
1
α ≤ λ [u (b)− u (a)]

1
α + (1− λ) [u (b)− u (b)]

1
α

⇔ u (b)− u (λa+ (1− λ) b) ≤ λαu (b)− λαu (a)

⇔ λαu (a) + (1− λα)u (b) ≤ u (λa+ (1− λ) b)

⇔
∫ b

a
u (x) dG(x) ≤

∫ b

a
u (x) dF (x)

where F is the distribution function of Y and G is the distribution function
of X. We conclude that Y �α,[a,b]−I X.7

Proof of Example 4.2. Let u ∈ Iα,[a,b], 0 < λ < 1 and α ≥ 1. From
Example 4.1 we have

u (xi) ≥ λαi u(a) + (1− λαi )u(b)

for all 0 < λ < 1. Multiplying each side of the last inequality by pi for
i = 1, . . . , n and summing the inequalities yield

n∑
i=1

piu (xi) ≥
n∑
i=1

(piλαi u(a) + piu(b)− piλai u (b))

⇔
n∑
i=1

piu (xi) ≥
n∑
i=1

piλ
α
i u (a) +

(
1−

n∑
i=1

piλ
α
i

)
u (b)

⇔
∫ b

a
u(x)dF (x) ≥

∫ b

a
u (x) dG(x)

where F is the distribution function of Y and G is the distribution function
of X. We conclude that Y �α,[a,b]−I X.
Proof of Example 4.3. From Example 4.1, for any u ∈ Iα,[a,b] and α ≥ 1
we have

u (λa+ (1− λ) b) ≥ λαu(a) + (1− λα)u(b)

7Note that Example 4.1 implies that when α tends to infinity we have u(b) ≤ u(λa +
(1− λ)b. Hence, u is a constant function.
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for all 0 < λ < 1. Integrating both sides yields
∫ 1

0
u (λa+ (1− λ) b) dλ ≥ u(a)

∫ 1

0
λαdλ+ u (b)

∫ 1

0
(1− λα) dλ

⇔ 1
b− a

∫ b

a
u(x)dx ≥ 1

α + 1u(a) + α

a+ 1u(b)

⇔
∫ b

a
u(x)dF (x) ≥

∫ b

a
u (x) dG(x)

where F is the distribution function of Y and G is the distribution function
of X. We conclude that Y �α,[a,b]−I X.
Proof of Proposition 4.2.

1. Suppose that F �α,[a,b]−D G and that u ∈ Dβ,[a,b]. Because β > α,
Proposition 5.10 implies that u ∈ Dα,[a,b]. Hence, EF [u] ≥ EG[u]. Given that
u is an arbitrary function that belongs to the set Dβ,[a,b], we conclude that
F �β,[a,b]−D G.

2. Consider X �α,[a,b]−D Y and u ∈ Dα,[a+c,b+c]. Suppose that the distribu-
tions of X and Y are F and G, respectively. From Proposition 5.10 we have
that gc(x) := u(x+ c) belongs to the set Dα,[a,b]. Hence,

∫ b

a
gc(x)dF (x) ≥

∫ b

a
gc(x)dG(x) ⇐⇒

∫ b

a
u(x+ c)dF (x) ≥

∫ b

a
u(x+ c)dG(x)

⇐⇒
∫ b+c

a+c
u(z)dF (z − c) ≥

∫ b+c

a+c
u(z)dG(z − c) .

The last equivalence comes from using the change of variables z = x + c. We
conclude that X + c �α,[a+c,b+c]−D Y + c.

3. Let b′ > b. Assume that F �α,[a,b′]−D G and u ∈ Dα,[a,b]. We extend u

to the domain [a, b′] as follows:

û(x) =


u(x) if x ∈ [a, b]

u(b) if x ∈ [b, b′]
.

We assert that û ∈ Dα,[a,b′]. Clearly, û is decreasing, it remains to prove that
û(x)− û(b′) is α-convex. For this extent, we claim that for x1, x2 ∈ [a, b′] and
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λ ∈ [0, 1] the following inequality holds:

(
û(λx1 +(1−λ)x2)− û(b′)

) 1
α

≤ λ

(
û(x1)− û(b′)

) 1
α

+(1−λ)
(
û(x2)− û(b′)

) 1
α

.

(5.14)
We prove this by separating our analysis in three cases:

(i) For x1, x2 ∈ [a, b], we have that û(x1) = u(x1), û(x2) = u(x2), û(λx1 +
(1−λ)x2) = u(λx1 +(1−λ)x2), and û(b′) = u(b). Thus, because u(x)−u(b) is
α-convex inequality (5.14) holds. (ii) For x1, x2 ∈ [b, b′], we have that û(x1) =
û(b′), û(x2) = û(b′), û(λx1 +(1−λ)x2) = û(b′), and therefore, inequality (5.14)
holds. (iii) The last case is when x1 ∈ [a, b] and x2 ∈ (b, b′] (or analogously,
when x1 ∈ (b, b′] and x2 ∈ [a, b]). Because x1 ∈ [a, b], from the first case we
have that
(
û(λx1 + (1− λ)b)− û(b′)

) 1
α

≤ λ

(
û(x1)− û(b′)

) 1
α

+ (1− λ)
(
û(b)− û(b′)

) 1
α

.

