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ABSTRACT 

Microprocessor hotspots are a major reliability concern with heat fluxes as much as 20 

times greater than those found elsewhere on the chip. Chip hotspots also augment 

thermo-mechanical stress at chip-package interfaces which can lead to failure during 

cycling. Because highly localized, transient chip cooling is both technically 

challenging and costly, chip manufacturers are using dynamic thermal management 

(DTM) techniques that reduce hotspots by throttling chip power. Uncertainty in heat 

flux profiles and chip thermal response leads to either excessively conservative DTM 

schemes and underutilized computational potential or device overheating and 

associated system failure risks. Improved techniques for quantifying uncertainty and 

accurately predicting transient thermal response are needed for maximizing reliable 

chip performance. 

A review is conducted of recent advancements in sensor design, laboratory 

thermometry, sensor allocation, and thermal signal processing for dynamic thermal 

management. Representative examples of DTM implementation are provided. 

Quantitative error estimates are compared for semiconductor thermal sensors and 

thermometry techniques, and improvements in thermal sensor placement and signal 

processing are presented. 

A simulation method is developed to determine the accuracy and resolution at which 

hotspot heat fluxes can be measured using distributed temperature sensors. The model 

is based on a novel, computationally-efficient, inverse heat transfer solution. The 

uncertainties in the hotspot location and intensity are computed for randomized chip 
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heat flux profiles for varying sensor spacing, sensor vertical proximity, sensor error, 

and chip thermal properties. For certain cases the inverse solution method decreases 

mean absolute error in the heat flux profile by more than 30%. These results and 

simulation methods can be used to determine the optimal spacing of distributed 

temperature sensor arrays for hotspot management in chips. 

To enable on-chip modeling of transient temperature response in a semiconductor 

device subjected to arbitrarily varying power excitations, an original model 

compression technique is employed.  A network identification deconvolution (NID) 

method is used to characterize device thermal response from either numerical or 

experimental results.  To compute the transient response to an arbitrary power input, a 

highly-efficient technique based on digital signal processing is employed. An Infinite 

Impulse Response (IIR) filter dramatically reduces the required computations to 

achieve accurate response. The technique provides the best possible scaling of overall 

computation time and significantly reduces memory constraints. This improvement 

enables implementation of sophisticated runtime dynamic thermal management 

algorithms for high-power integrated circuit architectures.  

In sum, the present doctoral research offers a multi-faceted approach to managing 

measurement uncertainty in dynamic thermal management schemes and predicting 

hotspot response to facilitate optimal chip performance within reliable operating 

conditions.  
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ℎ  Convective heat transfer coefficient, W/m2-K 

� Thermal conductivity, W/m-K 


 Number of random heat flux profiles tested  

� Power, W 
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���′′   Chip vertical thermal resistance per unit area, W/m2-K 

t0 Thickness of chip, m 

� Time, s 

� Temperature, ºC 

� Time constant, s 

�� System response function in time domain 

��  System response function in real frequency domain 

�� System response function in imaginary frequency domain 
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�  Low resolution 
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� Includes sensor error 
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CHAPTER 1: INTRODUCTION 

1.1. Thermal Management Challenges for Next-Generation Integrated Circuits 

Thermal management plays a central role in microprocessor reliability and 

performance. For example, a 10-15℃ increase in chip operating temperature can lead 

to a 50% reduction in device lifetime [1]. Time-dependent dielectric breakdown 

(TDDB) has an exponential dependence on temperature [2]. Circuit performance is 

degraded by overheating owing to reduced electron mobility, and the temperature 

dependence of leakage power causes positive thermal feedback. Addressing these 

thermal reliability concerns has become a central challenge in the development of next 

generation microprocessors for both high-performance and mobile applications.  

In high-performance applications, chip manufacturers are pushing towards three-

dimensional integrated circuit (3D-IC) architectures, imposing unprecedented heat 

output per surface area and introducing new interfaces and design constraints. 

Researchers are pursuing exotic microfluidic heat exchangers  (e.g. [3], [4]) to cool 

these systems, yet these techniques require substantial integration complexity, pose 

reliability concerns, and occupy valuable regions of the microprocessor. An alternative 

approach is being pursued using through silicon vias (TSVs) to dissipate heat between 

stacked levels in the chip [5]. While this technique offers improvements in chip 

conduction, excessively dense arrays of TSVs would be required to adequately reduce 

source-to-sink thermal resistance; even so, the problem of dissipating the 

corresponding heat fluxes at the sink would remain unsolved. Research activities in 

this field are increasingly intense as it remains unclear which thermal management 
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solutions can address the challenges of three-dimensional integrated circuit (3D-IC) 

architectures. 

In mobile applications, which are rapidly becoming a dominant player in the consumer 

electronics sector, cost constraints require novel approaches for minimizing package 

thermal resistance and accommodating transient thermal excursions while remaining 

extremely inexpensive and robust to highly variable ambient conditions. Strong 

consumer demand for compact, attractive form factors further exacerbates the 

problem. Attention is focused on the chip-to-package thermal resistance as the design 

space for package-to-ambient thermal resistance is constrained by end user use. 

Forced convection air cooling techniques are inappropriate due to cost, size, and 

reliability. Advancements in closed-loop liquid cooling such as vapor chambers offer 

compelling performance characteristics but are too costly for most consumer 

applications. Improvements may be achieved by enhancing the thermal conductivity of 

packaging materials, possibly via nanoscale inclusions. Alternately, wafer thinning 

and improved thermal interface materials (TIMs) may provide much needed decreases 

in junction-to-package thermal resistance. Pending unexpected breakthroughs in these 

fields, however, it appears mobile applications are approaching their power limitations 

due to thermal constraints, leaving recent improvements in mobile battery 

technologies underutilized.  

Dynamic thermal management (DTM) schemes offer a complementary technique for 

managing microprocessor hotspots in both high-performance and mobile applications. 

By dynamically re-routing power on the chip in response to thermal signals, DTM 
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schemes improve chip performance while ensuring reliable operating conditions. 

DTM schemes resolve the challenge of designing for highly variable power profiles, 

unknown ambient conditions, and degrading package thermal performance. 

Variations in chip power profiles result from increased process variability, 

unpredictable application loads, and variations in ambient temperature conditions [6]. 

Joule heating models for well-characterized circuits are accurate, but models for 

circuit leakage power, which is a strong function of operating temperature and process 

variation, require large uncertainty intervals. Chip power output is necessarily a 

function of computational tasks which can vary greatly between applications. Power-

aware application development has been discussed but remains beyond the planning 

scope of thermal management solutions. Figure 1 shows a representative range of 

power variability within the Intel Itanium microprocessor family [6].  

 

Figure 1: Variability of chip power for Intel Itanium microprocessor family. Figure 
adapted from [5]. 
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Figure 2 shows the broad range of power outputs for various applications. Of 

particular note, malware such as viruses can cause extreme power excursions; chip 

thermal management must account for both intended and unintended software 

applications. Variations in chip thermal properties, which tend to occur over longer 

 

Legend of Application Names 

a int.181.mcf h int.256.bzip2 o fp.188.ammp v fp.173.applu 

b int.175.vpr i int.253.perlbmk p fp.187.facerec w fp.2000.sixtrack 

c int.186.craft j int.176.gcc q fp.301.apsi x fp.172.mgrid  

d int.300.twolf k int.255.vortex r fp.191.fma3d y fp.171.swim 

e int.254.gap l int.252.eon s fp.189.lucas z fp.178.galgel 

f int.197.parser m fp.177.mesa t fp.179.art A Pathological 
virus 

g int.164.gzip n fp.168.wupwise u fp.183.equake 

 

Figure 2: Variability in power by application for Intel Itanium microprocessor family. 
Figure adapted from [5]. 
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timescales than power variations, can also have a substantial impact on overall thermal 

management. The thermal interface material (TIM) at the die-lid interface (TIM 1) and 

the lid-heat sink interface (TIM 2) can vary by chip and can degrade during lifetime 

use. Chip thermal management must be robust to variations in heat sink performance 

since the heat sink is typically chosen independently for each application. Heat sink 

performance can also degrade over the chip lifetime due to fouling and mechanical 

thermal management must be robust to variations in heat sink performance since the 

heat sink is typically chosen independently for each application. Heat sink 

performance can also degrade over the chip lifetime due to fouling and mechanical 

failure. There is even evidence of heat sink corrosion caused by contaminated air in 

datacenters located in regions with very poor air quality. 

1.2. Introduction to Dynamic Thermal Management 

To address variations in power and thermal properties, the microprocessor industry 

has widely adopted dynamic thermal management (DTM) schemes to permit more 

aggressive system utilization. Such schemes require two fundamental components: (1) 

a temperature measurement or prediction and (2) a controller capable of throttling chip 

power in response to the temperature.  

Intense research has focused on a variety of techniques for throttling chip power, 

including clock  gating  [7],  Dynamic  Frequency  Control  [8], DVFS  [9],  SMT  

thread  reduction  [10], and  activity  migration [11]. Combinations of techniques can 
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be employed to limit the impact on computational performance. For example, 

McGowen et al. [12] noted that the chip core power has the following proportionality:  

 � ∝ ��� (1)  

where � is the chip power, � is the voltage, and � is the frequency. By throttling both 

voltage and frequency, they were able to reduce chip power by 31% with only a 10% 

reduction in operating frequency.  

Compared to the intense research interest in DTM power throttling, relatively little 

attention has been given to the challenge of obtaining accurate thermal measurements 

or prediction on the chip while meeting stringent system architecture requirements. 

Advancements in on-chip thermometry, thermal signal processing, and runtime 

transient models are critical to minimize temperature uncertainty and maximize 

reliable chip performance. These topics are the focus of this doctoral research and are 

explored in detail in the remaining chapters.  

1.3. Outline of Doctoral Research 

Chapter 2 provides a critical review of research relevant to uncertainty reduction in 

dynamic thermal management schemes. Several representative multi-core DTM 

systems are presented to establish a baseline understanding of system integration. 

Numerous thermal sensor designs are evaluated and considered for their size, process-

variation sensitivity, and accuracy. High-resolution laboratory thermography 

techniques used for sensor calibration and layout are reviewed, and sensor array layout 
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schemes are explored. Advancement in sensor layout and signal processing are 

reported with quantitative uncertainties wherever possible.  

Chapter 3 presents a technique for determining the accuracy and resolution at which 

the hotspot heat flux profile can be measured using distributed temperature sensors. 

Sensor spacing frequencies are varied to represent both embedded temperature sensor 

and laboratory thermography techniques. The model is based on a novel, 

computationally-efficient, spatial-frequency domain inverse heat transfer solution. The 

uncertainty in the calculated heat flux profile is computed for randomized chip heat 

flux profiles for varying sensor spacing, sensor vertical proximity, sensor error, and 

chip thermal properties. The inverse solution method decreases mean absolute error in 

the heat flux profile by more than 30% over a benchmark approach. The results and 

simulation method can be used to determine the optimal spacing of distributed 

temperature sensor arrays for hotspot management in chips. 

