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Abstract

While the mechanism for the high transition temperatures (Tc) in the cuprate su-

perconductors remains unsolved, antiferromagnetic fluctuations on the copper-

oxygen sheets are thought to play an important role. Long-range antiferromagnetic

order is present in the undoped insulating parent compounds, whereas supercon-

ductivity is observed when these materials are doped with a sufficient number of

holes or electrons. Because these two phases are well separated on the hole-doped

side of the phase diagram, the interplay between antiferromagnetism and super-

conductivity is perhaps better studied in the electron-doped compounds, where the

two phases appear to overlap. In this Thesis work, single crystals of electron-doped

Nd2−xCexCuO4 (NCCO) were grown over a wide range of cerium concentration,

and the following two neutron scattering studies were performed on these crystals.

In the first study, an energy-integrating neutron scattering method is used

to measure the two-dimensional instantaneous magnetic correlation length as a

function of temperature and doping. For x < 0.12, the correlation length diverges

at the same temperature at which magnetic Bragg peaks appear, as expected. For

x > 0.12, on the other hand, the correlation length remains finite down to the lowest

measured temperatures. Since bulk superconductivity is only found above about

x = 0.13, this shows that there is no genuine coexistence between superconductivity

and long-range antiferromagnetic order, which was previously thought to extend

to x = 0.17.

The second study is the first inelastic neutron scattering investigation of an

electron-doped cuprate superconductor in an applied magnetic field. This ex-

periment measures how the weakening of superconductivity due to a magnetic

v



field affects the antiferromagnetic response. An advantage of the electron-doped

cuprates is that the critical field Hc2 required to completely suppress supercon-

ductivity is relatively low (∼ 10 T). In zero field, the antiferromagnetic excitation

spectrum of NCCO (x = 0.166) is gapped below 2.5 meV. The gap energy is found

to decrease linearly with applied field and to extrapolate to zero near Hc2. The

observed behavior indicates that the non-superconducting ground state is similar

to the (zero-field) paramagnetic state at temperatures above Tc, and thus that su-

perconductivity and antiferromagnetism are not competing orders in this part of

the phase diagram.
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Chapter 1

Introduction

This Chapter attempts to motivate the neutron-scattering studies of the electron-

doped cuprates described in this Thesis. It contains general background material

on the high-Tc cuprate superconductors and a basic discussion of their physical

properties. The last Section contains an outline of the remainder of the Thesis.

1.1 Studying the cuprate superconductors

There exist many incentives for studying the cuprate superconductors. These

include the development of practical applications, the drive towards a theoretical

understanding of high-Tc superconductivity, and a basic scientific curiosity about

the physics of complex low-dimensional systems in general.

Practical applications. Superconductivity is a phenomenon with two defining

properties. The first is perfect conductivity: below a certain critical temperature Tc,

a material’s electrical resistivity falls to zero. The second is perfect diamagnetism

(the Meissner effect): electrical current spontaneous forms to screen external mag-

netic fields. Superconductivity is not uncommon: many elemental metals, such as

aluminum (Tc = 1.2 K) and lead (Tc = 7.2 K), are superconductors at low tempera-

tures.

One could suppose that the lossless transmission of electrical current would

1



2 CHAPTER 1. INTRODUCTION

have many potential practical applications. Unfortunately, the Tc values of these

materials are typically below 10 K. Applications are thus limited by the ability to

cool to and maintain such low temperatures.

This situation suddenly changed with the discovery of high-Tc superconductiv-

ity in 1986 by Bednorz and Müller [1]. They found that the compound La2−xBaxCuO4

has an onset Tc of about 35 K. The years that followed were an exciting time in

which there was discovery after discovery of copper-oxide compounds with higher

and higher transition temperatures. Considering the rapid pace of discovery and

increase in Tc, the ultimate discovery of room-temperature superconductivity was

no longer inconceivable.

The discovery of new materials with higher Tc values stalled after only a hand-

ful of years. The prospect of room-temperature superconductivity is no longer

mentioned explicitly in publications. However, the discovery of materials with Tc

values above 77 K (the temperature of liquid nitrogen) has enabled the applica-

tion of superconductivity in some particular niches, including short segments of

high-current power lines [2].

Scientific curiosity. After the discovery of superconductivity in 1911 by H. Kamer-

lingh Onnes [3], it took many decades before a successful microscopic theory was

formed. The BCS theory of superconductivity, established in 1957 by Bardeen,

Cooper and Schrieffer [4], explained that superconductivity is the result of a net at-

tractive interaction between electrons caused by interactions with phonons (lattice

vibrations), and set a theoretical upper limit for Tc of about 30 K. The theory agreed

with experimental data, and the phenomenon of superconductivity appeared to be

solved.

The discovery of high-Tc superconductivity in the cuprates cannot be explained

by BCS theory. The excitement that followed was partially motivated by the

prospect of room-temperature superconductivity and the implied practical ap-

plications. Scientifically, the goal was the formation of a theory that would explain

the apparent violation of the BCS limit.

Remarkably, more than twenty years after the discovery by Bednorz and Müller,
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even some of the most basic questions about the mechanism are still actively de-

bated. The reason why a theory has not yet been found is that the physics of the

cuprates is complicated and varied. The near-term motivation in the field is the

challenge of finding and studying the interesting behavior of these complex sys-

tems; understanding high-Tc superconductivity is a long-term goal. The ultimate

legacy of high-Tc research may be the growth and increasing sophistication of the

rich scientific field of complex materials.

1.2 Physical properties of the cuprates

1.2.1 Crystal structure

The high-Tc cuprates share some general characteristics. The fundamental build-

ing block of the crystal structure of these materials is the copper-oxygen (CuO2)

sheet. The two-dimensional square lattice of copper and oxygen atoms is widely

believed to contain the essential physics of the system. The remaining part of the

structure varies from material to material, and is called the charge reservoir layer.

By adjusting the chemical composition of the charge reservoir layers, the density

of charge carriers on the copper-oxygen sheet can be changed. Depending on the

particular compound, these charge carriers may be holes or electrons; the cuprates

are thus broadly classified as either hole- or electron-doped [5].

The cuprates can further be classified by the number of copper-oxygen sheets

between neighboring charge reservoir layers. For example, the original high-Tc

material La2−xBaxCuO4 is a single-layer hole-doped cuprate. The mercury-based

compound HgBa2Ca2Cu3O8+δ, the material with the highest measured Tc so far

(Tc = 135 K at ambient pressure [6]), is a three-layer compound. On the other

hand, the electron-doped cuprates such as Nd2−xCexCuO4 (NCCO) share the same

single-layer crystal structure (see Figure 1.1).
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O(3)

O(2)

O(1)

Cu

Nd La

O(2)

O(1)

Cu

(a) (b)

Figure 1.1: The crystal structures of (a) Nd2CuO4, the parent compound of
Nd2−xCexCuO4 (NCCO) and of (b) La2CuO4, the parent compound of hole-
doped La2−xBaxCuO4 and La2−xSrxCuO4. The lattice constants are approximately
a = b = 3.9 Å and c = 12.1 Å for Nd2CuO4 and a = b = 3.8 Å and c = 13.2 Å
for La2CuO4. While the oxygen ions around the copper ions have an octahe-
dral arrangement in the T-structure of La2CuO4, the T′-structure of stoichiometric
Nd2CuO4 nominally lacks the apical oxygen below and above the copper. Nonethe-
less, a small fraction of apical oxygen sites O(3) is occupied [7]. The radii of the
illustrated atoms are half of their respective ionic radii.

1.2.2 Electronic structure

The parent compounds of all high-Tc cuprates are insulators. In fact, one of the

early surprises was that superconductivity could arise in such presumed insu-

lating materials. For example, Nd2CuO4 is insulating and becomes metallic and

superconducting only after a sufficient amount of electrons is added via chemical

substitution of Ce for Nd.

The undoped compounds are not standard band-theory insulators, but so-called

Mott insulators [8]. The Cu2+ ions contain nine 3d-electrons out of a maximum of
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O 2pσ

Cu 3dx 2 − y 2

Figure 1.2: Schematic diagram of the CuO2 plane. In the undoped cuprates, the O
2pσ orbitals are filled and the Cu 3dx2−y2 orbitals are half-filled.

ten; this means that the orbital with the highest energy is half-filled. Due to the

tetragonal crystal field this is the 3dx2−y2 orbital [9]. Naı̈vely, one would think that

a half-filled electronic band at the Fermi level is the signature of a metal. In a Mott

insulator, however, the carriers are highly localized, and there is an energy cost

U for two carriers to be on one site due to the Coulomb repulsion between them.

The carriers are thus immobile, and the system is insulating. In the band picture,

the half-filled band is split into a filled lower Hubbard band and an empty upper

Hubbard band, with a gap energy of U.

The situation in the cuprates is slightly more involved, due to the presence of

the O2− ions and their valence orbitals. The relevant O2− orbitals are the 2pσ, i.e.,

the in-plane orbitals which lie along the Cu–O–Cu directions [9]. The O 2pσ and Cu

3dx2−y2 orbitals are shown in Figure 1.2. The energy level of the oxygen 2pσ band

happens to be in between the upper and lower Hubbard bands of the copper 3dx2−y2
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Figure 1.3: Schematic for the density of states in the three-band Hubbard model.
The Cu 3dx2−y2 band is split into an upper Hubbard band and a lower Hubbard
band by the on-site Coulomb repulsion U. The filled O 2pσ band lies within the
Mott gap, a distance ∆ away from the upper Hubbard band.

orbital1 (see Figure 1.3). In other words, it is easier to remove an electron from the

filled oxygen orbitals than to remove one from the half-filled copper orbital. The

Fermi energy lies between the oxygen 2p band and the upper Hubbard band, whose

separation is the charge transfer gap ∆, i.e., the energy it takes to transfer an electron

from the O2− ion to the Cu2+ ion. The undoped cuprates are thus more properly

called charge-transfer insulators.

The three-band Hubbard model (one copper orbital and two oxygen orbitals) is

believed by many to contain all of the relevant low-energy electronic interactions

in the CuO2 sheet [10]. Because this model is still quite involved, many theorists

use the simpler one-band Hubbard model, treating the charge transfer gap ∆ as the

1More precisely, the hybridization of the Cu 3dx2−y2 and O 2pσ bands result in a filled bonding
band at large binding energy and a half-filled antibonding band near the Fermi energy [9]. It is this
antibonding band which is split by Coulomb repulsion.
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effective value for U. The one-band Hubbard model is written as

H =
∑
i jσ

ti jc†iσc jσ + U
∑

i

ni↑ni↓ , (1.1)

where c†iσ, ciσ, and niσ = c†iσciσ are the creation, annihilation and number operators,

respectively, for an electron with spin σ (up or down) at site i. The hopping integral

ti j is not limited to nearest-neighbor sites (written as t), and can be extended to

next-nearest neighbors (t′), and so on.

1.2.3 Magnetic properties

The undoped parent compounds exhibit another important characteristic: their

ground state is antiferromagnetically ordered. The Cu2+ ions each have a spin- 1
2

magnetic moment, and at low enough temperatures, the system orders such that the

moments at two neighboring copper sites are antiparallel. The antiferromagnetic

superexchange interaction [11] is a process in which electrons with antiparallel

spins on adjacent sites can take advantage of hybridization (which can be small

due to U) and reduce their kinetic energy by hopping between neighboring sites.

Electrons with parallel spins are restricted from this process by the Pauli exclusion

principle. The result is an antiferromagnetic interaction energy J, which is equal

to 4t2/U in the t/U → 0 limit. The antiferromagnetic Heisenberg Hamiltonian is

written as

H = J
∑
〈i j〉

Si · S j , (1.2)

where Si is the spin on site i, and 〈i j〉 denotes that the sum is over nearest neighbors.

While the result J = 4t2/U is in the limit of strong coupling U, antiferromagnetic

coupling can be postulated independently given the empirical evidence, even if U

is not necessarily large. Many theoretical approaches for the doped cuprates use

the Heisenberg Hamiltonian as a starting point, and with the addition of hopping

terms, they are called t-J models.

The temperature below which a material orders antiferromagnetically is the
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Figure 1.4: Schematic temperature-doping phase diagrams of (a) La2−xSrxCuO4

and (b) oxygen-reduced Nd2−xCexCuO4. Indicated in both diagrams are the anti-
ferromagnetic (AF) phase, the superconducting (SC) phase, and the “pseudogap”
region (see Section A.2.3 for a discussion of the pseudogap).

Néel temperature TN. As the insulating parent compounds are doped with holes or

electrons, the antiferromagnetism becomes weaker (TN decreases) and eventually

disappears. Superconductivity occurs in a range of higher carrier concentrations:

the concentration at which Tc is maximized is called optimal doping, superconduct-

ing compounds with fewer carriers are called underdoped, and those with more

carriers are called overdoped. Beyond these general statements, however, the de-

tails of the phase diagram differ significantly between hole- and electron-doped

cuprates.

As described in the previous Section, holes added to the system reside primarily

on the valence orbitals of the oxygen ions. These holes carry their own spin and

frustrate the magnetic interaction between neighboring copper moments, and the

result is a rather large weakening of the antiferromagnetic state. In La2−xSrxCuO4,

antiferromagnetism disappears around a hole concentration of x = 0.02 per copper

atom. Superconductivity appears at around x = 0.05 and extends to about x = 0.3,
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with an optimal doping around x = 0.16 [12]. The phase diagram is shown in

Figure 1.4(a).

When electrons are doped into the CuO2 sheets, they start to fill the copper

3dx2−y2 orbitals. The result is an effective dilution of the spin system (1.2), which

only gradually weakens the antiferromagnetism. The antiferromagnetic phase

thus extends much farther in doping [13, 14] and appears to overlap with the

superconducting phase [15, 16]. In NCCO,2 the superconducting phase begins

around x = 0.13 and extends up to the solubility limit of about x = 0.18 [17];

see Figure 1.4(b) for the phase diagram of NCCO. The dotted portion of the Tc

curve indicates the uncertainty in how far bulk superconductivity extends to lower

doping: there have been reports of traces of superconductivity down to x = 0.08

[18], whereas bulk superconductivity seems to only appear around x = 0.14 [16].

The generally accepted view (before our publication [19]) has been that long-

range antiferromagnetic order persists to about x = 0.17 [14, 20]. One of the

results of this Thesis is that the nature of the antiferromagnetic phase changes

around x = 0.12, and that genuine long-range order does not overlap with the

superconducting phase.

While static magnetic order is absent outside of the antiferromagnetic region

of the phase diagram, correlated fluctuations of the spin system still exist. The

magnetic excitation spectrum changes its behavior in the superconducting state,

an indication that there is an interaction between the spins and the superconducting

carriers. Indeed, magnetism may be a key to understanding the mechanism of high-

Tc superconductivity, and an important focus of the field is to study the relationship

between magnetism and superconductivity in these systems. The work in this

Thesis is part of this effort.

1.3 Outline

Chapter 2 describes the laboratory methods used during the research for this The-

sis. Section 2.1 describes the crystal growth of NCCO using the traveling-solvent

2More precisely, oxygen-reduced NCCO. See Sections 2.2 and 3.1.3.
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floating-zone method, and Section 2.2 is a discussion of the subsequent oxygen-

reduction procedure. Section 2.3 contains descriptions of the relevant laboratory

characterization techniques: SQUID magnetometry, ICP spectroscopy, and Laue

diffraction. Neutron scattering, the main probe of magnetic properties used in

this Thesis, is described in Section 2.4. This is followed in Section 2.5 by a brief

description of µSR, a magnetic probe complementary to neutron scattering.

Chapter 3 describes a study of the instantaneous antiferromagnetic correlation

length in NCCO. The site-diluted spin-1
2 square-lattice Heisenberg antiferromagnet

is briefly discussed, and so is a previous study of as-grown, non-superconducting

NCCO. Then I describe my measurements on oxygen-reduced NCCO, showing the

remarkable change of behavior between non-superconducting and superconduct-

ing samples. The neutron scattering results are supplemented with some results

from µSR measurements.

Chapter 4 describes inelastic neutron scattering measurements of the antifer-

romagnetic excitation spectrum in superconducting NCCO. My results primarily

concern the energy gap in the spectrum that appears in the superconducting state.

I describe the results of the effect of a magnetic field on this gap and discuss the

possible implications for the non-superconducting ground state. I also discuss the

possible relationship between the decrease in spectral weight due to the gap and

the increase of spectral weight seen at higher energies.

This Thesis has three appendices. Appendix A contains a table of samples,

information supplemental to the material in Chapter 3, and a discussion of two-axis

neutron scattering simulations. Appendix B contains derivations of the neutron

scattering cross section formulas, aggregated from a few textbooks and translated

into modern notation. Appendix C is a detailed derivation of the Cooper-Nathans

formula for the neutron scattering resolution function and its application to the

two-axis energy-integrating technique.



Chapter 2

Methods

In this Chapter, I describe the laboratory and experimental methods used in my

research. The laboratory work at Stanford has involved both growing crystals and

characterizing them. Most of the actual experiments were performed at various

external user facilities. The principal results contained in this Thesis are those from

neutron scattering measurements, which would not have been possible without

the preceding laboratory work.

The first Section describes the procedure I used for growing single crystals of

NCCO. The traveling-solvent floating-zone (TSFZ) technique has been essential for

growing the large single crystals of relatively high purity necessary for the inelastic

neutron scattering studies described in Chapters 3 and 4. Section 2.2 describes

the oxygen reduction process performed after the growth that is required for the

crystals to become superconductors. Recent scenarios for the mechanism of the

reduction process are discussed. In Section 2.3, I describe the following laboratory

characterization techniques: SQUID magnetometry, used for measuring the su-

perconducting transition (Section 2.3.1); ICP spectroscopy, used to characterize the

chemical composition (Section 2.3.2); and Laue diffraction, used to check the crys-

tal structure and orientation (Section 2.3.3). Section 2.4 contains an introduction

to neutron scattering as well as a description of the triple-axis spectrometer. I also

describe the two-axis energy-integration technique used to measure instantaneous

magnetic correlations. Finally, in Section 2.5, I describe µSR, a local magnetic probe

11
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complementary to neutron scattering.

2.1 Crystal growth

A successful experimental effort in condensed matter physics depends on a reliable

supply of samples. In our research group, we tackle this issue by growing our own

samples.

Most condensed matter physics experiments require single-crystal samples:

the interest usually lies in the anisotropy of the physical properties displayed by

these complex materials. The high-Tc superconductors, in particular, are layered

materials, and most of the interesting physics is found to result from the two-

dimensional CuO2 plane. Single crystals are thus a prerequisite for studying the

quasi-two-dimensional properties.

I first describe in theoretical terms how to obtain single crystals of NCCO.

Naı̈vely, one would guess that melting NCCO in powder form and cooling it slowly

would produce a single crystal, provided the cooling rate was slow enough. This is,

for instance, how single crystals of silicon are grown in industry. However, unlike

elemental silicon, NCCO melts incongruently: as the material is heated, there is a

phase separation into a (Nd,Ce)-rich solid and Cu-rich liquid. The temperature at

which this takes place is 1315±5◦C, as indicated in Figure 2.1 [21]. According to this

phase diagram, NCCO dissolves into liquid CuO between 1050◦C and 1315◦C. As

small amounts of NCCO are dissolved into pure CuO, the melting point decreases

to a minimum at a composition of 90% CuO, after which it increases. If one starts

with a molten system of between 80% and 90% CuO, slow cooling will allow the

NCCO precipitate to form into single crystals. This approach is generally called

flux- or solvent-growth.

Figure 2.2 shows the temperature at which NCCO decomposes as a function of

Ce concentration x. Note that in the solid-liquid mixture phase at high temperature,

the Ce content of the liquid phase is lower than that of the solid phase. A similar

effect likely occurs at the phase boundary where the crystal growth takes place (at

lower temperatures), and would affect the Ce concentration of the grown crystals;
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Figure 2.2: The decomposition temperature of Nd2−xCexCuO4 as a function of Ce
concentration x, adapted from Ref. [21]. This diagram also indicates the solubility
limit for NCCO of x = 0.18.

this possibility is discussed further in Section 2.3.2.

I grew NCCO crystals using the TSFZ method. Instead of using a crucible

inside a furnace to melt the solution, the technique uses focused light from halogen

bulbs to create a single hot spot where the solvent is melted. The molten solvent

is suspended between a “feed rod” of material, which dissolves into the solvent,

and the crystal, which grows out of the solvent. Among other advantages, this

method avoids the contamination issues associated with the use of crucibles. In

the following paragraphs, I describe in detail the procedure I used in the laboratory

to grow large single crystals of NCCO.
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Mixing powders

The first step is to mix powders of Nd2O3 (light blue in color), CeO2 (pale yellow),

and CuO (dark gray) in stoichiometric amounts, and to heat the powders so that

the following solid-state chemical reaction (calcination) takes place:

(1 − x
2 ) ·Nd2O3 + x · CeO2 + CuO −→ Nd2−xCexCuO4 + x

4 ·O2 (2.1)

Because the powders are hydroscopic (to varying degrees), they are dried before

they are weighed. The rare-earth oxides Nd2O3 and CeO2 are dried at 1000◦C,

and CuO is dried at 600◦C. After the powders have cooled down, the appropriate

amounts1 are weighed on an analytic balance to within 4 significant digits (typically

to the nearest milligram). Because the powders continually absorb moisture from

the air, the measurements may become inaccurate if a significant amount of time is

spent during the weighing process.

The powders are mixed using a mortar and pestle. In order to significantly

reduce the particle size and to effect an efficient rate of mixing, the powders are

mixed as a slurry in ethanol. In principle, any solvent may be used, but ethanol

has the advantages of drying quickly, as well as being less toxic than other quickly

drying solvents. The mixing into a homogenous slurry takes 20 to 30 minutes.

Once the slurry has dried, the resulting blue-gray powder is collected into a

ceramic (alumina) crucible and heated at 850◦C for 12 hours. This first calcination

results in a gray powder. The powder undergoes another two rounds of wet-

mixing with mortar and pestle, with successive calcinations at 900◦C and 950◦C

for 12 hours each. After the second and third calcinations, the resulting powder is

black. X-ray powder diffraction measurements have shown that the final powder

is single-phase NCCO.

1The drying process is not perfect. The effect on the growth of slight difference in feed rod
composition is discussed later. I have found that, given these drying conditions, adding a slight
excess of 1.3% Nd2O3 is optimal.
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Figure 2.3: Illustration of the powder packing setup. NCCO powder is slowly
poured into the latex tube through the funnel and tamped down using a thin steel
rod.

Packing a feed rod

The second step is to transform the NCCO powder into a “feed rod” for use in the

TSFZ furnace. The NCCO powder is packed into shape before being sintered in a

furnace to form a dense polycrystalline solid.

The packing process is a technique that has evolved over the history of our

research group, and it is the step in the crystal growth process that requires the

most experience to master. The aim of the packing and sintering process is to form

a cylinder of packed powder which has a uniform diameter (typically 5–6 mm),

and is as long as possible (typically 9–10 cm). The necessity of a uniform diameter

and long length will become clear from the discussion of the TSFZ process itself.

The powder packing setup is illustrated in Figure 2.3. Surgical latex tubes

(purchased from a veterinary supply store) have an appropriately uniform diameter

and elasticity. The tube is cut to a length of about 20 cm, turned inside-out, and the
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white powder originally lining the tube is wiped off.2 A knot is tied at one end,

and this end of the tube is fixed to the base of a stand. The open end of the tube

is placed on the end of a glass funnel. The NCCO powder is added through the

funnel a small amount at a time and tamped down using a long steel rod with a flat

tip. The powder is packed tightly enough so that it does not yield to a moderate

amount of finger pressure. Care is taken so that the packed powder has a uniform

diameter along its length. The packing continues until the length of the powder is

13 or 14 cm,3 a process that can take 30 minutes to an hour.

The air in the tube is then pumped out as follows. A piece of cotton ball is

inserted and tamped down at the top of the powder. The latex tube is removed

from the packing setup, and the open end of the tube is placed on the nozzle of

a vacuum pump. During the few minutes of pumping, the packed powder is

rolled carefully between two flat plates to make the surface smooth. The rolling

may also help evacuate the tube. The open end of the tube is then twisted and

tied off without losing the vacuum inside. The tube is then loosely attached with

rubber bands to one or two metal half-cylinder shells to keep it straight during the

following compression process.

The latex tube containing the packed powder is placed into a water-filled pres-

sure chamber of a hand-operated hydraulic press (see Figure 2.4). The press is

pumped up to its maximum pressure of 70 MPa, which translates through the

piston to an isostatic pressure of 190 MPa. The size of the powder rod is visibly

smaller after this compression. The latex tube is then cut away from the powder

rod. As the powder rod is very brittle, this step requires care and patience.

The powder rod is now sintered at 1220◦C, just below the melting point, to form a

solid polycrystalline rod. One method is to hand-drill a hole into one end of the rod

(once again being very careful), pass some high-temperature-resistant Ni-Cr wire

through this hole, and hang the rod vertically inside of a large cylindrical alumina

crucible. The alumina container serves to keep the temperature at the rod uniform

during the sintering process, and suspending the rod prevents the powder from
2I believe that the white powder is a form of starch; such organic material is not likely to be

detrimental to the crystal growth, but it is best not to take that chance.
3This length is limited by the length of the pressure chamber.



18 CHAPTER 2. METHODS

Figure 2.4: The hand-operated hydraulic press used to compress the packed
powder.

touching and reacting with anything. For NCCO, fortunately, placing the powder

rod horizontally in a zirconia tube is sufficient. This sintered rod can then be used

as the feed rod in a TSFZ growth.

The traveling-solvent floating-zone method

The TSFZ furnace uses four ellipsoidal mirrors and specially-made halogen bulbs

(150 W in the case of NCCO growth) with the filaments arranged in a single plane.

The positions of the bulbs are such that the images of the filaments coincide in the

center of the furnace with a limited vertical extent of perhaps 3–4 mm. During a

growth, the molten solvent is suspended between the feed rod connected to the
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Figure 2.5: An illustration of the traveling-solvent floating-zone furnace. Repro-
duced from Ref. [22].

upper shaft and the crystal connected to the lower shaft. The upper and lower

shafts are counter-rotated, typically at rates around 20 rpm,4 so that the molten

zone is constantly in a state of being mixed and that any thermal gradients are

averaged. The entire mirror stage is moved slowly upwards at a rate of 0.5 mm/h,

dissolving the feed rod at the same time as forming the crystal. See Figure 2.5.

In order to start a growth, one begins with a seed crystal. I typically use an

NCCO crystal, approximately 10 mm long, from a previous growth. Since it serves

only to seed the growth, the seed crystal need not be of the same composition as

the feed rod. One end is tapered on a polisher to form a conical tip, similar to the

tip of a pencil. The other flat end is glued to an alumina cylinder, which is in turn

inserted into a holder. The holder, which screws into the lower shaft, has six screws

used to adjust the position of the seed crystal so that its tip lies along the central

4The rotation rates of the upper and lower shafts should be kept slightly different to avoid
forming a resonance condition in the liquid. For example, 21 rpm for the upper shaft and 19 rpm
for the lower shaft.
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Figure 2.6: A typical NCCO feed rod. A 22-gauge Ni-Cr wire has been wrapped in
the groove cut into the left end. The solvent CuO has been attached onto the right
end.

axis of the furnace.

The last component of the crystal growth setup is the solvent. As described

earlier in this Chapter, the growth requires a molten mixture of 80–90% CuO. I

have found that attaching pure CuO to the end of the feed rod and letting some

NCCO dissolve into the molten CuO at the beginning of the growth works to

achieve the correct solvent composition. 175 mg of CuO powder5 is first formed

into a pellet using a pellet press with a bore diameter of 5 mm. The pellet is then

sintered at 950◦C for 12 hours, and subsequently melted onto one end of the feed

rod using the TSFZ furnace itself. The feed rod is held using the six-screw holder

“upside-down” on the lower shaft. The CuO pellet is balanced on the tip (which is

first polished flat if necessary). The furnace’s quartz tube is put into place, and the

furnace power is then ramped up until the CuO melts onto the feed rod.

The feed rod (with CuO) is then placed on a hook attached to the upper shaft

of the furnace. This is done by carving a groove along the circumference of the

feed rod at the end opposite to the added CuO, and then wrapping the groove

with some Ni-Cr wire and forming a loop (see Figure 2.6). The feed rod is hung

vertically, adjusting the wires as necessary, such that its entire length lines up with

the central axis of the furnace.

The atmosphere inside the quartz tube surrounding the growth can be con-

trolled. The NCCO crystals were grown in 4 atm of oxygen. As-grown, NCCO

contains an excess amount of oxygen [23], and it may be that the growth is stabi-

lized in an environment in which an excess amount of oxygen is possible. I have

5The effect of differing amounts of initial CuO solvent is discussed later.



2.1. CRYSTAL GROWTH 21

feed rod

seed crystal

molten
solvent

multi-grain
section

single-grain
section

(a) (b) (c) (d)

Figure 2.7: The typical progression of a TSFZ crystal growth. There usually are
multiple grains at the beginning of a growth, but one grain eventually dominates,
leading to a single crystal. Reproduced from Ref [22].

not experimented with changing the atmosphere of the growth. It has come to my

attention recently that a low-oxygen atmosphere may actually be beneficial for the

crystal growth of Ce-doped crystals [24].

In controlling the positions of the feed rod and seed crystal, there are two

degrees of freedom: the position of the mirror stage, and the position of the upper

shaft stage. The growth process begins by ramping up the furnace power and

melting the CuO solvent on the tip of the feed rod, and then attaching it to the seed

crystal by lowering the mirror stage and upper shaft stage together. All the while,

the upper and lower shafts are being counter-rotated so that the temperature at

any point remains relatively constant. The system is then left to mix for an hour or

so in an attempt to form a clean interface between the seed crystal and the solvent,

so that the new crystal will grow directly from the seed. The mirror stage is then

moved upwards at the growth rate of 0.5 mm/h. Ideally, that is all that is needed

to grow a large single-grain crystal.

However, it is often the case that the growth is not properly seeded. In this case,

multiple grains form at once. Fortunately, grains with a certain orientation (c-axis
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Figure 2.8: An image from the TSFZ furnace camera of an NCCO growth. The
polycrystalline feed rod is above the molten zone, while a single-grain crystal
is below the molten zone. Behind the molten zone are images of the filaments
reflected by the mirrors.

perpendicular to growth direction) are favored over others. A particular grain

will begin to dominate, and secondary grains eventually disappear. Figure 2.7

illustrates this process. The progression from multiple grains to a single grain is

easily seen through the camera, as the grain boundaries are visible due to the small

amount of solvent that remains inside them. In addition, the growth of a single

grain is often apparent from visible facets on the surface of the growth. Figure 2.8

shows an image from the furnace camera during a growth of NCCO.

Operating a TSFZ furnace

Many adjustments have to be made, both before and during a growth, to increase

the chances of obtaining a single-grain crystal.

The temperature of the molten zone cannot be controlled directly, and is not

even measured. The temperature depends not only on the power supplied to the

bulbs, but also on factors such as the size, reflectivity, and heat dissipation of the

hot spot. The growth must be monitored often to make sure the right amount of
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power is used. The power may be increased manually, but should not be decreased

too quickly during a growth, because it may cause the seeding of secondary grains;

in this case, a programmable controller is used to slowly ramp the power lower.

If the temperature at the molten zone is too high, gravity causes the solvent

to droop, and the crystal widens. The rate of material taken out of the solvent

becomes greater than the rate of material being dissolved into the solvent. This

leads to a progressively narrower molten zone, and eventually the solvent will

detach from the feed rod and fall to the side of the crystal. Because the solvent is

lost, reattachment is usually not possible. To make things worse, the thermal shock

to the top part of the crystal due to the molten solvent causes it to be structurally

weak and unusable. On the other hand, if the temperature at the molten zone is too

low, the solid (undissolved) portions of the feed rod and crystal knock against each

other. If left unchecked, the knocking becomes violent enough to cause the solvent

to detach. Thus the main challenge during a growth is to maintain the temperature

in the narrow range available that avoids both potential problems.

During a growth, there may be a need to cause the crystal to become narrower.

For example, secondary grains will disappear faster for a narrower crystal. This

requires, in addition to lowering the power, the decrease in the rate of feed rod

being added to the solvent. This is done by continually raising the upper shaft

stage at a small rate. For example, if this upper shaft “pulling” speed is set to

0.1 mm/h, then for a growth rate of 0.5 mm/h the feed rod dissolves into the solvent

at a 20% slower rate. In equilibrium, the width of the growing crystal narrows

so that the amount of material being grown equals the amount of material being

dissolved.

Another set of concerns comes from considering the composition of the molten

solution. Sometimes the solution shifts away from the ideal composition. Consider

the case when the solution becomes too CuO-rich. This can happen (usually late in

a growth) if the feed rod composition is slightly off stoichiometry with too much

CuO. If this happens, some CuO flows over the sides of the crystal, decreasing

the CuO concentration of the solution and allowing the growth of the crystal to

continue. However, this process causes the “crystal” to widen and the molten zone
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to narrow, and care must be taken to avoid a detachment.

The solution may also be too CuO-rich at the beginning of the growth, if too

much CuO was used to start the growth process. In this case, proper seeding from

the seed crystal does not take place, and the composition of the solution changes

unpredictably as random amounts of CuO and NCCO condense out of the system.

This commonly leads to a sudden drop of the melting point and detachment of the

growth. Even if detachment does not occur, the precipitation of excess CuO may

prevent a single grain of NCCO from forming.

The other end of the composition spectrum is problematic as well. The compo-

sition of the solution may become CuO-poor. This can happen near the beginning

of the growth if the amount of CuO used was too small. In this case, even if a single

grain is seeded from the seed crystal, at some point the single grain disappears and

the growth must start again from many multiple grains. It should be noted that

after the growth, outside of the furnace, this portion of the crystal decomposes after

a few days. It could be that a relatively large amount of (Nd,Ce)2O3 is deposited in

between the multiple grains.6

The amount of CuO added to the feed rod before the growth and the fine-tuning

of the feed rod composition are thus important aspects for a successful growth.

Note that the composition issues are still coupled to the adjustments in power and

pulling rate discussed above. For instance, decreasing the power decreases the

volume of molten solvent, increasing the concentration of CuO, and may lead to

the overflow of solvent onto the crystal. After years of adjustments, I have found

that 175 mg of CuO solvent, a 1.3% increase to the nominal amount of Nd2O3 in the

feed rod,7 a feed rod diameter of 5 mm, and a constant pulling rate of 0.1 mm/h, as

a good set of crystal growth parameters.

Because of these complications, a 10-cm feed rod does not necessarily yield a

similarly-sized single crystal. A growth can be considered successful if it yields a

single-grain crystal of at least 3 or 4 cm, such that it can be used for inelastic neutron

6(Nd,Ce)2O3 is also discussed later in the context of decomposition in the oxygen-reduction
process.

7It may be that, even after drying the powders, Nd2O3 retains more water than the other
ingredients.
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Figure 2.9: A photograph of an NCCO crystal after growth. In this particular
growth the seeding of the crystal was successful, and the entire crystal is a single
grain.

scattering.

Ideally, there is time after the growth to have the a crystal sit in air before any

further preparations, as parts of it may be structurally weak. These parts typically

break off and disintegrate over the course of a few days. I speculate that there are

microscopic inclusions that absorb moisture and expand. After this happens, the

remaining portions of the crystal can be considered stable and should be able to

handle moisture and cleaning solvents, as well as the high and low temperatures

during the heat treatment and characterization steps described below.

2.2 Reduction

As-grown, NCCO is not superconducting. Even if the Ce concentration is large

enough, NCCO (and the other electron-doped cuprates) must be heat treated in an

oxygen-reducing environment to become superconducting.

2.2.1 Microscopic mechanism

The microscopic mechanism of the oxygen reduction step is still under debate,

but in the last few years there have been a number of more detailed studies on

the effects of oxygen reduction on the electron-doped compounds. I give a brief

history of this subject and then describe the latest studies.
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Carrier concentration

Changing the oxygen concentration of a crystal is known to change the carrier

concentration. Naı̈vely, the removal of one oxygen atom would add two electrons

to (or, equivalently, remove two holes from) the system, since the oxygen becomes

an O2− ion inside the solid. Localization and other effects may lower the number

of mobile carriers per oxygen that are added or removed, but the effect is still sig-

nificant. In fact, the carrier concentration of many hole-doped cuprates is adjusted

by adding or removing oxygen from the systems [25]. These include La2CuO4+δ,

which behaves similarly to La2−xSrxCuO4, and the commonly-studied double-layer

system YBa2Cu3O6+x.8

At the time of the discovery of superconductivity in NCCO [17], it was thought

that the only effect of the oxygen reduction step is to increase the electron density

high enough to initiate superconductivity. However, transport measurements per-

formed a few years later showed that reduction causes a dramatic change in the

resistivity at all temperatures while the Hall coefficient does not change apprecia-

bly above T = 100 K [26]; it was concluded that the effect of reduction cannot be a

simple change in carrier density.