Because û is decreasing we have that û(λx1 + (1− λ)b)− û(b′) ≥ û(λx1 + (1−
λ)x2)− û(b′). We also have that û(b) = û(x2). Thus,

(
û(λx1 +(1−λ)x2)− û(b′)

) 1
α

≤ λ

(
û(x1)− û(b′)

) 1
α

+(1−λ)
(
û(x2)− û(b′)

) 1
α

.

Which proves that inequality (5.14) holds.
Because û ∈ Dα,[a,b′] and F �α,[a,b′]−D G, we have that

∫ b′
a û(x)dF (x) ≥∫ b′

a û(x)dG(x). Since F and G are distributions with support contained on
[a, b], we have that

∫ b′
a û(x)dF (x) =

∫ b
a û(x)dF (x) =

∫ b
a u(x)dF (x) and

∫ b′
a û(x)dG(x) =∫ b

a û(x)dG(x) =
∫ b
a u(x)dG(x). Therefore, for any u ∈ Dα,[a,b], we have EF [u] ≥

EG[u]. We conclude that if F �α,[a,b′]−D G then F �α,[a,b]−D G.
Proof of Proposition 4.3. From Proposition 4.2 part 1 we have that if the
result holds for α integer then it holds for every α ≤ n. Thus, in what follows
we consider α = n for a general n ∈ N.

Let u ∈ Dn,[a,b] with u(b) = 0. Then u 1
n is convex. Thus, from Theorem 5.3
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(see below), we have that u 1
n may be approximated by the functions {c :

max{c − x, 0}}, in the sense that there exists a sequence of functions {um}m
such that

um(x) =
m∑
j=1

γjm max{cjm − x, 0}

and um converges uniformly to u
1
n for some constants γjm ≥ 0, cjm ∈ [a, b].

We have

∫ b

a
(um(x))ndG(x) =

∫ b

a

 m∑
j=1

γjm max{cjm − x, 0}
n dG(x)

=
∫ b

a

∑
k1+...+km=n

n!
m∏
j=1

kj!

m∏
j=1

γ
kj
jm max{cjm − x, 0}kjdG(x)

≤
∫ b

a

∑
k1+...+km=n

n!
m∏
j=1

kj!

m∏
j=1

γ
kj
jm max{cjm − x, 0}kjdF (x) =

∫ b

a
(um(x))ndF (x).

The second equality follows from the multinomial theorem. The inequality
follows from the fact that F �n,[a,b]−S G. Applying the dominated convergence
theorem yields ∫ b

a
u(x)dF (x) ≥

∫ b

a
u(x)dG(x),

for every u ∈ Dn,[a,b] with u(b) = 0. To complete the proof, take an arbitrary
function v ∈ Dn,[a,b]. Then u(x) := v(x) − v(b) belongs to the set Dn,[a,b] and
satisfies u(b) = 0. Thus,

∫ b

a
(v(x)−v(b))dF (x) ≥

∫ b

a
(v(x)−v(b))dG(x) ⇐⇒

∫ b

a
v(x)dF (x) ≥

∫ b

a
v(x)dG(x) ,

which completes the proof.
We now provide a proof of a well-known result in the literature about

approximation of convex and decreasing functions.

Theorem 5.3. Let u : [a, b]→ R a continuous convex and decreasing function
such that u(b) = 0. Then, there is a sequence (un) of the form un(x) =
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n∑
j=1

γj max{cj − x, 0} for some γj ≥ 0 and cj ∈ [a, b], such that um converges
uniformly to u.

Corollary 5.2. Every decreasing convex function can be approximated by de-
creasing continuous and convex functions.

Proof. The proof is by construction and is based on the paper Russell and
Seo (1989).

Consider a partition of the interval of the interval [a, b], Pn = [cn, cn−1, . . . , c0]
such that ci = b− i

n
(b− a) for i = 1, . . . , n. For i = 0, . . . , n− 1 we define

c−1 = b

βi = u(ci)− u(ci−1)

γi = 1
ci − ci+1

(β(i+1) − βi) .