Chapter 4 introduces an original approach for ultra-efficient hotspot prediction for 

semiconductor devices subjected to arbitrary transient power profiles.  The work 

presented in this chapter was co-authored with Dr. Maxat Touzelbaev; all work was 

developed by close collaboration between the authors unless otherwise noted. For 

characterization of the system thermal response, Network Identification 

Deconvolution (NID) is used; some extensions were made to this characterization 

methodology by Dr. Touzelbaev and are reported here for completeness. A highly-

efficient technique based on digital signal processing is employed to compute the 

transient thermal response to a poser profile. Using an Infinite Impulse Response (IIR) 
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filtering technique, unnecessary computations can be eliminated while still yielding an 

accurate response.  The technique provides linear scaling of overall computation time 

with the number of time-steps and dramatically reduces memory requirements. This 

ultra-efficient algorithm enables the implementation of predictive runtime dynamic 

thermal management algorithms. 

Finally, Chapter 5 offers concluding remarks on the integration of these techniques 

and opportunities for further research advancements. 
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CHAPTER 2: THERMOMETRY AND ERROR REDUCTION FOR DYNAMIC 

THERMAL MANAGEMENT 

The development of improved dynamic thermal management schemes requires a 

thorough understanding of thermal sensors, thermal sensor array design, high-

resolution chip thermometry, and thermal signal processing. This chapter presents a 

review of these topics to identify the state of the art in dynamic thermal management 

and provide insight into opportunities for further improvements.  

In the first section of this chapter, several related review studies are discussed to orient 

the reader in the literature of dynamic thermal management and thermal sensors.  

Second, several DTM implementations are presented to provide a broad understanding 

of system-level design considerations. In the third section, various thermal sensor 

designs are discussed and key characteristics are examined. Fourth, laboratory 

thermography techniques used for sensor calibration are examined for temporal and 

spatial resolution. Finally, techniques for error reduction are examined, including both 

signal processing and optimized device layout.  

2.1. Review Studies Related to Dynamic Thermal Management 

In 2004, Blackburn et al. [13] conducted a brief review of chip thermometry 

techniques, including both on-die sensors and laboratory techniques. The review 

organizes the thermometry techniques into three categories: electrical, optical, and 

physical contact. The operating principles of each technique are discussed and the 

spatial resolutions are reported. The review provides an excellent basis for 
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understanding semiconductor thermometry but does not address temperature error 

which is critical for DTM applications.  

Avenas and Dupont [14] presented a brief review of related thermometry techniques 

but focused on techniques for power semiconductor devices. Typical non-contact 

methods used in the power-electronics community are outlined. A series of electrical 

measurements are proposed and the following characteristics are compared: 

sensitivity, linearity, accuracy, genericity, and calibration requirements. The authors 

also discuss the feasibility of characterizing the thermal impedance or temperature 

during operation in the presence of self-heating. Implications for wind bang-gap 

semiconductors are discussed. While the thermometry techniques proposed for power 

semiconductor devices are not directly relevant for dynamic thermal management in 

microprocessors, the authors provide an excellent framework for considering 

microprocessor thermometry techniques.  

In 2007, Naderlinger [15] conducted a brief review of dynamic thermal management 

techniques (DTM) and outlined three techniques for estimating chip power profile: 

instruction-level estimation, function-level and macro-modeling estimation, and event 

counters. Instruction-level estimation uses an energy cost factor for processor 

instructions to determine overall power consumption. However, instruction energy 

costs depend on the sequence of instructions, so more detailed calculations are 

required. Function-level estimation leverages power simulations at the function level 

to estimate total power. Finally, event counters have been shown to reflect power 

profiles and can thus be used as an estimation parameter. Naderlinger also mentions 



11 

 

several modeling tools available for thermal simulations. The explanation presented 

for task migration, however, is incorrect in that it claims silicon is a poor thermal 

conductor. The thermal conductivity of silicon is amongst the highest of common 

engineering materials at 148 W/m-K at room temperature [16]. Microprocessors suffer 

reduced thermal conductivity owing to thermal interfaces and the inclusion of 

insulating materials. Overall, the review offers a valuable introduction into advances 

in DTM and power estimation.  

Kong et al. [17] conducted a review that has yet to be published of various thermal 

management techniques for chips. The review focuses on techniques related to the 

chip microarchitecture. The study was organized in 6 categories: “temperature 

monitoring, microarchitectural techniques, floorplanning, OS/compiler techniques, 

liquid cooling techniques, and thermal reliability/security”. The review covers thermal 

sensor types and sensor placement techniques.  

2.2. Representative Realizations of Dynamic Thermal Management  

Modern microprocessors contain numerous thermal sensors for three main reasons. 

First, chip dies contain numerous distinct units for which the temperature must be 

monitored. Second, chip workload can vary greatly resulting in migrating hotspots. 

Finally, as previously discussed, leakage power is difficult to predict due to both 

processing-dependencies and temperature-dependencies. [18] 

Intel’s “Foxton Technology” which was introduced in their 90-nm Itanium processor 

family provides a good example of an implemented DTM system. The system 
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involved four on-chip sensors and an embedded micro-controller to measure and 

regulate the power and temperature of the system. One temperature sensor was located 

above each of two floating point units and one sensor was located above each of two 

cores. The thermal transients in the system were reported to be 60ºC per second. A 

sample rate of 500 Hz was chosen to facilitate response to these gradients without 

suffering excessive temperature excursion. A micro-controller was used to control 

system response by throttling chip power once the set threshold temperature was met. 

Power throttling was achieved by voltage reduction at a rate the authors described as 

“appropriate for thermal time constants”. The study does not report any power 

throttling as the system approached the threshold temperature. Figure 3 presents a 

layout of the microprocessor layout. Figure 4 presents a schematic of the control 

design.  

 

Figure 3: Layout of Foxton Technology Controller used for Intel Itanium 
microprocessor family [6]. 
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Figure 4: Thermal system block diagram for Intel Foxton Technology Controller [12]. 

The sensors in the Foxton Technology Controller are calibrated after fabrication and 

are re-calibrated every 65.536 ms during microprocessor operation. The system 

requires less than 0.5% of the total die area and consumes less than a watt of power. 

The average power measurement accuracy is 5% and the temperature accuracy is 3ºC.  

For an example of an alternative, more modern layout, Dorsey et al. [19] provides 

details of the AMD quad-core processor layout which extends over relatively long 

distances. Figure 5 shows the processor floorplan including thermal diode locations. 

The components marked “ThermCenter” represent central hubs for signal processing. 

The average distance between the sensors and the thermal evaluation circuit, referred 

to as “TCEN”, is approximately 8mm. The chip has 38 total sensors. The power 

consumption for the plurality of thermal sensors is estimated to be as high as 10’s of 

watts.  
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Figure 5: Floorplan for AMD Quadcore Opteron processor showing thermal diodes 
and thermal processing centers [19]. 

Implementation of dynamic thermal management has increased significantly over the 

last decade. In 2002, Krinitsin provided a detailed analysis of dynamic thermal 

management schemes on AMD Athlon XP and Intel Pentium 4 microprocessors. 

Typical transient gradients in temperature were reported as 30-50ºC/sec for normal 

operation but could be as high as 70-100ºC/sec in the event of cooling system failure. 

Conventional thermal monitoring at the time involved sampling rates of approximately 

5-10 Hz, which was inadequate for response to these transients. In the case of the Intel 

Pentium 4 processor, a thermal sensor was placed directly over the rapid-integer 

arithmetic logic unit (ALU)  [20]. 

For the modern, high-performance microprocessors, dynamic thermal management 

involves off-chip communication for heat sink control. Details of the chip dynamic 

thermal management scheme are presented in datasheets to enable system integration 

with heat sinks. One such report for the Quad-core Intel Xeon 5400 series 



15 

 

microprocessor family provides an excellent example of modern industry practices. 

The chip’s four cores are equally divided between two “domains”. A Platform 

Environmental Control Interface (PECI) reports the highest output temperature within 

each chip domain to an off-chip PECI host, typically to control fan speed. Thermal 

sensors do not report temperature directly, but instead report PECI counts; each PECI 

count is equivalent to “approximately 1ºC” though linearity “cannot be guaranteed” 

past 20-30 PECI counts. PECI counts are expressed as negative values relative to the 

set temperature; positive PECI counts are not reported, which causes a complete signal 

loss to the PECI host when the set temperature is exceeded. A single control 

temperature is set for each domain and is not absolute but instead defined relative to 

the “TCC activation point”, which is the starting value of the temperature control 

circuit (TCC). [21] Further documentation provides details of the three thermal 

management signals that can be activated on-chip. PROCHOT# is activated for a 

domain when any temperature sensor in the domain reaches its factory configured trip 

point which activates the Thermal Control Circuit (TCC) to reduce power output. The 

chip platform can activate the TCC for all cores by asserting FORCEPR# signal. To 

prevent damage in the event of a cooling system failure, THERMTRIP# activates 

complete system shut down independent of processor activity if a temperature is 

reached that may cause “permanent silicon damage”. The signal is tripped within 10 

microseconds. The processor core voltage must also be removed. These features 

enable the chip to operate reliably for cooling solutions capable of removing the 

“thermal design power” (TDP) specification. The TDP is not the maximum power 

output of the chip, which may exceed the TDP. For the highest performance Xeon 
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5400 processor, the TDP is 150 W. According to the report, the dynamic thermal 

management scheme described above is key to facilitating such aggressive power 

consumption in this processor family. [22] 

Related work on other types of semiconductors can provide insight into the challenges 

of implementing thermal sensors. Lopez-Buedo et al. [23] and Velusamy et al. [24] 

both employed digital thermal sensors on field-programmable gate arrays (FPGAs), 

and Mondal et al. [25] developed a technique for inserting sensors into FPGAs. 

Mukherjee et al. [26] developed an algorithm to use vacant configurable logic blocks 

as thermal sensors in an FPGA design. Aldrete-Vidrio et al. [27] presented two 

approaches to conduct failure analysis on RF circuits with built-in differential 

temperature measurements. Finally, Bratek and Kos [28] combined power modules 

and temperature sensors to detect faults in integrated circuits. 

Overall, present day integrated circuit (IC) thermal sensors are accurate though costly; 

furthermore typical calibration is time-consuming and adds further costs.[29] Sensor 

calibration is typically conducted by heating the chip and measuring the sensor output 

[12], [30], [31]. Heating is usually applied by hotplate, high-temperature soak, or hot 

air jet [29]; further details on industry sensor calibration practices can be found in 

Schlaepfer [9] and McGowen et al. [27].   

2.3. Thermal Sensor Design 

A range of thermal sensors are has been developed for on-chip thermometry. Analog 

thermal sensors consist of a thermal diode, a factory-calibrated reference current 
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source, and a current comparator. When a voltage is applied across the diode, the 

induced current flow is a function of temperature. Comparison between the diode 

current and the reference current yields a thermal signal. The accuracy of thermal 

diodes is limited by the fact that the threshold current varies strongly with processing 

parameters. For this reason, each thermal diode sensor must be calibrated accordingly. 

[29] If sensor calibration is not conducted, the resulting error can be very large. The 

thermal assist unit (TAU) developed for the IBM PowerPC 750 microprocessor 

produced worst-case readings between 61ºC and 109ºC for cases where the actual 

temperature was 95ºC. [30] 

More sophisticated digital sensors are available but accuracy and stability tends to 

require additional size. Figure 6 presents a schematic of a digital thermal sensor which 

integrates a thermal diode and a reference current source. Kaxiras and Xekalakis [32] 

proposed a 4T-decay sensor design which uses 4T memory cell with a decay counter.   

 

Figure 6: Schematic of digital thermal sensor based on a thermal diode [33]. 