Apical oxygen

Structural refinement analysis of neutron diffraction measurements performed on

single-crystal Nd2CuO4 revealed that as-grown crystals contain approximately 10%

of apical O(3) oxygens per formula unit (not part of the ideal T′ structure; see Fig-

ure 1.1) [7]. Furthermore, the amount of excess oxygen significantly decreases

to about 4% per formula unit after oxygen reduction. No change was found in

the quantity of in-plane O(1) and out-of-plane O(2) oxygens. Further transport

measurements showed that oxygen reduction decreases the residual resistivity

ρ(T → 0), but otherwise does not affect the temperature dependence of resistivity

[27]. These findings led to the consensus that oxygen reduction allows supercon-

ductivity to form through the decrease in disorder due to the removal of O(3) apical

8In both of these compounds, there is a tendency for the excess oxygen to order.
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oxygens. This view came to be widely held, despite the lack of clear evidence of

the removal of apical oxygens in x = 0.15 NCCO [28].

A more detailed series of transport measurements made use of ion irradiation

[29]. The reasoning behind the study is that ion irradiation increases disorder

while leaving the carrier concentration unchanged, and by comparing the effects

of oxygen concentration to ion irradiation, one can hope to differentiate the ef-

fects of reduction on disorder and carrier concentration. It was found that, in

superconducting Pr2−xCexCuO4±δ (x = 0.17) thin films, both oxygenation and ion

irradiation increase residual resistivity and decrease Tc. Furthermore, it was found

that oxygenation decreases the Hall coefficient RH, but that irradiation leaves it

largely unchanged. Using an empirical model, it was determined that oxygenation

effectively changes the electron density from x = 0.17 to x = 0.16, but that Tc de-

creases because of the introduction of disorder. This study was the first to quantify

the change in carrier density due to oxygen reduction. The actual change is quite

small, showing that disorder effects indeed dominate those of reduction.

This work did not determine the mechanism of disorder due to oxygenation.

In fact, it supports the view that the decrease in disorder is due to the removal

of O(3) apical oxygens [29]. However, Raman scattering and infrared transmis-

sion measurements on NCCO [30] and Pr2−xCexCuO4±δ (PCCO) [31] indicate that

reduction has no effect on the apical oxygens. In the Raman scattering data, the

feature associated with O(3) is observed to increase with Ce concentration and to

remain unaffected by reduction, and the conclusion is that O(3) is bound relatively

strongly to the nearby Ce4+ ion. In both works, measurements of the rare-earth

crystal-field excitations using infrared transmission spectroscopy revealed that the

effect of reduction changes at a Ce concentration of about x = 0.08. With the help

of Madelung potential calculations, it was determined that below this concentra-

tion, the out-of-plane oxygen O(2) is removed, while above this concentration, the

in-plane oxygen O(1) is removed [30, 31]. The surprising conclusion is that, in

order for superconductivity to form, oxygen must be removed from the very CuO2

planes thought to be crucial for superconductivity.
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Figure 2.10: Transmission electron microscopy (TEM) image of oxygen-reduced
NCCO (x = 0.16), reproduced from [23]. The thin lines are layers of the secondary
phase (Nd,Ce)2O3.

Copper deficiency

A key ingredient to understanding this apparent contradiction lies in the partial

decomposition of NCCO during oxygen reduction and the formation of an epi-

taxial secondary phase (Nd,Ce)2O3. This phase was discovered by our group in

the context of explaining the appearance of magnetic diffraction peaks observed

in reduced NCCO crystals [23], and is discussed in Chapter 4. Figure 2.10 is a

transmission electron microscopy (TEM) image of oxygen-reduced NCCO. The

secondary phase regions are typically 60 Å wide along the c-direction (perpendic-

ular to the CuO2 planes) and more than 1µm parallel to the CuO2 planes, making

up a typical volume fraction of 1% [23].

Kang et al. [32] argue that, since this secondary phase contains no Cu ions, they

must travel during the reduction process to the CuO2 planes in the majority phase
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Figure 2.11: Illustration of the effect of oxygen reduction on the crystal structure
of electron-doped cuprates. (a) Structure of Cu-deficient as-grown material. (b)
Structure of oxygen-reduced material with a Cu-free secondary phase and CuO2

planes with Cu vacancies repaired. Reproduced from [32].

(see Figure 2.11). This in turn implies that there probably are Cu vacancies in the

CuO2 planes in the as-grown crystals. The chemical equation reads

R2Cu1− f O4+α ←→ (1 − f )R2CuO4+β + f R2O3 + (α − β + f (1 + β)) O , (2.2)

where R indicates the rare-earth element(s), f is the secondary phase volume frac-

tion, and α and β are the amounts of excess oxygen in the oxygenated and reduced

samples, respectively. As implied by the double arrow, measurements indicate

the reduction process to be fully reversible. Kang et al. measured the Cu and

O occupancies of Pr1−xLaCexCuO4±δ (x = 0.12) using neutron powder diffraction

and refinement analysis [32]. It was found that the as-grown and re-oxygenated

samples have a Cu deficiency of 1.2-2.3%, but that the reduced samples have full

Cu occupancy. The amount of Cu deficiency is consistent with the secondary phase

volume fraction of 1.6% measured by X-ray powder diffraction. The as-grown and

re-oxygenated samples were found to contain an excess of oxygen (α ≈ 0.02–0.07),

and the reduced samples a deficiency of oxygen (β ≈ −0.06). The predicted amount

of oxygen loss from Equation (2.2) is then about 0.04, which agrees with thermo-

gravimetric measurements during the reduction process [32].
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Figure 2.12: Illustration of the annealing furnace setup used for heat-treating
NCCO crystals.

This study has shown that oxygen reduction drives the phase separation of the

sample into a small volume fraction of the Cu-free secondary phase and a majority

volume fraction with full Cu occupancy. Moreover, the prevalent disorder in

the as-grown samples, previously attributed to excess apical oxygens, is due to Cu

vacancies in the CuO2 planes which would tend to localize electrons. This picture is

consistent with a number of recent studies: in an X-ray photoemission spectroscopy

study of NCCO, Xu et al. [33] find that a particular Cu core-hole state, in which

the hole is screened by an itinerant electron, is weak or absent in the as-grown

state. They conclude that oxygen reduction has delocalized the doped electrons.9

In an angle-resolved photoemission measurement of as-grown PCCO, Richard et

al. [34] find that there is a leading-edge gap at the Fermi surface that cannot be fully

explained by the antiferromagnetic order; they mention the possibility that this gap

is caused by the Cu vacancies. Finally, in a transport study on overdoped PCCO,

Gauthier et al. [35] conclude that even the hole-like quasiparticles experience a

delocalization upon oxygen reduction.
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2.2.2 Laboratory procedure

An illustration of the annealing furnace setup is shown in Figure 2.12. The NCCO

crystal is wrapped in steel mesh before being placed inside an alumina crucible,

which minimizes direct contact between the crystal and the crucible. The crucible

is then inserted into the quartz tube inside the tube furnace. On either end of the

quartz tube are steel cylinders fixed to the baseboard. The ends of the steel cylinders

are capped shut and the atmosphere inside the quartz tube can be controlled by

flowing gas into the right cylinder and letting gas flow out of the left cylinder.

The flow is controlled using a flow meter before the gas inlet. An oxygen sensor

is used to measure the oxygen concentration of the gas leaving the furnace. A

thermocouple is inserted to provide a more accurate temperature reading near the

sample position than indicated by the tube furnace.

Figure 2.13 shows the phase stability diagram for NCCO (x = 0.15) as a function

of temperature and oxygen partial pressure. Ideally, one would treat a sample

at a certain temperature and a certain oxygen partial-pressure, and the sample

would asymptotically approach an equilibrium oxygen concentration. In practice,

a two-step procedure is used. The first step is 10 hours in flowing argon at a

thermocouple temperature of 970◦C (a furnace temperature of 941◦C). The flow

rate is 50–100 mL/min, and the laboratory-grade argon has an oxygen concentration

of about 1 ppm, which translates to an oxygen partial pressure of 10−6 atm, or about

10−3 torr. The oxygen concentration in the sample does not come to equilibrium

during this procedure: annealing for longer than 10 hours at this temperature

eventually causes the crystal to decompose.10

The second step is a 20-hour anneal in flowing oxygen at a lower temperature

of 500◦C (a furnace temperature of 484◦C). We have found that this step yields a

slight further increase in Tc of up to 1 K. I believe that this second step serves to

relax the strains in the crystal caused by the harsh high-temperature environment

9Although they attribute the electron localization to excess oxygens, their data are consistent
with localization by the Cu vacancies.

10Note that in Figure 2.13, a point at 970◦C and 10−6 atm would be in the decomposed phase.
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Figure 2.13: Phase stability diagram for Nd1.85Ce0.15CuO4−δ, adapted from [36]. The
solid curve with the open squares indicates the solidus line (where partial melting
occurs). The diagonal solid line below it indicates where NCCO decomposes. The
solid triangles indicate samples for which superconductivity was observed, and
the open triangles where superconductivity was not observed. The dotted lines are
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of the first step.11

The procedure described above is the one that was found to maximize Tc in a

study of x = 0.14 NCCO crystals [37]: given the 10-hour duration, a temperature

which is too low does not cause enough oxygen reduction, whereas a tempera-

ture much higher than 970◦C causes decomposition. Instead of optimizing the

procedure for each doping level, which is in any case only possible for supercon-

ducting samples, this same procedure has been used across the entire doping range

11If this is the case, the atmosphere for this second step should not be important; this is something
that I have not personally tested.
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investigated in this Thesis.

2.3 Laboratory characterization

In this Section, I discuss various laboratory characterization techniques used to

measure basic properties of the crystals prior to neutron scattering measurements.

Section 2.3.1 describes the use of SQUID magnetometry to measure the Tc of su-

perconducting samples. Section 2.3.2 describes the determination of the Ce con-

centration of crystals using ICP spectroscopy, and contains a discussion of Ce

inhomogeneity issues. Section 2.3.3 is a description of the Laue diffractometer that

serves as the first step in orienting the crystal axes of a sample.

2.3.1 SQUID magnetometry

The critical temperature Tc of a superconductor is one of its defining characteristics,

and thus it is important to have a method of measuring this property. In principle,

one could measure the resistivity of a sample to determine the Tc by observing at

what temperature the resistivity drops to zero. However, the process of preparing

a sample for such a measurement is quite tedious. The preferred basic method

of measuring Tc is magnetometry. One measures the temperature at which the

Meissner effect is seen, i.e., when the sample turns into a perfect diamagnet and

expels all magnetic fields.

Our laboratory uses a magnetometer commercially manufactured by Quantum

Design, the MPMS XP.12 In general, a magnetometer is a device that measures

the magnetic moment of a sample. This is done by measuring the magnetic field

produced by this magnetic moment or, more precisely, by measuring the magnetic

flux that passes through a conducting loop near the sample. The MPMS makes use

of a superconducting quantum interference device (SQUID) to measure magnetic

flux. Commercial SQUIDs are small devices, typically 30 microns across [38], and

include a superconducting coil which wraps around the loop of the SQUID many

12Magnetic property measurement system.
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Figure 2.14: Diagram of a commercial SQUID, reproduced from [38]. A coil wraps
around the SQUID many times to enhance the signal, and is connected to a pickup
loop at the site of measurement.

times to enhance the signal (see Figure 2.14). The coil is, in turn, connected to a

pickup loop located near the sample.

A magnetometer measures the magnetic moment not only as a function of

temperature, but also as a function of applied magnetic field. One can imagine a

pickup coil that forms two loops, oppositely oriented above and below the sample,

which would cancel the magnetic flux due to the applied field. The SQUID would

then read the difference in magnetic flux through the two loops. By measuring the

signal as a function of the sample position with respect to the two loops, one could

calculate the magnetic field due to the sample itself. The MPMS takes this one

step further by using a second-derivative setup: four loops precisely positioned

and oriented so that any gradient in the applied field is canceled out [39]. See

Figure 2.15 for a schematic of the SQUID system of the MPMS.

During a measurement, at each temperature and applied field, a scan is done

as a function of sample position. As long as the sample is small compared to the

distance between the loops, the signal as a function of sample position has the same

line shape as produced by an ideal dipole moment. The measurement program fits

the scan to the predetermined shape, and the fitted amplitude is a measure of the
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Figure 2.15: Schematic for the SQUID system in the MPMS, reproduced from [39].

sample’s magnetic moment.13

Unfortunately, the NCCO crystals used for neutron scattering are typically large

enough so that the position scans do not have the correct shape. In principle, one

could use the raw data from the scan to determine the proper value for the magnetic

moment (by integration, for instance), but only a qualitative determination of the

magnetic moment is necessary for measuring the Tc of a sample. I have simply

decreased the scan range so that the fitting converges to a reasonable value.

In the case of superconductors, the samples are diamagnetic below Tc, so that

a positive applied magnetic field (typically around 5 Oe)14 results in a negative

magnetic moment. Above Tc, the paramagnetic samples show a comparatively

weak positive magnetic moment. However, the amount of diamagnetism in the

superconducting state depends on whether the field is applied before or after

cooling the sample through Tc. Typically, the zero-field-cooled (ZFC) signal is

stronger than the field-cooled (FC) signal. This well-known effect is due to flux

13The instrument has been calibrated using a sample with a known magnetic moment
14The oersted (Oe) is the cgs unit of the magnetizing field H. In vacuum, it is equal to the gauss

(G), the cgs unit of the magnetic field B. Both are equal to 10−4 tesla (T).
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Figure 2.16: SQUID data from a superconducting sample of HgBa2CuO4+δ, repro-
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moment (positive).

pinning [40].

The ZFC signal is from the full Meissner state of the sample. As the magnetic

field is increased, surface currents form to cancel the magnetic field inside the

sample. In fact, in this case, it is only necessary for the surface of the sample to

be superconducting.15 On the other hand, in the FC case, magnetic flux already

penetrates the sample as the sample is cooled below Tc. Some of the flux is pinned,

due to chemical impurities or physical defects, and so a full Meissner state does

not form. The ratio of the FC signal to the ZFC signal can thus be a measure of

the amount of defects in a sample. A third possible measurement is that of the

remnant moment [42]: the sample is cooled below Tc in a field, and then the field

15This can be a problem, for example, when a heat-treatment process causes only the surface of
the sample to have a higher Tc.
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is turned off. In this situation, the pinned flux provides a net positive moment,

approximately the difference between the FC and ZFC values. As the temperature

is increased, the flux becomes de-pinned and the remnant moment drops to zero at

Tc. The remnant-moment effect provides proof that the pinning originates from the

bulk of the sample. The three types of measurements are illustrated in Figure 2.16.

Note that for the simple case of measuring Tc in NCCO, it has been sufficient to

measure the ZFC signal as a function of temperature.

2.3.2 ICP spectroscopy

The chemical composition of a crystal is largely determined by the composition of

the powder used to produce it. However, it is important to measure the chemical

composition of a crystal after it has been grown. Inductively-coupled plasma

(ICP) atomic-emission spectroscopy has revealed a systematic difference between

nominal and actual compositions in my crystals, as well as concentration gradients

within the crystals.

Atomic-emission spectroscopy is one of the oldest analytical instrumental tech-

niques. Atoms are thermally excited into higher electronic states and, when return-

ing to their ground state, emit photons at certain frequencies. These frequencies,

of course, depend on the element. At each frequency, the number of photons is

proportional to the number of atoms of that element.

In the case of ICP spectroscopy, the source of thermal energy is a plasma flame.

Argon gas is seeded with additional electrons and injected into a region of strong

high-frequency magnetic fields. The resulting plasma has temperatures between

6000 and 10,000 K and enough thermal energy to electronically excite an aerosolized

solution injected into the flame [43]. One of the main advantages of the ICP setup

is the high ionization efficiency, and thus the ability to measure low concentrations

[44].

Our group utilizes the ICP measurement service at the School of Earth Sciences

at Stanford. Although the newer technique of ICP mass spectroscopy is now

considered the forefront of chemical analysis techniques [44], I have found that ICP
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atomic emission spectroscopy already exceeds the measurement precision needed

for the NCCO samples that I have grown.

Procedure for preparing samples

The nature of ICP spectroscopy dictates that the sample must be in some sort of

liquid form. To meet this requirement, small pieces of NCCO crystals are dissolved

in a 5% nitric acid solution. The following paragraphs detail the procedure for the

preparation used by our research group.

The glassware I have used is the 150 mL Erlenmeyer flask, using one flask

per sample. Since they are reused, the first step is to thoroughly clean the required

number of these flasks. The inside of a flask is cleaned using a brush and detergent.

It is rinsed three or more times with tap water before being rinsed an additional

three or more times with the building deionized water. The outside of the flask is

then wiped dry to prevent contamination in the next step: a further triple-rinsing

with ultra-pure water (henceforth “ICP water”) available from the laboratories at

the School of Earth Sciences. ICP water has been purified to a parts-per-billion

level of solute, and has a resistivity greater than 18 MΩ cm. Plastic wrap is placed

over the clean flasks whenever they are not being used.

In the next step, concentrated nitric acid is the placed into each flask. The final

goal is 50 mL of 5% nitric acid, and concentrated nitric acid has a listed concentration

of 65–70%. Using 67% as an approximate value, this translates to 3.7 mL of nitric

acid per flask. The concentrated nitric acid is first poured into a small beaker that

has been cleaned using the same method as with the flasks. A disposable plastic

pipette is then used to measure out the 3.7 mL to each flask.

Because concentrated nitric acid slowly releases noxious fumes (of nitrogen

dioxide, a poison), the acid in each flask is diluted slightly to about 30% by adding

ICP water. It is not, however, diluted down to 5% at this point, because the acid

needs to remain concentrated enough to dissolve the crystals. The same beaker can

be used for the water (after rinsing), as well as the same pipette. I add 3.7 mL of

ICP water, but the amount is not that important. Afterwards, plastic wrap is again

placed over the flasks.
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The next step is to put the NCCO samples into the flasks. Here there are

several issues to consider. The first is that the ICP measurements are not sensitive

to concentrations which are too high. The upper limit is 100 parts per million

(ppm), by mass. In NCCO, the Nd atoms constitute the heaviest portion of the

compound, and setting Nd to 100 ppm translates to 7.8 mg of NCCO for every

50 mL of solution. There is also a practical lower limit to the mass of NCCO

used. The analytical balance used for mass measurements cannot reliably measure

masses below 0.5 mg or so, and I have observed that ICP measurements of samples

much less than 1 mg have noticeably worse precision. The mass of NCCO put into

solution is recorded, but only as a qualitative check of the data. Because only the

ratio of the concentrations is important, the volumes of liquid used for the samples

can be approximate.

Even samples as small as a few milligrams can take many days to dissolve.

When time is limited (the usual case), the sample can be crushed into powder as

follows. The piece of crystal is placed in a folded tube of weighing paper, such

that there are many layers of paper between it and the outside. The sample is then

crushed by hitting it in a clean mortar with a clean pestle. The tube of weighing

paper is then unfolded slowly over another piece of weighing paper, which catches

the powder. The powder is then weighed and carefully tapped into a flask. In the

case where the initial piece of crystal is too large, the crystal is crushed into powder,

as above, but only a portion of the powder is placed into the flask.

Once a flask contains a sample, its mouth is sealed with Parafilm,16 taking care

that the side with paper backing ends up facing the interior of the flask. The flask

is then labeled using a marker on the glass surface (so that the label can be easily

removed before the next measurement).

The dissolving process can be accelerated by heating the flasks. The flasks are

placed on a hot plate and set well below the boiling point of water. Plastic wrap is

again placed over the flasks, because the Parafilm may break upon expanding due

to the heating of the air inside the flasks. When heated, the NCCO samples usually

16Parafilm is a flexible, moldable, self-adhering plastic film manufactured by Pechiney Plastic
Packaging, Inc.
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dissolve in less than a day.

Once the NCCO is dissolved into the acid, ICP water is added to each flask

to dilute the solution to 50 mL (and thus 5% nitric acid). The solution is then

dispensed into test tubes. The test tubes are standard glass test tubes, 13 mm

diameter by 100 mm in length. Being quite inexpensive, they are disposed of after

each use. Each new test tube is, however, rinsed with a small amount of the solution

it will be filled with. A small square of Parafilm is used to cover the mouth of the

tube while it is shaken. The tube is then emptied and the Parafilm discarded. A

small KimWipe17 is used to wipe the mouth of the tube and immediately discarded.

The test tube is then filled nearly to the top with the solution, sealed with a new

square of Parafilm, and labeled.

Typically, three test tubes are filled for each flask of solution (and thus for each

NCCO sample). This is used as a final check for contamination and also to see the

fluctuations in the readings from the ICP instrument. The test tubes are placed in

a test tube rack and covered with plastic film for transport to the ICP facility.

Procedure for preparing standards

Solutions must also be prepared with known concentrations of the same ions to be

measured, and these serve as standards used for calibration purposes during the

ICP measurement. While precise amounts of liquids were not used for samples,

they are quite necessary for the standards. There are actually three solutions that

are required. The first is the “high standard,” whose ion concentrations should be

higher than in all of the samples. The high standard is also subject to the 100 ppm

upper limit mentioned above. The second is the “quality control,” in which the ion

concentrations are exactly half of those in the high standard. The quality control

standard is measured periodically during the measurement of the samples. The

third is the “matrix,” which is simply the solvent. In our case, this is 5% nitric acid.

Solutions of “plasma standards” are sold by chemical companies (e.g., Alfa

Aesar); 1000 ppm solutions of Nd, Ce, and Cu in 5% nitric acid are used for NCCO.

17KimWipes are a type of lint-free cleaning tissue manufactured by Kimberly-Clark Corporation.
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The glassware used in standards preparation is volumetric (the volumes must

be precisely measured). Because volumetric pipettes come only in certain sizes,

the concentrations chosen for the high standard and quality control are limited.

Typically, one pipette is chosen per element and used twice for the high standard

and once for the quality control. The set of concentrations that I have used for

NCCO is 100 ppm Nd, 20 ppm Ce, and 40 ppm Cu for the high standard, which

means concentrations of 50 ppm Nd, 10 ppm Ce, and 20 ppm Cu for the quality

control. In 100 mL volumetric flasks, this translates to a 5 mL pipette for Nd, a 1 mL

pipette for Ce, and a 2 mL pipette for Cu.

The first step is again the cleaning of glassware. A brush should not be used to

clean a volumetric flask. Instead, concentrated nitric acid is first used to clean the

inner surface. This is followed by several rinses with deionized water and three

rinses with ICP water. The volumetric pipettes must also be dried; a heat gun may

be used (with care) to blow out the water droplets. The final containers for the

three liquids, usually plastic bottles, must also be cleaned and dried.

The 5% nitric acid solution is made first. Because the concentration of nitric acid

is not important, a disposable graduated pipette is used to measure the amount

of concentrated nitric acid into a large flask and diluted with ICP water. The high

standard and quality control solutions are made in 100 mL volumetric flasks. The

appropriate amount of 1000 ppm standards is measured into the flasks using the

volumetric pipettes. The nitric acid from the large flask is then transferred using

any clean pipette to fill the volumetric flasks up to their fill line, taking care to mix

the solution periodically (by closing them with their cleaned glass stoppers). The

high standard, quality control, and remaining matrix are then dispensed into the

clean (and dry) plastic bottles. The bottles are labeled with the ion concentrations,

as well as the date. If there is enough solution left after the measurements, the

standards may be reused.

Ce inhomogeneity in NCCO

The data available from an ICP measurement are the concentrations of the Nd, Ce,

and Cu ions for each test tube. For every sample, the Ce concentrations for the
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Figure 2.17: Ce concentration as a function of position along the diameter at the
top and bottom of crystal Eugene24, nominally x = 0.121.

three test tubes are averaged. There are actually a few different ways of calculating

the Ce concentration. The simplest is to assume that the Cu concentration is 1 per

formula unit and report the ratio of Ce and Cu values. This is what is used in this

Thesis when quoting “actual” Ce concentrations. Another method is to assume the

Nd and Ce concentrations together add to 2. And the final is to assume that the

Nd, Ce, and Cu concentrations together add to 3. The first and last of these three

methods are compared in Figure 2.17. The systematic difference indicates a slight

deficiency of Cu and a slight excess of Nd.

Figure 2.17 also shows how the measured Ce concentration can change de-

pending on the position in the crystal. The figure shows the Ce concentration as

a function of position across the diameter of the crystal, where the two extreme

positions indicate the surface of the crystal cylinder. The circles and triangles in-

dicate measurements from the top (just above the neutron piece) and bottom (just

below the neutron piece), respectively, and are separated by about 4 cm. Because it

is desirable to have samples with homogenous Ce concentration, the more recent
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crystals have had their surface portions removed with a polisher to a depth of

approximately 1 mm. The ICP data from the surface regions are discarded, and the

remaining data from the top and bottom pieces are used to estimate the average Ce

concentration (and the spread in Ce concentration) of the sample measured with

neutron scattering.

It has recently come to my attention that a low-oxygen atmosphere for the

growth may affect the Ce inhomogeneity of NCCO crystals [24, 45]. Experimenting

with the growth atmosphere may be an avenue for future study.

2.3.3 Laue diffraction

Although visible grain boundaries on the surface of a grown crystal indicate multi-

ple grains, a crystal with a smooth surface may or may not be a single grain. While

neutron scattering can be used in principle to check whether a crystal contains

multiple grains, and is commonly used for a final “crystal check” before actual

measurements begin (see Section 2.4 below), time at the neutron spectrometer is

precious. Our research group uses a Laue diffractometer at Stanford to check the

integrity of the crystal structure of a sample, and to find a rough orientation of its

crystal axes before neutron scattering measurements are performed.

Laue diffraction was in fact the method used in 1912 by Max von Laue in the

first X-ray diffraction studies that elucidated the crystalline structure of solids [46].

It is a diffraction technique that uses a range of X-ray energies, rather than the more

typical monochromatic beam employed in most modern scattering techniques.

Scattering with a monochromatic (neutron) beam is described in Section 2.4 and

discussed in detail in Appendix B. However, I provide here a brief real-space

description of diffraction to illustrate the advantages of the Laue technique for

crystal checks and alignment.

In the textbook description of Bragg diffraction, a beam with wavelength λ is

incident on a set of planes at an angle θ from normal incidence and reflected at

the same angle θ. The reflected wave constructively interferes (and thus scatter-

ing occurs) only when the path length difference equals an integral number of
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wavelengths. The formula is

2d sinθ = nλ , (2.3)

where d is the spacing between planes and n is an integer. This means that, given

a monochromatic beam pointed at a sample, the crystal axes must be oriented

precisely so that the angle between the vector normal to the planes and the beam is

θ. Moreover, for different sets of planes, and thus different values of d, the crystal

axes must be oriented differently for scattering to occur. Given a random unknown

orientation of the crystal axes, the chance is quite low that any Bragg diffraction

occurs.

In Laue diffraction, the beam is composed of a continuum of wavelengths, typ-

ically resulting from Bremsstrahlung: a beam of electrons with suitable energies is

shot at a target (tungsten),18 and X-rays are produced when the electrons decelerate

in the material. Given this Laue beam incident on a sample, every set of planes

with spacing d at any angle θ to the beam can produce scattering, provided the

corresponding wavelength λ lies in the range of wavelengths. Consequently, a

pattern of scattered X-rays will form with any random orientation of the crystal

axes. Laue diffraction thus has the advantage of immediate detection, whereas the

single-wavelength techniques used for more precise measurements require precise

alignment for scattering to occur.

Because X-rays do not penetrate very far into a solid,19 a backscattering setup

is used in which an area detector is positioned on the same side of the sample as

the incident beam. The sample is mounted on a goniometer which can be used to

change the orientation of the crystal relative to the incident beam while looking

at the Laue pattern from the detector on a computer screen. A Laue pattern with

high symmetry indicates orientation along a high-symmetry axes of the crystal

structure. The pattern may be compared with previous measurements to confirm

the axis orientation. Figure 2.18 shows the Laue pattern along the c-axis for an

18Tungsten is a heavy enough element so that its core-level excitations are too large to be excited.
In a target composed of a lighter element, these core-level excitations would be excited and produce
a spectrum of X-rays with sharp characteristic frequencies.

19The penetration depth for the hard X-rays used in Laue instruments is on the order of a few
µm.
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Figure 2.18: Laue backscattering pattern along the c-axis in NCCO crystal Eu-
gene19, nominally x = 0.125. The a-axis ([100]-direction) is horizontal and vertical,
and the [110]-direction is along the diagonals. The open circle in the middle indi-
cates the opening in the detector through which the X-rays are emitted.

NCCO crystal.

For NCCO, the c-axis is usually perpendicular to the growth direction. The

implies that growth perpendicular to the c-axis is faster than growth along the

c-axis, so that grains that form with the c axis perpendicular to the growth direction

eventually dominate other grains.

In addition to alignment, the Laue instrument is used to check the macroscopic

integrity of the crystal structure of a sample. Using motors attached to the sample

stage, the sample is moved horizontally and vertically to check whether the Laue

pattern changes. Because the X-rays do not penetrate very far into the sample, it

is also necessary to turn the sample around to check whether the Laue pattern is

reversed. Only samples which appear to be single-grain from Laue measurements

are chosen for neutron scattering measurements.
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2.4 Neutron scattering

This Section describes the neutron scattering techniques used in the measurements

of NCCO detailed in the following two Chapters of this Thesis. Neutron scattering

is the principal tool for measuring the magnetic structure and dynamics of a solid.

Its advantages can be illustrated by considering the basic properties of the neutron.

The first is that the neutron has no electric charge; this allows it to penetrate

deeply into solids, and provides a true bulk measurement of physical properties.

Neutrons interact with matter in two distinct ways: via the nuclear force and via the

electromagnetic force through the neutron’s magnetic moment. With respect to the

scattering of solids, these interactions allow neutrons to probe the arrangement of

the nuclei (i.e., crystal structure) as well as magnetic fields due to orbital moments

and/or the arrangement of unpaired electron spins (i.e., magnetic order).

Neutron scattering is particularly effective because of a fortunate coincidence:

neutrons thermalized by the heavy-water moderator surrounding a reactor core

(kept at approximately room temperature) have wavelengths on the order of

angstroms, which is ideal for probing atomic distances, while the energies of

“thermal” neutrons (on the order of tens of meV) are ideal for probing the many

excitation processes of interest in solids [47]. In comparison, photons with suitable

wavelengths (i.e., X-rays) have energies that are six orders of magnitude larger,

and therefore require an energy resolution correspondingly more precise to probe

the same energy scales. Note that although magnetic scattering is possible with

X-rays, the cross section is many orders of magnitude smaller than for neutrons.

Consider a beam of neutrons with momentum20 ki incident on a sample. In a

scattering experiment one measures the number of neutrons as a function of their

scattered momenta k f . The energy and momentum of a neutron are related by

E =
~2k2

2mn
, (2.4)

20k is technically the wavevector, and the momentum is p = ~k
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and the physically important parameters turn out to be

~ω = Ei − E f (2.5)

Q = k f − ki , (2.6)

where ~ω is the energy transfer21 and Q is the momentum transfer.22 The scattering

is said to be elastic or inelastic when the energy transfer is zero or non-zero,

respectively. Elastic scattering measures the static structure (nuclear or magnetic)

of the system, whereas inelastic scattering probes excitations, i.e., deviations from

the time-averaged structure.

2.4.1 Neutron scattering cross section

The following formulas for the neutron scattering cross section are derived in detail

in Appendix B.

Elastic nuclear scattering. The cross section for elastic nuclear scattering from a

crystal lattice is given by (B.81):

dσ
dΩ

∣∣∣∣∣
nuc,el

= N
(2π)3

v0
|FN(Q)|2

∑
i

δ(Q −Gi) , (2.7)

where N is the number of unit cells, v0 is the volume of the unit cell, the Gi are the

reciprocal lattice vectors, and

FN(Q) =
∑

j

b jeiQ·d je−W j (2.8)

is the static nuclear structure factor. The vectors d j describe the positions of the

nuclei in the unit cell, and b j is the average scattering length of the j-th atom. The

W j contribute to the Debye-Waller factor (the decrease in coherent scattering due

21Although the energy transfer is ~ω, the ~ is frequently omitted, as in “ω = 3 meV.”
22Note that I use the convention from [47], in which the momentum and energy transfers have

different signs. See Footnote 2 on page 146.
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to thermal motion), usually written as e−2W. The formula shows that nuclear elastic

scattering occurs only when the momentum transfer Q coincides with a reciprocal

lattice vector G, and this statement is the momentum-space equivalent of the Bragg

condition (2.3). The relative intensity of Bragg peaks is determined by the structure

factor.

In practice, the lattice structure of the crystals is already well known, and

the nuclear Bragg peaks are used to align the samples in the spectrometer at the

beginning of an experiment.

Inelastic nuclear scattering. The cross section for inelastic nuclear scattering is

primarily due to one-phonon scattering, which is given by (B.94):

d2σ
dΩdE f

∣∣∣∣∣∣
1ph

=
k f

ki
N

∑
m

n(ωm) + 1
2ωm

|FN(Q)|2δ(ω − ωm(Q)) , (2.9)

where ωm(Q) is the dispersion of the m-th phonon branch, n + 1 is the Bose popu-

lation factor given by

n(ω) + 1 =
1

1 − e−~ω/kBT
, (2.10)

and the dynamic nuclear structure factor is

FN(Q) =
∑

j

b j√
M j

(Q · emj)eiQ·d je−W j , (2.11)

where M j is the mass of the j-th atom and emj is the polarization of the j-th atom in

the m-th phonon branch.

While the measurement of phonon spectra in the high-Tc cuprates is an impor-

tant subject [48], this Thesis is concerned with the magnetic spectrum. Phonon

measurements are, however, used as part of a normalization procedure to deter-

mine the absolute units of the magnetic susceptibility.23 In principle, all of the

quantities in (2.9) and (2.11) are calculable, but the formula simplifies further when

23Absolute units may also be calculated by measuring several nuclear Bragg peak intensities, but
this method is complicated by extinction due to multiple scattering.
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considering acoustic phonons in the limit ω→ 0. In this case, the polarization e j of

all of the atoms in the unit cell is the same. The factor Q · e can then be taken out

of the sum, and the formula for the cross section becomes

d2σ
dΩdE f

∣∣∣∣∣∣
acoustic

= A
k f

ki
~2N

n(ω) + 1
2E

∣∣∣∣∑
j

b j√
M j

eiQ·d j

∣∣∣∣2 (Q · em)2δ(E − Em(Q)) , (2.12)

where the ~2 is due to changing from ω to E = ~ω and the Debye-Waller factor e−2W

has been ignored, because it only becomes significant at relatively high tempera-

tures. N is the number of unit cells,24 most easily given in units of moles. If the

b j are given in fm, the M j in atomic mass units (amu), Q in Å
−1

, and E in meV,

then ~2 is best given as ~2 = 4.18 amu meV Å
2
, and the cross section has the units

of fm2 mol/meV. A is the prefactor that must be determined for the particular

spectrometer and neutron flux used; it can be thought of as the conversion factor

between fm2 mol/meV and detector counts per monitor rate.

Because the formula for the phonon cross section was derived assuming a

perfectly harmonic system, one must take into account the finite phonon lifetime

by replacing the delta function with a Lorentzian of the form

δ(ω − ωm(Q))→
1
π

Γm(Q)
Γ2

m(Q) + (ω − ωm(Q))2
, (2.13)

where Γ is the Lorentzian half-width at half-maximum.25 Taking this model into

account, the measured signal is then deconvolved with the instrument resolution

to find A,26 and A is used to calculate the absolute units of magnetic susceptibility

(see the Section on inelastic magnetic scattering below).

24The number of unit cells may be different from the number of formula units, the definition for
N used in (2.18) for inelastic magnetic scattering.

25The ResLib package [49] provides a “single-mode” convolution routine that has built-in func-
tionality for the Lorentzian broadening.

26Care needs to be taken with the contribution of harmonics to the monitor rate and the 1/ki
monitor efficiency (see Section 2.4.2). Note that the ResLib package [49] takes care of the k f /ki factor,
and that it can be set up to take the monitor efficiency into account as well.
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Elastic magnetic scattering. In this Thesis, elastic magnetic scattering is used

to determine whether the system is magnetically ordered. It is, in fact, a direct

measure of the order parameter. For antiferromagnetically-ordered systems like

the undoped cuprates, the magnetic unit cell is double the size of the structural

unit cell, and the cross section is given by (B.154):

dσ
dΩ

∣∣∣∣∣
mag,el

= NM
(2π)3

v0M

∑
i

δ(Q −GMi)|FM(Q)|2 , (2.14)

where NM is the number of magnetic unit cells, v0M is the volume of the magnetic

unit cell, and the GMi are the magnetic reciprocal lattice vectors. The magnetic

structure factor is given by

FM(Q) =
∑

j

γr0 f j(Q)〈S⊥ j〉eQ·d je−W , (2.15)

where j labels the spins in the magnetic unit cell, γr0 is the interaction length of

neutrons with electron spins,27 f (Q) is the magnetic form factor, and 〈S⊥〉 is the

spin28 projected onto the plane perpendicular to Q. Antiferromagnetic Bragg peaks

occur at reciprocal lattice positions that are distinct from nuclear Bragg reflections,

making it easy to distinguish the two.