Because ci−1 is the average point between ci, ci−2, by convexity of u we
have that

u(ci) + u(ci−2) ≥ 2u(ci−1) ,

which implies that βi ≥ β(i−1) and γi ≥ 0.
Also,

i∑
j=0

γj(cj − ci+1) =
i∑

j=0

cj − ci+1

cj − cj+1
(β(j+1) − βj)

=
i∑

j=0
(i+ 1− j)(β(j+1) − βj) = −(i+ 1)β0 + β1 + β2 + . . .+ β(i+1)

= β1 + . . .+ β(i+1) = u(ci+1)− u(c0)

Because u(c0) = u(b) = 0, we get that

u(ci+1) =
i∑

j=0
γj(cj − ci+1) for every i = 0, 1, . . . , n− 1 . (5.15)
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Define ûn(x) := ∑n−1
j=0 γj max{cj−x, 0}. We claim that for every ε > 0 there

is a sufficiently large n such that for every x ∈ [a, b] we have |u(x)− ûn(x)| < ε.
Indeed, consider x ∈ [a, b], there is 0 ≤ k ≤ n − 1 such that x ∈ [ck+1, ck].
Because ûn is decreasing (γj are nonnegative), we have ûn(ck) ≤ ûn(x) ≤
ûn(ck+1). Now,

ûn(ck) =
n−1∑
j=0

γj max{cj − ck, 0} =
k−1∑
j=0

γj(cj − ck) = u(ck) ,

where the second equality comes from Equation (5.15). The same argument
implies that ûn(ck+1) = u(ck+1). Hence, for every k = 0, 1, . . . , n − 1 we have
that

u(ck) ≤ ûn(x) ≤ u(ck+1) for every x ∈ [ck+1, ck] . (5.16)

Because u is continuous on [a, b], u is uniformly continuous. Thus, there
is a sufficiently high n such that |u(ck+1) − u(ck)| ≤ ε. Second, because u is
decreasing we have that u(ck) ≤ u(x) ≤ u(ck+1). Using these two facts on
inequality (5.16) allow us to conclude that

|u(x)− ûn(x)| ≤ ε for every x ∈ [a, b] .

Proof of Proposition 4.4. From Lemma 5.9 (see below), we have that for
c1, c2 ∈ [a, b] with c2 ≥ c1 the expression

∫ b

a
max{c1−x, 0}max{c2−x, 0}dF (x)−

∫ b

a
max{c1−x, 0}max{c2−x, 0}dG(x)

is equal to

(c2−c1)
[ ∫ c1

0
F (x)dx−

∫ c1

0
G(x)dx

]
+2

∫ c1

0

(∫ x

0
F (z)dz−

∫ x

0
G(z)dz

)
dx ≥ 0 .

Because the above inequality is linear in c2, we have that it holds for every
c2 ∈ [c1, b] if and only if it holds for c2 = b and for c2 = c1. Evaluating it
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at these two points we obtain the first and the second inequalities of Proposi-
tion 4.4, respectively.

Lemma 5.9. Consider a distribution F on [a, b]. For every c1 ≤ c2 in [a, b]
we have that
∫ b

a
max{c1−x, 0}max{c2−x, 0}dF (x) = (c2−c1)

∫ c1

a
F (x)dx+2

∫ c1

a

∫ x

a
F (z)dzdx .

Proof. Because c1 ≤ c2 we have that
∫ b

a
max{c1 − x, 0}max{c2 − x, 0}dF (x) =

∫ c1

a
(c1 − x)(c2 − x)dF (x) (5.17)

= c2

∫ c1

a
(c1 − x)dF (x)−

∫ c1

a
x(c1 − x)dF (x) .

(5.18)

Using integration by parts for Lebesgue-Stieltjes integrals, we have that

∫ c1

a
(c1 − x)dF (x) = (c1 − x)F (x)

∣∣∣∣c+
1

a−
+
∫ c1

a
F (x)dx =

∫ c1

a
F (x)dx , (5.19)

where the second equality comes from F (a−) = 0.
To tackle the second term in Equation (5.18), define v(x) :=

∫ x
a (c1−z)dF (z)

for x ∈ [a, c1]. Using integration by parts and the fact that F (a−) = 0, we
have that v(x) = (c1 − x)F (x) +

∫ x
a F (z)dz. Define u(x) = x. We have that∫ c1

a x(c1 − x)dF (x) =
∫ c1
a u(x)dv(x). Using integration by parts and the fact

that v(a−) = 0, we obtain
∫ c1

a
x(c1 − x)dF (x) =

∫ c1

a
xF (x)dx−

∫ c1

a

∫ x

a
F (z)dzdx .

Once again, using integration by parts, we have that
∫ c1
a xF (x)dx = c1

∫ c1
a F (x)dx−∫ c1

a

∫ x
a F (z)dzdx. Thus,
∫ c1

a
x(c1 − x)dF (x) = c1

∫ c1

a
F (x)dx− 2

∫ c1

a

∫ x

a
F (z)dzdx . (5.20)
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Therefore, plugging (5.19) and (5.20) into Equation (5.18) we get that
∫ c1

a
(c1 − x)(c2 − x)dF (x) = (c2 − c1)

∫ c1

a
F (x)dx+ 2

∫ c1

a

∫ x

a
F (z)dzdx .

5.4.4 Proofs of Section 4.3

Proof of Proposition 4.5. We prove only part (i) (using Proposition 4.2
the proof of part (ii) is identical to the proof of part (i)).