To achieve +/- 1ºC accuracy, the sensor required area of 0.0016 mm2 and power 

consumption of 397uW, according to calculations by Long et al. [33]. Digital thermal 
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sensors were used in the IBM Power6 and the Intel Xeon series; in the IBM Power6, 

ring oscillator sensors were used [29]. The primary parameter for assessing thermal 

diode sensors is the diode ideality factor which quantifies the deviation from an ideal 

diode [33]. 

Aldrete-Vidrio et al. [34] presented four differential temperature sensor designs, two 

of which were active and two of which were passive. Differential temperature sensors 

are designed to have high sensitivity to local temperature disturbances within the 

silicon die, but low sensitivity to external temperature variations. The passive sensors 

were integrated thermopiles. A thermopile is a string of thermocouples connected in-

series. The active sensors were differential amplifiers.  Lateral parasitic bipolar 

transistors were used as the temperature transducer devices. The authors defined their 

figures of merit as “compatibility with [integrated circuit (IC)] technology, used area, 

power consumption, sensitivity, and linearity”. The authors did not report sensor 

uncertainty results but did report evidence of sensitivity and linearity, as shown in 

Figure 7.  
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Figure 7: Representative results of linearity and sensitivity of sensors designed 
proposed by Aldrete-Vidrio et al. Solid lines indicate least-squares fit to linear 

approximation and corresponding parameters are shown on the right. [34] 

As before, insights for new thermal sensors for microprocessors may be taken from 

parallel work on other electronics systems. Barlini et al. [35] presented three 

electrical-based techniques for finding transient average junction temperature in power 

MOS devices. Two techniques use the temperature-dependence of time-derivative of 

the drain-source current, !"#$/!�(�), and the other technique uses the temperature 

dependency of turn-ON delay of device. Simulations of the techniques in PSPICE are 

compared to two thermal models. The measurement techniques based on time-

derivative of the drain-source current demonstrate accuracy within 5ºC, as does the 

technique based on turn-ON delay except at very short timescales. [35] 
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Figure 8: Comparison of proposed thermal measurement technique with simulation 
tools [35]. 

Sensors designs that are susceptible to variations in processing parameters, such as 

doping, require separate calibration for each sensor [29], [33]. Sensor designs have 

been developed that are process-invariant, but they tend to require large areas [36], 

[37]. To increase the accuracy of a sensor, the series resistance, which is the resistance 

of paths leading up to and away from the diode, can be corrected for [33]. 

Yao et al. [29] presented a technique for calibrating on-chip thermal sensors using a 

local array of five sensors. The temperature drop between neighboring thermal sensors 

provides a basis for improved thermal measurement, provided an accurate power 

estimate and thermal conductivity value can be obtained. If a grid of thermal sensors is 



21 

 

available, the redundant sensors in the local sensor array can be eliminated, though 

error would likely increase. The proposed calibration technique is shown to 

dramatically reduce sensor error, but overall temperature uncertainty remains greater 

than 10ºC for the majority of cases. Figure 9 shows the error reduction achieved via 

calibration for a representative case. Figure 10 shows the dependence of temperature 

error on power estimation. The errors reported remain unacceptably high for dynamic 

thermal management. [29] 

 

Figure 9: Improvement in thermal measurement due to sensor group calibration [29]. 
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Figure 10: Temperature estimation error as a function of power estimation error [29]. 

Bharath et al. [38] extended the work of Yao et al. [29] by developing an alternative 

technique for calibrating on-chip thermal sensors. The authors noted that the technique 

presented by Yao et al. [29] “does not account for the cyclic dependency between 

leakage currents and temperature. This dependency comes from the fact that: (i) 

leakage currents increase with device temperatures and (ii) higher leakage currents 

result in higher power consumption which in turn increases the device temperatures” 

[38]. To account for these dependencies, two power inputs are used and the ratio 

between them is calculated. CMOS chip power comes from dynamic power 

consumption (�#) and leakage power consumption (�() defined by:  
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�# = *��� (2)  

 
�( = � ∙ "(�, �) (3)  

where * is the capacitive load, � is the supply voltage, � is the frequency, and "(�, �) 

is the leakage current which is a function of supply voltage and operating temperature. 

The technique is tested by creating a simulated ring oscillator digital thermal sensor in 

SPICE and coupling to HotSpot code. [23] 

 

Figure 11: Schematic of simulated ring oscillator digital thermal sensor [38]. 

The technique was tested for three corner cases, referred to as “slow”, “nominal”, and 

“fast”. The slow corner had higher threshold voltage and thus lower leaker power, 

while the fast corner has low threshold voltage and therefore high leakage power. 

Figure 12 shows the results for the calibrated temperature results for the three corner 

cases as compared to the results of Yao et al. [29]. The techniques are comparably 

accurate for low leakage power but the technique presented by Bharath et al. [38] 

shows dramatic improvements for the case of elevated leakage power. Despite these 

improvements in accuracy, it remains unclear if the benefits of this sensor design 

justify the large sensor footprint requirements.  
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Figure 12: Calibrated sensor response for three corner cases [38]. 

2.4. Laboratory Thermography Techniques  

While on-chip thermal sensors are central to any DTM design, laboratory 

thermography techniques play an important role in circuit design validation and sensor 

calibration. Extensive research in high-resolution semiconductor thermography has 

resulted in numerous available techniques. This section reviews the quantitative spatial 

resolution, temporal resolution, and accuracy of two thermography techniques capable 

of providing chip-scale thermography and sensor validation: Raman and infrared (IR) 

thermography.  
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Infrared (IR) thermography is one of the most common techniques for chip thermal 

mapping; the emissivity of the surface of interest is measured by measuring IR 

radiation counts at a known temperature. After this calibration step, IR radiation from 

the surface is measured to determine surface temperature. Establishing a uniform, high 

emissivity surface is beneficial for maximizing the accuracy of IR thermometry. 

Salem et al. [39] reported the results of various spray coating techniques for IR 

thermography of power electronics. A FLIR Systems Thermacam SC500 infrared (IR) 

camera system was used to image spray coatings of high-temperature black spray 

paint and a boron-nitride spray. The boron-nitride spray is substantially easier to 

remove than spray paint which makes it appropriate for non-destructive testing. The 

imaging accuracy is reported to be +/- 2ºC based on manufacturer specifications. IR 

temperature measurements were compared to a thermocouple on the top surface which 

had an accuracy of +/- 1.2ºC. An aluminum block was used as a blackbody reference 

target and additional measurements were demonstrated on an active MOSFET. The 

measurement error was as high as 30% when the clamping apparatus was within the 

field of view. Figure 13 shows relatively minor differences in measurement error 

between the two coatings which depend on the operating temperature.  

An important benefit of IR thermometry is the opportunity to integrate electronics 

cooling while measuring temperature. Hom et al.[40] used a microfluidic heat sink to 

conduct IR thermometry on a chip running realistic traffic patterns. To ensure the heat 

sink was transparent to the infrared radiation, an IR transparent working fluid was 

used and a sapphire window was integrated into the top surface of the heat sink. This 
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approach has also been pursued in at least one research and development lab at a 

major chip manufacturer. 

 

Figure 13: Error in IR thermograpy for alternative chip coatings [39]. 

Castellazzi et al. [41] demonstrated a novel, transient IR thermal characterization 

technique using an optical fiber and a coated component. Figure 14 shows a schematic 

of the optical fiber and corresponding assembly. Figure 15 shows the circuit schematic 

for signal capture. The system is capable of fast transient operation from microseconds 

up to milliseconds for semiconductor devices.  
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Figure 14: Schematic of novel IR thermography technique [41]. 

 

Figure 15: Schematic of fast transient IR thermography technique [41]. 

Because the spatial resolution of IR techniques is diffraction limited, researchers have 

turned to Raman thermometry for high resolution chip thermometry.  Kuball et al. [42] 

demonstrated the use of Raman thermography on gallium nitride (GaN) 
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microelectronics and achieved sub-micron spatial resolution and nanosecond time 

resolution. The results highlighted an important consideration for chip thermography: 

the spatial resolution of the technique dictates the accuracy at which the hotspot 

maximum temperature can be measured. For an aluminum gallium nitride/gallium 

nitride (AlGaN/GaN) heterostructure field effect transistor (HFET), the Raman 

technique indicated higher peak temperatures than observed by IR thermography. The 

lower spatial resolution of the IR technique results in averaging the peak temperature 

with lower temperatures nearby. Figure 16 offers a comparison of the two techniques 

to demonstrate this effect; spatial averaging alone, however, does not account for the 

difference in peak temperature measurements so other sources of error must be 

present. Similar results were found when using micro-Raman spectroscopy to measure 

multi-finger gallium arsenide (GaAs) pseudomorphic high electron mobility transistor 

(HEMT) devices [43]. 

 

Figure 16: Temperature profile of HFET as measured by Raman spectroscopy and IR 
thermography. The superior spatial resolution of Raman spectroscopy enables 

improved peak temperature measurement. [42] 
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While infrared (IR) thermography and has a maximum spatial resolution of 2-5.5 um  

[44–46] and a response time as fast as milliseconds [47], [48], Raman is accurate to 

micron or submicron spatial resolution [49–54] but is limited to materials with 

appropriate phonon characteristics and therefore has limited applicability for metals or 

plastics. Unlike IR thermography in which a two-dimensional (2D) thermal map is 

captured by an imaging sensor, Raman requires rastering to produce a thermal map. 

A third thermometry technique known as transient interferometric mapping (TIM) is 

used in semiconductor applications. The technique uses temperature-induced changes 

in silicon refractive index to determine the chip temperature. Typically transient 

interferometric mapping is applied to the chip backside. Bychikhin et al. [55] 

demonstrated the use of transient interferometric mapping to measure temperature 

distribution in DMOS devices subjected to repetitive stress. Results were compared to 

measurements from built-in temperature sensors and 3D thermal simulations and 

showed good agreement. A two-dimensional holographic interferometry technique 

with 10 us time resolution and a scanning heterodyne interferometer with 3 ns time 

resolution were used for the thermal mapping. Heer et al. [56] developed an automated 

experimental set-up that used transient interferometric mapping and IR mapping to 

measure DMOS degradation mechanisms. Haberfehlner et al. [57] employed a 

compact transient interferometric mapping system to spatially resolve thermal 

runaway onset in a smart power DMOS. The technique takes two thermal images with 

a delay ranging from 100 us to a few milliseconds. The phase measurements are made 

using superluminscent diodes and focal plane array cameras.  The field of view ranged 
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between 250um by 300um to 2.5mm x 3mm. Figure 17 shows representative phase 

shift results corresponding to a shift in temperature measured by a built-in sensor. 

Figure 18 provides a schematic of the transient interferometric mapping set-up used. 

Blaho et al. [58] also employed backside laser interferometric thermal mapping 

technique on a double-diffused metal–oxide–semiconductor (DMOS) transistor. 

 

Figure 17: Temperature response measured by built-in sensor and corresponding phase 
shift response for transient interferometric mapping [57]. 
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Figure 18: Schematic of transient interferometric mapping set-up. Abbreviations are: 
SLD: superluminescent diode; AOM: acousto-optical modulator; PBSC: polarizing 
beam splitter cube; BS: beam splitter; L: lens; DUT: device under test; FPA: focal 

plane array camera [57]. 

2.5. Thermal Sensor Arrays and Signal Processing 

Regardless of sensor type and accuracy, on-chip thermal measurements are 

significantly affected by sensor placement. Improvements in thermal measurements 

can be made by optimizing sensor placement within the constraints imposed by circuit 

architecture and system integration. Optimized sensor placement can reduce error 

associated with hotspot migration and can improve sensor network requirements.  