Note that according to (2.14), the intensity of magnetic Bragg peaks is linearly

proportional to NM, but proportional to the square of S. By performing measure-

ments of different samples under identical conditions, one can calculate the ratio of

the ordered moment strength (assuming the same magnetic volume fraction NM)

S1

S2
=

√
I1

I2
. (2.16)

For NCCO, there is a complication due to the Nd3+ moments, which order around

27In another fortunate coincidence, the magnetic interaction length γr0 and the nuclear scattering
lengths b are all around the same magnitude of a few fm (10−15 m), which means that the typical
nuclear and magnetic intensities are similar.

28In general, S can represent the total angular momentum J = L + S. In the case of the magnetic
moment of Cu2+, the orbital moment is quenched, and L is effectively zero.
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3 K,29 but whose effects can be observed up to a few tens of K [15]. The measurement

of the low-temperature Cu2+ ordered moment must take the effects of the Nd3+

moments into account. For Nd2CuO4, the intensities of two commonly studied

magnetic Bragg peaks are given by [50]30

I( 1
2 ,

1
2 , 1) ∝ (SCu fCu − 1.2 SNd fNd)2 ,

I(1
2 ,

1
2 , 3) ∝ (SCu fCu + 1.9 SNd fNd)2 .

(2.17)

Thus one can calculate the strengths of the moments of both ion species by measur-

ing both Bragg peaks. In practice, the (1
2 ,

1
2 , 1) Bragg peak intensity has a minimum

in its temperature dependence around 6 K, and the intensity of the ( 1
2 ,

1
2 , 3) peak

is recorded at this “compensation” temperature; it is this value that is compared

among different NCCO samples.

Inelastic magnetic scattering. The inelastic magnetic scattering cross section is

given by (B.181)31

d2σ
dΩdE f

∣∣∣∣∣∣
mag,inel

= (γr0)2 k f

ki
N| f (Q)|2e−2W n(ω) + 1

2πµ2
B

χ′′(Q, ω) , (2.18)

where µB is the Bohr magneton and χ′′(Q, ω) is the imaginary part of the dynamic

magnetic susceptibility.

The dynamic susceptibility is the quantity of physical interest in most neutron

scattering experiments of magnetic materials. It is usually plotted in “arbitrary

units.” However, it is desirable to calculate the absolute units of χ′′ to be able to

compare the strength of the magnetism with other systems and with theoretical

calculations, or even to compare measurements of the same system on different

29The Cu2+ moments order spontaneously at higher temperatures, and the ordering of the Nd3+

moments is aided by polarization due to the ordered Cu2+ moments. When the Nd3+ moments
order, they have an effect, in turn, on the Cu2+ moments.

30Here (and throughout this Thesis) I use tetragonal notation, whereas [50] uses orthorhombic
notation. Also note that, while the spin structure proposed for Nd2CuO4 in [50] differs from that
shown later in [51] (and shown in Figure 3.5), these equations still hold.

31The Landé factor has been set to g = 2.
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spectrometers. The dynamic susceptibility is the generalization of the usual (static,

ω = 0) magnetic susceptibility, and thus has the same units. Both quantities

describe how a magnetic system responds to a magnetic field. The units are thus

(energy/field)/field. On the atomic scale, the appropriate unit for the magnetic

moment is the Bohr magneton µB = 5.788 × 10−5eV/T. The typical units for the

magnetic susceptibility are µ2
B/eV/f.u., where the formula unit (f.u.) refers to the

atoms as listed in the chemical formula.

Rewriting the inelastic magnetic cross section given by (2.18) gives

d2σ
dΩdE f

∣∣∣∣∣∣
mag,inel

= A
k f

ki
N(n(ω) + 1)(γr0)2 1

2π
| f (Q)|2

1
µ2

B

χ′′(Q, ω) , (2.19)

where the Debye-Waller factor has again been ignored. Here N is the number of

formula units, and the magnetic interaction length is γr0 = 5.39 fm. An empirical

formula for the Cu2+ magnetic form factor f (Q) in the cuprates is found in the

literature [52, 53]. The magnetic scattering data are deconvolved using the same

technique as for the phonon measurement, and the value of A found with phonons

(see the previous Section on inelastic nuclear scattering) is used to convert from the

number of counts to χ′′(Q, ω) in units of µ2
B/meV/f.u.

One more step is usually required to obtain a reliable value of the magnetic

susceptibility in absolute units. Because the susceptibility can be sharp in Q,

the signal is often resolution-limited in momentum. In those case, the integrated

area is a much more reliably extracted value than the intrinsic amplitude or width.

Consequently, the Q-averaged susceptibility χ′′(ω) is often the value that is plotted:

χ′′(ω) ≡

∫
χ′′(Q, ω) dQ∫

dQ
, (2.20)

where the integrals are defined to be taken over one Brillouin zone. Note that

χ′′(ω) has the same units as χ′′(Q, ω). In the cuprates, when the magnetism is

two-dimensional, there is no `-dependence (other than through the form factor),

and thus the integrals over ` cancel. In addition, the integral in the denominator
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Figure 2.19: Illustration of the basic components of a triple-axis spectrometer. The
monochromator determines the energy and momentum of neutrons incident on the
sample, and the analyzer selects the energy and momentum of neutrons scattered
from the sample.

is equal to 1 when working in reciprocal lattice units. Assuming an isotropic

two-dimensional Gaussian form for the intrinsic signal gives

χ′′(Q, ω) = χ′′(ω)
1

2πσ2 exp
(
−

(h − h0)2 + (k − k0)2

2σ2

)
, (2.21)

where σ is the Gaussian width in reciprocal lattice units. This model is used in

the deconvolution of the data. Typically, each constant-energy scan in momentum

space is deconvolved independently using a model with constant χ′′(ω) and σ.32

Finally, the deconvolved values of χ′′(ω) can be plotted as a function of ω in the

absolute units µ2
B/eV/f.u.

2.4.2 Triple-axis spectrometer

Figure 2.19 shows the main components of a triple-axis neutron-scattering spec-

trometer. The type of neutron source used in this Thesis work is the nuclear

reactor.33 The high-energy neutrons that are liberated in nuclear fission are ther-

mally moderated inside a tank of heavy water (T ∼ 300 K) surrounding the reactor

32If the data are of high enough quality, one could allow for an energy-dependent value of σ in
the model.

33The other type is a spallation neutron source, in which pulses of high-energy protons impact
a heavy-element target to produce pulses of high-energy neutrons (which can then be moderated).
Such a source is typically useful in time-resolved measurements of neutron energies, but the time-
averaged flux of neutrons can be low compared to nuclear reactor sources.
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core. Neutrons may also be moderated by liquid hydrogen (T = 20 K) or heated

graphite (T ∼ 1400 K) to obtain ‘cold’ or ‘hot’ energy distributions, respectively.

Beam tubes which avoid a direct line-of-sight with the core allow these moderated

neutrons to enter the experimental hall.

In the spectrometer there are three changes in the direction of the neutron

path: at the monochromator crystal, at the sample, and at the analyzer crystal.

The monochromator and analyzer are specially manufactured crystals (typically

of pyrolytic graphite34) which are used to select neutrons of specific energies via

Bragg reflection: the monochromator selects the energy Ei of the neutrons incident

on the sample, and the analyzer selects the energy E f of the neutrons scattered

from the sample that are allowed to enter the detector.35 The monochromator and

analyzer, together with the geometry, determine the momenta ki and k f of incident

and scattered neutrons, respectively. A computer is used to control the six motors

that move the angular position (θ) and angular deflection (2θ for reflection) at the

three axes; once the sample is aligned, one only needs to input the desired Q and

ω to move the motors to the proper positions.

For most spectrometers, the scattering is limited to the horizontal plane. Thus

the momentum transfer Q is limited to a corresponding plane in Q-space, and

this scattering plane is chosen based on the requirements of the experiment. For

the quasi-two-dimensional cuprates, a common choice is the (hk0) plane, with the

(001) direction (the c-axis) perpendicular to the scattering plane. Another common

choice is (hh`), which is the plane defined by the (110) and (001) directions.

Alignment of a crystal involves a total of five degrees of freedom at two (usually)

orthogonal Bragg positions. One degree of freedom is the angular position (θ) of

the sample table. Two more are the tilt of the sample table (motor-controlled

goniometers) along the two axes which bring the desired crystal plane to the

horizontal. There is a limit to how much the sample table can tilt, and thus coarse

34Pyrolytic graphite is a form of carbon in which sheets of graphene are stacked as in graphite,
but whose relative planar orientations are random. Bragg scattering thus only occurs for Q perpen-
dicular to the planes.

35A neutron detector utilizes pressurized 3He gas. 3He nuclei are very efficient at absorbing
neutrons, and the nuclear reaction releases energetic charged particles that can be detected by, e.g.,
a Geiger counter.



2.4. NEUTRON SCATTERING 55

adjustments to the sample orientation are sometimes made to the sample holder

itself. Finally there are the (potentially different) lattice constants along the two

directions; a ‘θ-2θ’ scan is performed in which one changes the magnitude of Q

without changing its direction.

There is a great deal of freedom in choosing the sample environment. In the

experiments detailed in this Thesis, temperatures as low as 1.4 K and as high

as 450 K were accessed, as well as magnetic fields as high as 6.5 T. All sample

enclosures, as well as the sample mounts, are constructed of aluminum, an element

that is practically transparent to neutrons.36

While the formulae in Section 2.4.1 assume definite values of ki and k f , in

a real spectrometer the detector counts neutrons with ranges of initial and final

momenta. The rate of detection for a momentum transfer of Q0 +∆Q and an energy

transfer of ω + ∆ω when the spectrometer is set to (Q0, ω0) is called the resolution

function, which has a somewhat complicated dependence on the spectrometer

configuration. One method of controlling the resolution is to use collimators: these

are parallel blades of cadmium (an element with a high neutron absorption cross

section) that limit the horizontal angular spread along the straight sections of the

neutron path. Tighter collimations improve the planar resolution at the expense

of neutron flux. The calculation of the resolution function for a spectrometer

using collimators is detailed in Appendix C. A point of note is that, for two-axis

energy-integrating scans (see Section 2.4.3), calculations show that the momentum

resolution is predominantly determined by the collimator after the sample.

Another aspect of modern spectrometers that affects the resolution function

is the use of focusing monochromators and analyzers. A horizontally-focusing

monochromator, for example, consists of several vertical strips of crystal which

move and/or rotate (typically to a curved arrangement) so that the Bragg condition

is better satisfied across the entire monochromator area, and also so that more of the

original neutron flux is incident on the sample. Useful neutrons no longer have par-

allel trajectories, and thus collimators are undesirable in such focusing experiments.

Because of the better satisfied Bragg condition across the curved monochromator,

36Aluminum powder reflections can still give rise to spurious elastic scattering.
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the energy of the incident neutrons is better defined. Consequently, in a setup

using focusing monochromators and analyzers, the energy resolution is typically

improved. However, because the neutron trajectories are more poorly defined, this

comes at the expense of a poorer momentum resolution.

In principle, given a particular point in (Q, ω)-space, there is still a degree

of freedom in choosing Ei (or E f ). In practice, however, this choice is limited

to a set of discrete values. These are the neutron energies at which particular

filters are most effective at removing higher-order neutrons. Bragg reflection at

the monochromator or analyzer crystal allows the reflection of neutrons at the

fundamental wavelength λ, but also at λ/2, λ/3, etc. (corresponding to energies

of 4E, 9E, etc.) Filters are used to remove this higher-order contamination, and

they are effective only in certain ranges of energy. The most common energies are

5 meV (with a beryllium filter), 13.7 meV, 14.7 meV, 30.5 meV, and 41.0 meV (with a

pyrolytic graphite filter). In an inelastic experiment, there is still a choice of placing

the filter before or after the sample (i.e., fixing Ei or E f to one of these values).

A neutron monitor is a device placed at the opening of the beam tube (between

the monochromator and the sample) that measures the flux of neutrons. The

count rate at the detector is normalized to the monitor rate so that a change in

the flux of incident neutrons does not introduce any systematic errors. The flux of

neutrons from a reactor is dependably constant; rather, the changes in flux occur

when changing the incident energy. The contribution from higher-order neutrons

changes as well, and thus when changing Ei, one must apply a correction factor

that has been previously determined for the spectrometer.

The efficiency of the monitor is proportional to 1/ki.37 This actually cancels the

factor of 1/ki in the scattering cross section. Therefore, in an experiment with k f

(and E f ) fixed, the factor k f/ki can be ignored, and the measurement is directly

proportional to the scattering function S(Q, ω) (see Appendix B). In an inelastic

magnetic neutron scattering measurement, dividing by the Bose factor (n+1) yields

a value that can be plotted as the dynamic susceptibility χ′′(Q, ω) in “arbitrary

units,” albeit still convolved with the spectrometer resolution function.

37This is stated, but never attributed, in [47].
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Figure 2.20: Illustration of the basic components of a two-axis instrument. Unlike
a triple-axis spectrometer, the detector collects neutrons of all final energies.

2.4.3 Two-axis energy integration

A simpler instrument and a predecessor of the triple-axis spectrometer is the two-

axis instrument, illustrated in Figure 2.20, in which the detector counts neutrons

with all final energies. Two-axis instruments measure the energy-integrated cross

section dσ
dΩ

, and are still used in modern times in the form of neutron diffractometers

(usually with an array of detectors) to determine crystal structures from the pattern

of Bragg reflections. A rarer use of a two-axis setup is the energy integration

method described here. With a two-axis instrument, energy integration takes place

automatically, of course, but usually along with a meaningless integration over Q.

This can be avoided in the special case of low-dimensional magnetism [54].

Although the magnetically ordered state of the cuprates extends in three dimen-

sions, the magnetic coupling between planes is much weaker than the coupling

within the planes. Thus in the disordered state (at high temperatures or at high

carrier doping), the magnetism is two-dimensional. In Q-space, this means that the

magnetic signal is largely independent of `.38 In the two-axis energy integration

method, the scattering plane is (hh`) and k f is aligned parallel to the c-axis, so that

all of the detected neutrons have the same in-plane momentum transfer. This is

illustrated in Figure 2.21.

In practice, two-axis measurements are performed on a triple-axis instrument.

The instrument is put into “two-axis mode” by removing the analyzer,39 fixing the

38Excepting the relatively slowly-varying magnetic form factor f (Q).
39Equivalently, the analyzer can be rotated to be perpendicular to the beam; the analyzer crystal

is usually thin enough to be effectively transparent.
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Figure 2.21: Q-space diagram illustrating the two-axis energy integration method
for a two-dimensional magnetic system.

detector arm parallel to the analyzer arm, and removing the collimator between the

analyzer and detector. Because all final energies are desired, there must be no filter

after the sample. The two-axis scans are performed by instructing the instrument to

perform a certain “elastic” scan in Q-space. Given the desired in-plane momentum,

the ` value of Q is calculated so that k f is properly parallel to the c-axis for the

whole scan.40

The energy-integration aims to measure the instantaneous (equal-time) scatter-

ing function:

Sinst(Q2D) =

∫
S(Q2D, ω) dω . (2.22)

In practice, the integration ranges from ω = 0 to ω = Ei, so Ei must be large

40The formula is
` = 1

c∗ (ki −

√
k2

i − a∗2h2) ,

where a∗ = 2π/(a
√

2) and c∗ = 2π/c are the reciprocal lattice vectors along (hh0) and (00`). Because
this trajectory in Q-space is curved, and because the computer software controlling the instrument
is typically limited to straight scans in Q-space, the trajectory is usually divided into multiple
segments.
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Figure 2.22: Example of two-axis data, from a measurement of NCCO with x =
0.118 at a temperature of T = 220 K. The data are fit (solid curve) to a two-
dimensional Lorentzian (2.23) convolved with the instrument resolution (dashed
curve). The fit yields a correlation length value of ξ/a = 23 ± 6.

enough to cover the relevant dynamic range.41 This range is smallest (and thus

the measurements most accurate) near a continuous phase transition to long-range

magnetic order. The measurements described in Chapter 3 were made using Ei =

14.7 meV. One can check whether this Ei is sufficiently high by repeating some

measurements at higher Ei. This test has been performed on La2CuO4 [55] and the

system La2Cu1−z(Zn,Mg)zO4 [56] (described in Section 3.1.2), but was not repeated

for NCCO.42

Quantitative measurements must, of course, include the effects of the instrument
41At finite temperatures, scattering from negative ω is included. The integral can be considered

to be over ω = 0 to ω = Ei with the (combined) population factor 2n + 1 in the integrand. The effects
of temperature and instrument resolution on the integration are discussed in Section A.3.

42For x < xc (see Chapter 3), there is good reason to believe that Ei = 14.7 meV yields a good
estimate of the instantaneous correlation length. Similar to La2CuO4 [55] and La2Cu1−z(Zn,Mg)zO4
[56], the system approaches a second-order transition to antiferromagnetic order. For x > xc, further
measurements with larger Ei are, in principle, desirable for a more quantitative result.
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resolution. The resolution function calculations are different from the triple-axis

case and are discussed in Appendix C. The focus of Chapter 3 will be the measure-

ment of the instantaneous antiferromagnetic correlation lengthξ. The two-axis data

are fit to the instrument resolution convolved with a two-dimensional Lorentzian

Sinst(q2D) =
S(0)

1 + q2
2Dξ

2
=

A
q2

2D + 1/ξ2
, (2.23)

where q2D = |q2D| is the planar distance in reciprocal space from the center of the

signal at the antiferromagnetic wavevector ( 1
2 ,

1
2 ). Example data from a two-axis

measurement are shown in Fig. 2.22.

While energy-dependence information is lost, a major advantage of the two-

axis measurement is the significantly improved counting rate. Meaningful data

can be collected even on older instruments with lower flux at which inelastic

measurements are not feasible. By using tight collimations, the Q-space resolution

is significantly better than for triple-axis scans. The technique has been used on

two-dimensional magnetic systems as far back as 1971 [54].

2.5 µSR

Muon spin relaxation/rotation/resonance43 (µSR) is a technique that probes the

internal magnetic field of a sample using the magnetic moment of muons. At a

µSR facility, a beam of spin-polarized muons is incident on a sample. A muon that

comes to rest inside the sample will precess in response to the local magnetic field

before decaying with a lifetime of 2.2 µs. Because the decay products of the muon

are directed preferentially with respect to its spin, the final spin direction can be

inferred statistically from the detection of the decay.

Polarization of the muons occurs during their production. A beam of high-

energy (∼ 500 MeV) protons hits low-Z nuclei such as those of carbon or beryllium;

43The mnemonic acronym µSR was coined in 1974, and was intended to evoke an association
with nuclear magnetic resonance (NMR) and electron spin resonance (ESR); the term is used in any
situation where the muon magnetic moment is used to probe matter [57].
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one of the possible results is the production of a positive pion (π+) that is nearly

at rest.44 This decays after 26 ns into a positive muon (µ+) and a neutrino. These

muons are emitted isotropically with a relatively low kinetic energy of 4.1 MeV,45

and because of maximal parity violation, they all have their spins polarized oppo-

site to their momentum [57].

When a positive muon decays at rest (e.g., inside the sample), it decays into a

positron (e+) and two neutrinos. Again because of parity violation, the positron

preferentially decays in the direction of muon spin polarization with an angular

distribution of

W(E, θ) = 1 + a(E) cos(θ) , (2.24)

where θ is the angle of the positron direction with respect to the muon spin di-

rection, and a is an asymmetry parameter that depends on the positron energy E.

When all positron energies are sampled, the effective value is a = 1
3 .

In a typical setup, the muon polarization is along the beam direction, and

two positron detectors are placed forward (F) and backward (B) of the sample

to statistically determine the final muon spin direction projected along the initial

spin direction. The raw asymmetry is calculated as (B − F)/(B + F) and is plotted

versus time of decay. Because the muon starts out polarized towards the backward

detector, the asymmetry signal is a maximum at t = 0 and decays in different ways

at later times depending on the magnetic field environment at the muon site(s).46

Generally speaking, if there is a static magnetic field of the same strength and

direction at each muon site (e.g., in a magnetically ordered system), the muons

precess, and the asymmetry signal oscillates like

A(t) ∝ e−λt cos(ωt + φ) , (2.25)

where ω is the oscillation frequency (proportional to the internal magnetic field)
44Among the other possibilities are the production of negative pions, which are immediately

captured by the nuclei, or pions that are not at rest, which do not decay into 100% polarized
mono-energetic muons.

45Whereas the rest mass of the muon is 106 MeV.
46Calculations can estimate the location of the muon site in the crystal lattice. Interpretation of

data can become more complicated when there is more than one muon site.
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Figure 2.23: Example µSR data for a sample of NCCO with x = 0.123 in a weak
transverse field of 40 G at T = 175 K. In such a setup the muon spins precess with
maximal amplitude.

and λ is the decay rate of the envelope. If the magnetic field at the muon sites is

randomly fluctuating, such as in a paramagnetic state, the signal relaxes like

A(t) ∝ e−λt , (2.26)

where λ is the relaxation rate.47 The muon signal decays faster (with a larger

relaxation rate) in a more slowly fluctuating internal magnetic field. If there are

multiple behaviors, the signals simply add.

The total muon asymmetry can be calibrated by applying a weak transverse field

at high temperatures (in the paramagnetic state of the sample). Such a field causes

maximal precession of the muons, and in the paramagnetic state the envelope of

the oscillation decays very slowly. An example of such a measurement is shown in

47There is, of course, room for much more sophisticated analysis. I am not familiar enough with
µSR to provide any more details, but nothing further is needed for our current limited data.
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Figure 2.23. Fitting the data to (2.25) plus a constant yields values for the maximal

asymmetry and for the baseline (i.e., the asymmetry value for unpolarized muons).

For the measurements of NCCO samples described in Section 3.2.3, the Néel

temperature was determined using both zero-field and longitudinal-field measure-

ments. In the zero-field case, the data above the ordering temperature behave like

(2.26) and the data below the ordering temperature behave like (2.25). In general,

the data are fit to a sum of the two behaviors. A plot of the rotation frequency in

(2.25) as function of temperature is then similar to the order parameter measure-

ment using elastic neutron scattering (see Section 3.2.1).

In longitudinal-field measurements, a magnetic field is applied along the orig-

inal direction of muon polarization. Such a field does not cause precession of the

muon spins and overwhelms any smaller static field caused by magnetic order that

would otherwise cause precession. A longitudinal field does not, however, affect

the relaxation due to internal magnetic field fluctuations. Plotting the relaxation

rate λ as a function of temperature then yields a peak at the transition tempera-

ture: at low temperatures the relaxation rate is low because the magnetic system

is ordered, whereas at high temperatures the relaxation rate is low because the

magnetic system fluctuates very quickly. This measurement of λ is similar to 1/T1,

where T1 is the spin-lattice relaxation time in nuclear magnetic resonance (NMR)

terminology.

WhileµSR lacks the momentum information of neutron scattering, it is sensitive

to much longer timescales. As a rough illustration, consider that, while a typical

elastic neutron scattering measurement has an energy resolution on the order of

1 meV (∼ 0.1 THz), theµSR timescale is set by the muon decay rate of 2.2µs (∼MHz),

which is five orders of magnitude longer. Consequently, something that appears

to be static in a neutron scattering measurement may be revealed as fluctuating

using µSR. In particular, the magnetic ordering temperature according to µSR can

be lower than that measured by “elastic” neutron scattering (see Section 3.2.3).

Another difference between the techniques is that µSR is a probe sensitive to a

different set of behaviors in the same sample, whereas neutron scattering can only

measure the average behavior. For instance, the magnitude of an oscillating signal
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(calibrated using the weak transverse field data) can measure the magnetically

ordered volume fraction of a sample.



Chapter 3

Magnetic correlations in NCCO

In this Chapter, the two-axis neutron scattering technique is used to map out the

magnetic correlations in NCCO as a function of temperature and Ce concentration.

I find that there is no genuine overlap between long-range magnetic order and

superconductivity in NCCO.1 Theoretical background and previous two-axis neu-

tron scattering results are discussed in Section 3.1. Section 3.2 contains the results

of my experiments, and is followed by a discussion of the results in Section 3.3.

3.1 Background

3.1.1 Quantum nonlinear sigma model

In this Chapter, I use a theoretical result for the temperature dependence of the

antiferromagnetic correlation length (3.2). Although this equation is not derived

here, it is instructive to discuss the context in which the theory was developed.

Soon after the high-Tc cuprates were discovered, there was intense interest to

understand the magnetism of these complex materials, starting from the Mott-

insulator parent compounds. In particular, the theoretical effort centered around

the Heisenberg model (Equation 1.2), with spin S = 1
2 , on a two-dimensional square

1While this Chapter is largely based on [19], I show newer data collected on higher-quality
samples (see Section 2.3.2).

65
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lattice. Although the parent compounds are known to have antiferromagnetically

ordered ground states (Section 1.2.3), there is no obvious reason that the ground

state of the two-dimensional model should be ordered.2

The quantum nonlinear sigma model (QNLσM) was developed to derive the

static and dynamic properties of the spin- 1
2 Heisenberg antiferromagnet based

on the assumption of long-range order at T = 0 [58]. The derived properties

were found to agree well with neutron scattering results on La2CuO4 [59], lending

confidence to the initial assumption of a long-range ordered ground state. The

consensus now is that the spin-1/2 Heisenberg model on a square lattice does

indeed have robust magnetic order at T = 0, although there is yet to be a rigorous

proof [60].

The QNLσM is the simplest effective continuum model describing the long-

wavelength dynamics of a lattice Heisenberg model [58]. A microscopic derivation

exists in the semiclassical limit S → ∞ [61], but the parameters of the model are

difficult to determine for smaller S. The two parameters of the theory are the spin

stiffness3 ρs and the spin-wave velocity cs, and these are treated as phenomenolog-

ical input parameters determined from fits to experiments and simulations.4

Renormalization-group analysis leads directly to an exponentially diverging

2The ground state of any Heisenberg antiferromagnet is non-trivial (unlike, e.g., for the Ising
model, which has a discrete order parameter). In particular, the state with full staggered magnetiza-
tion cannot be the ground state, since it is not an eigenstate of the Hamiltonian. Generally, one says
that the staggered moment is affected by quantum fluctuations [58], and a spin- 1

2 system exhibits
the strongest fluctuations.

3The spin stiffness is the energy cost (per spin) of introducing a twist of θ between neighboring
rows in the ground state. It is defined as [62]

ρs =
1
N

d2E0(θ)
dθ2

∣∣∣∣∣∣
θ=0

,

where E0 is the energy of the ground state and N is the number of spins. In the limit of large S,
ρs = JS2 [58]. The spin stiffness is positive for a long-range ordered system and zero in the absence
of long-range order.

4Note that since there are two independent parameters J and S in the lattice model, there are two
independent parameters ρs and cs in the corresponding low-temperature continuum model. These
two values have been calculated in terms of J and a from numerical simulations in the special case
of the spin- 1

2 nearest-neighbor Heisenberg antiferromagnet (see, e.g., [63]).



3.1. BACKGROUND 67

Te
m

pe
ra

tu
re

Coupling constant g

renormalized 
classical

quantum
disordered

quantum
critical

gc

Figure 3.1: Phase diagram of the quantum nonlinear sigma model as a function
of temperature and coupling parameter g. The correlation length ξ behaves dif-
ferently in the three regimes, as discussed in the text. The thick line indicates
antiferromagnetic order at T = 0.

correlation length as a function of temperature in the T→ 0 limit [58]:5

ξ(T) = Cξae2πρs/kBT , (3.1)

where a is the lattice spacing and Cξ is a dimensionless constant that depends on

the choice of the system. This relation is for the case in which there is assumed to be

long-range order at T = 0 (the “renormalized classical” regime). At large enough

values of the dimensionless coupling constant g ∼ ~cs/aρs, there is a “quantum

disordered” regime in which quantum fluctuations prevent order even at T = 0.

In this case the result is that the correlation length ξ approaches a finite value as

T → 0 [58]. At T = 0, these two regimes are separated by a quantum critical point;

at the critical coupling gc, the correlation length is expected to have a power-law

dependence of ξ ∝ T−1 [58]. Close to gc the correlation length crosses over between

5This equation is the result of two-loop renormalization-group equations, whereas earlier one-
loop results [64] led to an incorrect 1/T prefactor.
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the different behaviors as a function of temperature. Figure 3.1 illustrates these

three regimes of the phase diagram.

The relation (3.1) has been extended [65] to

ξ(T) =
e
8
~cs

2πρs

[
1 −

T
4πρs

+ O(T2)
]

e2πρs/kBT , (3.2)

where the constant Cξ from (3.1) has been calculated, and an O(T) correction has

been added. Further calculations [66] include such effects as the discreteness of the

lattice, but the data quality on NCCO presented in this Thesis does not justify the

use of these more sophisticated equations.

Before beginning the discussion of experimental results, note that the above the-

ory deals with a completely two-dimensional system. According to the Mermin-

Wagner theorem [67], it is impossible for a two-dimensional system with a contin-

uous order parameter to have a symmetry-breaking transition (such as for antifer-

romagnetic order) at a non-zero temperature. The undoped cuprates, on the other

hand, show three-dimensional magnetic order around TN ∼ 300 K. In most cases,6

the tetragonal symmetry and body-centered arrangement of the system causes a

frustration of the interplanar coupling; in Nd2CuO4 the exchange interaction be-

tween adjacent CuO2 planes is as low as J′ ∼ 10−8J [50]. This is too small to explain

the observed transition to three-dimensional order; the mechanism instead starts

with the XY anisotropy7 of about 10−4 that exists in the systems due to spin-orbit

coupling. As the temperature is lowered, this anisotropy leads to a cross-over from

two-dimensional Heisenberg to two-dimensional XY correlations. This allows for

a Kosterlitz-Thouless transition [68] (a non-symmetry-breaking order), in which

6In La2CuO4, an orthorhombic distortion of the lattice breaks the tetragonal symmetry, partially
lifting the interplanar frustration. This allows an effective exchange interaction of J′ ∼ 10−5 J between
adjacent CuO2 planes.

7 The Hamiltonian for the Heisenberg system (1.2) can be written as

H =
∑
〈i, j〉

(
JxSx

i Sx
j + JySy

i Sy
j + JzSz

i Sz
j

)
,

where Jx = Jy = Jz = J. In the case of XY anisotropy, Jx = Jy = JXY > Jz. As the temperature is
lowered in such a system, the correlations become more and more like those of a pure XY system,
in which the spins directions are restricted to the xy-plane.
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the planar correlation length begins to diverge [50, 69]; when this length becomes

large enough, the (otherwise weak) interplanar coupling causes three-dimensional

order to take over. Despite this mechanism for three-dimensional order, the results

of the two-dimensional QNLσM are robust outside the narrow regime of XY crit-

icality, as evidenced by the good agreement with experimental data on La2CuO4

[64] and Sr2CuO2Cl2 [70].8

3.1.2 Site-diluted antiferromagnet

The comparison of the QNLσM with experimental data was extended to the case of

the site dilution of the spins [56, 72]. The site-diluted nearest-neighbor Heisenberg

model is given by

H = J
∑
〈i, j〉

pip j Si · S j , (3.3)

where p = 1 on magnetic sites and p = 0 on nonmagnetic sites (with concentration

z). In the absence of quantum fluctuations, random dilution causes long-ranger

order to disappear above the percolation threshold zp ≈ 41%: there is a “geometric”

transition from an infinite cluster of nearest-neighbor interactions to unconnected

finite clusters. Until the publication of [72], it was unclear if the strong effects of

quantum fluctuations in the case of S = 1
2 might shift the phase transition to a

dilution concentration smaller than zp.

The experimental realization of the spin- 1
2 site-diluted Heisenberg antiferro-

magnet was La2Cu1−z(Zn,Mg)zO4 (LCZMO), i.e., the parent compound La2CuO4

with spin-1
2 Cu2+ ions replaced by non-magnetic Zn2+ and Mg2+ ions. Because Zn2+

and Mg2+ have ionic radii that are larger and smaller than Cu2+, respectively, it

was possible to grow crystals with large values of z, in particular to values above

zp. Measurements of the Néel temperature revealed that long-range order persists

all the way to a z = 39% sample, indicating that the quantum fluctuations in the

8Note that (3.1) and (3.2) only hold in the limit T→ 0. At experimentally accessible temperatures
(i.e., above TN) the equations do not agree with experimental data for S > 1

2 (e.g., S = 5
2 [71]).

Calculations have shown that quantitative agreement truly occurs only at much lower temperatures,
and that the good agreement for S = 1

2 at the measured temperatures is somewhat coincidental [63].
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Figure 3.2: Log-log plot of correlation lengthξ (in units of the planar lattice constant
a) versus inverse temperature J/T for LCZMO, where J = 135 meV ≈ 1570 K is the
value for undoped La2CuO4. The open symbols are data from neutron scattering,
and filled symbols are from Monte Carlo simulations of (3.3). The curves are fits to
(3.4) for z < zp and (3.5) for z > zp. Adapted from [56].

system do not noticeably shift the location of the percolation transition.

Above the Néel temperature of each sample, the two-axis energy-integrating

technique was used to measure the correlation length ξ(z,T) (see Section 2.4.3).

At lower dilution concentration z, ξ(T) effectively follows the form (3.2) of the

renormalized classical regime, despite the fact that the random dilution breaks the

translational symmetry that exists in the QNLσM.9 At higher z, near the percolation

threshold, the correlation length shows power-law behavior, indicating a critical

regime. The data for z > 30% were best fit to the heuristic cross-over form [56]

ξ(T) =
e
8

cs

2πρs

e2πρs/T

1 + (4πρs/T)−νT
, (3.4)

9The parameters cs and ρs were estimated from fits of ξ(T) to (3.2).
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where νT is the power-law exponent. Finally, for z > zp, the correlation length was

found to be finite at low temperatures, as expected, since the magnetic system is

broken up into finite-sized clusters. The data for z > zp were fit to the heuristic

form
1

ξ(z,T)
=

1
ξ0(z)

+
1

ξT(T)
, (3.5)

where ξ0 is the T = 0 value and ξT ∝ T−νT is the high-temperature power-law be-

havior. The model nature of LCZMO is apparent from the good agreement between

the experiment and quantum Monte Carlo simulations of (3.3) (see Figure 3.2).

3.1.3 As-grown NCCO

While the randomly site-diluted Heisenberg antiferromagnet can be studied ex-

perimentally by measuring LCZMO, it does not have any direct relevance to the

magnetism of hole-doped cuprates: as discussed in Chapter 1, doped holes reside

on the O 2p orbitals, introducing frustration and changing the magnetic nature of

the system. On the other hand, doped electrons tend to reside on the Cu ions;

this changes them to a full 3d10 configuration and renders them non-magnetic (to

a first approximation). Thus the electron-doped cuprates are somewhat similar to

the site-diluted antiferromagnet, with a rough correspondence between the dilu-

tion concentration and the electron concentration. The main difference is that the

electrons (and thus the non-magnetic sites) are not static, but itinerant.

A comparison between neutron scattering results of as-grown NCCO and Monte

Carlo simulations of the site-diluted Heisenberg model was made by Mang et al.

[14]. Unlike the oxygen-reduced NCCO discussed throughout most of this Thesis,

as-grown NCCO does not superconduct at any attainable Ce concentration, and

the antiferromagnetic phase extends across the entire doping range (0 ≤ x ≤ 0.18).

Two-axis measurements (Section 2.4.3) of the correlation length were performed

above the Néel temperature of each sample. The temperature dependence ξ(T)

was found to be well described by the exponential form (3.1). Moreover, it was

found that there is good agreement between the experiment and Monte Carlo

simulations of the site-diluted model (3.3) [14]. In the simulations, quantitative
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Figure 3.3: Antiferromagnetic correlation length ξ (in units of the planar lattice
constant a) as a function of inverse temperature J/T for as-grown NCCO (open
symbols) and from Monte Carlo simulations of the randomly site-diluted Heisen-
berg model (3.3) (filled symbols), where J = 125 meV = 1450 K. Adapted from [14]
(∗ data from [73]; † data from [15]).
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Figure 3.4: Néel temperature TN of NCCO as a function of (nominal) electron
concentration x. Filled and open circles show TN of as-grown and reduced NCCO,
respectively [14]. Open triangles show TN measured by neutron scattering by
Uefuji et al. [20]. The dotted curve indicates the Néel temperature in the site-diluted
antiferromagnet LCZMO [72]. Adapted from [14].

agreement was found when the dilution concentration differed slightly from the

electron concentration x, and the antiferromagnetic superexchange constant was

set to the value J = 125 meV of the undoped system [14] (see Figure 3.3). The

correlation length ξ measured by the energy-integrating method is, of course, an

instantaneous (equal-time) property. As described above, when viewed at any

instant, the magnetism should resemble a system with static site dilution. Thus,

for this observable, there are no significant effects due to the itinerancy of the

electrons within the accessible doping range.

The itinerancy of the electrons has more pronounced effects on the Néel temper-

ature and the ordered moment, which are both static (t→∞) properties. The Néel

temperature TN(x) of as-grown NCCO approximately follows a parabolic form,

extrapolating to zero around x ≈ 0.21 [14] (see Figure 3.4). The concave doping

dependence contrasts the convex dependence in LCZMO, where TN only reaches

zero at the percolation threshold z ≈ 0.41 [72].

The ordered moment also decreases rapidly with doping and, consistent with
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the behavior of TN(x), approaches zero much more rapidly than the case of random

dilution [14]. Because the ordered moment is a measure of the strength of the

magnetic order at long times, it is clearly more sensitive to the difference between

quenched dilution and itinerant electrons.