Define the function gs : [0, y]→ R+ by gs(y) := u′(Rs+y) for all 0 ≤ s ≤ x.
First note that gs(y) is a 2, [0, Rx+ y−Rs]-convex function. To see this, note
that

gs(y)− gs(Rx+ y −Rs) = u′ (Rs+ y)− u′(Rx+ y)

is 2-convex because u′ is 2, [0, Rx + y]-convex and 0 ≤ Rs + y ≤ Rx + y for
0 ≤ y ≤ Rx−Rs+ ȳ.

From Lemma 5.10 (see below), F �2,[0,Rx+y]−S G implies that F �2,[0,Rx−Rs+y]−S

G for all s ∈ [0, x]. Let hs(s, q) be the derivative of h with respect to s. Let
s ∈ [0, x]. We have

hs(s, F ) = −u′ (x− s) + β
∫ y

0
u′(Rs+ y)dF (y)

= −u′(x− s) +
∫ y

0
gs (y) dF (y)

≤ −u′ (x− s) +
∫ y

0
gs(y)dG(y) = hs(s,G),

where the inequality follows from the facts that F �2,[0,Rx−Rs+y]−S G and that
gs(y) is 2, [0, Rx−Rs+ ȳ] convex. Theorem 6.1 in Topkis (1978b) implies that
g(G) ≥ g(F ).

Lemma 5.10. Let F and G be two distributions. Suppose that F �2,[a,b]−S G.
Then F �2,[a,b′]−S G for all b′ ∈ (a, b).

Proof. Assume that F �2,[a,b]−S G. Let b′ ∈ (a, b) and c ∈ [a, b′].
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Note that F �2,[a,b]−S G implies
∫ c
a (
∫ x
a (F (z)−G(z))dz) dx ≥ 0. Thus,

condition (4.3) holds.
If
∫ c
a (F (x)−G(x))dx ≥ 0 then

(b′ − c)
[∫ c

a
(F (x)−G(x))dx

]
+ 2

∫ c

a

(∫ x

a
(F (z)−G(z))dz

)
dx ≥ 0.

If
∫ c
a (F (x)−G(x))dx < 0 then

(b′ − c)
[∫ c

a
(F (x)−G(x))dx

]
+ 2

∫ c

a

(∫ x

a
(F (z)−G(z))dz

)
dx

≥ (b− c)
[∫ c

a
(F (x)−G(x))dx

]
+ 2

∫ c

a

(∫ x

a
(F (z)−G(z))dz

)
dx ≥ 0

where the last inequality follows because F �2,[a,b]−S G. So condition (4.2)
holds.

We conclude that condition (4.2) and (4.3) hold for all c ∈ [a, b′]. Thus,
F �2,[a,b′]−S G.
Proof of Proposition 4.6. The proof follows immediately from Lemma
5.11 below.

Lemma 5.11. Suppose that X yields x1 with probability p and x3 with prob-
ability 1− p. Y yields x2 with probability q and x4 with probability 1− q.

Suppose that the expected value of X is higher than the expected value of
Y , i.e.,

px1 + (1− p)x3 ≥ qx2 + (1− q)x4. (5.21)

Then X �2,[x1,x4]−D Y if and only if

p(x4 − x1)2 + (1− p)(x4 − x3)2 ≥ q(x4 − x2)2. (5.22)

Proof of Lemma 5.11. Let F be the distribution function of X and let G
be the distribution function of Y . Let c ∈ [x1, x4].

In Step 1 we show that condition (4.3) holds if and only if inequality (5.22)
holds. In Step 2 we show that if condition (4.3) holds then condition (4.2)
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also holds. Thus, from Corollary 4.1 inequality (5.22) holds if and only if
F �2,[a,b]−D G.

Step 1. Condition (4.3) holds if and only if inequality (5.22) holds. We
consider two cases.

Case 1. x1 ≤ c ≤ x3. If c ≤ x2 condition (4.3) trivially holds. Suppose
that c > x2.

Note that
∫ c
a max(c−x, 0)2dF (x) = p(c−x1)2 and

∫ c
a max(c−x, 0)2dG(x) =

q(c − x2)2. Thus, condition (4.3) holds if √p(c − x1) ≥ √q(c − x2) for all
x2 ≤ c ≤ x3. The last inequality is linear in c and clearly holds for c = x2. So
it holds for all x2 ≤ c ≤ x3 if it holds for c = x3, i.e., the following inequality
holds:

√
p(x3 − x1) ≥ √q(x3 − x2). (5.23)

Case 2. x3 ≤ c ≤ x4. In this case
∫ c
a max(c − x, 0)2dF (x) = p(c − x1)2 +

(1− p)(c− x3)2 and
∫ c
a max(c− x, 0)2dG(x) = q(c− x2)2.

Thus, condition (4.3) holds if

p(c− x1)2 + (1− p)(c− x3)2 ≥ q(c− x2)2 (5.24)

for all x3 ≤ c ≤ x4. Clearly, inequality (5.24) with c = x3 is the same as
inequality (5.23), so inequality (5.24) holds for all x3 ≤ c ≤ x4 if and only if
condition (4.3) holds.