Hotspots on multicore processors migrate during chip operation, resulting in 

differences between the maximum measured temperature on the chip and the actual 

maximum chip temperature. Deviations as large as 12.6ºC can occur even with 16 

sensors per core. [60] Long et al. [33] also noted that measurement inaccuracy is 
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introduced when thermal sensors are located away from the hotspot, but did not 

attempt to directly quantify this error. The authors referred to the practice of correcting 

for these deviations as “remote sensing”. The practice of remote sensing is valuable 

both for space allocation and to reduce temperature-dependenciesin sensor signal 

lines.   

Lee et al. [61] demonstrated an analytical model for determining maximum 

temperature drop between a hotspot and a region on the chip.  The model is a 

superposition of the exponential temperature decays of each hotspot. An activity factor 

is used to scale the contribution from each hotspot for power outputs between zero and 

maximum power. The authors implement a run-time thermal model which facilitates 

the use of “virtual sensors” and examine two benchmark cases of concentrated thermal 

stress. 

Gunther et al. [62] suggested opportunities for optimized sensor placement but did not 

present concrete methods. Mukherjee and Memik [26] developed a thermal sensor 

allocation scheme for single-core microprocessors. This scheme was used by Long et 

al. [59] as a basis for a multi-core sensor allocation and sampling strategy. The authors 

proposed three techniques to create sensor infrastructures to improve hotspot 

monitoring in a multi-core system. First, they propose an improved interpolation 

scheme. The technique uses a low-resolution sensor array to estimate the location of a 

hotspot. As shown in Figure 19, localized, higher-resolution sensor array is then 

activated in the vicinity of the hotspot to determine its precise location and magnitude. 
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This technique dramatically reduces signaling requirements but still requires a high-

resolution array of sensors throughout the chip.  

 

Figure 19: Schematic of two-stage hotspot interpolation technique proposed by Long 
et al. [59]. A low-resolution sensor array (a) is used to estimate the hotspot location 
and then a local high-resolution array (b) is activated in the vicinity of the hotspot.  

Several studies have taken advantage of the way in which heat dissipation in 

microprocessors provides smooth temperature gradients. This results in reductions in 

the thermal signal bandwidth in the spatial frequency domain. Cochran and Reda [18] 

presented improved thermal sensor array interpolation techniques. The authors 

prepared several approaches based on Fourier spectral analysis and Nyquist-Shannon 

sampling theory. The proposed methods could tolerate both uniform and non-uniform 

sensor placements. The error associated with the full thermal profile and the hotspot 

temperature were reported and compared to a nearest neighbor benchmark approach. 

For the best case, the average absolute error was 0.6% and the  overall performance 

was deemed to exceed that of grid-based interpolation [59] and geostatistical Kriging 

estimators [63].  
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Figure 20: Error results for full thermal characterization using various thermal sensor 
array interpolation schemes [18]. 

 

Figure 21: Error results for hotspot estimation using various thermal sensor array 
interpolation schemes [18]. 

Sharif and Rosing [64] presented two techniques for accurate on-chip temperature 

sensing as shown in Figure 22. Their first technique was developed for sensor 

calibration and sensor allocation during chip layout design. This technique was shown 

to reduce the number of sensors needed for a particular accuracy level by 16% on 

average. The authors also proposed a technique to determine the temperature at 
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arbitrary locations on the die using noisy temperature readings from sensors located 

elsewhere on the chip. The technique based on a Kalman filter is designed to operate 

in runtime and is shown to reduce the standard deviation and maximum value of 

temperature error by an order of magnitude. [64]  

 

Figure 22: Schematic of two techniques proposed for (a) off-line sensor set-up and (b) 
runtime temperature estimation [64]. 

All of the aforementioned techniques require monitoring of signals from distributed 

thermal sensors, introducing possible signal noise and imposing additional power 

consumption. Ituero et al.[60] developed improvements to sensor monitoring that 
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reduce the power consumption and improve the accuracy of the array. Figure 23 

provides a schematic of interconnect lines required for monitoring a single 

microprocessor core, shown overlaid on the full microprocessor in Figure 24. The 

authors proposed a new monitoring network paradigm for communicating between 

sensors and the controller, and demonstrated the technique for both a single-core and 

an eight-core system. 

 

Figure 23: Schematic of interconnect lines required for monitoring a single core [60]. 
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Figure 24: Layout of interconnect lines for single core monitoring [60]. 

These advances in sensor design, laboratory thermography, sensor placement, and 

thermal signal processing provide a basis for improved dynamic thermal management 

implementations as well as opportunities for further research. A discussion of new 

research directions is presented in Chapter 5.  
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CHAPTER 3: UNCERTAINTY IN HOTSPOT DETECTION 

3.1. Introduction to Hotspot Detection 

As microprocessor manufacturers have adopted multi-core circuit architectures, the 

detection and management of temporal hotspots have become increasingly important 

for chip reliability and performance. While much attention has been given to increases 

in the overall chip power, hotspot heat fluxes are increasing even more rapidly for 

many applications [62]. Active portions of a microprocessor can produce as much as 

20 times as much heat as inactive regions [11]. These high heat fluxes can cause 

elevated junction temperatures leading to electromigration and subsequent circuit 

failure. Furthermore, temperature non-uniformities in the chip can cause severe 

thermo-mechanical stress on the package leading to system failure. These challenges 

will be exacerbated in future processors that are expected to include many more 

processor cores integrated in three-dimensional geometries. 

To date, chip cooling alone does not seem capable of addressing these challenges. 

Most cooling solutions are best suited to address relatively slow thermal phenomena 

occurring over large regions of the chip. It is especially difficult to directly address 

highly localized, dynamic hotspots with cooling solutions implemented in chip 

packaging. Thermal engineers are forced to overdesign the cooling solution to satisfy 

worse-case scenario conditions for a hotspot region. This can be both difficult and 

expensive, particularly because the cost of cooling solutions increases rapidly as a 

function of maximum local heat flux [62]. Various methods of dynamic, localized 
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cooling (e.g. use of Peltier devices) are being investigated to address these difficult 

thermal requirements, but none have been adopted to date  

An alternative overall approach to managing chip hotspots is to regulate the chip 

power output to maintain device temperature within specified limits. Such techniques 

are referred to as dynamic thermal management (DTM) and have been a subject of 

intense investigation since being introduced by Brooks and Martonosi [65].  

All dynamic thermal management techniques fundamentally involve two steps: (1) 

interpreting temperature data from the chip and (2) responding to that data by reducing 

power. The majority of research has focused on the latter problem for DTM, 

specifically on finding innovative ways to locally regulate chip power. Proposed DTM 

techniques involve clock gating [7], Dynamic Frequency Control [8], Dynamic 

Voltage and Frequency Scaling (DVFS) [9], simultaneous multithreading (SMT) 

thread reduction [10], and activity migration [11]. Much less attention has been given 

to designing temperature sensor arrays and interpreting the resulting thermal signals. 

Two important sources of uncertainty need to be considered for DTM applications. 

First, the thermal sensors used for DTM feedback are subject to error. Most DTM 

studies do not consider the effect of this error and thus provide overly optimistic 

results. Skadron et al. [66] demonstrated that sensor error can cause significant 

performance reductions due to incorrect DTM triggering and reduced DTM threshold 

levels.  
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Discussions of uncertainty in DTM studies are typically limited to sensor error, but 

additional attention should be paid to the uncertainty caused by sensor placement. 

Because thermal sensors are not necessarily located at the chip hotspot, a DTM 

scheme must account for the temperature difference between the sensor location and 

the actual hotspot. Skadron et al.[66] used an estimated spreading factor within a core 

to try to account for this discrepancy as an additional source of error. In their study, 

the spreading factor contributed an additional 2°C error in the temperature signal. To 

attempt to account for uncertainty in hotspot location and intensity, DTM methods are 

currently designed to be conservative, which causes reduced system performance.  

To reduce the uncertainties associated with thermal sensing for DTM, a challenging 

optimization problem must be considered. Circuit designs with high circuit density but 

low sensor density suffer from increased uncertainty in the thermal profile. Increased 

uncertainty about hotspot location and magnitude requires more cautious DTM control 

algorithms, which diminishes performance metrics. Increasing sensor resolution 

improves DTM control algorithms but also reduces circuit density, ultimately reducing 

computational power. An optimization approach is required to find a design that 

maximizes computational power while maintaining the chip in reliable operating 

conditions. 

This study endeavors to help address this challenging optimization problem by 

quantifying the uncertainty that should be accounted for in a DTM scheme given a 

particular thermal sensor array. We consider the generalized case of a grid-array of 

thermal sensors located some distance above an arbitrary heat flux profile. In order to 
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better represent real applications, the thermal sensors are not necessarily located 

directly above known heat flux peaks. The chip heat flux profile is considered 

unknown, and the purpose of the thermal sensor array is to detect the regions of the 

chip that require dynamic power control. 

We introduce a novel, computationally efficient, inverse heat transfer solution method 

and determine the accuracy to which it resolves the underlying heat flux profile. We 

consider cases with varying numbers of thermal sensors located with varying 

proximity to the circuitry level of the chip. Sensor error is also introduced to determine 

its effect on the estimated heat flux profile. For certain cases, the inverse solution 

method is shown to be susceptible to temperature sensor error. The results of these 

tests are compared to the uncertainty that results from treating the unprocessed thermal 

signal as a representation of the heat flux profile. 

The approach taken here also has implications for the use of discrete thermal data in 

resolving the source of a hotspot. DTM schemes need not consider this uncertainty 

because the standard response to a hotspot is to throttle all activity in the vicinity. In 

chip development and production, however, thermal measurements are used to 

characterize the power distribution of the circuit design. For these tests, high 

resolution thermometry can be used (e.g. infrared microscopy [40]). The maximum 

spatial resolution at which these techniques can resolve neighboring hotspots is 

dictated by the resolution of the applied thermometry technique, the extent of thermal 

spreading in the chip, and the measurement error. The present study simulates the case 

of distinguishing two similar hotspot sources using discrete temperature 
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measurements. For a given measurement error and chip configuration, there is a 

minimum spatial sampling frequency required to correctly resolve the source of a 

hotspot.  

Section II of this paper presents the overall methodology used to simulate chip heat 

flux profiles and determine the uncertainty associated with a particular thermal sensor 

array. Section III presents the inverse heat transfer solution method derived for this 

study. The uncertainties in the heat flux profile associated with direct temperature 

interpretation and inverse solution method are presented in Section IV. Section V 

provides concluding remarks.  

3.2. Simulation Methodology 

3.2.1. Overall Simulation Methodology 

The present study is based on a simplified conduction model for the chip. Figure 25 

shows the model geometry. The chip is modeled as an isotropic, single-layer structure. 

The isotropic condition can be relaxed by transformation of the thermal conductivity 

and chip thickness [67]. The boundary condition on the top surface is convective heat 

transfer with a uniform heat transfer coefficient. The boundary conditions on the four 

sidewalls are adiabatic. On the bottom surface, an arbitrary heat flux profile boundary 

condition is applied. The chip is 1 cm by 1cm and its thickness and thermal 

conductivity is varied in the simulations. The system operates in steady-state. This 

simplified model of the chip facilitates the generalized simulation methodology taken 

in this study which would be impractical with a highly discretized chip model. 
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Figure 25: Schematic of model geometry. An arbitrary heat flux profile is applied on 
the bottom boundary. The boundary condition on all sidewalls is adiabatic; the 

boundary condition on the top surface is uniform heat transfer. 