Having measured these magnetic properties of as-grown NCCO, performing

similar measurements in oxygen-reduced NCCO (where superconductivity ap-

pears) is the natural next step.

3.2 Results

In Section 3.2.1, I present the measurements performed on the static (t→∞) prop-

erties of the oxygen-reduced samples using elastic neutron scattering. Section 3.2.2

contains the results for the instantaneous (t = 0) magnetic correlations using the

two-axis energy-integrating technique. Then, in Section 3.2.3, I show some results

using the µSR technique.

The neutron-scattering measurements were performed at the NIST Center for

Neutron Research (NCNR) at the Gaithersburg, Maryland, location of the National

Institute of Standards and Technology (NIST), as well as at the High Flux Isotope

Reactor (HFIR) at Oak Ridge National Laboratory in Oak Ridge, Tennessee. At

NIST, I used the triple-axis spectrometer BT9,10 where the typical configuration was

a fixed initial energy of Ei = 14.7 meV, collimations of 40′–47′–sample–20′–open,

and two PG filters “on ki” (i.e., between monochromator and sample). At HFIR,

the spectrometer I used was HB-1A, which is a fixed-initial-energy spectrometer

with Ei = 14.66 meV. The configuration used was 48′–48′–sample–20′–open for the

collimations and a PG filter on ki. At both facilities, the scattering plane was (hh`).
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Figure 3.5: Illustration of the non-collinear Cu2+ spin structure found in the mag-
netically ordered state of NCCO. In the undoped system Nd2CuO4 there are two
spin reorientation transitions within the ordered state. The illustrated Cu2+ struc-
ture is found in phase-I (75 K < T < 275 K) and phase-III (T < 30 K). In the phase-II
structure (30 K < T < 75 K) the spins are rotated by 90 degrees about the c-axis
[51]. These spin reorientations are absent in the Ce-doped systems [15]. Below the
Néel temperature of the Nd3+ subsystem (TN ≈ 3 K), the direction of every Nd3+

moment matches that of the Cu2+ moment directly above or below it.

3.2.1 Elastic neutron scattering

As mentioned before, the magnetic order of the Cu2+ moments is antiferromagnetic.

This defines the preferred relative orientation of the spins with respect to each other

within a single CuO2 plane, but it does not define the actual spin orientations and, in

particular, their relationship between different planes. Measurements of magnetic

Bragg peak intensities (and thus of the static magnetic structure factor; see (2.15)

in Section 2.4.1) have allowed the determination of the spin structure of Nd2CuO4

10A few of the oldest data sets were taken at the former triple-axis spectrometer BT2 which had
very similar capabilities.
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[50, 51]. The Cu2+ moments lie along the Cu–O–Cu bond directions, and spins

in next-nearest-neighbor planes are aligned in the same pattern. The spins in the

plane between these are pointed 90 degrees away in a non-collinear configuration.

See Figure 3.5 for an illustration.

The magnetic structure factor is such that there is no intensity at the ( 1
2 ,

1
2 , 0)

position. The magnetic Bragg reflections typically used in the study of static

magnetic properties are (1
2 ,

1
2 , 1) and (1

2 ,
1
2 , 3).

Néel temperature

The magnetic Bragg peak intensity is measured as a function of temperature; the

intensity is zero above the Néel temperature and non-zero below the Néel tem-

perature. Generally, physical quantities near a continuous (second-order) phase

transition have power-law dependences. In this case, the relevant quantity is

M ∝ (TN − T)β , (3.6)

where the order parameter here is the staggered magnetization M, and β is its

critical exponent. In practice, the transition can be quite rounded (e.g., due to Ce

inhomogeneity), and the temperature-dependence of the Bragg peak intensity is

fit to a power-law convolved with a Gaussian distribution of Néel temperatures.11

See Figure 3.6 for some examples.

Careful measurement of the order parameter in Nd2CuO4 has yielded a value

of β = 0.27(1) for the exponent [37]. The values of β found in the Ce-doped samples

are consistent with this result for the undoped system, and the Néel temperature

values discussed in this Thesis are based on fits where β is fixed to 0.27. This is

important for the larger Ce concentrations, where the transitions are very broad

and β is difficult to determine independently.

The value β = 0.27 is close to the effective value βeff = 0.23 shown by Bramwell

and Holdsworth to be universal to physical two-dimensional XY systems [74]. The

magnetic moment of an XY system decreases extremely slowly as a function of the

11The power-law exponent for the intensity is, of course, 2β.
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Figure 3.6: Intensity of the magnetic Bragg peak ( 1
2 ,

1
2 , 1) as a function of temperature

for representative NCCO samples. The Nd2CuO4 sample (labeled x = 0) is as-
grown, whereas the two Ce-doped samples are oxygen-reduced. The x = 0.133(3)
sample is superconducting. The data are fit to a power-law convolved with a
Gaussian to extract values for TN (arrows) and the spread in TN. The downturn
at low temperatures is due to the effects of the Nd3+ moment (see Section 2.4.1).
The kink seen in the x = 0.118 data may be from a minority volume fraction with a
separate ordering temperature.
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Figure 3.7: Néel temperature TN as a function of Ce concentration for oxygen-
reduced NCCO (filled circles). Horizontal error bars indicate estimated Ce inhomo-
geneity (see Section 2.3.2). Vertical error bars represent the 1σ spread in TN from fits
described in the text. Open and filled squares are as-grown and oxygen-reduced
NCCO data, respectively, from Mang et al. [14]. Triangles are oxygen-reduced
NCCO data from Uefuji et al. [20]. All data are from elastic neutron scattering mea-
surements except the black circles, which are from µSR measurements described in
Section 3.2.3. The solid curve indicates superconducting Tc in the oxygen-reduced
samples.

system size, and while the magnetic moment is zero in the limit of infinite extent,

it was shown that reasonably sized systems fall well within the finite realm. The

calculations show that, close to the transition, the magnetization curve resembles

a power-law with β = 0.23 [75]. The slightly larger experimental value of β = 0.27

lies in between this result and the value β ≈ 1/3 for a three-dimensional XY system

[75].

The results of fitting the order parameter in the samples I have grown are shown

in Figure 3.7, along with values from the literature [14, 20]. The Néel temperature

decreases steadily with x and extrapolates to zero around x ≈ 0.17. The apparent
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Figure 3.8: The staggered magnetization (or ordered moment strength) as a func-
tion of Ce concentration for as-grown (squares) [14] and oxygen-reduced (circles)
NCCO, normalized to the x = 0 value. Data from Rosseinsky et al. [76] (open
circles) are included to indicate low-x behavior. The curves indicate theoretical
calculations by Kusko et al. [77], Yuan et al. [78], and Xiang et al. [79].

width of the Néel transition becomes larger as the Ce concentration increases, and

compared with the as-grown system, the oxygen-reduced samples have values of

TN that are lower. Mang et al. [14] observed that the doping dependence in the

reduced system resembles a rigid shift of ∆x ≈ −0.03 compared to the trend in the

as-grown system. More recent studies [29] have shown that oxygen reduction only

changes the carrier concentration by about ∆x ≈ −0.01, and that other effects of

oxygen reduction dominate (see Section 2.2.1).
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Ordered moment

Another measure of the static magnetic order is the low-temperature ordered mo-

ment.12 As discussed above in Section 3.1.3, its doping dependence in as-grown

NCCO is much steeper than in the site-diluted system. In oxygen-reduced NCCO,

the ordered moment has a value similar to as-grown NCCO at lower x, but it falls

to much smaller values at higher x (see Figure 3.8). Mang et al. [14] suggested

that the approximately rigid shift ∆x ≈ −0.03 seen in the Néel temperatures TN(x)

between as-grown and reduced samples might also apply to the ordered moment

values, but the newer data presented here indicate otherwise.

Figure 3.8 also includes curves from theoretical calculations.13 After the re-

sults of a doping dependence study in oxygen-reduced NCCO by angle-resolved

photoemission spectroscopy (ARPES) were published [80], there were efforts by

theorists to explain the non-trivial behavior of the Fermi surface. Kusko et al. [77]

were able to reproduce the observed behavior using a one-band Hubbard model

(t-U model) in which U changes with x. Calculation of the magnetization using

their model is shown in Figure 3.8 and matches the data reasonably well. However,

the low values and unphysical doping dependence of U were unexplained. The

second theoretical curve in Figure 3.8 is a result by Yuan et al. [78], who used a

t-J model to explain the ARPES data. One problem with their theory is that the

antiferromagnetic superexchange J is too small to account for the large energy gap

at low x. The most recent of the theories, by Xiang et al. [79], seems to resolve the

inconsistencies of the prior calculations. They begin with a two-band model and

arrive at a t-U-J model in which there is a doping-dependent effective U, and J

is the true superexchange energy. The calculation of the magnetization using this

model is shown in Figure 3.8. Their calculation is a mean-field one (quantum fluc-

tuations are not taken into account), which would exaggerate the magnetization,

especially at higher doping [79]. The agreement with the data point at x = 0.156

12I use the terms “ordered moment” (magnetic moment per site) and “staggered magnetization”
(magnetic moment per unit volume) interchangeably.

13The theoretical curves are matched to the data by setting the experimental value at x = 0 to
M(0) = 0.4t, following [79].
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Figure 3.9: Instantaneous antiferromagnetic correlation length on a logarithmic
scale as a function of temperature for representative oxygen-reduced NCCO sam-
ples across a wide range in Ce concentration x. The curves for x ≤ 0.118 are fits to
(3.2). The curves for x ≥ 0.141 are guides to the eye.

is a coincidence, especially in light of the fact that static order disappears around

x = 0.14, as shown in Section 3.2.3.

3.2.2 Two-axis neutron scattering

Here I discuss the measurements of the instantaneous antiferromagnetic correlation

length in oxygen-reduced NCCO using the two-axis energy-integrating technique

(described in Section 2.4.3). Results of these measurements were first reported in

[19] and are summarized in Section A.2.1. Here I present the results from newer

measurements performed on samples with better-defined Ce concentrations (see

Section 2.3.2).
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Figure 3.9 shows the antiferromagnetic correlation length as a function of tem-

perature for a set of representative samples. It is clear that there are two types

of behavior. The temperature dependences for x = 0.038, 0.075, and 0.118 are

described well by the QNLσM form (3.2), and they are similar to the results for

as-grown NCCO. The correlation length is very large (ξ/a ≈ 400) at the Néel tem-

perature obtained from elastic neutron scattering (Figure 3.7), indicating a good

correspondence between the two types of measurements. However, the behavior

at the two higher doping levels x = 0.141 and 0.156 is qualitatively different: the

correlation length does not diverge and remains finite down to the lowest temper-

atures that were measured.14 This is the case despite the fact that elastic neutron

scattering measurements indicate magnetic order in these samples below 70–90 K.

This apparent contradiction is discussed in Section 3.3.

Figure 3.10 shows the correlation length data for a representative set of samples

in the region where there is a change in the temperature dependence behavior

(see Section A.2.1 for data for more samples). The figure contains the data for

x = 0.118 and x = 0.141 from Figure 3.9 as well as data from three samples with

intermediate Ce concentration values. Of these, the data for x = 0.126 and x = 0.133

were obtained first. These two results seem to indicate that, upon cooling, the

correlation length increases until the temperature reaches 100–150 K or so, and

then at even lower temperatures it decreases again to match the low-temperature

value for x = 0.141. The data for x = 0.123 are the most recent: the sample was

selected for its well-defined Ce concentration (with a greater confidence because of

its relatively small size15), and instead of displaying behavior between those of the

x = 0.118 and x = 0.126 samples, the temperature dependence of the correlation

length is, within the errors, identical to that for x = 0.141. This suggests that the

peculiar non-monotonic behavior of the x = 0.126 and x = 0.133 samples is due

14The figure does not show the lowest measured temperature. In particular, it does not include
measurements in the superconducting state (below Tc ≈ 25 K), where a gap opens in the excitation
spectrum (see Chapter 4). Because the momentum width at lower energies is smaller than at higher
energies [81], the two-axis momentum width increases, and the length decreases. See Figure A.3 for
complete data sets. See Section A.3 for simulations of two-axis measurements based on triple-axis
data that show a decrease of the correlation length in the superconducting state.

15This is one of the reasons for the larger errors on the correlation length values.
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Figure 3.10: Instantaneous antiferromagnetic correlation length on a logarithmic
scale as a function of temperature for representative samples in the range 0.118 ≤
x ≤ 0.141. The curve for x = 0.118 is a fit to (3.2). The curve for x = 0.141 is a guide
to the eye.

to their Ce inhomogeneity. Their underlying behavior is probably close to that for

x = 0.141; note how the curve drawn for x = 0.141 neatly passes through most of

the data for x = 0.133 and the high- and low-temperature data for x = 0.126. The

departure from this x = 0.141 behavior may be due to minority volume fractions

that have lower Ce concentrations and behave qualitatively like the x = 0.118

sample. The anomalous increase in the correlation length occurs at intermediate

temperatures because the signal from these minority fractions is strongest at these

temperatures (see Section A.2.2 for a discussion). All of this suggests that the

change of behavior from long-range to short-range correlations occurs in a very

narrow Ce concentration range of xc = 0.119(2).
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Figure 3.11: The spin stiffness, plotted as the quantity 2πρs/J (where J = 125 meV
is the antiferromagnetic superexchange energy estimated for Nd2CuO4), for as-
grown [14] and oxygen-reduced NCCO (open and filled circles, left scale). Also
plotted is the correlation length at T = 30 K (squares, right scale). The dotted line
is a fit to the as-grown data for 2πρs/J, while the solid curves are guides to the
eye for the oxygen-reduced data. The vertical dashed line indicates xc = 0.119, the
location of a discontinuity in both data sets for the oxygen-reduced samples.

Figure 3.11 shows the discontinuous nature of the behavior at xc. The spin

stiffness, estimated from a fit of the correlation length data to (3.2), is a property of

the long-range ordered ground state.16 For x < xc, this quantity decreases gradually

with increasing Ce concentration, and is still a large fraction of J just below xc.17

For x > xc, where there is no genuine long-range order, the spin stiffness is zero.

The result is a discontinuity at x = xc. This behavior is in stark contrast to that of as-

grown NCCO, where the spin stiffness continuously decreases with x. Figure 3.11

also shows the discontinuity seen in the correlation length at a temperature T = 30 K

16See definition in Footnote 3 on page 66.
17It is unknown why, for the oxygen-reduced system, the spin stiffness at lower Ce concentrations

seems to be larger than the (as-grown) undoped value. An enhancement around x = 0.04 is found
in calculations by Markiewicz, but the theory also incorrectly predicts larger correlation lengths at
that doping (see Figure 18 in [82]).
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for samples with x > xc. The data are consistent with a constant value of ξ/a ≈ 30

even very near xc. For x < xc, of course, the correlation length has diverged and is

effectively infinite.

3.2.3 µSR

In order to further investigate the behavior near xc, some of the crystals were

measured using µSR. These measurements were performed at the M20 beamline

of the TRIUMF laboratory in Vancouver, British Columbia. The c-axes of the

samples were mounted parallel to the initial muon polarization. The samples18

with x = 0.118 and x = 0.123 were measured in zero magnetic field and in a

longitudinal field of 100 G over a wide range of temperatures. A third sample19

with x = 0.141 was measured mostly in the zero-field condition.

The zero-field and longitudinal-field time series for x = 0.118 are shown in

Figure 3.12. In zero-field, as the sample is cooled, the magnetic moments of the

system fluctuate more slowly and the relaxation rate of the muon spin increases.

Below T = 100 K there is clear oscillation of the muon spin, indicating that the

system is magnetically ordered. The zero-field data are fit to the sum of an os-

cillating component (2.25) and an exponentially relaxing component (2.26). In

the longitudinal-field data, the muon signal exhibits the relaxation behavior at

all temperatures; the curves are fits to (2.26). The relaxation rate is slow at high

temperatures, becomes faster at T = 120 K and 100 K, and slows down again at

lower temperatures. This is consistent with a phase transition in the 100–200 K

temperature range.

The temperature dependences of the zero-field rotation frequency and the

longitudinal-field relaxation rate are shown in Figure 3.13. The rotation frequency

is proportional to the internal magnetic field at the muon site, and is thus propor-

tional to the strength of the staggered moment in the magnetically ordered phase.

18These are the same samples that have been measured with neutrons; it is fortunate that µSR
measurements allow for such large sample sizes.

19This is not the sample measured with neutron scattering. It was measured earlier, and the µSR
data are not as complete as for the other two samples.
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Figure 3.12: µSR time series for oxygen-reduced NCCO with x = 0.118 in zero
applied field (top panel) and in a longitudinal field of 100 G (bottom panel) at
representative temperatures. The curves are fits to the data, as described in the
text.
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Figure 3.13: The zero-field rotation frequency (squares) and longitudinal-field
relaxation rate (triangles) as a function of temperature for oxygen-reduced NCCO
with x = 0.118, from fits to the time series in Figure 3.12. The curve for the rotation
frequency is a fit to a rounded power-law function, and the curve for the relaxation
rate is a fit to a Gaussian, as described in the text.

Note that the decrease in frequency at the lowest temperatures is likely due to the

effects of Nd3+ spins, analogous to the behavior of the (101) magnetic Bragg peak

(Figure 3.6). The temperature dependence near the transition is fit to the same

function used to analyze the magnetic Bragg peak intensity, namely a power-law

function convolved with a Gaussian. The power-law exponent is fixed to β = 0.27,

and the fit yields TN = 108 K with a Gaussian width of ±15 K. The longitudinal-

field relaxation rate peaks at the transition temperature with a fit to a Gaussian

that yields TN = 113 K with a Gaussian width of ±11 K. The transition temperature

for the two methods are thus consistent with each other. This result is plotted in

Figure 3.7, along with the following results from the other two samples.

Figure 3.14 shows the results of the same analysis performed on the x = 0.123
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Figure 3.14: The zero-field rotation frequency (squares) and longitudinal-field
relaxation rate (triangles) as a function of temperature for oxygen-reduced NCCO
with x = 0.123, from fits to time series data (not shown). The curve for the rotation
frequency is a fit to a rounded power-law function, and the curve for the relaxation
rate is a fit to a Gaussian, as described in the text.

sample. Surprisingly, despite the differences in the two-axis neutron scattering

results, this sample is almost indistinguishable from x = 0.118 in the µSR measure-

ments. The sample shows static magnetic order below a transition temperature of

TN = 105±3 K according to zero-field measurements and TN = 109±11 K according

to longitudinal-field measurements.

There is a significant difference between the TN values measured by µSR and

those obtained from elastic neutron scattering (TN = 149±28 K and TN = 121±33 K

for x = 0.118 and x = 0.123, respectively). However, as mentioned in Section 2.5,

there is a difference of five orders of magnitude in the timescales probed by these

two techniques. It is reasonable to suppose that the magnetic system evolves

gradually from fast fluctuations at higher temperature to true static order near
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Figure 3.15: Zero-field µSR time series for oxygen-reduced NCCO with x = 0.141.
This sample does not show static order above T = 5 K. The curves are fits to
the sum of an exponentially relaxing component and an oscillating component, as
discussed in the text.

100 K. The observation of rather broad transitions in elastic neutron scattering

(Figure 3.6) when compared to µSR is consistent with this explanation.

Note that there are reports by one group of two characteristic transition tem-

peratures (“TN1” and “TN2”) revealed by µSR [16, 83, 84]. Based on measurements

of NCCO and Pr1−xLaCexCuO4 (PLCCO), it is claimed that the higher of these tem-

peratures is consistent with TN from neutron scattering. From the above analysis,

there is clearly only one characteristic temperature, and this temperature marks

the onset of true static magnetic order; it is consistent with the lower temperature

TN2. The higher temperature TN1 is probably an effective temperature at which

the slowing down of magnetic fluctuations first enters the µSR time window; the

agreement between TN1 and the neutron-scattering TN claimed in [16, 83] could be

a coincidence.
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For both samples, the zero-field data20 were used to calculate the volume fraction

of the oscillating component, which is a lower bound to the volume fraction of the

magnetically ordered phase.21 The x = 0.118 and x = 0.123 data yield volume

fractions of 91% and 87%, respectively. Thus the magnetically ordered volume

fraction is consistent with 100% and does not change noticeably across xc.

Finally, Figure 3.15 shows time series for a x = 0.141 sample22 in which there is

no evidence of an oscillatory component above T = 5 K. Unfortunately, this older

experiment did not include a systematic series of longitudinal-field measurements.

It is difficult to determine a characteristic temperature with the limited data and

thus to discern whether there is robust static order in this sample. Nevertheless, it

is clear that, as measured by µSR, true static order disappears around x = 0.14, well

before the value x = 0.17 indicated by elastic neutron scattering measurements.

3.3 Discussion

The antiferromagnetic correlation length results are summarized as a color plot in

the phase diagram shown in Figure 3.16. The plotted length has been smoothed

and interpolated to cover all regions of the phase diagram. The behavior at lower

temperatures is shown as a discontinuity (vertical dashed line) at xc that separates

long-range order (white region) from short-range correlations. The data reflect

the assumption that, as discussed previously, the strange behavior seen in some

samples (e.g., x = 0.126) is due to Ce inhomogeneity and not genuine. The discon-

tinuous nature is borne out in the raw data for ξ(30 K) shown in Figure 3.11. The

behavior above TN has been smoothed between x = 0.117 and x = 0.121, reflecting

an intuition that the discontinuity cannot extend to higher temperatures.

One caveat regarding the color plot is that detailed measurements have not been

20Calibrated using weak-transverse-field data; see Section 2.5.
21The measurement is a lower bound because muons that do not happen to stop at the most

common muon stopping site experience a different local magnetic field and do not contribute to the
primary oscillating component. A method using a weak transverse field more accurately measures
the magnetically fluctuating volume fraction; this measurement was unfortunately not performed
for these samples.

22See Footnote 19 on page 85.
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Figure 3.16: Temperature-doping phase diagram of oxygen-reduced NCCO with
the antiferromagnetic correlation length plotted in color (see text for caveats). The
vertical dashed line indicates the sudden transition at xc from long-range order
(white area) to short-range correlations. The long solid curve indicates the apparent
TN from neutron measurements (Figure 3.7), while the partially dotted curve near
xc represents TN from µSR measurements. The dome in the lower right represents
the superconducting phase, and the dotted portion of this dome indicates some
uncertainty in whether the samples below x ≈ 0.14 exhibit bulk superconductivity.
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performed above x = 0.141;23 I make the assumption that the correlation length at

higher temperatures becomes doping-independent for x > xc, as is the case at low

temperatures (Figure 3.11). In addition, the correlation length becomes smaller in

the superconducting state,24 but this is not reflected in Figure 3.16.

Overlaid on the correlation length information are the Néel temperature TN

measured from elastic neutron scattering (solid curve) and µSR (partial curve), as

well as the superconducting transition temperature Tc (dome at lower right). To the

left of xc, TN(x) from neutron-scattering matches the contour of constant correlation

length ξ/a ≈ 400; this behavior is consistent with the case of as-grown NCCO and

the notion that there is a rapid crossover to XY behavior near TN [14]. To the right

of xc, however, TN no longer corresponds to a region of large correlation lengths.

This apparent discrepancy is seen neither in as-grown NCCO, where static Néel

order exists throughout the accessible doping range, nor in the LCZMO system,

where magnetic order does disappear at high enough dilution.

Clarifications

In [19] we suggested that the magnetic Bragg signal for x > xc, when the magnetic

correlations remain finite at low temperature, could arise from volume fractions in

the sample that have not undergone complete oxygen reduction, and that the bulk

of the sample may be magnetically disordered at low temperatures. However,

there is no anomaly seen in the staggered magnetization (Figure 3.8) around xc

that would indicate that the magnetic Bragg peaks in the samples with x > xc

come from small volume fractions. Moreover, the µSR measurements discussed in

Section 3.2.3 indicate that genuine static order is seen with high volume fraction,

at least for the x = 0.123 sample.

The QNLσM contains a quantum critical point [58] (see Section 3.1.1), and the

23The superconducting sample x = 0.145 studied in [19] (data reproduced in Figure A.2) was
very large, and its Ce concentration was not measured as systematically as the more recent samples
shown here. While the temperature dependence of its correlation length is qualitatively similar to
that of x = 0.141, including these data in Figure 3.16 was not satisfactory.

24see Footnote 14 on page 82.
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correlation length behaviors for x < xc and x > xc seem like they might corre-

spond to the model’s renormalized classical and quantum disordered regimes,

respectively. However, there is no longer any evidence of power-law behavior

in the temperature-dependence of the correlation length that would be expected

at a quantum critical point. The doping dependence of the spin stiffness would

also be expected to decrease continuously with a power-law behavior; instead,

from studying the newer, more homogeneous crystals, this quantity appears to

be discontinuous (Figure 3.11). The doping dependence of the low-temperature

correlation length also does not indicate power-law behavior as xc is approached

from above. There remains a possibility of a quantum critical regime in a very

narrow range of x. However, after many years of study, the likely scenario for the

NCCO phase diagram is that it exhibits a first-order transition at xc

Two components of magnetic correlations

In a magnetic system with XY anisotropy, like NCCO, the spin fluctuations within

the plane can behave differently from fluctuations out of the plane. In principle,

since the two-axis experiments measure a combination of in-plane and out-of-plane

correlation lengths, there exists a possibility that samples with x > xc actually

exhibit long-range order, while the short-range correlations measured are due to

the finite out-of-plane component. Here I argue that this is unlikely.

According to calculations [69], the in-plane length diverges at the Néel tem-

perature TN,25 whereas the out-of-plane length effectively continues to follow the

exponential temperature dependence (3.1) of a Heisenberg system below TN. How-

ever, the out-of-plane length would be finite if the out-of-plane fluctuations below

TN (i.e., spin waves) were gapped. Assuming a spin-wave velocity equal to that

found in Nd2CuO4, an out-of-plane correlation length of 30a would require a spin-

wave gap of about 6 meV. Similar values of the out-of-plane spin-wave gap are

indeed found in La2CuO4 [85], Nd2CuO4 [86], and Sr2CuO2Cl2 [87]. However, there

is no obvious explanation why this behavior should change suddenly at xc = 0.119.

25Technically, at the Kosterlitz-Thouless transition; see Section 3.1.1.
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The main reason why this scenario is unlikely is that the two-axis neutron scat-

tering measurement is quite sensitive to the in-plane correlations that do diverge

at TN. Neutron scattering measures magnetic excitations with polarizations per-

pendicular to Q (B.180). Using the geometry of the spectrometer, and integrating

over all of the Q in a two-axis measurement, a simple calculation shows that the

measurement should be approximately six times more sensitive to the in-plane (di-

verging) component than the out-of-plane (possibly non-diverging) component.

Consequently, if a sample does transition to genuine long-ranged order upon cool-

ing, the measured correlation length would increase much more strongly at TN

than the modest increase seen in some of the samples with x > xc.

Magnetic order and superconductivity

This study of the antiferromagnetic correlation length in NCCO has significant

implications for the relationship between the antiferromagnetic and superconduct-

ing phases. None of the samples with x < xc that exhibit long-range order are

superconducting, and none of the superconducting samples exhibit long-range an-

tiferromagnetic order. We can say with confidence that there is no coexistence of

genuine long-range antiferromagnetic order with superconductivity in NCCO, a

conclusion we have previously suggested as a possibility in [19].

The µSR results near xc are consistent with the elastic neutron scattering results:

despite the significant qualitative change in the magnetic correlations, there only

seems to be a smooth evolution of TN with Ce concentration. There is one issue that

remains unresolved: whether static magnetic order, as measured by µSR, coexists

with superconductivity. This issue was addressed in [16], where it was claimed

that there is indeed evidence for coexistence. It was reported that the volume

fraction of the magnetic order does drop off suddenly above x = 0.14, but that

superconductivity appears before the drop. The set of samples was relatively sparse

in x, and only one of the samples (x = 0.14) exhibited this supposed coexistence.

However, the magnetic order in this sample is only seen at a very low temperature
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(T = 5 K) and was probably caused by the Nd3+ moments.26 Measurements of my

own sample with x = 0.141 show no evidence of an oscillatory component above

T = 5 K (see Figure 3.15). As mentioned in Section 1.2.3, it is uncertain at which

value of x bulk superconductivity first appears. Traces of superconductivity have

been reported down to x = 0.08 [18], and have been seen down below x = 0.13 in my

samples. However, bulk superconductivity has not been measured below x = 0.14

[16]. Consequently, there is as yet no conclusive evidence that static magnetic

order of the CuO2 planes coexists with bulk superconductivity. Further careful

measurements by µSR and magnetometry should be performed in this region of

the phase diagram to determine whether there is indeed microscopic coexistence

of magnetic and superconducting orders.

In any case, theµSR measurements indicate that static magnetic order has disap-

peared at a Ce concentration x ≈ 0.14, well before x ≈ 0.17, as suggested by elastic

neutron scattering. This is analogous to the difference at lower doping in the TN val-

ues measured by µSR and elastic neutron scattering. The two techniques provide

very different energy/time scales, and the “elastic” neutron scattering measurement

are better thought of as quasi-elastic in the present case. Note that anomalies seen at

x ≈ 0.17 in transport measurements [88] have been attributed to the disappearance

of magnetic order [89]. This interpretation is no longer plausible; the anomalies are

more likely due to pseudogap physics and a change of the Fermi-surface topology

near x = 0.17 (see Section A.2.3 for a discussion of the pseudogap).

Short-range magnetic order

It remains a surprise that the disappearance of genuine static order does not seem

to correspond in any obvious way with the sudden change from long-range to

short-range correlations at xc = 0.119(2). In particular, the combined neutron and

µSR measurements imply that there is a region of the phase diagram between xc

and x ≈ 0.14 that exhibits short-range (ξ/a ≈ 30) static magnetic order.

26The same group’s studies of PLCCO also contain only one sample that shows coexistence
of static order with superconductivity, although in that case, there are no substantial rare-earth
moments [84].
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Because the ordering temperature does not show any anomaly across xc, it

is unlikely that the mechanism for magnetic order (i.e., the crossover from two-

dimensional Heisenberg to two-dimensional XY physics) has suddenly changed.

Instead, it could be that the magnetic system has been broken up into clusters,

and that the correlation length cannot grow larger than the cluster size. The

neutron-scattering data show that the correlation length for these samples has

indeed reached its maximum value at TN. One of the possible reasons for the

clustering of the magnetic system is the qualitative change in the electronic state

known to occur somewhere between x = 0.10 and x = 0.15: the introduction of

hole-like carriers into the system [79, 80]. These holes could rapidly frustrate the

magnetic system: in La2−xSrxCuO4 (LSCO), a hole concentration of only x = 0.02

destroys long-range magnetic order.27 The short-range magnetic order in NCCO

might correspond to the spin-glass regime that is found in LSCO between x = 0.02

and x = 0.05.

There is a clear qualitative difference between the situation in the two systems:

in LSCO the spin-glass temperature is much smaller than the Néel temperature

at slightly lower doping, while in NCCO, the ordering temperature is practically

unchanged between long-range and short-range magnetic order. However, there

are otherwise many similarities in the data. Correlation length measurements of

LSCO in the spin-glass doping regime show a behavior similar to x > xc in NCCO:

the correlation length attains a maximum finite value at a temperature near TN of

the undoped compound and remains constant at lower temperatures (see Figure 10

in [12]). Furthermore, µSR measurements of the spin-glass phase show that the

muon rotation rate, and thus the strength of the internal magnetic field, decreases

only slightly from that of the long-range ordered state at somewhat lower doping

[90]. In this respect, the µSR data for NCCO are similar (compare Figures 3.13 and

3.14).

In principle, the existence of clusters can be tested by measuring the momentum-

space extent of the elastic scattering at (1
2 ,

1
2 ). Spin clusters have been found, for

27The disappearance of long-range order in NCCO happens faster than over the range ∆x = 0.02;
perhaps the effects of holes are even more sudden in a magnetic system already doped with electrons.
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instance, in the spin-glass phase of LSCO at x = 0.02 [91]. The profiles of the

magnetic Bragg peaks in NCCO were measured in this Thesis work as part of the

order parameter measurements. However, a comparison of the Bragg peak widths

of the x = 0.118 and x = 0.133 samples does not show any obvious signature of

short-ranged order. Careful characterization of the magnetic Bragg peaks should

be performed in the future to resolve this issue.

Another test, specifically for spin-glass behavior, can be performed using mag-

netometry measurements [92]. Cooling through the spin-glass transition temper-

ature in both zero field and non-zero field conditions causes the spin system to

freeze in different configurations, and this yields different values of the bulk mag-

netization. This type of measurement led to the discovery of “spin-glass-like”

behavior in partially oxygen-reduced PLCCO [93]. In that study, the feature in the

bulk susceptibility was seen at temperatures as high as 200 K. At any particular Ce

concentration x, the spin-glass-like behavior appears and strengthens with oxygen-

reduction, but then weakens and disappears as superconductivity appears in the

system under even stronger oxygen reduction. It is possible that a similar signature

could be seen in a sample of NCCO that exhibits static short-range magnetic order.

Measurement of a piece from the x = 0.133 crystal yielded no such signature. At

the time of writing, there is a plan to test a piece from the x = 0.123 crystal.

Comparison with other systems

Now that I have mapped out the phase diagram of the NCCO system, it is instruc-

tive to compare it to the various phase diagrams of other unconventional super-

conductors. Figure 3.17 shows phase diagrams for the iron arsenide compounds

La(O,F)FeAs, Sm(O,F)FeAs, Ce(O,F)FeAs, and (Ba,K)Fe2As2 (in which supercon-

ductivity was recently discovered); the organic superconductor κ-(BEDT-TTF)2X;28

and the heavy fermion compound CeRhIn5. Each of the phase diagrams contains

antiferromagnetic order and superconductivity, but the relationship between the

two phases varies. A possible commonality proposed in [100] is the existence

28BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene, and X stands for the various anions indi-
cated in Figure 3.17.
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of a first-order transition between the two phases. The sudden disappearance

of magnetic order in La(O,F)FeAs is one manifestation of a first-order transition.

In Sm(O,F)FeAs and (Ba,K)Fe2As2, where the magnetism and superconductivity

seem to coexist, there may be microscopic phase separation, a possible signature

of a first-order transition in the presence of disorder.

The improved phase diagram of NCCO is consistent with such a first-order

transition from antiferromagnetic order to superconductivity. The sudden disap-

pearance of long-range magnetic order at xc is a compelling sign. And perhaps,

due to disorder, the phase transition is not complete, resulting in the short-range

magnetic order and trace superconductivity seen in the region 0.12 < x < 0.14. As

with the new iron arsenide compounds, further careful quantitative measurements

are desirable.

Conclusions

To conclude, I have obtained a map of the doping and temperature dependence of

the two-dimensional magnetic correlation length in the archetypical electron-doped

cuprate superconductor Nd2−xCexCuO4. Genuine long-range antiferromagnetic

order ends suddenly at xc = 0.119(2), but short-range static order exists somewhat

beyond xc. I have found that the bulk superconducting phase is well-separated

from the long-range ordered phase at x < xc, which may be a fundamental property

or due to disorder effects that cause a suppression of Tc. Furthermore, genuine static

(short-range) order terminates around x = 0.14, near the first appearance of bulk

superconductivity. The magnetism seen in elastic neutron scattering up to x ≈ 0.17

is thus neither truly static nor genuinely long-range in nature.



Chapter 4

Magnetic field effect in NCCO

One strategy for studying the mechanism of superconductivity in the high-Tc

cuprates is to suppress the superconductivity to see, in effect, the physical state

of the system had superconductivity not occurred. For instance, if there is an

ordered state that competes with superconductivity, this competing order might

strengthen when superconductivity is suppressed.

A common method of suppressing superconductivity is to apply a strong mag-

netic field. In Section 4.1, I discuss previous magnetic-field-effect studies of the

hole-doped compounds and of NCCO. I describe the results of my own measure-

ments of NCCO in Section 4.2. Section 4.3 first follows the discussion of the results

at the time of publication [101], and then continues with a discussion in light of

more recent developments.

4.1 Background

4.1.1 Suppression of superconductivity with magnetic field

Just as the temperature at which superconductivity forms or disappears is re-

ferred to as the critical temperature Tc, the magnetic field at which superconduc-

tivity is suppressed is called the critical field. In type-II superconductors, such as

the cuprates, a magnetic field above a certain lower critical field Hc1 penetrates

100
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into the sample bulk in the form of discrete vortices, the cores of which are non-

superconducting, with each vortex containing one magnetic flux quantum.1 On

the other hand, the upper critical field Hc2 is the magnetic field required for the

complete suppression of bulk superconductivity, and is the more relevant quantity

for this study.

Quite generally, there are two microscopic mechanisms for the suppression of

superconductivity by a magnetic field. The first is orbital pair-breaking: paired

electrons in a superconductor are in a certain orbital state (such as d-wave in

the cuprates), and a magnetic field breaks the orbital symmetry and thus acts to

break the electron pairs. The orbital pair-breaking field Horb can be estimated by

measuring the rate at which Hc2(T) increases upon lowering the temperature from

Tc. Extrapolating linearly to T→ 0 gives Horb [104].