Consider the convex optimization problem

min
x3≤c≤x4

k(c) := p(c− x1)2 + (1− p)(c− x3)2 − q(c− x2)2.

Note that k′(x4) ≤ 0 if and only if (1 − q)x4 + qx2 ≤ px1 + (1 − p)x3 which
holds from our assumption (see inequality (5.21)). Because k is convex, k′ is
increasing on [x3, x4], so k′(c) ≤ 0 for all x3 ≤ c ≤ x4. Thus, the optimal
solution for the optimization problem minx3≤c≤x4 k(c) is c = x4.

This implies that inequality (5.24) holds for all x3 ≤ c ≤ x4 if and only if
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k(x4) ≥ 0, i.e.,

p(x4 − x1)2 + (1− p)(x4 − x3)2 ≥ q(x4 − x2)2. (5.25)

We conclude that condition (4.3) holds if and only if inequality (5.25) holds.
Step 2. Condition (4.3) implies condition (4.2). We again consider two

cases.
Case 1. x1 ≤ c ≤ x3. If c ≤ x2 condition (4.2) trivially holds. Suppose

that c > x2.
Note that

∫ c
a max{c− x, 0}max{x4 − x, 0}dF (x) = p(c− x1)(x4 − x1) and∫ c

a max(c−x, 0) max(x4−x, 0)dG(x) = q(c−x2)(x4−x2). Thus, condition (4.2)
holds if p(c − x1)(x4 − x1) ≥ q(c − x2)(x4 − x2) for all x2 ≤ c ≤ x3. The last
inequality is linear in c and clearly holds for c = x2. So it holds for all
x2 ≤ c ≤ x3 if it holds for c = x3, i.e., the following inequality holds:

p(x3 − x1)(x4 − x1) ≥ q(x3 − x2)(x4 − x2). (5.26)

Case 2. x3 ≤ c ≤ x4. In this case,
∫ c

a
max(c−x, 0) max(x4−x, 0)dF (x) = p(c−x1)(x4−x1)+(1−p)(c−x3)(x4−x3)

and
∫ c
a max(c − x, 0) max(x4 − x, 0)dG(x) = q(c − x2)(x4 − x2). Thus,

condition (4.2) holds if

w(c) := p(c− x1)(x4 − x1) + (1− p)(c− x3)(x4 − x3)− q(c− x2)(x4 − x2) ≥ 0

for all x3 ≤ c ≤ x4. Because w(c) linear in c it is enough to check for c = x3

and c = x4 to verify that w(c) ≥ 0 holds for all x3 ≤ c ≤ x4. Note that

w′(c) = p(x4 − x1) + (1− p)(x4 − x3)− q(x4 − x2)

= qx2 + (1− q)x4 − px1 − (1− p)x3 ≤ 0



CHAPTER 5. APPENDIX 210

where the inequality follows from our assumption. Thus, if w(x4) ≥ 0 then
w(c) ≥ 0 holds for all x3 ≤ c ≤ x4. Inequality (5.25) implies that w(x4) ≥ 0
so w(x3) ≥ 0, i.e., inequality (5.26) holds.

Now note that inequality (5.25) holds if and only if w(x4) ≥ 0. We conclude
that condition (4.3) implies condition (4.2).
Proof of Proposition 4.7. Recall that a Bayesian Nash equilibrium (BNE)
of the game is given by (e∗1, e∗2(θ)) where

e∗1 = argmax
e1∈E

∫ 1

0
e1e
∗
2(θ)dF (θ)− c1(e1)

and
e∗2(θ) = argmax

e2∈E
e∗1e2 −

ek+1
2

(k + 1)(1− θ)l , for θ ∈ [0, 1).

The proof proceed with the following steps.
Step 1. e2(θ) = argmax

e2∈E
e1e2− ek+1

2
(k+1)(1−θ)l is decreasing and α, [0, 1]-convex.

Let h(e2) = e1e2 − ek+1
2

(k+1)(1−θ)l . It is easy to see that h is strictly concave.
Because θ ∈ [0, 1), we have h′ (1) = e1 − 1

(1−θ)l ≤ 0 for all e1 ∈ E. In addition
h′(0) = e1 ≥ 0 for all e1 ∈ E.

We conclude that the first order condition h′(e2) = 0 holds for all for
all e1 ∈ E. The first order condition implies that e1 − ek2

(1−θ)l = 0. Thus,
e2(θ) = e

1/k
1 (1− θ)l/k is a decreasing and an α, [0, 1]-convex function when

l ≥ αk.
Step 2. Denote by ∆([0, 1]) the set of all distributions over [0, 1]. Define

the operator y : E ×∆([0, 1])→ E by

y(e, F ) = argmax
e1∈E

∫ 1

0
(e1ẽ2(θ, e)− c1(e1))dF (θ)

s.t. ẽ2(θ, e) = argmax
e2∈E

ee2 −
ek+1

2

(k + 1) (1− θ)l
.