Figure 26 shows the four main steps involved in the overall simulation methodology. 

The simulation begins by defining the geometry and system parameters and generating 

a randomized heat flux profile. The forward solution method is used to resolve the 

sensor-level, full-resolution temperature profile, �$,- (Figure 26.b), based on the 

circuit-level, full resolution heat flux profile, �.,-′′  (Figure 26.a). A set of low-

resolution temperature profiles, �$,( (Figure 26.c), is created by interpolating the full-

resolution temperature profile, �$,-, at various spatial frequencies. Each low-resolution 

temperature profile represents the temperature profile that would be measured by a 

temperature sensor array of a particular spatial frequency. For example, for a 

temperature sensor spatial sampling frequency of 1000 m-1 (equivalent to nominal 

sensor spacing of 1mm), the low-resolution temperature profile, �$,(, is a 10x10 grid 

on a 1cm by 1cm chip.  
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(a)                    /.,-(0, 1)

 

(b)                    �$,-(0, 1)

 

(c)                     �$,(,2(0, 1)

 

(d)                     /.,(,2(0, 1)

 

Figure 26: Representative images of each of the four main steps in the simulation 
methodology. The inputted heat flux profile (a) is used as a reference for determining 

the error in (d) the calculated heat flux profile. 

Random error is added to the low-resolution temperature profile, �$,-, to simulate the 

measurement error introduced by real temperature sensors. The sensor error, 	�2��3�, is 

normally-distributed about the interpolated temperature value with a standard 
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deviation that is specified relative to the maximum interpolated temperature. The 

sensor error at each index is calculated as: 

 �2(4, 5) = 	 6�2(7��
2�$,(,87�9	 (4)  

where 6�2(7��
2 is the standard deviation of the relative sensor error, �$,(,87� is the 

maximum measured temperature, and Γ is a random number with a mean value of zero 

and a standard deviation of unity.  

This study shows the results for standard deviations in the relative sensor error of 0, 

0.5, and 1 percent. The case of 0 percent standard deviation in the relative sensor error 

is equivalent to no measurement error.  

The sensor-level, low-resolution temperature profile with error, �$,(,2 = �$,( + 	 �2, is 

used to calculate the circuit-level, heat flux profile, �.,(,2′′  (Figure 26.d), using a spatial 

sampling frequency domain, inverse heat transfer solution, described in detail in the 

next section. Because the inputted temperature profile is low resolution, the resulting 

heat flux profile, �.,(,2′′ , is also low resolution. To calculate the error resulting from the 

solution method, the low-resolution heat flux profile is interpolated to full resolution. 

The mean absolute error (MAE) is calculated by finding the difference between the 

correct profile and the calculated heat flux profile: 

 ;<= = 1
�
� ? ?@�.,-AA (4, 5) − �.,(,2AA (4, 5)@
CD

EFG

CH

�FG
 (5)  
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where Nx and Ny are the total number of indices in the x and y directions, respectively. 

The mean absolute error is normalized by the average heat flux: 

 


IJK��4L�! ;<= =  
1
�
� ∑ ∑ @�.,-AA (4, 5) − �.,(,2AA (4, 5)@CDEFGCH�FG

1
�
� ∑ ∑ �.,-AA (4, 5)CDEFGCH�FG
 (6)  

 
IJK��4L�! ;<= = ∑ ∑ @�.,-AA (4, 5) − �.,(,2AA (4, 5)@CDEFGCH�FG
∑ ∑ �.,-AA (4, 5)CDEFGCH�FG

 (7)  

Figure 27 provides a block diagram of the simulation procedure. The procedure is 

repeated for numerous randomly-generated heat flux profiles and the results are 

averaged. The average MAE is plotted against the thermal sensor spatial sampling 

frequency.  
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Figure 27: Block diagram of numerical approach used for determining hotspot 
detection accuracy. FFT and IFFT refer to the Fast Fourier Transform and the Inverse 

Fast Fourier Transform, respectively. 

In practice, an inverse heat transfer technique is not always used to interpret measured 

temperature profiles. Instead, the measured temperature profile is assumed to be 

representative of the chip heat flux profile. This technique is equivalent to treating the 

measured temperature profile as directly proportional to the heat flux profile: 
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 �.AA(4, 5) = �$(4, 5)���AA  (8)  

where ���′′  is the chip vertical thermal resistance for unit area: 

 ���AA = �N�  (9)  

This simplification results in additional uncertainty in the heat flux profile, the 

magnitude of which depends on the chip properties and boundary conditions. In this 

paper, this approach is referred to as “direct interpretation” of the temperature profile 

and is compared to the inverse solution method in the results section. 

3.2.2. Randomization of Heat Flux Profiles 

The uncertainty in the calculated heat flux is dependent on the characteristics of the 

heat flux profile. Simple, well-spaced heat flux profiles are easier to resolve than 

overlapping, complicated heat flux profiles. To represent the most general case, the 

simulation is conducted over a set of heat flux profiles that contain varying degrees of 

complexities. The heat flux profiles are randomly generated to include between 1 and 

15 hotspots which can vary in laterals dimension between 273 um (equivalent to 7 grid 

cells) and 4.18 mm (equivalent to 107 grid cells). For reference, the chip is 1 by 1cm. 

The hotspots are created with soft edges; the edge of the hotspot spans 156 um 

(equivalent to 4 grid cells) and has a linear slope from the value of the background 

heat flux to value of the hotspot heat flux. The background heat flux is 1 W/cm2 and 

the maximum possible hotspot heat flux is 320 W/cm2. Hotspots are permitted to 
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overlap with each other but not with the edge of the chip. For the first set of 

simulations, the hotspots have a random heat flux value between the background and 

the maximum heat flux. This is referred to as “variable heat flux”. For the second set 

of simulations, all hotspots have the maximum heat flux, referred to as “binary heat 

flux”. The case of binary heat flux represents a core that is either active or inactive. 

The case of variable heat flux represents a core for which the amount of activity is 

unknown. Since the variable heat flux case is most challenging from an uncertainty 

perspective, only select resulted are presented for binary heat flux cases.  

The key result of each simulation is the mean absolute error (MAE) in the calculated 

heat flux profile. Because conduction through the chip is linear, the results are 

generalized by normalizing the error in the heat flux profile by the input heat flux 

profile. Thus only the relative magnitude of the heat flux as compared to the 

background heat flux is relevant for consideration.  

3.2.3. Resolution Study 

A second study was conducted to quantify the ability of the inverse solution method to 

resolve a single hotspot from a group of neighboring hotspots. Two circuit-level heat 

flux profiles are created; the first heat flux profile, referred to as Case I, consists of a 

single hotspot in the center while the second heat flux, referred to as Case II,  profile 

consists of 9 closely packed hotspots in the center. The average heat flux is the same 

in both cases. Figure 28 shows the two heat flux profiles. The circuit-level temperature 

profile resulting from the single-hotspot heat flux profile is calculated using the 
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forward solution. The temperature profile is sampled at reduced spatial sampling 

frequency to simulate the signal from a thermal sensor array, as before.  

(a)        Case I Heat Flux Profile [W/m2] 

 

(b)      Case II Heat Flux Profile [W/m2] 

 

Figure 28: Heat flux profiles used for resolution study, referred to as Case I and II 
respectively. Both heat flux profiles have equivalent average heat flux and produce 

similar temperature response profiles. The solution methods are tested for their ability 
to correctly resolve these heat flux profiles.  

Each solution method is used to deduce which of two possible heat flux profiles 

yielded the measured temperature profile. To do so, the inverse solution method is 

used to calculate the circuit-level heat flux profile. The results are compared to the two 

possible inputted heat flux profiles by calculating the mean absolute error. The profile 

resulting in the lower MAE represents the solution chosen by the inverse solution 

method. For example, if the MAE between the calculated heat flux profile and the 

single-hotspot heat flux profile is lower than the MAE between the calculated heat 

flux profile and the multi-hotspot heat flux profile, the inverse solution method 

chooses the single-hotspot heat flux profile. If the choice correctly corresponds to the 
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actual inputted heat flux profile, the inverse solution method is correct. This procedure 

is conducted for all sensor spatial frequencies, and is also conducted for the direct 

interpretation method.  

3.3. Spatial Frequency Domain Inverse Heat Transfer Solution  

3.3.1. Inverse Heat Transfer Solution Method 

To conduct the forward and inverse solutions needed for the overall simulation 

methodology, an analytical, spatial-frequency domain heat transfer analysis has been 

developed. This approach is more computationally efficient than finite-difference 

methods and thus facilitates rapid multi-parameter design optimization and possible 

integration into DTM schemes.  

The thermal profile in the model geometry is defined by the heat diffusion equation. 

For each layer in the stack, the solution to the heat diffusion equation is given by: 

 �(0, 1, L) = 		 <N + 	 ONL
+ 	 ? P<8�I�ℎ&Q8L' + O8�4Rℎ&Q8L'S�I�&Q80'T

8FG
+ 	 ?P<	�I�ℎ&U	L' + 	 O	�4Rℎ&U	L'S�I�&U	1'T

	FG
+ ? ?P<8	�I�ℎ&V8	L'T

	FG
T

8FG
+ O8	�4Rℎ&V8	L'S�I�&Q80'�I�&U	1' 

(10)  
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where: 

 V8	 = 	 WQ8� + U	� (11)  

 Q8 = KX�  (12)  

 U	 = RX�  (13)  

For the boundary conditions imposed in this model, Etessam-Yazdani [67] 

demonstrated a technique of representing this conduction problem as a two-port 

terminal network. The technique has been shown to be both accurate and fast for the 

forward heat transfer solution [68] and is adapted in this study for the inverse problem.  

Figure 29 presents a schematic of the two-port terminal network for this system. The 

two-dimensional Fourier transforms of the heat flux profiles at the circuit and sensor 

levels are �.′′  and �$′′, respectively.  

 

Figure 29: Schematic of two-port terminal network [67]. 
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Similarly, �. and �$ are the two-dimensional Fourier transforms of the temperature 

profiles at the circuit and sensor levels, respectively. The matrix < is a 2x2 matrix that 

relates �. and �.′′ to �$ and �$′′: 

 Y �.(��, ��)�.AA	&��, ��'Z = <[��, ��\ Y �$&��, ��'�$AA	&��, ��'Z	 (14)  

For radial spatial frequency �� > 0: 

 A[��, ��\ = ` cosh&2X���3' sinh&2X���3'2X���2X����4Rℎ&2X���3' cosh&2X���3'h (15)  

And for �� = 0: 

 <[��, ��\ = i1 �3/�0 1 j (16)  

where the radial spatial frequency �� is defined as:  

 �� = k��� + ���	 (17)  

Further details on the derivation of the two-port terminal analysis are provided in [67]. 