The second mechanism occurs as a result of the spins of the electrons. In

cases in which the spins in each Cooper pair are oppositely aligned (such as in

the cuprate superconductors), a magnetic field lowers the free energy of the non-

superconducting Pauli-paramagnetic state, in which both spins are polarized along

the applied field, relative to the free energy of the superconducting state. This

mechanism is an upper limit to Hc2 and is called the Chandrasekhar-Clogston or

Pauli-paramagnetic limit [105, 106]. It is given by HP = ∆0/
√

2µB, where ∆0 is the

electronic superconducting gap.

While the upper critical field Hc2 is conceptually easy to understand, for the

cuprates it has been a difficult quantity to measure in practice. One practical reason

is that, in the hole-doped cuprates, Hc2 is exceedingly large at low temperatures.

Even if that were not the case, resistivity measurements can be problematic because

the presence of mobile vortices will lead to a non-zero resistance at fields below

Hc2. One method claimed by proponents to provide an accurate measurement of

Hc2 is the Nernst effect [107], which is the thermoelectric analog of the Hall effect:

if a thermal gradient −∂T/∂x is applied along the x-direction while a magnetic field

H = Hẑ is applied along the z-direction, then the measured quantity is the voltage
1Φ0 = h/2e, where h is the Planck constant and 2e is the charge of a Cooper pair [102]. The

formation of vortices in type-II superconductors is a result of the superconducting coherence length
being smaller than the London penetration depth (by definition) [103].
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(electric field Ey) along the y-direction. The Nernst signal is defined as the ratio

Ey/(−∂T/∂x). In the “vortex-liquid” state of a type-II superconductor, vortices form

along z due to the magnetic field, move along x due to the thermal gradient, and

cause a voltage along the y direction; the resulting Nernst signal is positive. A

Nernst signal can also arise from mobile charge carriers due to the combination of

the thermoelectric and Hall effects; this signal can be either positive or negative,

and can usually be treated as a featureless background.2

Figure 4.1 shows the Nernst signal for optimally-doped NCCO (x = 0.15) [107].

At any particular temperature there are three characteristic fields. At low field

strength, the Nernst signal is zero, because the vortices are pinned and do not

move in response to the temperature gradient. At the vortex “melting” field Hm,

the Nernst signal increases strongly from zero, peaks at a certain field H∗, and

then decreases again. The field at which the Nernst signal appears to reach zero

again is interpreted to be the upper critical field Hc2. These three fields are plotted

in the inset of Figure 4.1. Note that Figure 4.1 also shows (for T = 14 K) that

the resistivity becomes nonzero at Hm and saturates around H∗, but shows no

feature at Hc2 [107]: because mobile vortices cause non-zero resistivity even in the

superconducting state, resistivity measurements cannot reliably determine Hc2 in

these type-II superconductors.

Figure 4.1 shows that Hc2 is approximately 10–12 T, upon extrapolating to T = 0.

Note the linear dependence of Hc2(T) with temperature, which is consistent with

the expected behavior for the orbital mechanism for the suppression of supercon-

ductivity. The Pauli-paramagnetic limit is much higher, at HP ≈ 30–45 T, estimated

from measurements of the electronic gap ∆0 using angle-resolved photoemission

(∆0 ≈ 2 meV) [109] and Raman spectroscopy (∆0 ≈ 3 meV) [110]. Orbital effects also

explain the strong anisotropy of Hc2 with respect to the magnetic field direction;

recent studies on Pr2−xCexCuO4 thin films suggest that the large value of Hc2 for a

magnetic field parallel to the CuO2 planes is determined by the Pauli paramagnetic

limit [111].
2Recent measurements of Nd- and Eu-doped LSCO have shown that this quasiparticle signal

can have a large temperature dependence at a density-wave-order transition [108]. However, this
does not affect the interpretation of the NCCO data.
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For the hole-doped cuprates (and fields perpendicular to the CuO2 planes), the

upper critical field from Nernst measurements (using extrapolation to T = 0) is 50 T

or greater [107]. Because the upper critical field in NCCO is significantly lower,

this means that a much larger portion of the phase diagram can be explored in the

electron-doped cuprates.3

4.1.2 Magnetic-field-effect studies of hole-doped cuprates

Magnetic-field-effect studies were performed first in the hole-doped cuprates. In

these compounds, at hole concentrations that exhibit superconductivity, the low-

energy magnetic response is incommensurate and manifests itself in neutron scat-

tering as four peaks situated symmetrically around the two-dimensional antiferro-

magnetic wavevector at positions (1
2 ± δ,

1
2 ) and (1

2 ,
1
2 ± δ) [112, 113, 114].

Superconducting La2−xSrxCuO4 (LSCO) in the underdoped regime (0.06 ≤ x <

0.14) exhibits peaks at these incommensurate wavevectors in the elastic channel

[115, 116]. Thus static4 spin-density-wave (SDW) order coexists with superconduc-

tivity in these materials; this is one signature of the “stripe” order that seems to

have some connection to superconductivity [117]. In optimally-doped and over-

doped LSCO (x > 0.15), there is no static order, and the antiferromagnetic response

is gapped [118]. While the attainable magnetic fields are small relative to Hc2,

magnetic-field-effect studies show remarkable changes in samples both with and

without static SDW order.

Figure 4.2 shows the result by Lake et al. [115] of a magnetic-field-effect on the

SDW peaks seen in the superconducting state of underdoped LSCO (x = 0.10).

The inset indicates the geometry of the system: the data were taken in a scan

across one of the incommensurate SDW wavevectors, and the magnetic field was

applied along the c-axis direction. The data show a clear increase of the elastic peak

intensity. Thus, even a weak suppression of the superconductivity in underdoped

LSCO strengthens the static SDW order already present in the system. A study

of La2CuO4+y with an estimated hole concentration of p = 0.14 showed a similar
3The highest magnetic field attainable at neutron scattering facilities at present is about 15 T.
4Static on the time scale of elastic neutron scattering
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Figure 4.3: Incommensurate magnetic response as a function of energy in different
temperature and magnetic field conditions for optimally-doped LSCO (x = 0.16).
The zero-field ground state (red circles) has a gap in the magnetic spectrum which
disappears in the normal state (red triangles and dotted curve). A magnetic field
induces in-gap intensity (blue circles). Adapted from [119].

strengthening of the SDW order [116]. The two results suggest that the ground

state of these systems in the absence of superconductivity is probably magnetically

ordered.

The case of optimally-doped LSCO is also interesting. Figure 4.3 shows the

result by Lake et al. [119] for LSCO (x = 0.16). Plotted is the magnetic susceptibility

χ′′ (i.e., the intensity divided by the Bose population factor n + 1) as a function of

energy. The magnetic spectrum in the zero-field ground state (T = 7 K) is gapped

with an energy of aboutω = 7 meV, and the disappearance of this gap in the normal

state (T = 39 K) implies that the magnetic gap is tied to superconductivity. The

main result is that a magnetic field of H = 7.5 T, which is small compared to Hc2,

induces a signal below the gap that is comparable in strength to the normal state

response. Similar results have been reported in overdoped LSCO samples with

x = 0.17 [120] and x = 0.18 [121].

The strong in-gap intensity has been interpreted by Demler et al. [122, 123] to

be a signature of the proximity to the static spin-density-wave order. As shown

in Figure 4.4, their proposed phase diagram contains a pure superconducting (SC)
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Figure 4.4: Generic phase diagram as a function of magnetic field H and a parameter
r related to doping [122, 123]. The short arrows indicate experiments performed
on LSCO (from left to right: [115], [124], [119]).

phase and a phase with coexisting superconducting and spin-density-wave orders

(SC+SDW). The studies of underdoped LSCO are represented by the leftmost arrow

in the SC+SDW phase, whereas the studies in optimally-doped and overdoped

LSCO are represented by the rightmost arrow contained completely in the SC

phase. Interestingly, an elastic neutron scattering study performed more recently by

Khaykovich et al. [124] at an intermediate doping x = 0.144 shows that a relatively

low magnetic field of H = 3 T pushes the system from the SC phase into the

SC+SDW phase (see Figure 4.5), as indicated by the middle arrow in Figure 4.4.

All of these experiments were performed on the widely-studied LSCO com-

pound. A recent study of underdoped YBa2Cu3O6.45 shows the strengthening of

static SDW order in the system as a magnetic field is applied up to H = 15 T [125],

indicating that the behavior seen in LSCO may be universal to the hole-doped

cuprates.
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Figure 4.5: Intensity of the magnetic elastic peak at the SDW wavevector as a
function of magnetic field in LSCO (x = 0.144). Reproduced from [124].

4.1.3 Elastic scattering studies of NCCO

Unlike the spin-density-wave order seen in the hole-doped cuprates, the magnetic

response of the electron-doped cuprates remains commensurate at the antiferro-

magnetic wavevector (1
2 ,

1
2 , `) [126]. Thus one might expect the phase diagram to

be similar to the hole-doped case, with superconductivity coexisting with com-

mensurate antiferromagnetic order instead of incommensurate spin-density-wave

order. Experiments by Kang et al. [127] on NCCO (x = 0.15) seemed to agree with

this naı̈ve picture: a magnetic field perpendicular to the CuO2 sheets was found to

induce an elastic signal at ( 1
2 ,

1
2 , 0). At T = 5 K, the response was found to increase

immediately from zero5 upon turning on the magnetic field, and to peak around

H = 7 T, which was interpreted to be Hc2.

However, Mang et al. [23, 128] showed that this signal is spurious: it is due to

the paramagnetic response of an epitaxial impurity phase (Nd,Ce)2O3 that forms

during the oxygen-reduction procedure. Figure 4.6 shows the magnetic-field-

dependence of the elastic signal in an NCCO sample with x = 0.18. The data were fit

5Even in superconducting NCCO samples that show static antiferromagnetic order at finite `
(e.g., ( 1

2 ,
1
2 , 1)), the reflection ( 1

2 ,
1
2 , 0) is forbidden by the magnetic structure factor.



4.1. BACKGROUND 109

0 5 10 15

100

110

120

130

140

H (T)

1.9 K
4.2 K
10 K

In
te

ns
ity

 (c
ou

nt
s/

m
in

)

Figure 4.6: Intensity of the elastic magnetic peak at (1
2 ,

1
2 , 0) as a function of ap-

plied magnetic field (perpendicular to the CuO2 sheets) at several temperatures for
NCCO (x = 0.18). This magnetic signal is due to a paramagnetic response from the
impurity phase (Nd,Ce)2O3 formed during the oxygen-reduction process [23]. The
curves are fits to a two-moment model. Adapted from [23].

to a two-moment model6 for the Nd3+ moments that explains the dependence both

on magnetic field and on temperature. Note in particular that the magnetic field at

which the signal peaks increases with increasing temperature, and the proximity to

Hc2 in [127] was only coincidence. Key arguments by Mang et al. are that the same

signal is present in a non-superconducting, but oxygen-reduced, x = 0.10 sample,

and that field-induced peaks are also found at wavevectors commensurate with

the lattice of the impurity phase, but incommensurate with the primary lattice.

Disagreement continued over whether there is a genuine magnetic-field effect on

the elastic magnetic signal in the electron-doped cuprates. Many of the subsequent

studies were of the related electron-doped compound Pr1−xLaCexCuO4 (PLCCO):

unlike Nd3+, neither Pr3+ nor La3+ have magnetic moments in their ground state,

and thus the impurity phase (Pr,La,Ce)2O3 should not interfere with any genuine

6The epitaxial impurity phase has a non-trivial structure with two distinct rare-earth sites.
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magnetic signal. Fujita et al. [129] studied the magnetic field effect on the intensity

of the ( 1
2 ,

3
2 , 0) magnetic Bragg peak7 and found an enhancement of the existing

antiferromagnetic order in underdoped PLCCO (x = 0.11), whereas they saw no

peak with or without a magnetic field in an overdoped sample with x = 0.15.8

Kang et al. [131] studied PLCCO samples with x = 0.12 at different degrees of

oxygen reduction, and confirmed that there is no magnetic-field enhancement

at the incommensurate peak (1
2 ,

1
2 , 2.2) associated with the impurity phase. In an

apparent contradiction to Fujita et al., they found a small enhancement in a magnetic

field at (1
2 ,

1
2 , 0), but not at (1

2 ,
3
2 , 0), in partially reduced superconducting samples.

In addition, they reported that there is no magnetic-field effect at either wavevector

in a fully reduced sample [131]. Thus, there seems to be some sort of enhancement

of magnetic signal in some PLCCO samples, but there are as yet no definitive

conclusions. Also, the differences between NCCO and PLCCO are large enough

that nothing definite can be concluded about NCCO from these studies.

4.1.4 Magnetic excitation spectrum of NCCO

While the chemical and magnetic properties of NCCO complicate a search for

a genuine field-induced elastic signal, they do not prevent useful measurements

of the inelastic response. Just as in the hole-doped cuprates, inelastic neutron

scattering measurements of optimally-doped NCCO revealed a gap in the magnetic

excitation spectrum associated with superconductivity [126, 132]. In fact, this

expected gap is absent in PLCCO [133]; this is another example of the differences

between NCCO and PLCCO and may be a result of additional disorder in the

chemically more complicated PLCCO system.

Figure 4.7 shows the results by Yamada et al. [126]. The two different samples

of NCCO (both x = 0.15, but with different oxygen reduction conditions) exhibit

gaps of 3–4 meV in the low-temperature spectra. Note the behavior of the spectra

7Unlike ( 1
2 ,

1
2 , 0), this wavevector is an allowed magnetic Bragg peak for the antiferromagnetic

order.
8The PLCCO phase diagram differs from that of NCCO; one difference is that the maximal Tc is

attained at x = 0.12 [130].
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Figure 4.7: The magnetic susceptibility at ( 1
2 ,

1
2 , 0) as a function of energy in two

samples of NCCO (both x = 0.15) at several temperatures. The two samples have
different values of Tc due to different oxygen reduction procedures. The spectra in
the superconducting state are gapped, while the spectra above Tc are not. Adapted
from [126].

as the temperature is increased: to a first approximation, the entire spectra shift to

lower energies and retain a distinctly gapped shape. The magnetic excitations are

no longer gapped above Tc: this indicates that the gap seen at lower temperatures

is tied to the formation of superconductivity.

4.2 Results

Here I report the magnetic field effect on this gapped magnetic excitation spectrum

of one sample of superconducting NCCO: similar to the effect of raising the temper-

ature, the gap profile was found to shift rigidly to lower energies as the magnetic

field strength was increased [101]. The publication reported the nominal Ce con-

centration x = 0.15 of the sample that was measured; the actual concentration as
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Figure 4.8: Intensity from transverse (h, 1−h, 0) inelastic scans for NCCO (x = 0.166,
Tc = 22 K) at an energy of ω = 1.75 meV. The T = 26 K data show a clear peak,
whereas the signal is suppressed at T = 1.8 K in the superconducting state.

measured by ICP atomic emission spectroscopy is x = 0.166(10), and the sample

has an onset Tc of 22 K.

The inelastic neutron scattering measurement was performed at Laboratoire

Léon Brillouin at CEA/Saclay, in Saclay, France. We used the triple-axis spec-

trometer at the cold neutron beamline 4F2, which has a vertically-focusing dou-

ble monochromator and a horizontally-focusing analyzer. The final energy was

fixed to E f = 14.7 meV and the collimations were 60′–open–sample–open–open,

which gives effective collimations of 243′–17.2′–sample–60′–60′.9 The sample was

mounted in the (hk0) orientation inside a 7-Tesla vertical-field cryomagnet; in this

configuration, the applied magnetic field is perpendicular to the CuO2 plane.

Figure 4.8 establishes that the magnetic excitations at ( 1
2 ,

1
2 , 0) are indeed gapped

below Tc (in zero applied field). Shown are transverse (h, 1−h, 0) scans at an energy

transfer of ω = 1.75 meV. As expected, there is a clear peak above Tc at T = 26 K,

9The effective collimations are used to calculate the instrument resolution function using the
ResLib package [49], which does not explicitly include the possibility of two monochromators.
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Figure 4.9: Representative transverse (h, 1 − h, 0) inelastic scans for NCCO (x =
0.166, Tc = 22 K) at a temperature of T = 1.8 K and at energy transfers of ω =
1.75 meV (left panel) and 2 meV (right panel). Each data set has had a constant
background level subtracted and is offset for clarity. The curves are fits to Gaussians
centered at h = 0.5.

while the signal is suppressed below Tc at T = 1.8 K.

Figure 4.9 shows that an applied magnetic field can cause this suppressed signal

to reappear. To ensure a macroscopically uniform internal field upon changing the

field value,10 the sample was heated above Tc and then cooled back down to

T = 1.8 K in the new field. At an energy transfer of ω = 1.75 meV (left panel), the

magnetic excitations are completely suppressed up to H = 3 T, and they reemerge

at H = 3.5 T. A similar behavior is seen at the slightly higher energy transfer of

10Turning on the magnetic field in the superconducting state would introduce vortices that enter
the surface of the sample, but vortex pinning would lead to an inhomogeneous internal magnetic
field.
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Figure 4.10: Magnetic susceptibility of NCCO (x = 0.166, Tc = 22 K) at T = 1.8 K as
a function of magnetic field for three representative energy transfers. The normal-
state (T = 26 K) value is shown by the open square and horizontal dashed line. The
curves are guides to the eye.

ω = 2.0 meV (right panel). In this case, the peak reappears at a lower field of

H = 1.5 T.

The data are fit to Gaussians, and the values of the Gaussian amplitude from

these fits are plotted as a function of magnetic field in Figure 4.10. Included are

the two energy transfers from Figure 4.9 as well as ω = 1.5 meV. At this lowest

measured energy, the intensity remains suppressed until 5 or 6 T, whereas the

intensity at ω = 1.75 meV emerges around 3 T. At ω = 2 meV, the signal becomes

non-zero as soon as a magnetic field is applied. Note that this intensity is plotted

as the susceptibility, because the Bose population factor n + 1 at T = 1.8 K is

indistinguishable from 1 at these energies. The signal strength above Tc at T = 26 K

for ω = 1.75 meV is corrected by the Bose factor and shown as a horizontal dashed

line. As the field is increased, the susceptibility at all three energies approaches

this normal-state value.
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Figure 4.11: The magnetic excitation spectrum of NCCO (x = 0.166, Tc = 22 K) at
several values of applied magnetic field. All data are for T = 1.8 K. Curves are
guides to the eye.

The magnetic excitation spectrum (susceptibility versus energy) at low temper-

ature (T = 1.8 K) is plotted at several magnetic field values in Figure 4.11. The

zero-field data show that the energy of the magnetic gap in this sample is 2.5 meV,

smaller than in previous work [132], but in accordance with the somewhat lower Tc

and higher Ce concentration [110]. The figure shows that the profile of the excita-

tion spectrum shifts rigidly to lower energies as the magnetic field is increased. In

particular, note that the signal at lower energies remains zero, even for H = 4.5 T,

while the signal is restored by the magnetic field at higher energies. At the largest

field of H = 6.5 T, the gap can no longer be discerned. Due to a strong increase of the

background level at lower energies and the non-zero energy resolution (1.3 meV,

FWHM), measurements were not possible below ω = 1.5 meV. The strong field-

induced background probably results from an overlap of the resolution ellipsoid

with the spurious (Nd,Ce)2O3 magnetic elastic signal [23].

At each magnetic field, I define the gap energy as the energy at which the signal

reaches 50% of the maximum. This gap energy is plotted as a function of field in
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Figure 4.12: Magnetic-field dependence of the gap energy in the magnetic spectrum
of NCCO (x = 0.166, Tc = 22 K) at T = 1.8 K. The relation is linear and extrapolates
to a gap-closing field of Hgap = 14 ± 2 T. The triangle represents data taken at
H = 5 T in a previous measurement of the same sample (see text). The vertical bar
at H = 6.5 T reflects the limited knowledge that the gap energy is less than 1.5 meV.

Figure 4.12. The magnetic gap decreases linearly with field, and extrapolating the

linear behavior to zero yields Hgap = 14 ± 2 T for the estimated gap-closing field.

The triangle in the figure represents data taken on a separate occasion on the same

sample at H = 5 T upon zero-field cooling. Although field cooling is preferred,11

the result is independent of the cooling method, as might be expected at such high

magnetic fields.

4.3 Discussion

Since the publication of the field-effect data, there have been some new devel-

opments in the field. Namely, there have been higher-quality zero-field data on
11See Footnote 10 on page 113.
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PLCCO and NCCO that may have implications for how the above data should be

interpreted.

In the first Section below, I discuss the above results in a self-contained context,

not yet considering the results of the newer publications. Then, in Section 4.3.2, I

describe the discovery of the “resonance” in the magnetic spectrum of PLCCO and

NCCO and discuss the possible implications to this field-effect study.

4.3.1 Antiferromagnetism and superconductivity

The main results of this study are the rigid shift of the gapped magnetic spectrum

to lower energies and the simple linear dependence of the magnetic gap energy

with applied magnetic field. This field dependence is what one would obtain in a

naı̈ve picture of a spatially uniform response. In such a picture, the magnetic gap is

proportional to the superconducting electronic gap, which in turn is proportional

to Tc. According to the vortex Nernst effect measurements, Tc decreases linearly

as a function of field (at least at lower fields) [107]. This implies a linear decrease

of the SC electronic gap, as indeed measured by Raman spectroscopy [110]. What

the data indicate is that the SC magnetic gap also decreases linearly as a function

of field.

Note that while the data suggest a uniform magnetic response to a mag-

netic field, the vortex state is clearly not electronically uniform: in these strong

magnetic fields, the superconducting bulk is penetrated by vortices with non-

superconducting cores. Using the value of Hc2 from the vortex Nernst measure-

ment, the size of the vortex cores (i.e., the superconducting coherence length) is

estimated to be 58 Å at optimal doping [107]. Interestingly, measurements of the

antiferromagnetic correlation length (Chapter 3) on superconducting samples show

that the relevant magnetic length scale is comparable to this value (10–20a ≈ 40–

80 Å; see Figure A.3).

The field effect in NCCO is quite different from the case of optimally-doped

LSCO. In both cases, the zero-field spectra exhibit a gap associated with supercon-

ductivity. However, while a magnetic field induces in-gap states in LSCO [119],
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the gapped spectrum of NCCO undergoes a rigid shift towards lower energies.

Because measurements below 1.5 meV have not been possible, it is natural to ask

whether the formation of some in-gap states in NCCO could be hidden below this

energy. Note, however, that the signal strength at 1.5 meV remains zero up until

4.5 T (Figure 4.10). Since the energy resolution here is 1.3 meV (FWHM), the exper-

iment is sensitive to any in-gap intensity down to very low energies. In the context

of the theory by Demler et al. [122, 123], NCCO probably corresponds to the region

of the phase diagram (Figure 4.4) at large r, far from the transition line to magnetic

(or spin-wave-density) order.

In contrast to LSCO, and in refutation of the initial elastic neutron scattering

measurements on NCCO [127], these data suggest that the ground state in the

absence of superconductivity does not contain long-range magnetic order. One

indication is the similarity of applying a magnetic field and raising the temperature.

In both cases, the profile of the magnetic spectrum shifts rigidly to lower energies.

In the case of raising the temperature, the gap does not appear to close until

superconductivity completely disappears at Tc [126]. And in the case of applying

a magnetic field, the extrapolated gap-closing field (Figure 4.12) is consistent with

upper critical field of Hc2 ≈ 10–12 T [107]. Consequently, the shrinking to zero of

the magnetic gap coincides with the complete suppression of superconductivity.

Moreover, the signal strength seen at high magnetic fields equals that in the normal

state just above Tc (Figure 4.10). These similarities in behaviors suggests that the

non-superconducting ground state at fields beyond Hc2 resembles the paramagnetic

“normal” state above Tc.

A second piece of evidence comes from our complementary study of Ni-

doped NCCO.12 Ni-doping is an alternative method of suppressing supercon-

ductivity: upon substituting only about 1% of Cu with Ni, superconductivity

in NCCO is completely suppressed [134, 135, 136]. The antiferromagnetic corre-

lation length was measured for an oxygen-reduced non-superconducting sample

12Note that a two-axis measurement requires the (hh`) scattering geometry, and thus a magnetic
field perpendicular to the CuO2 plane would be a horizontal one and require different equipment.
The horizontal-field magnets currently available at neutron scattering facilities do not exceed field
strengths of 5 T.
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Figure 4.13: Antiferromagnetic correlation length of Nd2−xCexCu1−yNiyO4 (x = 0.15
and y = 0.012) on a logarithmic scale as a function of temperature. The amount
of Ni is sufficient to completely suppress superconductivity, but the correlation
length remains characteristic of a superconducting sample with short-range corre-
lations (e.g., x = 0.141) and not of a non-superconducting sample with long-range
antiferromagnetic order (e.g., x = 0.118).

of Nd2−xCexCu1−yNiyO4 (with x = 0.15 and y = 0.012) using the two-axis energy

integrating technique (see Section 2.4.3). Figure 4.13 shows that this system at low

temperatures has a finite correlation length. The temperature-dependence of the

correlation length is identical to a similarly-doped superconducting sample with

x = 0.141. In particular, note that removing superconductivity does not change the

behavior to that of a non-superconducting sample with long-range antiferromag-

netic order (the x = 0.118 data are shown for comparison in Figure 4.13). Clearly,

the non-superconducting ground state induced by Ni-doping does not have long-

range magnetic order. This lends credence to the implication of the field-effect

study, namely that the non-superconducting state induced by a magnetic field also

does not have long-range order.
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4.3.2 Magnetic resonance

Since the publication [101] of the results in Section 4.2, there have been advances

in the measurement of the zero-field magnetic excitation spectra in the electron-

doped cuprates. In particular, recent studies have claimed to identify the magnetic

resonance, a topic of strong interest in the hole-doped cuprates. The resonance is a

magnetic excitation at the antiferromagnetic zone center QAF = ( 1
2 ,

1
2 ), and is well-

defined in momentum and energy. At optimal doping, the resonance appears upon

cooling below Tc, and its intensity approximately follows a power-law behavior.

It has been observed in many of the hole-doped cuprates, including YBa2Cu3O6+δ

[137, 138, 139, 140], Bi2Sr2CaCu2O8+δ [141, 142], Tl2Ba2CuO6+δ [143], and most

recently in HgBa2CuO4+δ [144]. Interestingly, similar magnetic resonances have

been discovered in other unconventional superconductors,13 namely the heavy

fermion compounds UPd2Al3 [145] and CeCoIn5 [146] and the newly discovered

iron arsenide superconductors, such as (Ba,K)Fe2As2 [147]. Furthermore, our group

has discovered a universal ratio Er/2∆0 = 0.64(2) between the magnetic resonance

energy Er and the superconducting electronic gap ∆0 for all of these compounds

[148]. How the magnetic resonance relates to the mechanism of superconductivity

in these systems is the matter of an ongoing debate.

The case for universality of the magnetic resonance in the high-Tc cuprates

was strengthened with the report by Wilson et al. [133] of a resonance in electron-

doped PLCCO. Their data in Figure 4.14 show an enhancement aroundω = 11 meV

upon cooling into the superconducting state (right panel). As with the hole-doped

cuprates, the intensity of the peak increases below Tc (left panel). The energy of this

feature in this electron-doped cuprate is much smaller than the typical magnetic

resonance energy of 40–50 meV in the hole-doped cuprates, and it appears to follow

the universal scaling with the electronic gap ∆0 [148]. One difference with the hole-

doped case is the lack of correspondence with a special point in the magnetic

excitation spectrum (i.e., the saddle point of the “hourglass” dispersion). This is

perhaps simply because, unlike the hole-doped case, the response at all energies

13Compounds whose superconductivity has not been explained by the BCS theory.
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!

ω = 10 meVTc

Figure 4.14: Evidence for a magnetic resonance in superconducting PLCCO (x =
0.12). Left panel shows the intensity at Q = ( 1

2 ,
1
2 , 0) and ω = 10 meV as a function

of temperature. Also included is the result for the integrated intensity of the
peak found from full Q-space scans at three temperatures. Right panel shows
the intensity difference between 2 K and 30 K at (1

2 ,
1
2 , 0) as a function of energy.

Adapted from [133].
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Figure 4.15: Intensity change due to superconductivity in NCCO x = 0.15. The
circles are the difference in intensities found in Q-space scans between 2 K and 30 K.
The squares are the difference between the intensity change at the antiferromagnetic
wavevector (0.5, 0.5, 0) and the intensity change at a background point (0.66, 0.34, 0).
Reproduced from [149].

in the electron-doped cuprates appears to be located at ( 1
2 ,

1
2 ). Another minor point

is that the intensity enhancement due to superconductivity is only about 30% of

the total intensity (see the integrated intensity data in the left panel); this relatively

weak intensity enhancement is likely the reason why the feature was not discovered

any sooner.

The same group made similar measurements on a sample of optimally-doped

NCCO [149]. Figure 4.15 shows the change in the magnetic excitation spectrum due

to superconductivity. The data include only three points for which full momentum

scans were performed across the antiferromagnetic wavevector, above and below

Tc. At all of the other energies, only two points in Q-space were measured, and

thus the uncertainties are higher. The data show a decrease in intensity at lower

energies (due to the formation of the superconducting magnetic gap14) and an

increase in intensity at higher energies. The authors concluded that NCCO, like

14As mentioned in Section 4.1.4, the superconducting magnetic gap has not been seen in PLCCO.
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Figure 4.16: Susceptibility as a function of energy in NCCO (x = 0.157(7)) for
T = 4 K and 30 K. The data are the fitted Gaussian amplitudes for transverse
scans in Q-space at each energy and temperature. The shaded regions represent
the spread in energies of the A1g mode (left region) and B1g mode (right region)
expected from a sample with x = 0.157(7) [110]. The curves are fits as described in
the text.

PLCCO, exhibits a resonance aroundω = 10 meV. Note, however, that the intensity

enhancement interpreted as the resonance is very broad, ranging from about 6 meV

all the way up to 12 meV. Coupled with unavoidable systematic errors in the

experiment and with a simple subtraction of intensities, it is difficult to accept the

claim of a well-defined energy. Moreover, a resonance energy of around 10 meV

would not follow the universal scaling relation with ∆0 [148].

To investigate this further, our group performed careful measurements of the

magnetic excitation spectrum of an NCCO sample with x = 0.157(7) [81]. Fig-

ure 4.16 shows the susceptibility (intensity divided by the Bose factor) as a function

of energy in the superconducting state at T = 4 K and in the normal state at T = 30 K.

Unlike the work by Zhao et al. [149], all of the data result from Gaussian fits to full

scans in Q-space. The normal-state data are fit to a simple Lorentzian response
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function

χ′′(QAF, ω) ∝
Γω

Γ2 + ω2 , (4.1)

where the fitted value for the characteristic energy is Γ = 5.7 ± 0.5 meV. The

4 K data, on the other hand, are fit to the sum of two components (indicated as

dashed curves). The first is a Gaussian, whose position and width are determined

by the expected spread of the A1g mode given the Raman scattering work by

Qazilbash et al. [110] and the particular composition range of our sample. The

second component is a step function convolved with a Gaussian whose position

and width are determined by the expected spread of the B1g mode given the same

assumptions. The B1g mode has been interpreted as 2∆0, the pair-breaking energy

[110], and thus in this interpretation the step function in the magnetic spectrum

is the true magnetic gap. The A1g mode is more difficult to interpret, but has

been associated with the magnetic resonance in some hole-doped cuprates [150].

Thus in this two-component interpretation of the data, there is an in-gap peak

around ω = 5 meV that might be the magnetic resonance in NCCO: the magnetic

susceptibility in this energy range increases monotonically below Tc [81], as would

be expected for the magnetic resonance.

There are several strengths to this interpretation. Note that the fit to the 4 K data

(as well as a similarly good fit to the difference of the two data sets [81]) has only two

adjustable parameters, namely the amplitudes of the two components. The picture

of two energy scales explains why the apparent gap in the magnetic spectrum

around 3 meV is so small compared to the pair-breaking energy 2∆0. Moreover,

unlike the interpretation by Zhao et al. [149], the ratio of the lower magnetic energy

to 2∆0 is consistent with the universal value found for the hole-doped cuprates,

heavy-fermion compounds, and iron-arsenides [148].

However, I have my doubts that the data conclusively show the existence of two

energy scales.15 First, the 4 K data (and the difference data not shown) have been

fit to a rather complicated form, but are also consistent with a single step function

around 3 meV and a constant value at higher energies. Second, these measurements

15This paragraph contains my personal opinions, and not necessarily those of the other authors
of [81].
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were performed on a sample with a relatively large Ce concentration range, and

if the two-component interpretation is correct, one would expect sharp features

in a sample with a better-defined Ce concentration. We have attempted further

measurements on such samples, but have not seen such a sharpening of features so

far. Third, at the low signal rates of these measurements, spurious peaks become

more of a problem. If the enhanced intensity at 5 meV is real, then it should be

present at different spectrometer conditions. However, an initial attempt at using

a final energy of E f = 13.7 meV (instead of the usual 14.7 meV) did not show any

enhancement of intensity at 5 meV.

In any case, it is necessary to revisit the magnetic-field-effect study in light of

the magnetic-resonance scenario. If there is indeed a magnetic resonance around

5 meV (in zero field), then what was interpreted as a magnetic gap of 2.5 meV in the

x = 0.166 sample could be the leading edge of the magnetic resonance. It follows

that it is this leading edge which decreases linearly with an applied magnetic field.

Figure 4.10 shows that the leading edge remains well-defined up to the highest

field at which it is still discernible; this implies that the magnetic resonance mode

itself remains well-defined as the magnetic field is applied. Moreover, the intensity

of the magnetic resonance seems to remain constant. Regarding the 2∆0 feature, it

too must decrease linearly in energy along with the magnetic resonance (consistent

with the Raman scattering results [110]), since the data show a rigid shift of the

entire spectrum and no evidence of a separation between two energy scales. If

the magnetic resonance energy remains proportional to 2∆, then the observation

that the gap decreases to zero at or near Hc2 still holds. The correlation length

measurement of the Ni-doped sample remains as strong evidence for the lack of

long-range order in the non-superconducting ground state. The main conclusion of

the magnetic-field-effect study still holds, namely, that superconductivity does not

compete with antiferromagnetic order (at least in the sample that was measured).
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Supplementary information

A.1 NCCO samples

Table A.1 lists all of the NCCO samples relevant to the studies described in this

Thesis. Listed are the nominal Ce concentration, the actual measured Ce concen-

tration, the mass (at the time of the principal measurement) and superconducting

Tc. Most of the samples are oxygen reduced; the exceptions are noted in the Table.

The Table also indicates the samples for which results are shown and/or discussed

in this Thesis. All of the samples below the horizontal line have been prepared

and characterized as described in Section 2.3.2, i.e., with multiple ICP measure-

ments taken along the diameter of disks at either end and with surfaces polished

to improve the Ce homogeneity. The Ce concentrations for the samples above the

horizontal line were not measured as carefully. Dashes indicate measurements that

were not performed before the sample was altered or lost (e.g., to disintegration).

While the measured actual Ce concentration differs from the nominal Ce con-

centration, the difference between the two is systematic. Figure A.1 shows the

relationship between the actual and nominal Ce concentrations in recent samples.

All of the samples represented in Figure A.1 have had their surfaces polished. The

plotted values and error bars are the average and standard deviation of the ICP

measurements from the inner portions of the disks from either end of each sample;

126
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Name Nominal x Actual x Mass (g) Tc (K)
Mang19† 0.10 0.106(7) 1.64 0
Mang40†§ 0.15 0.166(10) 4.96 22
Eugene1† 0.04 0.038(11) 4.40 0
Eugene2 0.15 — 2.36 22
Eugene3 0.04* 0.042(6)* 2.60 0
Yu-12:15:04† 0.125 0.129(6) — —
Eugene5† 0.075 — — 0
Eugene6† 0.15 0.154(7) — 24
Eugene8† 0.1325 0.134(6) 2.30 —
Eugene9† 0.1375 0.145(4) 4.11 19
Inna-8:25:05 0.135 0.142(6) 2.79 25
Eugene10B 0.1425 0.150(4) 1.55 26
Eugene11 0.13 0.134(4) 1.69 21
Eugene13† 0.17 0.181(4) 2.75 15
Eugene14 0.17 0.180(7) 7.67 19
Eugene15] 0.134 0.141(4) — —
Eugene16‖ 0.14 0.157(7) 6.17 25
Eugene19A‡ 0.125 0.133(3) 4.17 24
Eugene19C 0.125 0.136(6) 3.12 24
Eugene20‡ 0.131 0.138(5) 2.40 19
Eugene21‡ 0.135 0.141(4) 3.22 24
Eugene22 0* 0* 2.78 0
Eugene23‡ 0.146 0.156(4) 4.99 25
Eugene24‡ 0.121 0.128(2) 3.58 20
Eugene26‡] 0.105 0.118(3) 2.96 0
Eugene28B‡ 0.115 0.126(5) 4.11 16
Eugene30 0.11 0.112(2) 1.25 15
Eugene32B‡ 0.11 0.120(1) 1.98 12
Eugene34A‡] 0.114 0.123(2) 2.03 0
* as-grown
† two-axis neutron scattering ([19], Figure A.2)
‡ two-axis neutron scattering (Chapter 3, Figure A.3)
§ inelastic neutron scattering ([101], Chapter 4)
‖ inelastic neutron scattering ([81])
] µSR (Chapter 3)

Table A.1: NCCO samples.
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Figure A.1: Actual Ce concentration measured by ICP versus nominal Ce con-
centration in recent NCCO samples. The labels by the data points are sample
numbers.

usually, a large portion of the spread is due to the difference of Ce concentration be-

tween the two ends of a sample. Perhaps because polishing removes a portion with

lower Ce concentration (see Figure 2.17), the actual Ce concentration is consistently

larger than the nominal Ce concentration; the difference is about ∆x = 0.01.