We now show that the operator y is increasing on E×∆([0, 1]) where ∆([0, 1])
is endowed with the α, [0, 1]-convex stochastic order, i.e., y(e′, F ′) ≥ y(e, F )
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for all e′ ≥ e and F ′ �α,[0,1]−D F .
Suppose that e′ ≥ e and fix F ∈ ∆([0, 1]). Since ẽ2(θ, e) is increasing in e for

all θ ∈ [0, 1) (this follows from a standard comparative statics argument, see
Topkis (1978b)), we have

∫ 1
0 ẽ2(θ, e′)dF (θ) ≥

∫ 1
0 ẽ2(θ, e)dF (θ), which implies

that y(e, F ) ≥ y(e′, F ).
Now suppose that F ′ �α,[0,1]−D F , and fix e ∈ E. From Step 1, ẽ2(θ, e)

is α, [0, 1]-convex and decreasing. Thus,
∫ 1

0 ẽ2(θ, e′)dF ′(θ) ≥
∫ 1

0 ẽ2(θ, e)dF (θ),
which implies that y(e, F ′) ≥ y(e, F ).

Step 3. From Step 2, y : E×∆([0, 1])→ E is an increasing map from the
complete lattice E into E. From Corollary 2.5.2 in Topkis (2011), the greatest
fixed point of y exists and is increasing in F on ∆([0, 1]).

Let ē1(F ) = y(ē1(F ), F ) be the greatest fixed point of y. Let (ē1(F ), ē2(θ, F ))
be the corresponding BNE, i.e., ē1(F ) = y(ē1(F ), F ) and ē2(θ, F ) = ẽ2(θ, ē1(F )).
Thus, if F ′ �α,[0,1]−D F we have

m(F ′) = ē1(F ′)ē2(θ, F ′) = ē1(F ′)ẽ2(θ, ē1(F ′)) ≥ ē1(F )ẽ2(θ, ē1(F ′)) ≥ ē1(F )ẽ2(θ, ē1(F )) = m(F ).

The first inequality follows from the fact that the greatest fixed point of y is
increasing in F . The second inequality follows from the fact that ẽ2(θ, e) is
increasing in e.

This concludes the proof of the Proposition.
Proof of Lemma 4.1. The proof has two steps. We first show that inequal-
ity (4.5) is a necessary and sufficient condition for condition (4.3) to hold.
We next prove that it also implies condition (4.2). From Corollary 4.1, we
conclude that F �2,[a1,b1]−D G.

Before heading to the proof, by simple algebraic manipulations we obtain
that

∫ c

a1
F (x)dx = (c− a1)2

2(b1 − a1) and
∫ c

a1
G(x)dx =


0 if c ∈ [a1, a2)
(c−a2)2

2(b2−a2) if c ∈ [a2, b2)

c− a2+b2
2 if c ∈ [b2, b1]

.



CHAPTER 5. APPENDIX 212

And similarly,

∫ c

a1

∫ x

a1
F (z)dzdx = (c− a1)3

6(b1 − a1) and
∫ c

a1

∫ x

a1
G(z)dzdx =


0 if c ∈ [a1, a2)
(c−a2)3

6(b2−a2) if c ∈ [a2, b2)
(b2−a2)2

6 + (c−a2)(c−b2)
2 if c ∈ [b2, b1]

.

Step 1. Define h(c) :=
∫ c
a1

∫ x
a1
F (z)− G(z)dzdx, we look for (a1, b1, a2, b2)

for which h is non-negative on [a1, b1]. We separate our analysis in the following
subintervals of [a1, b2]:

• For [a1, a2], clearly h(c) is non-negative (independent of the parameters).

• For (a2, b2), we claim that h does not have any local minimum. To
see this, suppose by contradiction that there is such a minimum c∗.
Then, because h is twice differentiable we must have that h′(c∗) = 0 and
h′′(c∗) ≥ 0. This two conditions are mutually impossible:

h′(c∗) = 0 ⇐⇒ (c∗ − a1)2

2(b1 − a1) −
(c∗ − a2)2

2(b2 − a2) = 0 ,

dividing the equation, in each side, by (c∗−a1)
2 we have that

c∗ − a1

b1 − a1
− c∗ − a2

c∗ − a1

c∗ − a2

b2 − a2
= 0 .

Because a1 < a2 and c∗ ∈ (a1, a2), we have that c∗−a2
c∗−a1

< 1. Hence,

c∗ − a1

b1 − a1
− c∗ − a2

b2 − a2
< 0 ⇐⇒ h′′(c∗) < 0 .

We conclude that h does not have a local minimum on (a2, b2).

• For [b2, b1], we claim that h is strictly concave. Indeed, simple compu-
tations lead us to h′′(c) = −1 + c−a1

b1−a1
, which is negative for c ∈ (b2, b1).

By the concavity of h, we have that h ≥ 0 if and only if h(b2) and h(b1)
are positive.