Etessam-Yazdani et al. [67] used the two-port terminal analysis to solve for the 

temperature as a function of the heat flux on the same level of the geometry, which 

represents the forward solution. In this study, the solution was modified to determine 

the heat flux profile on the circuit plane, �.′′, using the temperature profile on the 
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sensor plane, �$, which represents the inverse solution. From the two-port terminal 

analysis, the equation for �.′′	is: 

 �.AA = <�G�$ + <���$AA (18)  

Applying the top boundary condition, �$ = ℎ�$, and substituting the appropriate 

values of <�E, the result for cases where �� > 0 is: 

 �. = (2X����4Rℎ(2X���3) + ℎ ∗ �I�ℎ(2X���3))�$ (19)  

For which the inverse solution transfer function ��	
(��) can be defined such that:  

 �. = ��	
(��) ∗ �$ (20)  

and  

 ��	
(��) =  2X����4Rℎ(2X���3) + ℎ ∗ �I�ℎ(2X���3) (21)  

For cases where �� = 0, the transfer function reduces to equal the heat transfer 

coefficient, ℎ, and the equation is given as �. = ℎ�$. 

3.3.2. High-Frequency Filtering  

A filtering technique based on the forward solution transfer function is employed to 

reduce error in the inverse solution method. As shown by [69], the forward solution to 

the conduction problem yields a transfer function in the frequency domain that acts as 
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a low pass filter. Physically this represents the attenuation of high spatial frequency 

components of the thermal signal via heat spreading in the chip.  

The inverse transfer function has the form of a high-pass filter, as shown in Figure 30. 

The minimum of the transfer function occurs at �� = 0 and increases rapidly as a 

function of ��, thus amplifying the high frequency components of the temperature 

profile. The components of the temperature profile that are greater than the -3dB 

frequency of the forward solution transfer function, however, represent sensor noise. 

A filtering method has been developed to prevent this noise from propagating to the 

calculated heat flux profile. A low-pass filter is applied to the inverse transfer function 

with a filter cut-off frequency at the -3dB frequency of the forward solution transfer 

function. The filter has a soft roll-off. Figure 30.c shows the filtered transfer function. 

This filtering technique dramatically improves the performance of the inverse solution 

method by decreasing sensitivity to high-frequency noise. 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 30: Representative plots of inverse solution transfer function. Plots show two-
dimensional shape of the transfer function (a) without filtering and (b) with filtering.  
(c) Values of the transfer function for varying x-direction spatial frequency and for y-

direction frequency of zero (labeled “on-axis”) as well as for maximum y-direction 
frequency (labeled “off-axis”). The filter roll-off occurs at approximately 4000 [m-1]. 

3.3.3. Solution Validation 



57 

 

The solution method was validated by comparison to COMSOL Multiphysics software 

using representative simulation parameters. The heat transfer coefficient was 10 

W/m2-K and the thermal conductivity was 148 W/m-K. The simulated chip was 1cm 

by 1cm in lateral dimensions and 100 microns in thickness. A representative heat flux 

was applied in the COMSOL model and the temperature profile was resolved. The 

temperature profile was used as an input to the inverse solution method and the 

applied heat flux was calculated. The calculated heat flux matched the COMSOL heat 

flux at greater than 0.01% accuracy. 

Additional testing was conducted to ensure the results for average heat flux error are 

independent of the number of random heat flux maps tested, 
. Figure 31shows the 

results for varying number of randomly generated heat flux maps for both varying heat 

flux and binary heat flux. The results are shown to be 
-independent (i.e. independent 

of the number of random heat flux profiles) after 50 randomly generated heat maps. 

For all of the reported results, data was averaged for 50 heat maps (
 = 50). 
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(a) 

 

(b) 

 

Figure 31: Average mean absolute error (MAE) for varying numbers of randomized 
heat flux profiles for (a) variable heat flux and (b) binary heat flux. Results for both 
cases are independent of the number of heat flux profiles for more than 50 heat flux 

profiles. 
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3.4. Simulation Results 

Figure 32 shows representative distributions of mean absolute error for 50 randomized 

heat flux profiles. Results are reported for the case of variable heat flux and binary 

heat flux. These results provide a basis for understanding the effects of sensor spatial 

frequency on the calculated heat flux profile. Simulation parameters are typical of chip 

applications: the distance from the sensor array is 100 um, the conductivity is 148 

W/m-K and the heat transfer coefficient is 10,000 W/m2-K. The sensor error is zero for 

this case. The mean value (shown in bold black) follows the expected trend of 

increased accuracy at higher spatial sampling frequency. A sampling frequency of 

2000 m-1 (approximately 500um sensor spacing) is required to achieve an average 

mean absolute error (MAE) below 25% for the variable heat flux case. At lower 

resolutions, the average MAE is dramatically higher. Significant deviations from the 

mean value are caused by variations between the randomized heat flux profiles. 
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(a) 

 

(b) 

 

Figure 32: Demonstration of the averaging technique for (a) variable heat flux and (b) 
binary heat flux. Results for 50 heat flux profiles are shown. The bold black line 

indicates the average value. 
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The average MAE error is dependent on the heat transfer coefficient, the sensor error, 

and the proximity between thermal sensors and the circuit level. These effects are 

discussed in more details below. For clarity, only the average MAE is shown. The 

solid curves and dotted curves represent the average MAE for the inverse solution 

method and the direct temperature interpretation method, respectively. 

The average MAE of the inverse solution method is dependent on whether the inputted 

heat flux profile is binary or variable. Figure 33 shows an approximately 65% drop in 

average MAE if the input heat flux is binary rather than variable. Since the heat flux 

cannot always be assumed to be binary, the remaining plots show results for variable 

heat flux.   

 

Figure 33: Effects on uncertainty of variable versus binary inputted heat flux profile 
for varying vertical proximity between sensor and circuit level. The binary heat flux 

profile results in substantially lower MAE. 
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Figure 34 shows the performance of the inverse solution method for varying heat 

transfer coefficients for variable heat flux with no sensor error. As expected, the 

average MAE for both methods is reduced by increasing heat transfer coefficient 

values. The direct interpretation method performs poorly at low heat transfer 

coefficients but makes significant improvements as the heat transfer coefficient is 

increased. The inverse method produces significantly lower average MAE and is less 

sensitive to changes in the heat transfer coefficient. 

 

Figure 34: Uncertainty in calculated heat flux profile for varying convective heat 
transfer coefficient. The inverse solution method is much less sensitive to heat transfer 

coefficient than the direct interpretation method. 

Figure 35 illustrates the difficulty of calculating the heat flux profile from temperature 

profiles containing sensor error. For the ideal case of zero sensor error, the inverse 

solution method outperforms the direct method by up to 50% MAE for variable heat 
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flux. However, measurement error causes the inverse method to diverge from the 

solution. For a case of 0.5% measurement error, the inverse solution is slightly better 

than the direct method for spatial frequencies up to about 3000 m-1, at which point it 

diverges rapidly. For the case of 1% standard deviation in the sensor error, the direct 

interpretation method is superior for sensor spatial frequencies greater than 2000 m-1.  

Similar trends are observed for the case of binary heat flux profiles as well. 
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(a) 

  

(b) 

  

Figure 35: Uncertainty in calculated heat flux profile for varying sensor error at a 
vertical proximity of (a) 2.575 um and (b) 7.53 um. The inverse solution method is 

susceptible to sensor error at high spatial frequency. The MAE for the direct 
interpretation method is not affected by varying sensor error. 
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Figure 36 presents the effect of vertical proximity between the sensor level and the 

circuit level. Average MAE results are shown for vertical distances between 1um and 

1mm for variable heat flux profiles. As the vertical proximity is reduced, modest 

improvements in MAE are observed for both the inverse and direct interpretation 

techniques with the exception of the 1 um case where improvements in the direct 

interpretation method are approximately 0.8 normalized averaged MAE. For the 

extreme case of 1um of vertical proximity, the inverse and direct interpretation 

methods are comparable, but for all other cases the inverse solution significantly 

outperforms the direct interpretation method. 

 

Figure 36: Uncertainty in calculated heat flux profile for varying vertical proximity 
between the sensor and circuit levels for zero sensor error. For most cases, large 

changes in vertical proximity yield modest improvements in heat flux uncertainty. 

Vert. Proximity 
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Figures 37 and 38 show the performance of the inverse solution method in resolving 

neighboring hotspots. The figures show the minimum sensor spatial frequency 

required to correctly differentiate between a single hotspot and a group of equivalent 

neighboring hotspots. The results are presented as a function of vertical proximity 

between the distributed thermal sensor array and the circuit plane, and a moving-

average smoothing function is applied to remove discretization artifacts. The gray 

region of the plot shows the domain in which the inverse solution can correctly 

identify the underlying heat flux profile. A relatively low sensor spatial frequency is 

adequate when positioned in close proximity to the hotspot. Increasing the separation 

between the sensor array and the hotspot requires an increase in the sensor spatial 

frequency. Figures 37 and 38 show results for convective heat transfer coefficients of 

10,000 and 50,000 W/m2-K, respectively. For a convective heat transfer coefficients of 

10,000 W/m2-K at distances greater than approximately 240 um, the inverse solution 

method is unable to resolve the hotspot. Figure 38 shows that the limit of the inverse 

solution can be extended by increasing the heat transfer coefficient. For this case, the 

inverse solution method produces the correct results up to 300 um. For all cases 

shown, the direct interpretation method failed to correctly identify the single hotspot. 

The inverse technique is shown to be superior to the direct interpretation method for 

resolving neighboring hotspots. These results provide insight into the optimization of 

sensor vertical proximity and sensor spatial frequency for resolving neighboring 

hotspots. 
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Figure 37: Plot of minimum accurate sampling frequency as a function of vertical 
proximity between chip and sensor level for heat transfer coefficient of 104 W/m2-K.  

The inverse solution method is accurate in the shaded region. The direct interpretation 
technique is inaccurate across the entire domain. 

 

Figure 38: Plot of minimum accurate sampling frequency as a function of vertical 
proximity between chip and sensor level for heat transfer coefficient of 105 W/m2-K.  
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The inverse solution method is accurate in the shaded region. The direct interpretation 
technique is inaccurate across the entire domain. 

This study investigates uncertainty and error propagation in distributed thermal sensor 

arrays in microprocessors. A novel, inverse heat transfer solution methodology is 

developed to provide a computationally efficient method for determining the heat flux 

profile at a remote level in a chip. The inverse solution method is used to determine 

the expected mean absolute error of the calculated heat flux profile in a chip. Several 

key conclusions are drawn. 

For systems with relatively low sensor spatial frequency such as typical 

microprocessors, large improvements in the accuracy of the calculated heat flux can be 

made by making relatively small improvements in the resolution of the sensor array. 

As the sensor array increases resolution, the uncertainty in the calculated heat flux is 

much reduced.  For cases of very low sensor error, the proposed inverse solution 

technique more accurately calculates the heat flux profile than direct interpretation of 

the temperature profile. 

Depending on the system configuration and the magnitude of the sensor error, the 

inverse solution method can be inaccurate. This inaccuracy is mitigated by the 

proposed filtering method, but nonetheless represents a fundamental limitation of this 

technique. Direct interpretation of the temperature signal is shown to result in 

significant error in the calculated heat flux profile. Accounting for these errors in 

DTM techniques causes decreased computational performance and should therefore be 

considered during overall system design. 
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These conclusions regarding the nature of error propagation from distributed thermal 

sensor arrays can provide a basis for considering the difficult system-level 

optimization required for integrated circuit design. Sensor error, sensor spatial 

frequency, proximity between a sensor array and hotspots, and signal processing all 

affect hotspot uncertainty as well as circuit design.  Each of these parameters can help 

improve DTM accuracy but can also pose costs for the performance of the circuit. 