A.2 Two-axis measurements

This Section contains material supplementary to Chapter 3.

A.2.1 Magnetic correlation length

Here I show the antiferromagnetic correlation length data that were left out of

Figure 3.9 and Figure 3.10 for clarity. Figure A.2 shows data from older samples

which were not grown using all of the refinements described in Section 2.1, and

which did not receive the polishing treatment and systematic ICP measurements

described in Section 2.3.2. Thus these samples have a larger Ce inhomogeneity and
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x = 0.145(4)
x = 0.134(6)
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x = 0.106(7)
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Figure A.2: Correlation length as a function of temperature in older samples. Most
of these data are included in Figure 3 of [19].

some of the values and errors on x may be somewhat inaccurate. Most of these data

are shown in Figure 3 of [19]. The behavior of the x = 0.129 and x = 0.134 samples

led us to believe that the transition in behaviors occurs around x = 0.134, and that

this doping level might constitute a quantum critical point. Newer measurements

on samples with similar Ce concentrations (x = 0.128 and x = 0.133) have shown

that the correlation length remains finite at lower temperatures. One limitation

was the custom at the time of not performing measurements below the apparent

Néel temperature (e.g., in the x = 0.129 sample).

Note also the correlation length values for x > 0.15. While the measured

values are lower than the behavior seen in the newer x = 0.141 sample, they are

not significantly lower considering the relatively large changes in x. While the

correlation length may decrease intrinsically with increasing doping, part of the
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x = 0.128(2)
x = 0.126(5)
x = 0.123(2)
x = 0.120(1)
x = 0.118(3)

x = 0.156(4)
x = 0.141(4)
x = 0.138(5)
x = 0.133(3)

Figure A.3: Correlation length as a function of temperature in newer samples.
Most of these data are included in Figure 3.10.

reason for the lower values could also be that many of these measurements were

performed in the superconducting state (see below).

Figure A.3 shows all of the data from newer samples. It is the same as Figure 3.10,

but contains data from additional samples1 as well as correlation length results for

T ≈ 4 K in the superconducting state. The correlation lengths at these lowest

temperatures are lower than the values at T ≈ 30 K (in some cases significantly

so). This is likely due to the opening of a gap in the magnetic excitation spectrum

in the superconducting state (see Chapter 4).2 Because the momentum width at

1While the Ce concentration range ∆x = 0.002 for x = 0.128 is rather small according to the
ICP measurements from the end pieces, this crystal is a relatively long sample and thus its true
inhomogeneity may be larger.

2All correlation lengths shown here were obtained with Ei = 14.7 meV, which is 3–4 times larger
than the superconducting magnetic gap.
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Figure A.4: Correlation length as a function of Ce concentration x in newer samples
at three representative temperatures. The vertical dashed line indicates xc = 0.119.
The data labeled T = 31 K are included in Figure 3.11.

lower energies is smaller than at higher energies [81], the two-axis momentum

width increases, and the measured correlation length decreases. See Section A.3

for simulations of two-axis measurements based on triple-axis data that show a

decrease of the correlation length in the superconducting state.

The correlation lengths for the newer samples are shown in Figure A.4 as a

function of Ce concentration. The data labeled T = 31 K are included in Figure 3.11

and show that the low-temperature correlation length (in the non-superconducting

state) is essentially constant above xc = 0.119 (vertical dashed line). The data at

the higher temperature T ≈ 100 K show a larger correlation length for some of

the samples, but this may be due to a small volume fraction that behaves like

x < xc (see Section A.2.2). Ignoring the two lowest-doped samples in the figure,

the T ≈ 100 K correlation length seems to increase as xc is approached from above;

with the addition of the newest data at x = 0.120 and x = 0.123 this is shown not
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to be a significant effect. The data at T = 5 K show that, as mentioned above, the

correlation length tends to decrease in the superconducting state.

A.2.2 Two-axis amplitude

During the analysis of the two-axis scans the data are also fit to simple Gaussians (in

addition to the usual fitting routine described in Section 2.4.3). The resulting values

for the amplitude have been normalized by the sample mass and across the two

spectrometers where these samples were measured,3 and are plotted in Figure A.5.

While this is not a true physical quantity because of the effects of the spectrometer

resolution, the observed characteristics of the temperature dependence can provide

some insight into the strange behavior of the correlation length in some samples.

The x = 0.118 sample is the only one shown in the figure that exhibits genuine

long-range order according the measured correlation length. It is the only such

sample that has been measured extensively below its Néel temperature.4 As the

temperature is lowered, the amplitude of the two-axis signal increases to a peak at

its Néel temperature and then decreases.5 Note, in particular, that the measured

amplitude reaches zero above T = 0.

The behavior in the other samples (which do not show long-range order) is

qualitatively different: the strength of the signal at the lowest temperatures remains

non-zero. Note that the samples in which the peak in two-axis amplitude is the

least pronounced (e.g., x = 0.123 and x = 0.141) show monotonic behavior of the

correlation length. Conversely, the samples in which the peak is most pronounced

(e.g., x = 0.126, x = 0.128, and x = 0.133) show an increase in the measured

correlation length at the (same) intermediate temperatures (see Figure A.3). These

samples (which tend to have larger measured Ce inhomogeneity) may contain

small volume fractions that behave similar to the x = 0.118 sample, for which

the correlation length is large and the temperature dependence of the intensity is

3Conditions at each spectrometer were largely kept the same for the measurement of different
samples.

4In fact, I have not found any examples in the literature.
5The width of the signal remains resolution limited (ξ > 200a) below TN (not shown).
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Figure A.5: The two-axis amplitude, normalized by mass and among spectrome-
ters, plotted as a function of temperature for samples in the range 0.118 ≤ x ≤ 0.141.

strongly peaked. Thus the increase in measured correlation length in these samples

at intermediate temperatures may be an effect of inhomogeneity, and the genuine

behavior for x > xc is exhibited by the samples with x = 0.123 and x = 0.141.

Figure A.6 shows that the two-axis amplitude at T ≈ 100 K does not exhibit

an obvious dependence on Ce concentration x: these data vary quite widely (up

to a factor of 5) even in a rather narrow Ce concentration range. This is due

to the variation in Ce inhomogeneity, and is a further indication that not all of

the samples exhibit genuine behavior around T = 100 K. On the other hand, the

amplitude of the T ≈ 30 K signal has a smooth non-monotonic doping dependence,

with a maximum near x = 0.14. From these data, it appears that samples just above

xc = 0.119 have intrinsically weaker signal (in the energy range, Ei = 14.7 meV, of

the experiment).
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Figure A.6: The two-axis amplitude, normalized by mass and among spectrom-
eters, as a function of Ce concentration x at T ≈ 100 K and T ≈ 30 K. The dashed
curve through the T ≈ 30 K data is a guide to the eye.

A.2.3 Pseudogap

The “pseudogap” phenomenon is a set of anomalies associated with the decrease

in low-energy states (the opening of a partial gap) along parts of the Fermi surface.

While a pseudogap exists in both hole-doped and electron-doped materials, the

physical signatures are different enough that the phenomena may be fundamentally

different in the two classes of materials [82, 151]. In the electron-doped cuprates,

the pseudogap is observed in angle-resolved photoemission as a gap on the order of

100 meV located between the nodal (π, π) and antinodal (0, 0) directions [80, 152],

while in the hole-doped cuprates, the pseudogap is found along the antinodal

directions and is similar in size to the superconducting gap [153].

In the electron-doped cuprates, the pseudogap is readily seen in optical con-

ductivity spectra and found to develop below a temperature T∗ that decreases

monotonically with increasing Ce concentration. The results for NCCO crystals
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Figure A.7: The pseudogap temperature T∗ as a function of Ce concentration
as measured by optical spectroscopy on NCCO crystals [154] and Pr2−xCexCuO4

(PCCO) films [155]. The curve through the points is a fit to a parabola and is used
in the analysis of the magnetic correlation length along T∗(x). Curves for TN and Tc

are provided for reference.

[154] and Pr2−xCexCuO4 (PCCO) thin films [155] are shown in Figure A.7. Because

the T∗ curve separates regions in the phase diagram where the Fermi surface is

disconnected (below and to the left of T∗(x)) and fully connected (above and to the

right of T∗(x)), the Ce concentration x∗ at which T∗ drops to zero marks a possible

topological transition of the Fermi surface [154]. Note that x∗ is near the disappear-

ance of apparent antiferromagnetic order around x = 0.17. Anomalies in transport

measurements that have been reported in this region [88] may be associated with

the pseudogap phenomenon and not with the magnetic transition, as has been

claimed [89].
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Figure A.8: Correlation length ξ∗ ≡ ξ(T∗) at the pseudogap temperature as a
function of Ce concentration. Open and filled symbols represent data from older
and newer samples, respectively. The vertical dashed line indicates xc = 0.119.
The solid curve is a power-law fit to the data with x < xc, and the solid horizontal
line indicates the average value for x > xc. The dashed curve is the power-law
relationship ξ∗/a = (x∗ − x)−1 reported in [19].

In [19], we reported a signature of the pseudogap in the correlation length data.

The correlation length ξ∗ ≡ ξ(T∗) at the pseudogap temperature was found to have

a power-law dependence on x. While ξ∗ was found to decrease above x ≈ 0.15, the

behavior at lower doping followed the particularly simple form ξ∗/a = (x∗ − x)−1.

The addition of the newer, more precise data shows that this form no longer

describes the data well (see Figure A.8).6 Below xc = 0.119, a fit to the power-law

form ξ∗/a = A(x0 − x)−ν yields the parameters A = 1.4 ± 1.1, x0 = 0.125 ± 0.01,

6The older data are only inconsistent with the newer data in two respects. The value at x = 0.145
is rather high; this was a particularly large sample, that I believe must have had a larger Ce
inhomogeneity than was apparent at the time. It probably contained a portion with the behavior of
x < xc samples and thus had a larger correlation length than the newer x = 0.141 sample (compare
Figures A.2 and A.3). The values at x = 0.150 and x = 0.154 are rather low; this is probably because
of the effects of superconductivity in the measurements of these samples.
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and ν = 0.6 ± 0.3. For x > xc, ξ∗ is relatively constant. It has been predicted

theoretically that T∗ is the temperature below which magnetic correlations become

longer than a characteristic thermal length ξth [151]. This needs to be further tested

with measurements on additional samples with x < xc.

There have been recent reports that T∗ corresponds to the onset of a novel

magnetic order. Polarized neutron diffraction measurements of the hole-doped

compounds YBa2Cu3O6+x [156, 157] and HgBa2CuO4+δ [158] indicate that this mag-

netic order preserves the translational symmetry of the lattice and is thus quite

different in nature from the antiferromagnetic fluctuations usually studied with

neutron scattering (including those studied in this Thesis). It remains an open

question whether T∗ in the electron-doped cuprates is associated with a similar sort

of novel magnetic order.

A.3 Two-axis simulations

The two-axis measurements discussed in Chapter 3 and the inelastic triple-axis

measurements described in Chapter 4 and in [81] are probes of the same antifer-

romagnetic excitation spectrum in NCCO. Here I attempt to tie the two types of

measurements together by taking the measured excitation spectrum from triple-

axis measurements and simulating two-axis scans. The simulations can then be

compared to actual two-axis data.

While I have stated that the two-axis method measures the instantaneous scat-

tering function (2.22)

Sinst(Q2D) =

∫
S(Q2D, ω) dω , (A.1)

this is not strictly true, even taking into account that the energy integration is over

a finite range (up to Ei = 14.7 meV in this Thesis). There are two factors that change

with the energy transfer ω. The first is the Bose population factor. Because the

energy integration includes both positive and negative ω, the magnetic excitation

at any particular ω is weighted by 2n(ω) + 1. The second factor is due to the

resolution function. As described in Section C.2, the two-axis resolution function
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Figure A.9: Resolution function calculated for two-axis neutron scattering at sev-
eral values of ` corresponding to several values of energy transfer ω. The el-
lipses represent 1σ loci of the Gaussian resolution function. The calculation uses
Ei = 14.7 meV. Note that the (h, k) and ` axes are not to scale.

depends on k f , and thus on ω. Figure A.9 shows the resolution function at various

values of ` (and thus energy). The positive ` values correspond to small ω, and

the most negative ` value corresponds to an ω close to Ei = 14.7 meV (refer to

Figure 2.21). Note that all of the fits to the two-axis measurements in Chapter 3

(and also in [14] and [56]) use a single resolution function, namely that for ω = 0.

Fortunately this is not a serious problem: as seen Figure A.9, the extent of the

resolution ellipsoids along the (h, k) direction does not vary by very much.7

7The measurements aim to extract the in-plane correlation length; recall that the intrinsic signal
is largely independent of ` since the magnetic system under investigation is two-dimensional.
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Figure A.10: Relative weight of the two-axis energy integration as a function
of energy for the case of Ei = 14.7 meV, including the effects of resolution and
(temperature-dependent) Bose population factor.

The combined effect of the Bose factor and the resolution function is shown

in Figure A.10. At zero temperature, where the Bose factor is 1, the resolution

function causes the higher-energy excitations to be weighted strongly.8 The Bose

factor causes the lower-energy excitations to become weighted more strongly as

the temperature is increased.

Thus there are two approximations made in the analysis of two-axis data; the

first is that the resolution function for ω = 0 approximates the effects of the full

set of resolution functions. And the second is that the weighted distribution of

energies (due both to resolution effects and the Bose factor) approximates the

energy integration (A.1) for the instantaneous scattering function. While these

may cause the absolute value of the fitted correlation length to differ slightly from

the true value, the conclusions can still be quantitative. Note, for example, the

8Note that while the weight function diverges, the integral does not.
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agreement between numerical results for the Heisenberg model and experimental

data for LCZMO [56].

Comparison of simulations with experiment

Two-axis scans are simulated using the magnetic excitation spectrum of NCCO x =

0.157 (Figure 4.16) [81]. The signal is deconvolved from the calculated resolution

function of the PUMA triple-axis spectrometer at the FRM-II in Garching, Germany.

The intrinsic momentum width is modeled as increasing linearly with energy [81],

and a smooth function is used for the energy-dependent (intrinsic) susceptibility.

The simulated conditions are those at the BT9 and SPINS spectrometers at the

NCNR in Gaithersburg, Maryland.

Figure A.11 compares the simulations with the data. The left panels compare

simulations with an experiment on BT9 with Ei = 14.7 meV, and the right panels

compare simulations with an experiment on SPINS with Ei = 5.0 meV.9 The cor-

respondence is far from perfect. There are broadly qualitative similarities, such as

how the T = 30 K data have stronger intensity than the T = 4 K data and how the

intensity difference becomes larger with Ei = 5.0 meV. This is presumably because

in that case a larger relative portion of the signal is gapped due to superconduc-

tivity. Another similarity is that, for the Ei = 5.0 meV case, the simulation correctly

shows that the T = 30 K peak is sharper than the T = 4 K peak.

However, the major discrepancy is the clear difference between the simulations

and experiments of the actual width of the peaks. For example, the calculation for

Ei = 5.0 meV and T = 30 K yields a peak that is 60% wider than that of the corre-

sponding experiment. This is probably due to the large uncertainty in determining

the intrinsic (energy-dependent) width of the magnetic excitation spectrum. Triple-

axis measurements generally use focusing monochromators and/or analyzers with

open collimations, sacrificing momentum resolution for higher count rates. Thus

the signal is usually very close to being resolution-limited, and a small error in

calculating the resolution function will lead to large errors in the deconvolved

9With Ei = 5.0 meV the energy integration is over a much smaller range, and what is measured
is different from the instantaneous correlations.
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Figure A.11: Background-subtracted data and fits to the data (top panels) and sim-
ulated two-axis scans (bottom panels) for the BT9 thermal triple-axis spectrometer
(left panels) and the SPINS cold triple-axis spectrometer (right panels). The BT9
experiment and simulation were performed with Ei = 14.7 meV, and the SPINS
experiment and simulation were performed with Ei = 5.0 meV. Note the different
scales on the h axes.

momentum widths. The two-axis measurements, on the other hand, use fine colli-

mations resulting in an order-of-magnitude better momentum resolution. In fact,

precise measurements of the correlation lengths, even to the moderate precision

shown in Chapter 3, are only possible with the higher signal rates that are afforded

by two-axis measurements.



Appendix B

Neutron scattering cross section

The goal of this Appendix is to derive formulae for the neutron scattering cross
section. This Appendix largely follows the discussion in [159], with additional
material and definitions from other sources [47, 160, 161]. In Section B.1 we derive
the formulae for the nuclear scattering of neutrons. The general principles for this
simpler case will then be applied in Section B.2 to derive formulae for magnetic
neutron scattering. We first define some terms which we use throughout this
Appendix.

A beam of neutrons with well-defined energy Ei is incident on a sample. The
neutrons are scattered into various directions (θ, φ) with various energies E f . If the
incident flux (number of neutrons per second per unit area) is Φ, then the partial
differential cross section is defined as

d2σ
dΩ dE f

=

number of neutrons per second into dΩ
with energy between E f and dE f

Φ dΩ dE f
. (B.1)

In general, the partial differential cross section depends on the direction (θ, φ) of
the scattering as well as on E f . Expressions for the partial differential cross section
are what we wish to ultimately derive, both for nuclear and magnetic processes.
In most contexts it is simply called the “cross section”. We can also define the
energy-integrated differential cross section as

dσ
dΩ

=

∫
∞

0

d2σ
dΩ dE f

dE f =
number of neutrons per second into dΩ

Φ dΩ
. (B.2)

This cross section is convenient in discussions of elastic scattering (Ei = E f ). Finally,

142
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the total scattering cross section is defined as

σtot =

∫
dσ
dΩ

dΩ =
total number of neutrons scattered per second

Φ
. (B.3)

B.1 Nuclear scattering

The derivation of formulae for nuclear scattering is simpler than that of magnetic
scattering for two reasons: the spin degree of freedom of the neutron can be ignored,
and the interaction potential between neutrons and nuclei is short-ranged enough
to be approximated as a delta function. We thus begin the discussion with nuclear
scattering, and the general principles learned in this section are applied later to the
slightly more complicated case of magnetic scattering.

We begin in Section B.1.1 by finding an expression for a particular transition
between two quantum states of the system using Fermi’s golden rule, including
deriving V, the interaction potential for nuclear scattering. Then in Section B.1.2
we find an expression for the measured cross section by summing over all final
quantum states and taking the thermal average of the initial quantum states of
the system. The expression is simplified by using the Heisenberg picture and
also distinguishing between the coherent and incoherent parts of the cross section.
Section B.1.3 defines the scattering function and discusses its properties. Finally, in
Section B.1.4 we consider the case of a crystal lattice, ending with expressions for
nuclear elastic scattering from the lattice and inelastic scattering from the phonon
spectrum.

B.1.1 Transition between quantum states

If we ignore the spin of the neutron, the quantum state of the neutron is defined by
its momentum1 k. In this section we consider a very specific interaction in which
the quantum state of the neutron changes from ki to k f , and the quantum state of
the scattering system changes from λi to λ f .

The differential cross section for this particular process can be written as

dσ
dΩ

∣∣∣∣∣
λi→λ f

=
1
Φ

1
dΩ

∑
k f in dΩ

W(ki,λi)→(k f ,λ f ) , (B.4)

where W(ki,λi)→(k f ,λ f ) is the number of transitions per second from (ki, λi) to (k f , λ f ).

1The momentum is technically p = ~k.
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This transition rate can be calculated using Fermi’s golden rule:∑
k f in dΩ

W(ki,λi)→(k f ,λ f ) =
2π
~
ρk f |〈k fλ f |V|kiλi〉|

2 , (B.5)

where ki is taken as a given value, k f is the particular final neutron momentum
that satisfies momentum and energy conservation for the total system, ρk f is the
number of quantum states in dΩ per unit energy at k f , and V is the scattering
potential that defines the interaction of the neutron with the scattering system. The
matrix element, if evaluated in real space, looks like

〈k fλ f |V|kiλi〉 =

∫
ψ∗k f

χ∗λ f
Vψkiχλi dr1 · · · drN dr , (B.6)

where ψk is the wavefunction of a neutron in state k, χλ is the wavefunction of the
scattering system in state λ, r is the position of the neutron, and r1, r2, . . . , rN are the
positions of the nuclei in the scattering system, with N being the number of nuclei.

The value ρk f is proportional to the density of quantum states in k-space, which
depends on the neutron density. If the neutron density is n, then the volume
associated with one neutron is 1/n. The volume occupied by one quantum state in
k-space is then n(2π)3.

The number of states in dΩ with energy between E f and E f + dE f is equal to the
number of states in the volume element k2

f dk f dΩ:

ρk f dE f =
1
n

1
(2π)3 k2

f dk f dΩ . (B.7)

For neutrons, the relationship between E f and k f is

E f =
~2

2m
k2

f (B.8)

dE f

dk f
=
~2

m
k f (B.9)

Thus we have
ρk f =

1
n

1
(2π)3 k f

m
~2 dΩ . (B.10)

There are two other quantities in the cross section formula that depend on the
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neutron density n. One is the incident flux Φ:

Φ = n
~ki

m
. (B.11)

The other is the neutron wavefunction ψk:

ψk(r) =
√

neik·r . (B.12)

We then see that the matrix element is

〈k fλ f |V|kiλi〉 = n
∫

e−ik f ·rχ∗λ f
Veiki·rχλi dr1 · · · drN dr . (B.13)

In the equation for the differential cross section, the factors of n all cancel, as they
should:

dσ
dΩ

∣∣∣∣∣
λi→λ f

=
k f

ki

( m
2π~2

)2

|〈k fλ f |V|kiλi〉|
2 , (B.14)

where we have redefined the matrix element to be the right-hand side of (B.13)
without the factor of n (i.e., redefine ψk ≡ eik·r).

We remind ourselves that, in general, the differential cross section is a function
of the scattering angles θ and φ. However, the restriction to the transition λi → λ f

constrains the function to the scattering angle corresponding to outgoing neutron
momentum k f , determined by conservation of momentum. In a similar fashion, the
outgoing neutron energy E f is constrained by conservation of energy. In particular,
if Eλi and Eλ f are the energies of the initial and final states of the scattering system,
then

Ei + Eλi = E f + Eλ f . (B.15)

The partial differential cross section, then, has a delta-function dependence on the
outgoing energy E f :

d2σ
dΩdE f

∣∣∣∣∣∣
λi→λ f

=
k f

ki

( m
2π~2

)2

|〈k fλ f |V|kiλi〉|
2δ(Eλi − Eλ f + Ei − E f ) . (B.16)

Interaction potential V

The potential V is the sum of all interactions V j of the neutron with the j-th nucleus:

V =
∑

j

V j(R j) , (B.17)
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where V j only depends on R j ≡ r − r j, the position of the neutron with respect to
the j-th nucleus. To calculate the matrix element, we first integrate over r, the space
coordinates of the neutron:

〈k f |V|ki〉 =
∑

j

∫
e−ik f ·rV j(R j)eiki·rdr

=
∑

j

∫
V j(R j)eiQ·(r j+R j)dR j

=
∑

j

V j(Q)eiQ·r j ,

(B.18)

where the Fourier transform is defined as

V j(Q) =

∫
V j(R j)eiQ·R jdR j , (B.19)

and where
Q = ki − k f (B.20)

is the momentum transfer.2 The whole matrix element thus becomes

〈k fλ f |V|kiλi〉 = 〈λ f |

∑
j

V j(Q)eiQ·r j |λi〉

=
∑

j

V j(Q)〈λ f |eiQ·r j |λi〉 .
(B.21)

What is the form of V j(R j)? We know that the interaction of a neutron and a
nucleus is mediated by the nuclear strong force, which is extremely short-ranged
(on the order of 10−15 m) compared to the wavelength of the neutron (on the order
of 10−10 m). Thus a good approximation to use a delta function, for which the
Fourier transform is a constant:

V j(R j) = aδ(R j) , (B.22)
V j(Q) = a . (B.23)

It can be shown, using a classical partial-wave analysis of scattering from a single

2 This convention (used in [159]) is opposite to that used in the main text (and used in [47]). Thus,
strictly-speaking, the formulas derived in this Appendix only hold for this definition. However,
we are justified in using the formulas in the main text in the (common) case of inversion symmetry
(Q↔ −Q).
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fixed nucleus [159], that

a =
2π~2

m
b , (B.24)

where b is called the scattering length. In general b is complex and energy-
dependent; the imaginary part indicates the possibility of neutron capture (ab-
sorption), and only a few nuclides behave in this fashion. For most elements
(i.e., all elements for which neutron scattering is feasible), b is real and energy-
independent. Typically, the scattering length is on the order of a few fm (10−15 m).
The cross section formula becomes

d2σ
dΩdE f

∣∣∣∣∣∣
λi→λ f

=
k f

ki

∣∣∣∣∑
j

b j〈λ f |eiQ·r j |λi〉

∣∣∣∣2 δ(Eλi − Eλ f + Ei − E f ) , (B.25)

where b j indicates the scattering length of the j-th nucleus.3

B.1.2 Sum over final states and average over initial states

The measured cross section does not discriminate against the quantum states λi

and λ f of the scattering system. In order to get the actual measured cross section,
we need to first sum over all final states λ f and then take the thermal average over
all initial states λi. If the system is in thermal equilibrium at temperature T, the
probability for the system to be in state λ is

pλ =
1
Z

e−Eλ/kBT , (B.26)

where Z is the partition function

Z =
∑
λ

e−Eλ/kBT . (B.27)

The measured cross section is then

d2σ
dΩdE f

=
∑
λiλ f

pλi

d2σ
dΩdE f

∣∣∣∣∣∣
λi→λ f

=
k f

ki

∑
λiλ f

pλi

∣∣∣∣∑
j

b j〈λ f |eiQ·r j |λi〉

∣∣∣∣2 δ(Eλi − Eλ f + ~ω) ,
(B.28)

3The scattering length b varies with the nuclide, but because the neutron has spin, it also depends
on the combined spin (I ± 1

2 ) of the nucleus-neutron system. Although we ignore this detail here,
all of the variations of b are taken into account in the incoherent cross section introduced later.
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where we have defined the energy transfer

~ω = Ei − E f . (B.29)

We now simplify this expression by rewriting the delta function in energy as an
integral and using the Heisenberg picture. The delta function becomes

δ(Eλi − Eλ f + ~ω) =
1
~
δ(ω −

Eλ f − Eλi

~
)

=
1

2π~

∫
∞

−∞

e−i(ω−(Eλ f −Eλi )/~)t dt

=
1

2π~

∫
∞

−∞

ei(Eλ f −Eλi )t/~e−iωt dt .

(B.30)

Expanding the square in (B.28) and using the new form for the delta function yields

d2σ
dΩdE f

=
k f

ki

1
2π~

∑
λiλ f

pλi

∑
j j′

b jb j′〈λi|e−iQ·r j′ |λ f 〉〈λ f |eiQ·r j |λi〉

∫
ei(Eλ f −Eλi )t/~e−iωt dt

=
k f

ki

1
2π~

∑
λiλ f

pλi

∑
j j′

b jb j′

∫
〈λi|e−iQ·r j′ |λ f 〉〈λ f |eiHt/~eiQ·r je−iHt/~

|λi〉e−iωt dt

=
k f

ki

1
2π~

∑
λiλ f

pλi

∑
j j′

b jb j′

∫
〈λi|e−iQ·r j′ (0)

|λ f 〉〈λ f |eiQ·r j(t)|λi〉e−iωt dt , (B.31)

where H is the Hamiltonian for the scattering system, and in the last line we have
changed to the Heisenberg picture with Heisenberg operator r j(t) describing the
time-dependent motion of nuclei. Applying the sum over λi and λ f inside the
integral, we have

d2σ
dΩdE f

=
k f

ki

1
2π~

∑
j j′

b jb j′

∫ ∑
λiλ f

pλi〈λi|e−iQ·r j′ (0)
|λ f 〉〈λ f |eiQ·r j(t)|λi〉e−iωt dt

=
k f

ki

1
2π~

∑
j j′

b jb j′

∫ ∑
λi

pλi〈λi|e−iQ·r j′ (0)eiQ·r j(t)|λi〉e−iωt dt

=
k f

ki

1
2π~

∑
j j′

b jb j′

∫
〈e−iQ·r j′ (0)eiQ·r j(t)〉e−iωt dt ,

(B.32)

where we have used the closure relation
∑
λ f
|λ f 〉〈λ f | = 1, and 〈· · · 〉 denotes the

thermal average
∑
λ pλ〈λ| · · · |λ〉.
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Now that we have summed and averaged over the quantum states of the system,
the partial differential cross section is an unconstrained function of scattering angle
and final neutron energy. We have found an expression in terms of the more
physical variables Q and ω, which can be easily calculated from θ, φ, and E f .

Coherent and incoherent scattering

As previously mentioned, the scattering length b differs among the nuclei in a
general system. If we suppose that a certain value bi occurs with frequency fi, then
the average value of b is

b =
∑

i

fibi , (B.33)

and the average value of b2 is
b2 =

∑
i

fib2
i . (B.34)

We first assume that there is no correlation between the value of b at one site to
that of another; in particular, the treatment of multiple elements in a crystal lattice
is different and is discussed later.

The cross section measured for a very large number of nuclei is very close to
the average cross section for all distributions of bi’s. Thus

d2σ
dΩdE f

=
k f

ki

1
2π~

∑
j j′

b jb j′

∫
〈e−iQ·r j′ (0)eiQ·r j(t)〉e−iωt dt . (B.35)

Note that if j′ , j, then b jb j′ = b jb j′ = b
2
, and if j′ = j, then b jb j′ = b2. So we can split

the cross section into two terms:

d2σ
dΩdE f

=
k f

ki

1
2π~

b
2 ∑

j, j′

∫
〈e−iQ·r j′ (0)eiQ·r j(t)〉e−iωt dt

+
k f

ki

1
2π~

b2
∑

j

∫
〈e−iQ·r j(0)eiQ·r j(t)〉e−iωt dt . (B.36)

By allowing the first sum to be over all j, j′ and subtracting the additional j = j′
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term, we have

d2σ
dΩdE f

=
k f

ki

1
2π~

b
2 ∑

j j′

∫
〈e−iQ·r j′ (0)eiQ·r j(t)〉e−iωt dt

+
k f

ki

1
2π~

(b2 − b
2
)
∑

j

∫
〈e−iQ·r j(0)eiQ·r j(t)〉e−iωt dt . (B.37)

The first term is called the coherent cross section, and the second term is called the
incoherent cross section. We can write

d2σ
dΩdE f

∣∣∣∣∣∣
coh

=
σcoh

4π
k f

ki

1
2π~

∑
j j′

∫
〈e−iQ·r j′ (0)eiQ·r j(t)〉e−iωt dt (B.38)

d2σ
dΩdE f

∣∣∣∣∣∣
inc

=
σinc

4π
k f

ki

1
2π~

∑
j

∫
〈e−iQ·r j(0)eiQ·r j(t)〉e−iωt dt , (B.39)

where σcoh = 4πb
2

and σinc = 4π(b2 − b
2
) are the coherent and incoherent cross

section, which are specific to a nuclide or element and can be found listed in tables
such as those in [47].

The coherent cross section is due to interference effects of different nuclei at dif-
ferent times, and is the measured cross section if all nuclei have the same scattering
length b = b. The incoherent cross section is due to the random distributions of
the deviations of the scattering length from the average value b. The coherent part
is usually the more physically interesting and is the focus of the remainder of this
Appendix.

B.1.3 Scattering function

The scattering function is a quantity dependent only on the parameters of the
scattering system. It is defined as

S(Q, ω) =
1

2π~N

∑
j j′

∫
〈e−iQ·r j′ (0)eiQ·r j(t)〉e−iωt dt , (B.40)

so that the coherent cross section can be written as

d2σ
dΩdE f

∣∣∣∣∣∣
coh

=
k f

ki
b

2
NS(Q, ω) . (B.41)
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where N is the number of nuclei.
The physical significance of the scattering function is that it is, up to a constant

factor, the Fourier transform (in time and space) of the density-density correlation
function Cρρ(r, r′, t − t′):4

S(Q, ω) =
1

2π~N

∫
Cρρ(r, r′, t)e−i(Q·(r−r′)−ωt) drdr′dt , (B.42)

where
Cρρ(r, r′, t − t′) = 〈ρ(r, t)ρ(r′, t′)〉 (B.43)

depends only on the time difference t− t′, as long as the Hamiltonian of the system
is time-independent. The particle density ρ(r, t) of nuclei is given by

ρ(r, t) =
∑

j

δ(r − r j(t)) , (B.44)

and so we have

Cρρ(r, r′,−t) =
∑

j j′

〈
δ(r − r j′(0))δ(r′ − r j(t))

〉
. (B.45)

The spatial Fourier transform is then∫
Cρρ(r, r′,−t)e−iQ·(r−r′) drdr′ =

∑
j j′
〈e−iQ·r j′ (0)eiQ·r j(t)〉 , (B.46)

and (B.42) follows upon changing the variable of integration t→ −t.

Principle of detailed balance

One of the general properties of the scattering function is that of detailed balance:

S(−Q,−ω) = e−~ω/kBTS(Q, ω) . (B.47)

We can prove this relation by returning to the expression (B.28) for the cross section:

d2σ
dΩdE f

=
k f

ki

∑
λiλ f

pλi

∣∣∣∣∑
j

b j〈λ f |eiQ·r j |λi〉

∣∣∣∣2 δ(Eλi − Eλ f + ~ω) . (B.48)

4Correlation functions are also discussed later in the context of the fluctuation dissipation theo-
rem in Section B.2.5
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The coherent part of this is

d2σ
dΩdE f

∣∣∣∣∣∣
coh

=
k f

ki
b

2 1
Z

∑
λiλ f

e−Eλi/kBT
∣∣∣∣∑

j

〈λ f |eiQ·r j |λi〉

∣∣∣∣2 δ(Eλi − Eλ f + ~ω) , (B.49)

where we have written the explicit expression for pλi . The scattering function is
then

S(Q, ω) =
1

NZ

∑
λiλ f

e−Eλi/kBT
∣∣∣∣∑

j

〈λ f |eiQ·r j |λi〉

∣∣∣∣2 δ(Eλi − Eλ f + ~ω) . (B.50)

For S(−Q,−ω) we relabel λi as λ f and vice-versa:

S(−Q,−ω) =
1

NZ

∑
λiλ f

e−Eλ f /kBT
∣∣∣∣∑

j

〈λi|e−iQ·r j |λ f 〉

∣∣∣∣2 δ(Eλ f − Eλi − ~ω)

=
1

NZ

∑
λiλ f

e−(Eλ f −Eλi )/kBTe−Eλi/kBT
∣∣∣∣∑

j

〈λ f |eiQ·r j |λi〉

∣∣∣∣2 δ(Eλi − Eλ f + ~ω)

= e−~ω/kBTS(Q, ω) , (B.51)

which is the result we set out to prove.
The physical interpretation is that, a priori, the probabilities are the same that

a neutron will bring about a transition from λi to λ f or from λ f to λi, but the
probability of the system initially being in the higher energy state is lower by
e−|Eλ f −Eλi |/kBT than the probability of being in the lower energy state. One implication
of this result is that neutron scattering experiments are almost always performed
with positive energy transfer ω (i.e., energy transferred from the neutron to the
system).

B.1.4 Scattering from a crystal lattice

We now move our discussion from a general scattering system of nuclei to a
scattering system in which the nuclei are arranged in a crystal lattice.

We first consider only Bravais lattices, in which there is one atom per unit cell.
We use R to indicate the lattice positions

R = n1a1 + n2a2 + n3a3 , (B.52)

where a1, a2, and a3 are the vectors that define the primitive unit cell, and n1, n2 and
n3 are integers. The reciprocal lattice is defined as all vectors G such that eiG·R = 1.



B.1. NUCLEAR SCATTERING 153

This condition is satisfied by

G = m1b1 + m2b2 + m3b3 , (B.53)

where m1, m2 and m3 are integers, and the primitive vectors bi of the reciprocal
lattice are defined in terms of the primitive vectors ai of the real-space lattice:

b1 =
2π
v0

a2 × a3 , b2 =
2π
v0

a3 × a1 , b3 =
2π
v0

a1 × a2 , (B.54)

where v0 = a1 · (a2 × a3) is the volume of the real-space unit cell.
The lattice vectors R are the equilibrium positions of the nuclei in the crystal

lattice. The motion of the `-th nucleus is described by

r`(t) = R` + u`(t) , (B.55)

where u`(t) is the motion of the nucleus away from equilibrium. The scattering
function (B.40) is now

S(Q, ω) =
1

2π~N

∑
``′

∫
〈e−iQ·r`′ (0)eiQ·r`(t)〉e−iωt dt

=
1

2π~N

∑
``′

∫
〈e−iQ·R`′ e−iQ·u`′ (0)eiQ·R`eiQ·u`(t)〉e−iωt dt

=
1

2π~N

∑
``′

eiQ·(R`−R`′ )
∫
〈e−iQ·u`′ (0)eiQ·u`(t)〉e−iωt dt .