CHAPTER 5. APPENDIX 213

Suppose that h′(b2) ≤ 0. By the concavity of h we have that h is de-
creasing over [b2, b1]. Thus h ≥ 0 over [b2, b1] if and only if h(b1) ≥ 0.

We assert that if h′(b2) > 0 then h(b2) ≥ 0. Suppose for the sake of
contradiction that h(b2) < 0. Because h(b2) < 0, h′(b2) > 0 and h(a2) >
0, a local minimum exists over (a2, b2). This contradicts the second
bullet. Hence if h′(b2) > 0, then a necessary and sufficient condition for
h ≥ 0 over [b2, b1] is that h(b1) ≥ 0.

We conclude that h ≥ 0 over [b2, b1] if and only if h(b1) ≥ 0.

From the above discussion, we conclude that h(c) ≥ 0 on [a1, b1] if and only if
h(b1) ≥ 0. Thus, condition (4.3) holds if and only if

(b1 − a1)2 − 3(b1 − b2)(b1 − a2) ≥ (b2 − a2)2 . (5.27)

Solving for b1 we have that

b1 ≥
3(a2 + b2)− 2a1 −

√
a2

2 + 10a2b2 + b2
2 − 12a1(a2 + b2 − a1)

4

b1 ≤
3(a2 + b2)− 2a1 +

√
a2

2 + 10a2b2 + b2
2 − 12a1(a2 + b2 − a1)

4 .

From the Lemma’s assumption we have that b1 > b2 + a2− a1. We assert that
this implies that the first inequality always holds. Indeed, observe that

b2 + a2 − a1 −
3(a2 + b2)− 2a1 −

√
a2

2 + 10a2b2 + b2
2 − 12a1(a2 + b2 − a1)

4

> b2 + a2 − a1 −
3(a2 + b2)− 2a1

4 = b2 + a2 − 2a1

4 > 0 ,

where the last inequality follows from a1 < a2 < b2. Therefore, condition (4.3)
holds if and only inequality (4.5) holds.

Step 2. We show that condition (4.3) implies condition (4.2). Define
g(c) := (b1− c)

∫ c
a1
F (x)−G(x)dx+ 2(

∫ c
a1

∫ x
a1
F (z)−G(z)dzdx). Similar to the

first step, we separate our analysis in the following subintervals of [a1, b2]:
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• For [a1, a2], trivially, g is non-negative.

• For [b2, b1], we claim that g is strictly convex. Indeed, g′′(c) = b1−c
b1−a1

> 0.
Because g′(b1) = b2+a2−(b1−a1)

2 , which is strictly negative by the Lemma’s
assumption, we have that g is decreasing on [b2, b1]. Therefore, g ≥ 0 on
[b2, b1] if and only if 0 ≤ g(b1) = h(b1).

• For the case (a2, b2), we claim that g does not have a local minimum. To
prove this, we show that g is concave. Indeed, for c ∈ (a2, b2) we have
that g′′(c) = (b1 − c)( 1

b1−a1
− 1

b2−a2
) < 0.

From the above discussion we conclude that condition (4.2) holds if and only
if h(b2) ≥ 0 which is equivalent to inequality (4.5).
Proof of Proposition 4.8. For t = 1/3 the right-hand-side inequality
follows from Example 3. For t ≥ 1

3 the right-hand-side inequality follows from
the fact that f is decreasing.

We now prove the left-hand-side of the inequality. Let f ∈ D2,[a,b] and
a < b.

From Lemma 4.1 we have

1
b− a

∫ b

a
f(x) ≥ 1

bn − an

∫ bn

an
f (x) dx (5.28)

for all (an, bn) such that

4b ≤ 3 (an + bn)− 2a+
√
a2
n + 10anbn + b2

n − 12a (an + bn − a) (5.29)

and a < an < bn < b. Now suppose that (an, bn)∞n=1 is a sequence of numbers
such that an → θ and bn → θ, and inequality (5.29) and the inequalities
a < an < bn < b hold for all n. We have

1
b− a

∫ b

a
f (x) dx ≥ lim

n→∞

1
bn − an

∫ bn

an
f(x)dx = lim

n→∞

1
bn − an

f(ζn)(bn−an) = f (θ) .
(5.30)
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The first equality follows from the mean value theorem for integrals (note that
f is continuous on [an, bn] because it is convex on [a, b]). The second equality
follows since ζn ∈ (an, bn) for all n.

Let 0 < λ < 1 be such that θ = λb + (1− λ)a. Suppose that 0 < λ < 1 is
chosen such that inequality (5.29) holds as equality when an → θ and bn → θ.
We have

4b = 6θ − 2a+
√

12θ2 − 12a(2θ − a)

= 6 (λb+ (1− λ) a)− 2a+
√

12 (λb+ (1− λ) a)2 − 12a(2(λb+ (1− λ) a)− a)

⇔ 4b− 4a = 6λ (b− a) +
√

12(λb+ (1− λ) a− a)2

⇔ 2b− 2a = 3λ (b− a) +
√

3λ (b− a)

⇔ λ = 2
3 +
√

3
.