Careful optimization of these parameters is necessary to maximize computational 

performance while ensuring reliable thermal conditions.  
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CHAPTER 4: FAST CALCULATION OF TEMPERATURE EVOLUTION IN 

ELECTRONIC DEVICES  

4.1. Introduction to Transient Hotspot Modeling 

Thermal management of high-performance integrated-circuit chips has become one of 

the most critical design challenges throughout all integrated-circuit architectural and 

manufacturing communities. As transistor feature size in semiconductor devices 

continues to shrink delivering increased performance, the corresponding power 

densities and operating frequencies have increased rapidly.  Multi-core circuit 

architectures further exacerbate the problem by creating highly localized transient heat 

fluxes.  These high heat fluxes can cause temperature excursions that have major 

adverse impacts on device performance, reliability and power efficiency.  

To date cooling solutions have been unable to address these highly localized, transient 

hotspots; furthermore, cost constraints in industrial applications suggest that cooling 

alone will not be able to resolve these thermal challenges.  Instead, attention has 

shifted to dynamic thermal management (DTM) [65], as well as accurate evaluation of 

thermal behaviors under long power traces for thermal-aware optimization 

applications during the early stages of architecture-level designs [70]. Developing 

such models is challenging because the device thermal response strongly depends on 

the temporal pattern of input power, the disparate thermal time constants of the 

components, and varying boundary conditions.  Furthermore, implementing these 

models in chip-level runtime temperature regulation requires highly efficient model 

computation. 
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Widely available numerical modeling software (e.g. finite element models) is 

inappropriate for runtime applications due to extensive requirements on computational 

resource. These models instead serve as inputs for the model compression technique 

used in this work and provide a reference for model validation.  

Improvements in modeling efficiency can be made by recognizing the fact that the 

thermal response is only needed for specific regions of the chip, typically at junction 

or hot spot locations. Hence, various dynamic compact thermal models with a 

decreased number of model parameters have been developed for rapid calculation of 

transient temperature responses. 

The methods for constructing dynamic compact thermal models can be divided into 

two general categories: thermal RC network approach and thermal RC ladder 

approach. The first approach constructs an equivalent thermal RC network that 

accurately describes dynamics of the thermal system. This can be achieved by 

transforming the spatially-discretized system matrices of the governing equation in 

finite element/volume models into a thermal circuit network consisting of thermal 

resistance element interconnecting neighboring nodes and heat capacity element to the 

reference thermal ground [71].  The thermal circuit network is used to formulate a 

system of ordinary differential equations (ODE): 

 P*S �nop + PRSrG�no = �o �no 
(22)  
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where P*S  and P�S are the thermal capacitance and thermal resistance matrices,  �no is 

the vector of node temperatures, �nop  is the time-derivate of the vector of node 

temperatures, �o is the input power select matrix that maps the power source vector �no 

onto the nodes. While the ODE system in Equation (22) can be directly solved in 

circuit simulation software such as SPICE and Hotspot [72], its dimension is 

proportional to the number of nodes which makes it poorly suited for runtime 

applications due to high computational requirements.  To improve the computational 

efficiency, several model order reduction methods are developed to transform the 

high-dimensional system to a low-dimensional one for a faster calculation [73], [74]. 

Figure 39 shows a schematic of a representative thermal network model. 

 

Figure 39: Example of a network circuit model of a chip die on a heat spreader 
attached to a heat sink. This type of model is too computationally intensive for runtime 

implementation [66]. 
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An alternate approach using an RC ladder model for the location of interest is 

formulated for better computational efficiency.  The thermal response of the system, 

subjected to a step-function power pulse, is recorded with appropriately resolved 

timescales.  A suitable extraction technique is then used to define an RC ladder model 

with an equivalent response [75].  The needed step-function response Z(t) can be 

modeled numerically or obtained directly from a measurement.  Assuming model 

linearity, the temperature response T(t) to an arbitrary power trace input P(t) can be 

computed by the convolution integral between input power and the time derivative of  

Z(t): 

 �(�) = �N + s �(�) ∙ tp(� − �)!��
N  (23)  

where �N is the temperature at � = 0.  

The previously mentioned RC network model can be used for describing a multi-

input-multi-output (MIMO) thermal system.  To do so requires a spatial discretization 

of the governing equations over a complete model domain to obtain a dynamic thermal 

response in Equation (23).  The model complexity often requires extensive linear 

algebra manipulations for reducing the number of unknowns in the studied system.  A 

model order reduction method must be carried out with caution in order to ensure 

numerical stability. In addition, the RC network approach relies on the discrete 

numerical models representing the thermal system and cannot directly be based on the 

experimental results. In contrast, the RC ladder approach can take either simulation or 

experimental input for model formulation. The RC ladder model resolves only a single 
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conduction path; for modeling a MIMO system such as a chip with multiple hotspots, 

the results of several models must be linearly superimposed. Therefore, the RC ladder 

approach is more appropriate for thermal systems with a limited number of points of 

interest, such as hotspots.  The technique described in the present study employ an RC 

ladder model.  

Within the category of RC ladder models, there are two types of models to consider: 

Foster ladder models and Cauer ladder models, as shown in Figure 40.  Cauer ladder 

models provide a better physical description the heat flow path in the system, while 

Foster ladder models only capture the thermal behavior but have no physical 

equivalent.  Use of the Cauer-ladder network is not straightforward due to its 

complicated mathematical representation.  Fortunately, a Foster-ladder network can be 

easily be transformed to a Cauer ladder network which provides the same step-

function thermal response Z(t).  For this reason, step-function responses are typically 

characterized by the Foster-type RC ladder network, and such an approach is taken in 

this paper. 
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Figure 40: Foster and Cauer RC ladder network representation of thermal system. 

To implement an RC ladder model for the system, first a Foster RC ladder network 

must derived to represent the thermal response of the system; the second challenge – 

and indeed the primary contribution of this paper – is to develop a technique for 

bypassing the direct evaluation of convolution integral in Equation (23).  In the next 

section, a brief review of existing methods for deriving the Foster RC ladder and 

evaluating the convolution integral is presented and their limitations are discussed.  

We then propose an improved method for calculating temperature evolution with 

arbitrary power traces which bypasses direct evaluation of the convolution integral.  It 

employs a recursive infinite impulse response (IIR) digital filter on sampled power 

traces, which is a well-developed and commonly used approach in digital signal 

processing community.  A derivation of the IIR digital filter coefficients based on the 

parameterized thermal RC ladder network is presented.  Section 4.3 discusses model 

validation results and demonstrates best achievable scaling of runtime computations 
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with the required execution time by comparing the proposed technique to the existing 

convolution methods.  

4.2. Thermal Modeling Approach 

4.2.1. Determining the Step Response Function of the Foster RC ladder Network  

Using a Foster RC ladder model, the time dependent thermal impedance can be 

written as: 

 t(�) =  ? �� u1 − �r �vwxwy
	

�FG
 (24)  

where �� (K/W) and *� (J/K) form the 4�� stage of RC ladder network (Figure 40).  

Various methods have been developed to determine the discrete elements in a lumped 

ladder network shown in Figure 40, e.g., through least square fitting to the 

simulated/measured heating curves in time-domain [76] and frequency-domain [77].  

A method preferred in this work was proposed by Szekely and Van Bien [78] and is 

based on computing time-constant spectrum of distributed network from measured 

thermal transient response in time domain. Recently, for an experimental 

implementation, this method has been extended by applying similar identification 

procedure on measured impulse response spectrum in frequency-domain [79].  For a 

typical electronic power device, a very accurate approximation of Z(t) can be achieved 

with less than 10 pairs of R's and C's in Equation (24). As previously stated, the Foster 

RC ladder can be converted to an equivalent Cauer RC ladder to provide increased 
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physical insight, if desired.  A summary of this technique with added observations 

follows next.   

The step response for unit power can be generalized by considering continuous time-

constant spectrum  

 t(�) = s �(�) u1 − �r�zy !�T
N  (25)   

Introducing variables  

 L = ln(�) ;  } = ln(~) ;  � = ln(�)  (26)   

one obtains 

 t(L) = s �(�) �1 − �r2���� !�T
rT  (27)   

 ��(L) = !t(L)!L = s �(�)��r�r2���!�T
rT = �(L) ⊗ ��r2� (28)   

Similarly, in frequency domain, the following expressions are found 

 ��(}) = − ! ��P�(})S!} = �(−}) ⊗ ��(}) (29)   

 ��(}) = −"KP�(})S = �(−}) ⊗ ��(}) 
(30)  
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Expressions (28), (29), and (30) are convolutions of the desired system response with 

the functions: 

 ��(0) = ��r2H  (31)  

 ��(0) = 2 ���
(1 + ���)� (32)  

 ��(0) = ��
1 + ��� (33)  

Szekely [80] discussed the possibility of deconvolving the time-constant spectrum 

from the measured or calculated system responses.  Since numerical Fourier 

transforms of functions Equations (31), (32), and (33) were found to impact the 

deconvolution accuracy, we instead use exact expressions for the spectrum of these 

functions: 

 ��(�) = Γ(1 − 2 4 X �) 
(34)  

 ��(�) = X�� csch(X��) 
(35)  

 ��(�) =  X2 sech(X��) 
(36)  

where k is the variable in the Fourier domain complementary to the logarithm of the 

time constant, the gamma function G (analytically continued into a complex plane) is 
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used for the time-domain deconvolution method, and hyperbolic functions are used for 

deconvolution using the associated frequency-domain techniques.   

To reveal the computational aspects of NID methodology, it is useful to examine a 

system consisting of one single time constant.  In this case, a transform of a Qt 

function, given by �N × ��r��r2���� , can be written out as  

 Q(�, �N) = �N  × �r� � � � �� × ��(�) (37)  

Dividing this expression by Wt in principle yields a spectrum of a single pole located 

at �N.  In practice, Wt attenuates sharply with increasing k.  If the transform is 

calculated numerically, as opposed to the analytical form in Equation (37) , the 

deconvolution accuracy will be limited by errors in calculating  Q(�, �N).  The errors 

with magnitudes comparable to |�N  × ��(�)| at sufficiently high k-values will render 

these components unusable.  Filtering this part of the spectrum is then necessary, 

which in turns leads to broadening of an identified peak.   

The time constant spectrum can then be found by the inverse transform: 

 ��,�,� � L�−L�−L�
� = �rG Y��,�,�(�)��,�,�(�) �(��,�,�)Z 

(38)  

where F and F-1 is the Fourier transform pair and Gt,r,i is the appropriately chosen filter 

suppressing discretization and numerical round-off errors at high k values. 

4.2.2. Existing Methods for Computing the Convolution Integral 
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The convolution integral can be calculated using fast Fourier transforms (FFT) by 

simple multiplication in frequency domain of the calculated power spectrum and the 

known response followed by inverse operation.  This approach leads to difficulties 

with computational efficiency since a separate transform is required for every time 

step.  

An alternate approach is to directly compute the convolution integral in time domain.  

With a piecewise linear approximation of P(t) that is sufficiently accurate for small 

time intervals, a semi-analytical formula of Equation (23) is obtained in [81] by 

applying the superposition principle: 

 �(�) = ? �� ∙ ? ���E + �E ∙ [�E�G − �E − ��\� × �r �r����zw
8

EFG

	

�FG

− ��E − �E ∙ ��� × �r �r��zw � (39)  

where: 

 �E = �E�G – �E  �E�G − �E  
(40)  

For a more general case of a piecewise constant power input Pj between tj and tj+1: 

 �(�) = ? �E�t[� − �E\ − t(� − �E�G)� 
8

EFG
 

(41)  
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with t = tm+1 and which does not require the model fitting of Z(t). A similar approach 

with interpolated t(�) is also proposed in [82]. 