(B.56)

If R` and R`′ are lattice vectors, then R`′′ = R` − R`′ is also a lattice vector. Further-
more, we make the physical argument that the thermally averaged quantity cannot
depend explicitly on the sites ` and `′, so that

〈e−iQ·u`′ (0)eiQ·u`(t)〉 = 〈e−iQ·u0(0)eiQ·u`′′ (t)〉 , (B.57)

where the index 0 means R0 = 0, and the index `′′ is the same as defined above. In
a sum over ` and `′, the value `′′ occurs N times. Thus we have

S(Q, ω) =
1

2π~

∑
`

eiQ·R`

∫
〈e−iQ·u0(0)eiQ·u`(t)〉e−iωt dt . (B.58)

We make the assumption that small deviations u` from the equilibrium positions
behave harmonically, and that they can be written in terms of the normal modes of
the crystal. The standard method is to write the quantity in terms of creation and
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annihilation operators:

u` =

√
~

2MN

∑
s

es
√
ωs

(
aseiqs·R` + a†s e−iqs·R`

)
, (B.59)

where M is the mass of an atom, s denotes one of the 3N phonon modes, es is
the polarization vector, ωs is the phonon frequency, qs is the phonon wavevector,
and a†s and as are the creation and annihilation operators, respectively. The time
dependence is introduced by noting that

as(t) = ase−iωst , a†s (t) = a†s eiωst , (B.60)

so that we have

u`(t) =

√
~

2MN

∑
s

es
√
ωs

(
asei(qs·R`−ωst) + a†s e−i(qs·R`−ωst)

)
. (B.61)

Now we define

U ≡ −iQ · u0(0) = −i

√
~

2MN

∑
s

Q · es
√
ωs

(
as + a†s

)
(B.62)

V ≡ iQ · u`(t) = i

√
~

2MN

∑
s

Q · es
√
ωs

(
asei(qs·R`−ωst) + a†s e−i(qs·R`−ωst)

)
, (B.63)

so that the thermal-averaged expression in (B.58) is 〈eUeV
〉. We outline a proof that

shows that
〈eUeV

〉 = e〈U
2
〉e〈UV〉 . (B.64)

We use two results: one is that

eAeB = eA+Be
1
2 [A,B] if [A,B] is a c-number. (B.65)

The other is that

〈eA
〉 = e

1
2 〈A

2
〉 if A has a Gaussian probability function. (B.66)

Both conditions are satisfied in our case. U and V are sums of as and a†s , the
commutators of which are all c-numbers. And it can be shown that the probability
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function of a harmonic oscillator is Gaussian. Thus

〈eUeV
〉 = 〈eU+V

〉e
1
2 [U,V]

= e
1
2 〈(U+V)2

〉e
1
2 (UV−VU)

= e
1
2 〈U

2+V2
〉e〈UV〉

= e〈U
2
〉e〈UV〉 ,

(B.67)

where in the last line we used the fact that 〈U2
〉 = 〈V2

〉, since U and V are the same
physical quantity.

Debye-Waller factor

The quantity e〈U2
〉 is called the Debye-Waller factor. It describes the decrease in

overall scattering intensity due to thermal fluctuations of the nuclei. We use the
definition of U to see that

〈λ|U2
|λ〉 = −

~

2MN

∑
ss′

(Q · es)(Q · es′)
√
ωsωs′

〈λ|(as + a†s )(as′ + a†s′)|λ〉

= −
~

2MN

∑
s

(Q · es)2

ωs
〈λ|asa†s + a†s as|λ〉

= −
~

2MN

∑
s

(Q · es)2

ωs
〈λ|2ns + 1|λ〉 ,

(B.68)

so that

2W = −〈U2
〉 =

~

2MN

∑
s

(Q · es)2

ωs
〈2ns + 1〉 , (B.69)

where writing the Debye-Waller factor as e−2W is standard notation. It can be shown
that

〈2ns + 1〉 =
e~ωs/kBT + 1
e~ωs/kBT − 1

. (B.70)

Phonon expansion

The scattering function (B.58) now reads

S(Q, ω) =
1

2π~
e−2W

∑
`

eiQ·R`

∫
e〈UV〉e−iωt dt . (B.71)



156 APPENDIX B. NEUTRON SCATTERING CROSS SECTION

The quantity 〈UV〉 can be expanded in a similar fashion to 〈U2
〉:

〈λ|UV|λ〉 =
~

2MN

∑
s

(Q · es)2

ωs

〈
λ
∣∣∣asa†s e−i(qs·R`−ωst) + a†s asei(qs·R`−ωst)

∣∣∣λ〉 , (B.72)

giving

〈UV〉 =
~

2MN

∑
s

(Q · es)2

ωs

(
〈ns + 1〉e−i(qs·R`−ωst) + 〈ns〉ei(qs·R`−ωst)

)
. (B.73)

The process of Taylor-expanding the exponential is called the phonon expansion:

e〈UV〉 = 1 + 〈UV〉 +
1
2
〈UV〉2 + · · · . (B.74)

The first term corresponds to elastic scattering, the second term corresponds to
one-phonon scattering processes, the third term to two-phonon scattering process,
and so on. The reason for this is the phase factors in (B.73). This becomes clearer
in the discussions below.

Elastic nuclear scattering

The elastic component of the scattering function is

S(Q, ω)el =
1

2π~
e−2W

∑
`

eiQ·R`

∫
e−iωt dt . (B.75)

The sum over ` and the integral over time are independent, and both describe delta
functions. It can be shown that∑

`

eiQ·R` =
(2π)3

v0

∑
i

δ(Q −Gi) , (B.76)

where the Gi are the reciprocal lattice vectors and v0 is the volume of the unit cell.
Furthermore, we know that∫

eiωtdt = 2πδ(ω) = 2π~δ(~ω) . (B.77)

Thus we have

S(Q, ω)el =
(2π)3

v0
e−2W

∑
i

δ(Q −Gi)δ(~ω) . (B.78)
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The elastic component of the (coherent) cross section is usually expressed in its
energy-integrated form as

dσ
dΩ

∣∣∣∣∣
coh,el

= b
2
N

(2π)3

v0
e−2W

∑
i

δ(Q −Gi) (B.79)

This simply states that elastic Bragg scattering occurs at reciprocal lattice vectors.
In the case of non-Bravais crystals, there are multiple atoms per unit cell. The

nuclei are positioned at
r` j = R` + d j + u` j , (B.80)

where d j is the position of the j-th atom in a unit cell. If b j is the mean scattering
length for the nucleus at d j, then it can be shown that

dσ
dΩ

∣∣∣∣∣
coh,el

= N
(2π)3

v0
|FN(Q)|2

∑
i

δ(Q −Gi) , (B.81)

where N is now the number of unit cells and the static nuclear structure factor is

FN(Q) =
∑

j

b jeiQ·d je−W j , (B.82)

in which

W j =
1
2
〈(Q · u` j)2

〉 =
~

4M jN

∑
s

(Q · esj)2

ωs
〈2ns + 1〉 . (B.83)

The relative intensities of the Bragg peaks can thus be used to determine the
structure of the unit cell.

One-phonon scattering

The second term in the phonon expansion gives us the one-phonon scattering
function

S(Q, ω)1ph =
1

2π~
e−2W

∑
`

eiQ·R`

∫
〈UV〉e−iωt dt . (B.84)
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Using (B.73), we have

S(Q, ω)1ph =
1

4πMN
e−2W

∑
s

(Q · es)2

ωs

×

∑
`

eiQ·R`

∫ (
〈ns + 1〉e−i(qs·R`−ωst) + 〈ns〉ei(qs·R`−ωst)

)
e−iωt dt . (B.85)

The first term becomes:

S(Q, ω)+1 =
1

4πMN
e−2W

∑
s

(Q · es)2

ωs
〈ns + 1〉

∑
`

ei(Q−qs)·R`

∫
ei(ωs−ω)t dt

=
1

2MN
(2π)3

v0
e−2W

∑
s,i

(Q · es)2

ωs
〈ns + 1〉δ(Q − qs −Gi)δ(ω − ωs) ,

(B.86)

where
〈ns + 1〉 =

1
1 − e−~ωs/kBT

(B.87)

is called the Bose factor. Similarly, the second term becomes

S(Q, ω)−1 =
1

2MN
(2π)3

v0
e−2W

∑
s,i

(Q · es)2

ωs
〈ns〉δ(Q − qs −Gi)δ(ω + ωs) , (B.88)

where
〈ns〉 =

1
1 + e~ωs/kBT

. (B.89)

The first term describes a process in which the energy ~ω transferred to the system
is positive and equal to the phonon frequency ωs, and in which the momentum
transferred to the system Q is equal to a reciprocal lattice vector G plus the phonon
momentum qs. Thus it describes the emission of a phonon. Similarly, the second
term describes the absorption of a phonon by the scattering process. The usual
neutron scattering measurement is at positive ω and thus corresponds to the first
term S(Q, ω)+1.

Recall that s indexes the 3N modes; the four-dimensional delta function in (B.86)
indicates that one mode contributes to the cross section at a single point (qs +Gi, ωs)
in (Q, ω)-space (modulo the reciprocal lattice). We know, however, that these 3N
modes form branches, and that within each branch the N values of qs are evenly
spaced in the Brillouin zone. Since N is so large, we can rewrite the expression in
terms of continuous branches (rather than discrete modes). We effectively spread
δ(Q − qs − Gi) evenly across the three-dimensional volume (2π)3/v0N. Since an
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integral over this volume must be 1, the transformation is

δ(Q − qs −Gi)→ N
v0

(2π)3 . (B.90)

We replace ωs by the continuous function ωm(Q), where m indexes the branches.
This function is periodic in the reciprocal lattice, i.e., ωm(Q + Gi) = ωm(Q), and we
can remove the sum over i. Finally, we have

S(Q, ω)+1 =
∑

m

n(ωm) + 1
2Mωm

(Q · em)2e−2Wδ(ω − ωm(Q)) , (B.91)

where we have expressed the Bose factor as a function n(ω) + 1.
In the case of a non-Bravais lattice, it can be shown that the one-phonon scat-

tering function5 is

S(Q, ω)+1 =
1

2N
(2π)3

v0

∑
s,i

1
ωs
|FN(Q)|2〈ns + 1〉δ(Q − qs −Gi)δ(ω − ωs) , (B.92)

where N is now the number of unit cells, and where the dynamic nuclear structure
factor is

FN(Q) =
∑

j

b j√
M j

(Q · esj)eiQ·d je−W j . (B.93)

In terms of continuous phonon branches, the expression becomes

S(Q, ω)+1 =
∑

m

n(ωm) + 1
2ωm

|FN(Q)|2δ(ω − ωm(Q)) . (B.94)

B.2 Magnetic Scattering

We now discuss the scattering of neutrons that can occur due to its magnetic mo-
ment. The derivation of the formulae proceeds in a similar fashion to that of nuclear
scattering. In Section B.2.1 the goal is to find an expression for the cross section for
the transition between two quantum states. The bulk of this first section is spent

5Note that for a non-Bravais crystal the scattering function is defined differently. In particular,
it includes the scattering lengths b j, whereas the previous definition (B.41) did not include b. So we
have

d2σ
dΩdE f

∣∣∣∣∣∣
coh

=
k f

ki
NS(Q, ω) .
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finding an efficient way of expressing the magnetic interaction, which is consid-
erably more complicated than the delta-function nuclear potential. Then in Sec-
tion B.2.2 we derive an expression for the measured cross section by summing over
final states and averaging over initial states. This section includes the discussion
of the magnetization density. In Section B.2.3 we focus on the specific considera-
tions of magnetic neutron scattering from a crystal lattice. Section B.2.4 discusses
some aspects of elastic magnetic scattering, and section B.2.5 deals with inelas-
tic magnetic scattering, including a brief discussion of the fluctuation-dissipation
theorem.

B.2.1 Transition between quantum states

We write the partial differential cross section for magnetic scattering the same way
as for nuclear scattering (B.16), except now we must keep track of the spin state σ
of the neutron.

d2σ
dΩdE f

∣∣∣∣∣∣
σiλi→σ fλ f

=
k f

ki

( m
2π~2

)2

|〈k fσ fλ f |V|kiσiλi〉|
2δ(Eλi − Eλ f + ~ω) . (B.95)

Magnetic interaction potential

We must find an expression for the magnetic interaction V between the neutrons
and the scattering system. A neutron has a magnetic dipole moment of

µn = −γµNσ , (B.96)

where µN = e~
2mp

is the nuclear magneton, σ is the Pauli spin operator (with eigen-
values±1), and the experimentally measured coefficient is γ ≈ 1.913. This magnetic
moment interacts with the magnetic field within the scattering system. Typically,
the magnetic field of interest is that created by (unpaired) electrons in the scattering
system. In general, of course, one may consider other effects, such as the nuclear
spins or large-scale current loops, but here we restrict the discussion to electrons
on atoms.

We can divide the effects of unpaired electrons into two components: that of the
electron spin (i.e., the magnetic dipole moment of the electron), and that of electron
motion (i.e., the orbital moment). The magnetic dipole moment of the electron is

µe = −2µBs , (B.97)

where µB = e~
2me

is the Bohr magneton, s is the electron spin operator (with eigen-
values ± 1

2 ), and the coefficient 2 is for our purposes a good approximation to the
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electron g-factor. The magnetic field due to the electron spin is then given by

BS = ∇ ×A , A =
µ0

4π
µe × R̂

R2 , (B.98)

where R is the position of the neutron with respect to the electron. The magnetic
field due to electron motion is given by the Biot-Savart law:

BL =
µ0

4π
Id` × R̂

R2

= −
µ0

4π
e

me

p × R̂
R2 ,

(B.99)

where the current element is Id` = −ep/me, and p is the electron momentum. The
total magnetic field is thus

B =
µ0

4π

(
∇ × µe × R̂

R2 −
e

me

p × R̂
R2

)
=
µ0

4π

(
−∇ ×

2µBs × R̂
R2 −

2µB

~

p × R̂
R2

)
= −

µ0

4π
2µB

(
∇ × s × R̂

R2 +
1
~

p × R̂
R2

)
.

(B.100)

The magnetic potential of the neutron in this magnetic field is then

− µn · B j = −
µ0

4π
2µBγµNσ ·

∇ × s j × R̂
R2 +

1
~

p j × R̂
R2

 , (B.101)

where B j is the magnetic field due to the j-th electron, and s j and p j are the spin and
momentum of the j-th electron, respectively. Each electron in the scattering system
contributes to the magnetic potential of the neutron, so that the total interaction is

V =
∑

j

(−µn · B j) . (B.102)

Integration over spatial coordinates

In order to calculate the matrix element 〈k fσ fλ f |V|kiσiλi〉, we first integrate over
the space coordinates r of the neutron, i.e., calculate 〈k f |V|ki〉. We use, but do not
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prove, the following two identities:

∇ × s × R̂
R2 =

1
2π2

∫
q̂ × (s × q̂) eiq·R dq , (B.103)∫

R̂
R2 eiQ·R dR = 4πi

Q̂
Q
. (B.104)

We will also be substituting r = r j + R, where r j is the position of the j-th electron.
We consider the first term in the parenthesis of (B.101):

〈k f |

∇ × s j × R̂
R2

 |ki〉 =

∫
e−ik f ·r

∇ × s j × R̂
R2

 eiki·r dr

=
1

2π2

∫
eiQ·r

∫
q̂ × (s j × q̂) eiq·R dq dr

=
1

2π2

∫
eiQ·r j q̂ × (s j × q̂) dq

∫
ei(Q+q)·R dR

=
1

2π2

∫
eiQ·r j q̂ × (s j × q̂) dq (2π)3δ(Q + q)

= 4πeiQ·r j Q̂ × (s j × Q̂) .

(B.105)

The second term becomes:

〈k f |

1
~

p j × R̂
R2

 |ki〉 =
1
~

∫
eiQ·r p j × R̂

R2 dr

=
1
~

eiQ·r j

∫
eiQ·R p j × R̂

R2 dR

=
4πi
~Q

eiQ·r j(p j × Q̂) .

(B.106)

Note that while some components of r j and p j do not commute, Q · r j and p j × Q̂
do commute. We now define

M⊥ = −2µB

∑
j

eiQ·r j

(
Q̂ × (s j × Q̂) +

i
~Q

(p j × Q̂)
)
, (B.107)

such that ∑
j

〈k f |

∇ × s j × R̂
R2 +

1
~

p j × R̂
R2

 |ki〉 = −
4π
2µB

M⊥ . (B.108)
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We can now put everything together, combining the coefficients:

mn

2π~2 〈k f |V|ki〉 =
mn

2π~2

µ0

4π
2µBγµNσ ·

(
4π
2µB

M⊥

)
=

γ

2µB

µ0

4π
mn

π~2

e~
2mp

e~
2me

4π(σ ·M⊥)

=
γr0

2µB
(σ ·M⊥) ,

(B.109)

where we have made the approximation mn ≈ mp, and r0 =
µ0

4π
e2

me
≈ 2.82× 10−15 m is

the classical electron radius.6 The expression for the cross section becomes

d2σ
dΩdE f

∣∣∣∣∣∣
σiλi→σ fλ f

=

(
γr0

2µB

)2 k f

ki

∣∣∣〈σ fλ f |σ ·M⊥|σiλi〉
∣∣∣2 δ(Eλi − Eλ f + ~ω) . (B.110)

We see that the relevant length scale is γr0 ≈ 5.39 fm, which is comparable to
the typical nuclear scattering length. As a consequence, nuclear and magnetic
neutron scattering have similar intensities. In principle, neutrons can also scatter
magnetically from nuclei, but the scattering length is on the order of r0me/m and
thus negligible.

Magnetization density

We now discuss the physical significance of M⊥, namely its relation with the mag-
netization density of the scattering system. We first discuss the spin component

M⊥S = −2µB

∑
j

eiQ·r j(Q̂ × (s j × Q̂)) . (B.111)

If we write
M⊥S = Q̂ × (MS × Q̂) , (B.112)

6Note that some texts [160] and articles [162] use the definition r0 = γ
µ0

4π
e2

me
and thus their

equations contain r0 instead of γr0.
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then we can see that MS(Q) is

MS(Q) = −2µB

∑
j

eiQ·r js j

= −2µB

∫
ρS(r)eiQ·r dr

=

∫
MS(r)eiQ·r dr ,

(B.113)

where ρS is the electron spin density

ρS(r) =
∑

j

s jδ(r − r j) , (B.114)

and MS(r) is the spin magnetization density

MS(r) = −2µBρS(r) . (B.115)

It can be shown that similar relations hold for the orbital component of M⊥:

M⊥L = −2µB
i
~Q

∑
j

eiQ·r j(p j × Q̂) (B.116)

M⊥L = Q̂ × (ML(Q) × Q̂) (B.117)

ML(Q) =

∫
ML(r)eiQ·r dr , (B.118)

where ML(Q) is the Fourier transform of the orbital magnetization density ML(r),
which is a function of the electron current density. Thus we can combine the spin
and orbital components to write

M⊥ = Q̂ × (M × Q̂) (B.119)

where M(Q) is the Fourier transform of the total magnetization density M(r).
Geometrically, M⊥ = Q̂ × (M × Q̂) is the vector projection of M onto the plane

perpendicular to Q. In other words, M⊥ is what remains when the component of
M parallel to Q is subtracted:

M⊥ = M − (M · Q̂)Q̂ . (B.120)
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We use this property to derive the following useful result:

M†

⊥
·M⊥ = (M†

− (M†
· Q̂)Q̂) · (M − (M · Q̂)Q̂)

= M†
·M − (M†

· Q̂)(M · Q̂)

=
∑
αβ

(δαβ − Q̂αQ̂β)M†

αMβ ,
(B.121)

where α, β = x, y, z denote the cartesian components of the vectors.

B.2.2 Sum over final states and average over initial states

The measured cross section is found by summing over the final states σ f , λ f and
taking the average over the initial states σi, λi.

Sum over σ f and average over σi

We begin with σi and σ f :∑
σiσ f

pσi

∣∣∣〈σ fλ f |σ ·M⊥|σiλi〉
∣∣∣2 =

∑
σiσ f

pσi | 〈σ f |σ|σi〉 · 〈λ f |M⊥|λi〉 |
2

=
∑
αβ

∑
σiσ f

pσi〈σi|σα|σ f 〉〈σ f |σβ|σi〉〈λi|M†

⊥α|λ f 〉〈λ f |M⊥β|λi〉

=
∑
αβ

∑
σi

pσi〈σi|σασβ|σi〉〈λi|M†

⊥α|λ f 〉〈λ f |M⊥β|λi〉 . (B.122)

We focus now on the matrix element 〈σi|σασβ|σi〉. Note that |σi〉 refers to a particular
spin state of the neutron (i.e., | ↑ 〉 or | ↓ 〉), whereas σα refers to the α-component
of the Pauli spin operator. In the case that α = β, we can use the properties of the
Pauli matrices7 to show that the diagonal matrix elements are equal to 1:

〈 ↑ |σ2
α| ↑ 〉 = 〈 ↓ |σ2

α| ↓ 〉 = 1 for all α . (B.123)

7Recall that the Pauli matrices are:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.
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Thus, averaged over σi we have∑
σi

pσi〈σi|σασβ|σi〉 = 1 for α = β . (B.124)

For the case α , β, it turns out that σασβ is traceless. For example,

〈 ↑ |σxσy| ↑ 〉 + 〈 ↓ |σxσy| ↓ 〉 = i − i = 0 . (B.125)

We consider only the case of unpolarized neutrons,8 for which the probabilities pσi

are equal (i.e., p↑ = p↓ = 1
2 ). Thus the average is∑
σi

pσi〈σi|σασβ|σi〉 = 0 for α , β . (B.126)

Because only the α = β terms survive, we are left with∑
σiσ f

pσi |〈σ fλ f |σ ·M⊥|σiλi〉|
2 =

∑
α

〈λi|M†

⊥α|λ f 〉〈λ f |M⊥α|λi〉

= 〈λi|M†

⊥
|λ f 〉 · 〈λ f |M⊥|λi〉

=
∑
αβ

(δαβ − Q̂αQ̂β)〈λi|M†

α|λ f 〉〈λ f |Mβ|λi〉 .

(B.127)

Sum over λ f and average over λi

Finally, we sum over λ f and average over λi to obtain the measured cross section
for magnetic scattering:

d2σ
dΩdE f

=

(
γr0

2µB

)2 k f

ki

∑
αβ

(δαβ − Q̂αQ̂β)
∑
λiλ f

pλi〈λi|M†

α|λ f 〉〈λ f |Mβ|λi〉δ(Eλi − Eλ f + ~ω) .

(B.128)
8Polarized neutron scattering is, of course, a very interesting and useful technique. The mea-

surements discussed in this Thesis used only unpolarized neutrons.
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As before in the case of nuclear scattering, we replace the delta function in energies
with a time integral to introduce time-dependent operators:∑

λiλ f

pλi〈λi|M†

α|λ f 〉〈λ f |Mβ|λi〉δ(Eλi − Eλ f + ~ω)

=
1

2π~

∫ ∑
λiλ f

pλi〈λi|M†

α(0)|λ f 〉〈λ f |Mβ(t)|λi〉e−iωt dt

=
1

2π~

∫ 〈
M†

α(0)Mβ(t)
〉

e−iωt dt .

(B.129)

The expression for the cross section becomes

d2σ
dΩdE f

=
1

2π~

(
γr0

2µB

)2 k f

ki

∑
αβ

(δαβ − Q̂αQ̂β)
∫ 〈

M†

α(0)Mβ(t)
〉

e−iωt dt . (B.130)

B.2.3 Magnetic scattering from a crystal lattice

We now impose a crystal structure on the positions r j of the electrons. We make
the following restrictions:

• The unpaired electrons contributing to the magnetization density are local-
ized in atoms.

• We assume LS coupling, which means that

– The individual orbital moments in an atom combine to form an orbital
angular momentum characterized by a quantum number L.

– The individual spins in an atom combine to form a spin angular momen-
tum for the atom characterized by a quantum number S.

– The spin and orbital angular momenta of an atom combine to form a
total angular momentum J = L + S.

We begin by considering scattering due to spin only. This is the case when
L = 0, or when the orbital momentum is quenched, such as in the transition
metals.

• Two states λi and λ f differ only in the orientation of the angular momentum
(i.e., the direction of S) and the positions of the nuclei. In general, the states λ
also depend on the quantum number S and the spatial states of the electrons
(i.e., the shape of the orbitals), but the typical neutron energies are too low to
affect these properties.
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For simplicity, we begin with a Bravais crystal. In a such a system, the nuclei have
positions

r` = R` + u` . (B.131)

Let ri be the position of the i-th electron in an atom with respect to its nucleus, such
that the positions of the electrons are now written as

r j → r` + ri . (B.132)

Recall that the magnetization density for spin scattering is

M = MS = −2µB

∑
j

eiQ·r js j . (B.133)

In a crystal lattice, we write this as

M = −2µB

∑
`

eiQ·r`
∑

i

eiQ·risi . (B.134)

We proceed by evaluating the matrix elements of M:

−
1

2µB
〈λ f |M|λi〉 = 〈λ f |

∑
`

eiQ·r`
∑

i

eiQ·risi|λi〉

=
∑
λ′

∑
`i

〈λ f |eiQ·ri |λ′〉〈λ′|eiQ·r`si|λi〉 .
(B.135)

Note that in the first factor, eiQ·ri depends only on the space coordinates of the
electrons. Because, according to our third assumption above, |λ f 〉 and |λ′〉 do not
differ in the spatial state of the electrons, yet are otherwise orthogonal, we see that

〈λ f |eiQ·ri |λ′〉 = 0 unless λ′ = λ f . (B.136)

Furthermore, if the spatial wavefunction shared by the λ states is

φ(r1, . . . , ri, . . . , rn) = Aψ1(r1) · · ·ψi(ri) · · ·ψn(rn) , (B.137)

where n is the number of electrons in the atom and A is the antisymmetrization
operator (Slater determinant), then it can be shown that for any function g(r),

〈φ|g(ri)|φ〉 =
1
n

∫
(|ψ1(r)|2 + · · · + |ψn(r)|2)g(r) dr , (B.138)
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which is independent of i. Thus for g(r) = eiQ·r, we have

〈λ|eiQ·ri |λ〉 = 〈φ|eiQ·ri |φ〉 =
1
n

∫
ρS(r)eiQ·r

≡ f (Q) , (B.139)

where the spin density ρS(r) here is limited to the scope of an atom, and f (Q) is
called the magnetic form factor . We see that the matrix element of M has become

−
1

2µB
〈λ f |M|λi〉 =

∑
`i

〈λ f |eiQ·ri |λ f 〉〈λ f |eiQ·r`si|λi〉

=
∑
`

f (Q)〈λ f |eiQ·r`
∑

i

si|λi〉

= f (Q)
∑
`

〈λ f |eiQ·r`S`|λi〉 ,

(B.140)

where S` is the total spin operator for the atom `.
In the case of unquenched orbital angular momentum (L , 0), such as in the rare

earth elements, there is only a minor change to the notation. First, the magnetic
form factor f (Q) is replaced with 1

2 g f (Q), with g the Landé factor and f (Q) a more
complicated function of the spin density. The second change is that S, although
not explicitly rewritten, is considered to be the total angular momentum J.

Now we can write

1
(2µB)2

〈
M†

α(0)Mβ(t)
〉

= |12 g f (Q)|2
∑
``′

〈
e−iQ·r`′ (0)Sα`′(0)eiQ·r`(t)Sβ`(t)

〉
= |12 g f (Q)|2

∑
``′

〈
e−iQ·r`′ (0)eiQ·r`(t)

〉 〈
Sα`′(0)Sβ`(t)

〉
.

(B.141)

The second line is justified by noting that the orientation of the atomic spins have
a minimal effect on the motions of the nuclei. The cross section becomes

d2σ
dΩdE f

=
(γr0)2

2π~
k f

ki
|
1
2 g f (Q)|2

∑
αβ

(δαβ − Q̂αQ̂β)

×

∑
``′

∫ 〈
e−iQ·r`′ (0)eiQ·r`(t)

〉 〈
Sα`′(0)Sβ`(t)

〉
e−iωt dt . (B.142)
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The expression on the second line above can be evaluated using the same technique
as in the earlier discussion of nuclear scattering:∑

``′

∫ 〈
e−iQ·r`′ (0)eiQ·r`(t)

〉 〈
Sα`′(0)Sβ`(t)

〉
e−iωt dt

=
∑
``′

eiQ·(R`−R`′ )
∫ 〈

e−iQ·u`′ (0)eiQ·u`(t)
〉 〈

Sα`′(0)Sβ`(t)
〉

e−iωt dt

= N
∑
`

eiQ·R`

∫ 〈
e−iQ·u0(0)eiQ·u`(t)

〉 〈
Sα0 (0)Sβ`(t)

〉
e−iωt dt

(B.143)

The first thermally averaged factor describes both elastic and inelastic scattering
in the phonon system. The second factor describes both elastic and inelastic scatter-
ing in the spin system (i.e., due to changes in the orientation of electronic spins). We
are primarily interested in the cases in which the scattering is elastic in the phonon
system. (A process that does not fall into this category is magnetovibrational scat-
tering, in which phonons are created or absorbed by scattering elastically from the
electron spins.) Restricting ourselves to processes that are elastic in the phonon
system is done by equating the first thermal factor to:

〈eUeV
〉el = e〈U

2
〉e〈UV〉

∣∣∣
el

= e〈U
2
〉 = e−2W . (B.144)

The cross section becomes

d2σ
dΩdE f

=
N

2π~
(γr0)2 k f

ki
|
1
2 g f (Q)|2e−2W

∑
αβ

(δαβ − Q̂αQ̂β)

×

∑
`

eiQ·R`

∫ 〈
Sα0 (0)Sβ`(t)

〉
e−iωt dt . (B.145)

The second half of this expression can be defined as the scattering function for
magnetic scattering:

Sαβ(Q, ω) =
1

2π~

∑
`

eiQ·R`

∫ 〈
Sα0 (0)Sβ`(t)

〉
e−iωt dt . (B.146)

B.2.4 Elastic magnetic scattering

When we consider the elastic component, we take the matrix element in the limit
of t→∞:

lim
t→∞

〈
Sα0 (0)Sβ`(t)

〉
= 〈Sα0〉〈S

β
`〉 . (B.147)
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The elastic cross section is thus

dσ
dΩ

∣∣∣∣∣
el

= (γr0)2N|12 g f (Q)|2e−2W
∑
αβ

(δαβ − Q̂αQ̂β)
∑
`

eiQ·R`〈Sα0〉〈S
β
`〉 . (B.148)

Ferromagnet

It is easiest to start with a ferromagnet. In a typical ferromagnet, there are multiple
domains in which the spins line up along some direction η̂. We start with a single
domain of a Bravais ferromagnet. Only one component 〈Sη`〉 of the spin is nonzero,
and furthermore, 〈Sη`〉 = 〈Sη〉 is independent of the site position `. Thus we have

dσ
dΩ

∣∣∣∣∣
el

= (γr0)2N|12 g f (Q)|2e−2W(1 − (Q̂ · η̂)2)〈Sη〉2
∑
`

eiQ·R` . (B.149)

Using (B.76), and generalizing to multiple domains, we have

dσ
dΩ

∣∣∣∣∣
el

= (γr0)2N
(2π)3

v0
〈Sη〉2

∑
i

δ(Q −Gi)|12 g f (Q)|2(1 − (Q̂ · η̂)2
av)e−2W , (B.150)

where (1 − (Q̂ · η̂)2
av) is the average over all domains. If η̂ is equally likely to be in

any direction, or if it has cubic symmetry, then

(1 − (Q̂ · η̂)2
av) =

2
3
. (B.151)

For a non-Bravais ferromagnet, in analogy with (B.81) we can generalize to

dσ
dΩ

∣∣∣∣∣
el

= N
(2π)3

v0

∑
i

δ(Q −Gi)|FM(Q)|2 , (B.152)

where the static magnetic structure factor is defined as

FM(Q) =
∑

j

γr0(1
2 g j f j(Q))〈Sη

⊥ j〉e
Q·d je−W j . (B.153)

The ferromagnetic Bragg peaks occur at the same locations as the nuclear Bragg
peaks, namely at the reciprocal lattice vectors Gi. However, there are some principal
differences in the behavior of the magnetic peaks:

• The temperature-dependence of 〈Sη〉2, which decreases down to zero at the
ferromagnetic critical temperature TC.
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• The Q-dependence of f (Q). Because the magnetic potential is larger than the
delta-function nuclear potential, the magnetic response drops off at large Q.

• The magnetic-field-dependence of (1− (Q̂ · η̂)2
av). For instance, if the spins are

polarized along a certain Gi, the magnetic scattering there vanishes.

Antiferromagnet

Now consider the case of an antiferromagnet. The usual picture is to divide the
lattice into two interpenetrating sublattices which have opposite directions for
their spins. We can use the formula above for a non-Bravais ferromagnet with
some changes. The magnetic sublattices define a new magnetic unit cell with
volume v0M = 2v0. A sublattice has NM = N/2 sites and has a different set of
reciprocal lattice vectors GM. The formula becomes

dσ
dΩ

∣∣∣∣∣
el

= NM
(2π)3

v0M

∑
i

δ(Q −GMi)|FM(Q)|2 , (B.154)

where the magnetic structure factor is

FM(Q) =
∑

j

γr0(1
2 g j f j(Q))〈Sη

⊥ j〉e
Q·d je−W , (B.155)

where in this case the j label the spins in the magnetic unit cell. In the case of an
overall Bravais arrangement of magnetic atoms, there are two spins in a unit cell
that are oppositely aligned. The magnetic structure factor becomes

FM(Q) = γr0(1
2 g f (Q))〈Sη

⊥
〉

(
1 − eQ·R0

)
e−W , (B.156)

where R0 is the distance between the two sublattices, namely a vector connect-
ing nearest neighbors in the nuclear lattice. We can see that for Q = GM such that
eGM·R0 = 1, namely a nuclear reciprocal lattice vector, the magnetic structure factor is
zero. The magnetic structure factor is nonzero at magnetic reciprocal lattice vectors
which are not also nuclear reciprocal lattice vectors. In the square-lattice antiferro-
magnet, Q = ( 1

2 ,
1
2 ) is one of these vectors, and is often called the antiferromagnetic

zone center.



B.2. MAGNETIC SCATTERING 173

B.2.5 Inelastic magnetic scattering

Recall the equation for the total magnetic scattering cross section (B.145):

d2σ
dΩdE f

= (γr0)2 k f

ki
N|12 g f (Q)|2e−2W

∑
αβ

(δαβ − Q̂αQ̂β)Sαβ(Q, ω) , (B.157)

where the scattering function is

Sαβ(Q, ω) =
1

2π~

∑
`

eiQ·R`

∫ 〈
Sα0 (0)Sβ`(t)

〉
e−iωt dt . (B.158)

Notice that, just as in the definition for nuclear scattering, the scattering function
is a Fourier transform of a correlation function. This time, instead of the density-
density correlation function Cρρ, it is the spin-spin correlation function

Cαβ
SS(`, `′, t − t′) =

〈
Sα` (t)Sβ`′(t

′)
〉
. (B.159)

The goal of this section is to rewrite the magnetic cross section in terms of a
generalized susceptibility that is more physically meaningful and which is more
amenable to calculations. To do this, we will be using the fluctuation-dissipation
theorem, which relates the time-dependent correlation function CAB of a system
in thermal equilibrium to the linear response χAB of a system perturbed by a
generalized external field.

Fluctuation-dissipation theorem

As implied above, a correlation function has the general form

CAB(t − t′) = 〈A(t)B(t′)〉 , (B.160)

where we have suppressed the dependence on spatial coordinates. In order to
define the susceptibility we need a few more definitions. When an external field hB

conjugate to a variable B is applied to the system, the Hamiltonian changes as

H(t) = H0 + H1 = H0 − BhB(t) , (B.161)

and in the linear approximation, the change in a quantity A is given as

A(r, t) = 〈A〉 +
∫ t

−∞

dt′χ̃AB(t − t′)hB(t′) , (B.162)
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where χ̃AB(t) is called the response function, defined only for t ≥ 0. The response
function can shown to be equal to

χ̃AB(t) =
i
~
〈[A(t),B(0)]〉 , (B.163)

where the pair of brackets indicates the commutator. Note that if hB(t) = hBeiωt,
then

δA(t) =

∫ t

−∞

χ̃AB(t − t′)hBeiωt′ dt′

= hBeiωt
∫ t

−∞

χ̃AB(t − t′)e−iω(t−t′) dt′

= −hBeiωt
∫
∞

0
χ̃AB(t′)e−iωt′ dt′ ,

(B.164)

which means that in general the Fourier transforms of δA(t) and hB(t) are related
by

δA(ω) = χAB(ω)hB(ω) , (B.165)

where the one-sided Fourier transform

χAB(ω) = −

∫
∞

0
χ̃AB(t)e−iωt dt (B.166)

is the generalized susceptibility. The statement of the fluctuation-dissipation
theorem is then that

χ′′AB(ω) =
1
2~

(
1 − e~ω/kBT

)
CAB(ω) , (B.167)

namely that the imaginary (dissipative) part of the susceptibility is equal to a simple
prefactor times the Fourier transform of the correlation function. Note that since
the prefactor is zero atω = 0, it is only the fluctuating part (ω , 0) of the correlation
function which is related to the dissipation. We now prove this relationship for our
particular situation.