From inequality (5.30) and the fact that f is decreasing we have

f (γb+ (1− γ) a) ≤ f

(
2

3 +
√

3
b+

(
1− 2

3 +
√

3

)
a

)
≤ 1
b− a

∫ b

a
f (x) dx

for all γ ≥ 2
3+
√

3 . This completes the proof of the Proposition.

5.4.5 Proof of Proposition 5.8

Proof of Proposition 5.8. Suppose that F �α−DCX G. We proceed with
the following steps.

Step 1 We assert that if u : [a, b] → R+ is decreasing, nonnegative, twice
differentiable, with u′′ > 0 (i.e., u is strictly convex), then there exists a C > 0
large enough such that u+ C is alpha convex.

From compactness there exists an ε > 0 such that for every x ∈ [a, b], we
have u′′(x) > ε. Let M = α−1

α
max{x∈[a,b]} u

′(x)2. Because u is nonnegative, we
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have that

(
u(x) + M

ε︸︷︷︸
C

)
u′′(x) ≥ u′(x)2α− 1

α
for every x ∈ [a, b] .

We conclude that the function ũ := u+ C is an α-convex function.
Step 2 We assert that if F �α−DCX G, then for every decreasing, twice

differentiable, and strictly convex function u : [a, b]→ R+ we have

∫ b

a
u(x)dF (x) ≥

∫ b

a
u(x)dG(x) .

Let u : [a, b] → R+ be decreasing, twice differentiable, and strictly convex.
From Step 1, there exists a C > 0 such that u + C is α-convex. Therefore, if
F �α−DCX G we have

∫ b

a
u(x) +CdF (x) ≥

∫ b

a
u(x) +CdG(x) ⇐⇒

∫ b

a
u(x)dF (x) ≥

∫ b

a
u(x)dG(x) .

Step 3 Define un(x) = u(x)+ 1
n
(x−b)2. Clearly un is decreasing, twice dif-

ferentiable, and u′′n(x) = u′′(x)+ 2
n
≥ 2

n
, where the last inequality holds because

u is convex. Because the sequence un is bounded and converges pointwise to
u. From the dominated convergence theorem we get that

lim
∫ b

a
un(x)dF (x) =

∫ b

a
u(x)dF (x) and lim

∫ b

a
un(x)dG(x) =

∫ b

a
u(x)dG(x) .

From Step 2 and Step 3, we have that if F �α−DCX G then for every
decreasing, twice-differentiable, and convex function u : [a, b] → R+ we have∫ b
a u(x)dF (x) ≥

∫ b
a u(x)dG(x).

Proof of Proposition 5.9. Assume that
∫ b
a u(x)dF (x) ≥

∫ b
a u(x)dG(x) for

all u ∈ AP2,[a,b] + I2,[a,b].
Because AP2,[a,b] and I2,[a,b] contain the zero function we have I2,[a,b] ⊆

AP2,[a,b] + I2,[a,b] and AP2,[a,b] ⊆ AP2,[a,b] + I2,[a,b]. Hence, the 2, [a, b]-concave
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function u = −max{c− x, 0}2 belongs to AP2,[a,b] + I2,[a,b]. Thus,

∫ b

a
max{c− x, 0}2dF (x) ≤

∫ b

a
max{c− x, 0}2dG(x).

From the proof of Proposition 4.4 it is enough to show that
∫ b

a
max{c− x, 0}(b− x)dF (x) ≤

∫ b

a
max{c− x, 0}(b− x)dG(x)

in order to prove that F �2,[a,b]−S G. Let c ∈ [a, b]. Integration by parts (see
Lemma 5.9) implies

∫ b

a
max{c− x, 0}(b− x)dF (x) =

∫ c

a
(c− x)(b− x)dF (x)

= −
∫ c

a
(−c− b+ 2x)F (x)dx

=
∫ c

a
(c− x)F (x)dx+

∫ c

a
(b− x)F (x)dx

= 1
2

∫ b

a
max{c− x, 0}2dF (x) + 1

2

∫ c

a
F (x)dk(x)

where k(x) := −(b− x)2.
Note that k is strictly increasing on [a, b] and −k′′(x)/k′(x) = 1/(b −

x). Hence, from Theorem 2 in Meyer (1977b) the fact that
∫ b
a u(x)dF (x) ≥∫ b

a u(x)dG(x) for all u ∈ AP2,[a,b] implies that
∫ c
a F (x)dk(x) ≤

∫ c
a G(x)dk(x).

Thus,
∫ b

a
max{c− x, 0}(b− x)dF (x) = 1

2

∫ b

a
max{c− x, 0}2dF (x) + 1

2

∫ c

a
F (x)dk(x)

≤ 1
2

∫ b

a
max{c− x, 0}2dG(x) + 1

2

∫ c

a
G(x)dk(x)

=
∫ b

a
max{c− x, 0}(b− x)dG(x).

We conclude that F �2,[a,b]−S G.
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