Magnetic susceptibility

In the case of the magnetic neutron scattering cross section, the variables A and
B in the correlation function are most easily seen to be the spin S`. However, we
will instead use the magnetization M` = −gµBS`, because its conjugate field is
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the (external) magnetic field B`(t). The magnetization due to a space- and time-
dependent magnetic field is then

Mα
` (t) = −gµB〈Sα` 〉 +

∑
`′

∫ t

−∞

∑
β

χ̃αβ(` − `′, t − t′)Bβ`′(t
′) dt′ , (B.168)

where χ̃αβ ≡ χ̃
αβ
MM is the response function, and where `−`′ is shorthand for R`−R`′ .

The response function is, according to (B.163),

χ̃αβ(`, t) = (gµB)2 i
~

〈[
Sα` (t),Sβ0

]〉
, (B.169)

and the generalized magnetic susceptibility is defined as

χαβ(`, ω) =

∫
∞

0
χ̃αβ(`, t)e−iωt dt . (B.170)

It is convenient to use the real-space transform of the scattering function given by

Sαβ(`, ω) =
1

2π~

∫ 〈
Sα0 (0)Sβ`(t)

〉
e−iωt dt . (B.171)

We also need the following identity:

〈A(t)B(0)〉 =
∑
λ

1
Z

e−Eλ/kBT
〈λ|A(t)B(0)|λ〉

=
∑
λλ′

1
Z
〈λ|e−H/kBTA(t)eH/kBT

|λ′〉〈λ′|e−H/kBTB(0)|λ〉

=
∑
λλ′

1
Z
〈λ′|e−H/kBTB(0)|λ〉〈λ|A(t + i~

kBT )|λ′〉

=
∑
λ′

1
Z

e−Eλ′/kBT
〈λ′|B(0)A(t + i~

kBT )|λ′〉

= 〈B(0)A(t + i~
kBT )〉

(B.172)

Now consider the (full) Fourier transform of the response function, allowing t to
take on negative values. Using the identity above and a change of variables in the
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integration, we find

1
2π

∫
χ̃αβ(`, t)e−iωt dt

= (gµB)2 i
2π~

∫ 〈
Sα` (t)Sβ0(0) − Sβ0(0)Sα` (t)

〉
e−iωt dt

= (gµB)2 i
2π~

∫ 〈
Sβ0(0)Sα` (t + i~

kBT )
〉
−

〈
Sβ0(0)Sα` (t)

〉
e−iωt dt

= i(gµB)2
(
e−~ω/kBT

− 1
)

Sβα(`, ω)inel ,

(B.173)

where, as discussed before, the inelastic (ω , 0) part is now the only relevant
component. Note that because of the sum over the factor (δαβ − Q̂αQ̂β) in the cross
section, the scattering factor Sαβ must be symmetric with respect to α and β, namely
Sβα(`, ω) = Sαβ(`, ω). Thus we have

Sαβ(`, ω)inel =
i

2π(gµB)2 (n(ω) + 1)
∫
χ̃αβ(`, t)e−iωt dt , (B.174)

where, as before, the Bose factor is

n(ω) + 1 =
1

1 − e−~ω/kBT
. (B.175)

It can be shown that, in the case of inversion symmetry, the response function given
by (B.169) is odd in t. In this case,∫

χ̃αβ(`, t)e−iωt dt =

∫ 0

−∞

χ̃αβ(`, t)e−iωt dt +

∫
∞

0
χ̃αβ(`, t)e−iωt dt

= −

∫
∞

0
χ̃αβ(`, t)eiωt dt +

∫
∞

0
χ̃αβ(`, t)e−iωt dt

= χ∗αβ(`, ω) − χαβ(`, ω)

= −2iχ′′αβ(`, ω) ,

(B.176)

and so we have
Sαβ(`, ω)inel =

1
π(gµB)2 (n(ω) + 1)χ′′αβ(`, ω) . (B.177)

If we define the Fourier transform

χ′′αβ(Q, ω) =
∑
`

eiQ·R`χ′′αβ(`, ω) , (B.178)
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then
Sαβ(Q, ω)inel =

1
π(gµB)2 (n(ω) + 1)χ′′αβ(Q, ω) , (B.179)

and thus the inelastic magnetic scattering cross section is

d2σ
dΩdE f

∣∣∣∣∣∣
inel

= (γr0)2 k f

ki
N|12 g f (Q)|2e−2W n(ω) + 1

π(gµB)2

∑
αβ

(δαβ − Q̂αQ̂β)χ′′αβ(Q, ω) , (B.180)

In the absence of long-range order, and in particular, when there is no preferred
orientation of the spins, χ′′αβ is isotropic. If we define χ′′xx = χ′′yy = χ′′zz ≡ χ

′′, then the
equation simplifies to

d2σ
dΩdE f

∣∣∣∣∣∣
inel

= 2(γr0)2 k f

ki
N|12 g f (Q)|2e−2W n(ω) + 1

π(gµB)2 χ
′′(Q, ω) . (B.181)

Even in cases of spin anisotropy, it is often desirable to make this approximation
and quote a scalar value. In most neutron-scattering publications, the susceptibility
χ′′(Q, ω) is given in “arbitrary units” simply by dividing the count rate by the Bose
factor. Conversion to absolute units can be performed by phonon normalization,
discussed in Section 2.4.1 of the main text.



Appendix C

Calculation of the resolution function

In this Appendix, I calculate the resolution function used for neutron scattering
measurements. The calculation for the triple-axis spectrometer in Section C.1
follows the work of Cooper and Nathans [163] and Chesser and Axe [164]. In
Section C.2, I describe the calculation for the two-axis method according to Cooper
and Nathans’ second article [165]. However, they do not consider the effect of
inelastic scattering, and so I also describe the calculation required for a complete
treatment of the two-axis energy-integrating method, as well as how we handle the
vertical resolution using a trapezoid approximation.

C.1 Resolution function for triple-axis spectrometer

C.1.1 Definition of variables

In the discussion that follows, it is necessary to distinguish values that define the
configuration of the spectrometer (e.g., kI or ω0) from those that describe a neutron
traveling a slightly different path through the spectrometer (e.g., ki or ω). The
notation and variable names used here are largely unchanged from [163].

Suppose a triple-axis spectrometer is configured to measure a certain scattering
process with energy transfer ~ω0 and momentum transfer Q0. Due to the finite mo-
saic spread of the monochromator and analyzer crystals and the finite collimations,
less-probable neutrons corresponding to slightly different scattering processes are
also counted in the detector. The resolution function of the spectrometer is the
probability of detection of neutrons as a function of ∆ω and ∆Q.

We assume that the four segments of the neutron path through the spectrom-
eter are collimated: before the monochromator, between the monochromator and
sample, between the sample and analyzer, and between the analyzer and detec-
tor. To make the calculation tractable, we assume that the transmission functions
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are Gaussian, in both horizontal and vertical directions. We label the Gaussian
widths of the horizontal collimations as α0, α1, α2, α3, while we label the vertical
collimations β0, β1, β2, β3.

We also assume that the mosaic spread of the monochromator and analyzer
are Gaussian. In other words, there is a Gaussian distribution of the orientation
of crystal grains.1 We label the horizontal mosaicities ηM and ηA, and the vertical
mosaicities η′M and η′A.

The position of the arms of the spectrometer define the three scattering angles
2θM, 2θS, and 2θA. The angles at the monochromator and analyzer determine the
(most probable) incident momentum kI and scattered momentum kF respectively:

kI =
π

dM sinθM
kF =

π
dA sinθA

. (C.1)

These relations come directly from Bragg’s law. The momentum transfer is then2

Q0 = kF − kI , (C.2)

and the energy transfer is

~ω0 =
~2

2m
(k2

I − k2
F) (C.3)

If the actual incident and scattered momenta of a particular neutron are ki and
k f , then we define

∆ki ≡ ki − kI

∆k f ≡ k f − kF .

The difference in momentum transfer is then

∆Q ≡ Q −Q0 = ∆k f − ∆ki . (C.4)

It is also useful to have separate names for the angles at which the neutron differs
from the most probable directions in the four segments of the scattering path.
The horizontal divergence angles we label γ0, γ1, γ2, γ3 and the vertical divergence
angles we label δ0, δ1, δ2, δ3. The energy transfer corresponding to this particular

1Monochromator and analyzer crystals, typically made of pyrolytic graphite, are purposefully
deformed to have a larger mosaic, allowing a larger number of neutrons to be reflected [47].

2As with [163], we follow here the convention in which the momentum and energy transfers
have opposite signs. See Footnote 2 on page 146.
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neutron path is

~ω =
~2k2

i

2m
−
~2k2

f

2m
(C.5)

ω =
~

2m
(k2

i − k2
f ) , (C.6)

which means that the energy transfer differs from the most probable value by (to
first order)

∆ω =
~

m
(kI∆ki − kF∆k f ) , (C.7)

where ∆ki = ki − kI and ∆k f = k f − kF are the differences in the magnitudes of the
wavevectors.

The ultimate goal of the calculation is to write the resolution function in terms
of ∆Q and ∆ω. The first step is to write the resolution function as a product of
probabilities from the various components of the spectrometer. It is a simple matter
to then translate the expression to use the components of ∆ki and ∆k f . These are
then written in terms of ∆Q and ∆ω with the help of the expressions above, and
extraneous degrees of freedom are integrated out.

C.1.2 Product of probabilities

Probability of transmission through a collimator

The simplest probabilities to write down are those of the transmission through
a collimator. For example, the probability of transmission through the in-pile
collimator is

P(γ0, δ0) = exp

−1
2

(γ0

α0

)2

+

(
δ0

β0

)2 , (C.8)

where the normalization constant is left out by convention. The transmission func-
tions for the other collimators are, of course, the same but with different subscripts.

Notice that the horizontal and vertical probabilities are independent of each
other, and can be written as, for example, P = PHPV. This turns out to be true for
the more complicated situation of reflection as well, so we calculate them separately.

Probability of reflection from a monochromator: horizontal component

Consider a monochromator with horizontal mosaicity ηM. Figure C.1 illustrates
the following angles: 2θM and 2θ′M are the reflection angle for the most probable
neutron path and a less probable neutron path, respectively. φM = θM is the angular
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γ0

φ′M

φM

2θM

2θ′M

kI

ki

γ1

Figure C.1: Reflection from a monochromator with finite mosaicity. The solid
arrows indicate the most probable neutron path, reflecting off of a crystal grain
oriented at an angle φM and reflecting with angle 2θM = 2φM. The dotted arrows
indicate a less probable neutron path, which reflects with angle 2θ′M off of a crystal
grain oriented at an angle φ′M.

orientation of the crystal grain reflecting the most probable neutron, and φ′M is the
angular orientation of the crystal grain reflecting the less probable neutron. We
wish to find an expression for ∆φM = φ′M − φM.

From the figure we can see that

φ′M = φM + 1
2 (γ0 + γ1) (C.9)

∆φM = 1
2 (γ0 + γ1) , (C.10)

and also that

2θ′M = 2θM + (γ1 − γ0) (C.11)

∆θM = 1
2 (γ1 − γ0) . (C.12)
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Thus we can write
∆φM = −∆θM + γ1 , (C.13)

and now the objective is to find ∆θ. We know that

kI =
π

dM sinθM
, ki =

π
dM sinθ′M

, (C.14)

and so to first order,
∆ki = −

π
dM sinθM tanθM

∆θM , (C.15)

which can be written
∆ki

kI
= −

∆θM

tanθM
, (C.16)

and thus we have
∆θM = −

∆ki

kI
tanθM . (C.17)

Using (C.13), then, we arrive at

∆φM =
∆ki

kI
tanθM + γ1 . (C.18)

The horizontal component of the probability of reflection is thus

P(∆ki, γ1) = exp

−1
2

(
(∆ki/kI) tanθM + γ1

ηM

)2 , (C.19)

where the normalization constant is left out by convention.
The situation with the analyzer is similar, but a sign difference arises from

keeping γ2:

∆φA = 1
2 (γ2 + γ3) (C.20)

∆θA = 1
2 (γ3 − γ2) , (C.21)

and thus,

∆φA = ∆θA + γ2 (C.22)

= −
∆k f

kF
tanθA + γ2 . (C.23)
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The probability of reflection is then

P(∆k f , γ2) = exp

−1
2

(
(∆k f/kF) tanθA − γ2

ηA

)2 . (C.24)

Total horizontal component

The total horizontal component of probability is simply the product of probabilities
from the monochromator, analyzer, and collimators. However, from the discussion
above we can write γ0 and γ3 in the collimator expressions in terms of the other
variables:

γ0 = ∆φM − ∆θM =
2∆ki

kI
tanθM + γ1

γ3 = ∆φA + ∆θA = −
2∆k f

kF
tanθA − γ2 .

Thus the total horizontal component is a function of ∆ki, ∆k f , γ1, and γ2:

PH = exp

−1
2

( (∆ki/kI) tanθM + γ1

ηM

)2

+

(
(∆k f/kF) tanθA − γ2

ηA

)2

+

(
2(∆ki/kI) tanθM + γ1

α0

)2

+
(γ1

α1

)2

+
(γ2

α2

)2

+

(
2(∆k f/kF) tanθA − γ2

α3

)2 . (C.25)

Probability of reflection from a monochromator: vertical component

Now consider the vertical mosaicity η′M of a monochromator. A neutron incident
on the monochromator travels at an angle δ0 from the horizontal plane. In order
to compare this angle to the mosaicity, we must project this angle onto the vertical
plane containing the normal vector to the monochromator surface. At a distance
L from the point of reflection, the neutron is at a vertical position of Lδ0 (using the
small angle approximation). The horizontal distance along the normal vector to
this point is L sinθM, which means the projected vertical angle is δ0/ sinθM.

A reflection of the neutron into the horizontal plane would need a crystal grain
oriented at half of that angle: δ0/2 sinθM. And if we also take into account the
vertical divergence δ1 of the reflected neutron, it is the difference δ0 − δ1 that
matters. Thus the vertical component of the probability of reflection is

P(δ1 − δ0) = exp

−1
2

(
δ1 − δ0

2η′M sinθM

)2 . (C.26)
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Total vertical component

While the probability of reflection or transmission can depend on a great many
variables, we are only ultimately concerned on the probability as a function of ∆Q
and ∆ω. Once we rewrite the expressions in terms of these physical variables, we
must integrate out all other degrees of freedom. One set of integrations we can
perform already are over δ0 and δ3. Essentially, we do not need to keep track of
how much vertical divergence a neutron has before the first collimator because the
white beam contains neutrons of all divergences, and we do not need to keep track
of how much vertical divergence a neutron has after the last collimator because all
such neutrons are counted in the detector.

The expression for the first collimator and the monochromator are integrated
together over δ0:

P(δ1) =

∫
dδ0 exp

−1
2

(δ0

β0

)2

+

(
δ1 − δ0

2η′M sinθM

)2 (C.27)

= P0M exp
[
−

1
2

(
δ2

1

(2η′M sinθM)2 + β2
0

)]
, (C.28)

where

P0M =
√

2π
(

1
β2

0

+
1

(2η′M sinθM)2

)− 1
2

. (C.29)

Thus the total vertical component is a function of δ1 and δ2:

PV = P0MP0A exp
[
−

1
2

(
δ2

1

(2η′M sinθM)2 + β2
0

+
δ2

1

β2
1

+
δ2

2

β2
2

+
δ2

2

(2η′A sinθA)2 + β2
3

)]
. (C.30)

C.1.3 The resolution function in terms of ∆Q and ∆ω

We now proceed with writing the resolution function in terms of ∆Q and ∆ω. The
first step is to explicitly write the components of ∆ki and ∆k f :

∆ki = x1i1 + y1j1 + z1l1 (C.31)
∆k f = x2i2 + y2j2 + z2l2 , (C.32)

where the basis vectors i1, j1 and i2, j2 are illustrated in Figure C.2, and l1 = l2 is
along the vertical direction. Notice that these six components correspond to the six
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i2

j2

i0

j0

Q0
Q

i1

j1

Φ
ki

kI

k f

kF

2θS

Figure C.2: Reciprocal-space diagram of scattering process, illustrating the angles
and basis vectors used in the text.

variables used in the product of probabilities (C.25) and (C.30):

∆ki = x1 , γ1 = y1/kI , δ1 = z1/kI ,

∆k f = x2 , γ2 = y2/kF , δ2 = z2/kF ,
(C.33)

so we rewrite them as

PH = exp

−1
2

( tanθM

ηMkI
x1 +

1
ηMkI

y1

)2

+

(
tanθA

ηAkF
x2 −

1
ηAkF

y2

)2

+
(2 tanθM

α0kI
x1 +

1
α0kI

y1

)2

+
( 1
α1kI

y1

)2

+
( 1
α2kF

y2

)2

+
(2 tanθA

α3kF
x2 −

1
α3kF

y2

)2]]
(C.34)

and

PV = P0MP0A exp

−1
2

 z2
1

(4η′2M sin2 θM + β2
0)k2

I

+
z2

1

β2
1k2

I

+
z2

2

β2
2k2

F

+
z2

2

(4η′2A sin2 θA + β2
3)k2

F

 .
(C.35)
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Next we must write out the components of ∆Q in the coordinate system (i0, j0, l0)
as indicated in Figure C.2. Note that the components of ∆Q are defined with respect
to Q0, and not with respect to the crystal axes. The calculated resolution function
must be rotated into the crystal axes coordinate system for comparisons with data.

In the Q0-based coordinate system, the components of ∆ki and ∆k f become

∆ki = (x1b + y1a)i0 + (−x1a + y1b)j0 + z1l0 , (C.36)
∆k f = (x2B + y2A)i0 + (−x2A + y2B)j0 + z2l0 , (C.37)

where we define
a ≡ sin Φ , A ≡ sin(2θS + Φ) ,
b ≡ cos Φ , B ≡ cos(2θS + Φ) .

(C.38)

The components of ∆Q are then

∆Qx = x2B + y2A − x1b − y1a , (C.39)
∆Qy = −x2A + y2B + x1a − y1b , (C.40)
∆Qz = z2 − z1 . (C.41)

And from (C.7) we can write down ∆ω in terms of these same components:

∆ω =
~

m
(x1kI − x2kF) . (C.42)

At this point it is easy to see that the horizontal component of the resolution function
depends only on ∆Qx, ∆Qy, and ∆ω, whereas the vertical component depends only
on ∆Qz. We will thus treat them separately.

Horizontal component of the resolution function

So far, the expression in (C.34) depends on x1, y1, x2, and y2. With the three
equations (C.39), (C.40), and (C.42) for ∆Qx, ∆Qy, and ∆ω, we have one extra
degree of freedom. We arbitrarily choose to write y1, y2 and x2 in terms of x1. After
some algebra we find that

y1 = −
λ − β

α
x1 +

B
α

∆Qx −
A
α

∆Qy +
m
α~kF

∆ω , (C.43)

y2 = −
βλ − 1
α

x1 +
b
α

∆Qx −
a
α

∆Qy +
βm
α~kF

∆ω , (C.44)

x2 = λx1 −
m
~kF

∆ω , (C.45)
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where we define
α ≡ sin 2θS ,

β ≡ cos 2θS ,
λ ≡

kI

kF
. (C.46)

The horizontal component of the resolution function is then (C.34) integrated over
x1, which can be written

RH =

∫
∞

−∞

exp(− 1
2 [A′x2

1 + B′x1 + C′]) dx1 , (C.47)

where A′, B′, and C′ are functions of ∆Qx, ∆Qy and ∆ω involving the coefficients
found in (C.34), (C.43), (C.44), and (C.45). The integration yields

RH = RH
0 exp

(
−

1
2

(
C′ −

B′2

4A′

))
. (C.48)

All terms in (C′ − B′2/4A′) are second-order in ∆Qx, ∆Qy and ∆ω. We define

X1 ≡ ∆Qx , X2 ≡ ∆Qy , X4 ≡ ∆ω , (C.49)

so that we can write
RH = RH

0 exp(− 1
2Mk`XkX`) , (C.50)

where k and ` are summed over 1, 2, 4. The details of how to calculate the matrix
elements Mk` are given in a later section.

Vertical component of the resolution function

The expression so far (C.35) depends on z1 and z2. Because, ∆Qz = z2 − z1, we
substitute

z2 = z1 + ∆Qz (C.51)

into the expression and integrate over z1. Letting

X3 ≡ ∆Qz , (C.52)

we have
RV = RV

0 exp(− 1
2M33X2

3) . (C.53)
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Horizontal and vertical components combined

Thus if we let Mk3 = M3` = 0 for all k and `, we can write down the horizontal and
vertical components together as

R = R0 exp(−1
2Mk`XkX`) , (C.54)

where k and ` are now summed over 1, 2, 3, 4. Visualizing the resolution function
is done by plotting the contour R = R0/2, which is an ellipsoid in four-dimensional
energy-momentum space. Projecting this ellipsoid onto any of the axes then yields
the FWHM resolution for that direction. There is a freely-available Matlab package
called ResLib [49] that calculates and plots resolution ellipsoids.

C.1.4 Algorithm for calculating the resolution function

Here we describe the algorithm used for calculating the Mk`. The notation used is
from Cooper and Nathans [163].

We begin with the horizontal component. Defining X1 ≡ ∆Qx, X2 ≡ ∆Qy, and
X4 ≡ ∆ω as above, we write

y1 = Cx1 + D , D = d1X1 + d2X2 + d4X4 ,

y2 = Ex1 + F , F = f1X1 + f2X2 + f4X4 ,

x2 = λx1 + H , H = h1X1 + h2X2 + h4X4 ,

(C.55)

where we define

C = −
λ − β

α
, d1 =

B
α
, d2 = −

A
α
, d4 =

m
α~kF

,

E = −
βλ − 1
α

, f1 =
b
α
, f2 = −

a
α
, f4 =

βm
α~kF

,

h1 = 0 , h2 = 0 , h4 = −
m
~kF

.

(C.56)

Now we write the horizontal component of the resolution function (C.34) as

PH = exp[−1
2 (a1x1 +a2y1)2 +a2

3y2
1 +a2

4y2
2 +(a5x2 +a6y2)2 +(a7x1 +a8y1)2 +(a9x2 +a10y2)2)] ,

(C.57)
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where

a1 =
tanθM

ηMkI
, a2 =

1
ηMkI

, a3 =
1
α1kI

, a4 =
1
α2kF

, a5 =
tanθA

ηAkF
,

a6 = −
1

ηAkF
, a7 =

2 tanθM

α0kI
, a8 =

1
α0kI

, a9 =
2 tanθA

α3kF
, a10 = −

1
α3kF

.

(C.58)
To write the resolution function in the form of (C.47), we first define

b0 = a1a2 + a7a8 , b1 = a2
2 + a2

3 + a2
8 , b2 = a2

4 + a2
6 + a2

10 ,

b3 = a2
5 + a2

9 , b4 = a5a6 + a9a10 , b5 = a2
1 + a2

7 ,
(C.59)

which lets us write

A′ = 2b0C + b1C2 + b2E2 + b3λ
2 + 2b4λE + b5 , (C.60)

B′ = 2[(b0 + b1C)D + (b2E + b4λ)F + (b3λ + b4E)H] , (C.61)

C′ = b1D2 + b2F2 + b3H2 + 2b4FH , (C.62)

where it becomes clear that A′ is constant in the X’s, B′ is linear in the X’s, and C′

is quadratic in the X’s, from the definitions of D, F, and H. When the integral is
solved as (C.48), the final value in the exponent is C′ − B′2/4A′, which is quadratic
in the X’s. If we define

g0 = b1 − (b0 + b1C)2/A′ , g3 = 2b4 − 2(b2E + b4λ)(b3λ + b4E)/A′ ,

g1 = b2 − (b2E + b4λ)2/A′ , g4 = −2(b0 + b1C)(b2E + b4λ)/A′ ,

g2 = b3 − (b3λ + b4E)2/A′ , g5 = −2(b0 + b1C)(b3λ + b4E)/A′ ,
(C.63)

then we can write

C′ −
B′2

4A′
= g0D2 + g1F2 + g2H2 + g3FH + g4DF + g5DH . (C.64)

Finally, we can use this to write a formula for the matrix elements:

Mk` = g0dkd`+g1 fk f`+g2hkh`+ 1
2 g3( fkh`+ f`hk)+ 1

2 g4(dk f`+d` fk)+ 1
2 g5(dkh`+d`hk) , (C.65)

for k, ` = 1, 2, 4.
For the vertical component, we write (C.35) as

PV ∝ exp[− 1
2 (a2

11z2
1 + a2

12z2
2)] , (C.66)
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where

a2
11 =

1
(4 sin2 θMη′2M + β2

0)k2
I

+
1
β2

1k2
I

, a2
12 =

1
β2

2k2
F

+
1

(4 sin2 θAη′2A + β2
3)k2

F

. (C.67)

Integration over z1 yields the final matrix element

M33 =
a2

11a2
12

a2
11 + a2

12

. (C.68)

C.1.5 Normalization

In the above discussion the normalization factor has not been explicitly calculated.
A few years after the article by Cooper and Nathans [163], an article by Chesser
and Axe [164] was published on how to calculate the normalization factor. Their
results are discussed here.

The normalization factor is not just calculated for completeness. Even though
it is a constant with respect to the important variables ∆Q and ∆ω, it is still a
complicated function of the angles of the spectrometer. Thus to properly normalize
data across a large range of spectrometer configurations, one must take into account
the effects of this normalization factor.

The prefactor R0 in (C.54) is composed of a number of factors, some of which
we have already encountered:

R0 = φ · εD · P0M · P0A ·NM ·NA · J · R0x · R0z . (C.69)

The reactor flux φ and the detector efficiency εD are true constants for data from the
same spectrometer and are therefore not included in our calculations. P0M and P0A

are factors that arise when performing an integration over δ0 and δ3, respectively
(see the earlier discussion at (C.29)), and are given by

P0M =
√

2π
(

1
β2

0

+
1

(2η′M sinθM)2

)− 1
2

, (C.70)

P0A =
√

2π
(

1
β2

3

+
1

(2η′A sinθA)2

)− 1
2

. (C.71)

The factors NM and NA are prefactors that should have been included3 in (C.26)
and the corresponding equation for the analyzer. If we equate the integral over all

3All of the other Gaussian probabilities can have prefactors as well, but NM and NA are the only
ones which involve changing variables of the spectrometer.
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δ1 − δ0 in (C.26) to a total reflectivity constant PM, then

NM =
1
√

2π

PM

2η′M sinθM
, (C.72)

and the corresponding prefactor for the analyzer is

NA =
1
√

2π

PA

2η′A sinθA
, (C.73)

where the reflectivity constants PM and PA are not included in our calculations. NM

and NA can be combined with P0M and P0A, respectively, to give

P0MNM =
PMβ0√

β2
0 + (2η′M sinθM)2

, (C.74)

P0ANA =
PAβ3√

β2
3 + (2η′A sinθA)2

. (C.75)

J is the Jacobian after change of variables, given by

J =
m
~

1
k2

I k3
F sin 2θS

, (C.76)

where the constant m/~ is not included during calculations. Finally, RH
0 is the

constant that comes out of integrating over x1, and RV
0 is the constant that comes

out of integrating over z1. They are given by

R0x =
√

2π
1
√

A′
, R0z =

√

2π
1√

a2
11 + a2

12

. (C.77)

The total normalization factor, then, excluding the true constants, is

R0 = 2π
1

k2
I k3

F sin 2θS

1√
A′(a2

11 + a2
12)

β0√
β2

0 + (2η′M sinθM)2

β3√
β2

3 + (2η′A sinθA)2
.

(C.78)
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C.1.6 Sample mosaic correction

One component of the system we have so far completely neglected is the sample
itself. The mosaicity of the sample itself will effectively broaden the resolution of
the spectrometer. This correction to the resolution function was first detailed by
Werner and Pynn [166].

Consider a sample with a horizontal mosaic with Gaussian width ηSH and
vertical mosaic with Gaussian width ηSV. Then the matrix elements Mk` is replaced
with

M′

k` = Mk` −Mk2M`2

(
1

η2
SHQ2

0

+ M22

)−1

(C.79)

for the horizontal components, where k, ` = 1, 2, 4 as before, and

M′

33 = M33 −M2
33

(
1

η2
SVQ2

0

+ M33

)−1

(C.80)

for the vertical term. In addition, the normalization factor is replaced with

R′0 = R0
1

ηSHηSV

(
1
η2

SV

+ Q2
0M33

)− 1
2
(

1
η2

SH

+ Q2
0M22

)− 1
2

. (C.81)

The complete resolution function corrected for the sample mosaic is thus

R′ = R′0 exp(− 1
2M′

k`XkX`) , (C.82)

for k, ` = 1, 2, 3, 4.

C.2 Resolution function for two-axis method

A two-axis spectrometer is one in which there is no analyzer, and the detector
captures all neutrons scattered into it, regardless of their energies. A triple-axis
spectrometer can be put into two-axis mode by removing the analyzer,4 moving
the detector arm to θA = 0, and removing the collimator right before the detector
(i.e., collimator 3). Thus in calculating the resolution function for a two-axis spec-
trometer, the probability of detection can be written from the triple-axis formulae
(C.25) and (C.30) by setting tanθA = 0 and ηA = η′A = α3 = β3 = ∞. The horizontal

4If removing the analyzer is not possible, it can be rotated to be perpendicular to the beam; if it
is a simple (non-focusing) crystal, the vast majority of neutrons pass through.
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component is

PH = exp

−1
2

(
(∆ki/kI) tanθM + γ1

ηM

)2

+

(
2(∆ki/kI) tanθM + γ1

α0

)2

+
(γ1

α1

)2

+
(γ2

α2

)2
 , (C.83)

and the vertical component is

PV = P0M exp
[
−

1
2

(
δ2

1

(2η′M sinθM)2 + β2
0

+
δ2

1

β2
1

+
δ2

2

β2
2

)]
. (C.84)

How to proceed from here depends on what type of measurement is being per-
formed. Historically, two-axis spectrometers were used for measuring elastic scat-
tering. The resolution function for this case was calculated by Cooper and Nathans
in a second article [165]. I describe their algorithm in Section C.2.1. However,
the two-axis scattering measurements performed on NCCO and described in this
Thesis use a method of integrating over inelastically scattered neutrons. I describe
how to calculate the resolution function for this case in Section C.2.2. Our group
has traditionally used the two-axis method of Cooper and Nathans [165] to analyze
our data. Fortunately, this does not significantly affect the results; the reasons are
discussed in Section A.3.

C.2.1 Elastic scattering

In the case of elastic scattering, we setω0 = 0, but since we consider only elastically
scattered neutrons, we also set ∆ω = 0. Because kF = kI, the angles of the scattering
triangle (Figure C.2) simplify as well:

Φ =
π
2
− θS , 2θS + Φ =

π
2

+ θS , (C.85)

so that
i1 = i0 sinθS − j0 cosθS , i2 = −i0 sinθS − j0 cosθS ,

j1 = i0 cosθS + j0 sinθS , j2 = i0 cosθS − j0 sinθS .
(C.86)

The components of ∆ki and ∆k f are then

∆ki = (x1b + y1a)i0 + (−x1a + y1b)j0 + z1l0 , (C.87)
∆k f = (−x1b + y2a)i0 + (−x1a − y2b)j0 + z2l0 , (C.88)
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where a = sin Φ = cosθS, b = cos Φ = sinθS, and where we have also set x2 = x1

because ∆ω = 0. The components of ∆Q become

∆Qx = −2x1b + y2a − y1a , (C.89)
∆Qy = −y2b − y1b , (C.90)
∆Qz = z2 − z1 . (C.91)

Defining X1 ≡ ∆Qx, X2 ≡ ∆Qy and X3 ≡ ∆Qz as before, we write

y1 = Cx1 + D , D = d1X1 + d2X2 ,

y2 = Ex1 + F , F = f1X1 + f2X2 ,
(C.92)

where
C = −

b
a

= − tanθS , d1 = −
1
2a
, d2 = −

1
2b
,

E =
b
a

= tanθS , f1 =
1
2a
, f2 = −

1
2b
.

(C.93)

Following (C.57), the horizontal component (C.83) is written as

PH = exp[−1
2 (a1x1 + a2y1)2 + a2

3y2
1 + a2

4y2
2 + (a7x1 + a8y1)2] , (C.94)

where
a1 =

tanθM

ηMkI
, a2 =

1
ηMkI

, a3 =
1
α1kI

,

a4 =
1
α2kI

, a7 =
2 tanθM

α0kI
, a8 =

1
α0kI

.
(C.95)

We write the integral in the same form as (C.47):

RH =

∫
exp(− 1

2 [A′x2
1 + B′x1 + C′]) dx1 , (C.96)

where if we define

b0 = a1a2 + a7a8 , b1 = a2
2 + a2

3 + a2
8 , b2 = a2

4 , b5 = a2
1 + a2

7 , (C.97)

then

A′ = 2b0C + b1C2 + b2E2 + b5 , (C.98)
B′ = 2[(b0 + b1C)D + b2EF] , (C.99)

C′ = b1D2 + b2F2 , (C.100)
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Solving the integral gives the same form as (C.48) with an exponent of C′−B′2/4A′,
given as

C′ −
B′2

4A′
= g0D2 + g1F2 + g4DF , (C.101)

where

g0 = b1 − (b0 + b1C)2/A′ , g1 = b2 − (b2E)2/A′ , g4 = −2(b0 + b1C)b2E/A′ .
(C.102)

The matrix elements Mk` are then

Mk` = g0dkd` + g1 fk f` + 1
2 g4(dk f` + d` fk) , (C.103)

for k, ` = 1, 2. The vertical component of the resolution function is written the same
as before:

PV ∝ exp[− 1
2 (a2

11z2
1 + a2

12z2
2)] , (C.104)

except this time

a2
11 =

1
(4 sin2 θMη′2M + β2

0)k2
I

+
1
β2

1k2
I

, a2
12 =

1
β2

2k2
F

. (C.105)

Integration over z1 yields, as before,

M33 =
a2

11a2
12

a2
11 + a2

12

, (C.106)

and this allows us to write the complete resolution function as

RH = R0 exp(−1
2Mk`XkX`) , (C.107)

for k, ` = 1, 2, 3, and where the normalization factor R0 is

R0 = φ · εD · P0M ·NM · J · R0x · R0z , (C.108)

which, when the excluding the true constants, is

R0 = 2π
1

k5
I sin 2θS

1√
A′(a2

11 + a2
12)

β0√
β2

0 + (2η′M sinθM)2
. (C.109)
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C.2.2 Inelastic scattering

In a two-axis measurement, because the detector counts neutrons regardless of their
energy, the energy resolution is infinitely broad. The four-dimensional energy-
momentum resolution function cannot be described by an ellipsoid because the
most probable momentum transfer Q0 depends non-trivially on the energy transfer
ω0 considered.

However, given an energy transfer ω0, and given the proper Q0 which corre-
sponds toω0, the resolution function about (Q0, ω0) is an ellipsoid in the momentum
directions. It is this resolution function I calculate here. To fully simulate a two-axis
measurement (see Section A.3), this momentum-space resolution function is cal-
culated for many energies ω0, convoluted with the intrinsic signal, and integrated
over all of the energies that are physically allowed.

The overall procedure is very similar to the situation two-axis elastic scattering,
so I refer often to those equations. In fact, the vertical component of the resolution
function is identical to the elastic case, as one may expect. We thus discuss only
the horizontal component.

The key differences with the elastic case are that kF , kI (so that λ is again
relevant), and that the angles in the scattering triangle no longer simplify. We write

y1 = Cx1 + D , D = d1X1 + d2X2 ,

y2 = Ex1 + F , F = f1X1 + f2X2 ,

x2 = λx1 ,

(C.110)

where

C = −
λ − β

α
, d1 =

B
α
, d2 = −

A
α
,

E = −
βλ − 1
α

, f1 =
b
α
, f2 = −

a
α
,

(C.111)

and where

a = sin Φ , A = sin(2θS + Φ) , α = sin 2θS ,

b = cos Φ , B = cos(2θS + Φ) , β = cos 2θS ,
λ =

kI

kF
. (C.112)

The horizontal component of the resolution function is then written in the form
(C.94) where

a1 =
tanθM

ηMkI
, a2 =

1
ηMkI

, a3 =
1
α1kI

,

a4 =
1
α2kF

, a7 =
2 tanθM

α0kI
, a8 =

1
α0kI

.
(C.113)
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Now that these variables have been defined, the remainder of the procedure is the
same as with the elastic case, from (C.96) to (C.108). The resolution function is
given by

RH = R0 exp(−1
2Mk`XkX`) , (C.114)

where

R0 = 2π
1

k2
I k3

F sin 2θS

1√
A′(a2

11 + a2
12)

β0√
β2

0 + (2η′M sinθM)2
. (C.115)
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