4.2.3. Recursive Digital Filtering Technique for Computing the Convolution 

Integral  

A technique for computing the convolution integral, presented in this work, is 

developed by recognizing the fact that a transfer function of a digital filter can be 

constructed to approximate a response of a modeled thermal system due to its linear 

time-invariant (LTI) property.  A model reduction is based on Foster RC ladder 

network shown in Figure 40 as a series of n-stage first-order low-pass filters in series, 

acting on input power and outputting temperature responses in the continuous time 

domain.  These filters in the continuous time domain can be transformed to digital 

format in the discrete time domain, which would then be applied to the sampled input 

power to achieve the desired temperature response.  

The use of a digital filter instead of a series of continuous-time filters is advantageous 

for numerous reasons: it is easy to design and implement; it can handle large dynamic 

range; it has extremely stable performance; and it is programmable to adapt to input 

signals.  The general representation of digital filter in discrete time domain is the 

difference equation: 

 1(R) = ? �� ∙ 0(R − 4)
�

�FN
− ? �� ∙ 1(R − 4)

C

�FN
 (42)  
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where x(n) is the input signal at instant n, y(n) is the output signal at instant n, and 

constants ai, i = 0, 1…N, and bj , j = 0, 1…M, are feedback and feedforward 

coefficients, respectively.  Infinite impulse response (IIR) filters have non-zero 

feedback coefficients (ai ≠ 0), as opposed to the finite impulse response (FIR) filters 

(ai = 0).  The IIR filter has an impulse response that is non-zero over an infinite length 

of time, which is desirable property for modeling physical thermal response.   

For a system represented by the Foster RC ladder network, the impulse response 

function Z
．

(t) has properties of an IIR filter due to its exponentially decaying terms.  To 

determine the feedback ai and feedforward bj coefficients for the difference equation, 

the continuous transfer function H(s) of the analog multi-stage filter is transformed 

into the discrete transfer function H(z) of its approximate IIR digital equivalent.  An 

inverse z-transform is then applied to calculate filter coefficients for the difference 

equation.  There are numerous available methods to transform from H(s) to H(z); in 

this work, bilinear transformation method is preferred due to the absence of frequency 

aliasing distortions. 

In the continuous frequency domain, the complex impedance of the Foster thermal RC 

ladder network is given by: 

 ���(�) = ? ���,�1 + � ∙ ��
�

�FG
;   �� = ��  *� (43)   
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where s is the complex frequency, and K is the number of stages in RC ladder 

network. A bilinear transformation is carried out by performing the substitution of s in 

Hth(s) with: 

 � = 2∆� L − 1L + 1 (44)   

where ∆t is the sampling interval.  Using inverse z-transform one then obtains the 

desired difference equation: 

 �(R) = ? ��(R)�

�FG
 

= ? ¡2	�� − ∆�2	�� + ∆� ��&R − 1' + ���,�	∆�2	�� + ∆� P�&R' + �&R − 1'S¢�
�FG  

(45)  

where T(n) and P(n) are the discrete temperature output and power input at time n×∆t.  

As readily seen, this method bypasses the direct convolution of the integral in 

Equation (23), and instead recursively calculates the transient temperature response at 

any time step by using the temperature output at the previous time step while applying 

trapezoidal rule for integrating power input within the time interval.  

The derivation presented here provides a model for a system subjected to a single heat 

source.  For a thermal system subjected to multiple heat sources, the transient 

temperature response at any location is the superposition of the responses from 

multiple power excitations.  Due to non-linear frequency mapping, the bilinear 
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transformation method cause frequency warping in Hth(z) that does not preserve the 

frequency characteristics of corresponding Hth(s).  This effect can be either eliminated 

by pre-warping before transformation, or minimized by reducing sampling interval ∆t 

according to the following condition:  

 
∆��8�	 ≈ tan u ∆��8�	y (46)   

where �8�	 is the minimum thermal time constant of the stages in Foster RC ladder 

network.  For ∆�/�_K4R	 = 0.2, the amount of frequency warping is approximately 

1.4% and has negligible effect on transient response in the time domain.  

To summarize, the general procedure for obtaining digital filter coefficients followed 

in this work involves identification of time constant spectrum, its discretization into 

Foster's network, mapping of a transfer function into z-domain and finally an inverse 

z-transform to obtain feedback coefficients for the part of the filter acting recursively 

on previous temperature history and feed-forward coefficients for the part of the filter 

acting on power input into the identified Foster's network. 

4.3. Model Verification and Applications 

The technique is verified against the analytical solution for one-dimensional 

conduction in a Cartesian geometry.  The solution in complex frequency domain for a 

semi-infinite geometry yields: 
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 �&�' = 1U	W�/¨	 (47)   

where θ(s) is the temperature response per unit heat flux, γ and α are thermal 

conductivity and diffusivity, respectively.  For the finite geometry restricted to a slab 

of thickness L, with zero temperature boundary condition at the side opposing to the 

entering heat flux, the solution is: 

 �(�) = tanh(©W�/¨)
U	W�/¨ 	 (48)   

The temperature response at a time constant τ can be directly calculated using real 

negative axis in s-plane to obtain the spectrum as [83]: 

 �(�) = 1X 	"K	�&−�rG'	 (49)   

The time-constant spectrum for the distributed case of semi-infinite media is then 

 �&�' = √¨	�X	U 	 (50)   

while for the case with restricted geometry the spectrum is discontinuous,   

 �	 = 4&X	R'� ©�¨  (51)  
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 �	 = 8&X	R'� ©U	
for	R = 1,3,5 … 

(52)  

with zero response at all other time constant values besides τn listed above.  

The solutions in time domain for the slab geometry is [84]: 

 �&�, ©' = 2	√¨	�U ? �&−1'	 	Y4�J�� R	©√¨	� − 4�J�� &R + 1'©√¨	� Z±T
	FN 	 (53)   

Figure 41 shows time constant spectrum identified by the NID procedure with all three 

deconvolution methods using numerical Fourier transforms in the Equation (38).  The 

thermal properties are that of silicon (γ=150 W m-1 K-1, α=8.47 10-5 m2 s-1) and 

thickness of the slab is L=15×10-3 m.  All extracted time constants collapse onto one 

curve due to the use of an identical Gaussian filter function in the complementary 

domain.  First several system poles, given by Equations (51) and (52) are identified 

rather accurately by the deconvolution procedure, as shown further in Figure 42.  The 

identified response converges to the distributed semi-infinite limit given by Equation 

(50); the time constants at these values can be lumped into Foster network by 

integrating sections of a continuous spectrum.  
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Figure 41: Network deconvolution using responses in time and frequency. 
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Figure 42: Identification of system poles and semi-infinite limit. 

Figure 43 shows transfer functions constructed from the identified network.  Using full 

spectrum of identified response provides near-identical match with the exact form 

given by Equation (48) at s = i×ω.  A network with seven or more elements provides a 

good approximation to the system thermal behavior at frequencies with relevant 

amplitude responses.  Figure 44 shows response of the constructed IIR filter to step in 

power for seven-stage identified network with varying time steps.  The frequency 
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warping becomes pronounces at large time steps but the filter output is stable and 

always converges to the expected steady state value. 
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Figure 43: Transfer function identification. 
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Figure 44: IIR Response for varying inputted time discretization. 

Figure 45 depicts a schematic of a common thermal system to demonstrate the 

proposed model generation using a commercially available solver.  A representative 

two-layer configuration consists of a chip with properties of silicon and a heat sink 

with properties of copper subjected to forced convective cooling.  A thickness of 10 

mm × 10 mm silicon chip is 0.5 mm and a thickness of 30 mm × 30 mm copper 

spreader is 1 mm, with a uniform convection coefficient of 104 W m-2 K-1.  A uniform 

power of 100 W was applied at the top surface of the silicon layer.  The representative 
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system was modeled using COMSOL® Multiphysics software.  Three different mesh 

sizes ranged from approximately 1,100 to 10,500 mesh points.  For all cases, the 

results are self-consistent.   

 

Figure 45: Schematic of chip system used for numerical simulation and proposed 
modeling method. 

Figure 46 shows results of the network extraction using power step response, as 

discussed earlier, with logarithmically spaced time steps.  The IIR filter, generated 

with 11-element identified network, was used to process the same power step at 

identical time samples.  The agreement is excellent with less than 0.4 % maximum 

transient error with respect to the steady-state response value.  Figure 47 shows a good 

agreement achieved between the simulation results with linearly-spaced steps and the 

filter output subjected to the same sequence of power steps.  
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Figure 46: Thermal modeling of chip-spreader geometry shown on Figure 45.  
Compared are the results of simulations using commercial solver with the output of an 

IIR filter based on 11 stage network.  The power step is at 100 W.  The maximum 
transient errors are less than 0.4% of the steady state response. 
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Figure 47: Comparison between numerical model and IIR digital filter output subject 
to square-wave input power excitations. 

Figure 48 compares execution times of the IIR filter with that of the existing 

techniques.  The widths of the summation intervals in Equations (39) and (41) are 

proportional to the time step index m.  This results in linear with number of past time 

steps demand for compute power for each new time increment, which in turn increases 

the overall computation load proportionally to m2.  Memory requirements for the 
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storage of time and power traces also become a consideration.  For the reasons stated, 

the existing algorithms do not provide adequately efficient calculations of runtime 

computational temperature given real-time transient power input.  These inefficiencies 

make implementations particularly difficult in most embedded platforms. 
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Figure 48: Comparison in computational efficiency of different methods for evaluation 
of convolution integrals. The recursive IIR digital filter is superior to existing 

convolution methods and achieves best possible scaling due to its constant 
computation overhead for each time step. 
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The IIR digital filter based technique provides the best possible scaling, linear scaling, 

for the overall computational load.  Each new time step results in exactly the same 

number of processing operations as the previous.  Additionally, memory requirements 

are much less demanding compared to existing techniques, making the proposed 

methodology ideally-suited for runtime temperature calculations. 

4.4. Summary  

This work presents a novel approach for predicting temperature evolution in electronic 

devices subjected to transient heat sources.  It is based on modeling dynamic behavior 

of a thermal system with an identified network.  We revisit the model reduction by 

network identification (NID) and present an extension of a method to obtain time-

constant spectrum of a thermal network based on analytical form of convolving 

functions, while providing new insights to limitations of the technique.  We verify the 

model extraction procedure using analytical solution and demonstrate correct 

identification of known system poles and convergence of the extracted time constant 

spectrum to the limiting case. 

We then present IIR digital filters suited for run-time evaluation of convolution 

integral in discrete time-domain.  A simple formulation of recursive digital filters 

makes the algorithm well-suited for run-time temperature predictions.  The resulting 

recursive algorithm yields temperature calculation at a given time instant using very 

limited depth of recorded temperature history.  A numerical model of semiconductor 

device is created to generate time-domain temperature responses to step-function 
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power excitation; excellent accuracy of the filter output is confirmed when compared 

to simulations.   

Comparison with conventional integral-based convolution methods also indicates a 

dramatic improvement in computational efficiency compared to existing techniques.  

The achieved scaling is best possible, linear, with the number of temperature 

evaluations, a feature enabled by the use of a DSP technique.  This improvement 

allows implementation of sophisticated runtime dynamic thermal management 

algorithms for all high-power architectures and expands the application range to 

embedded platforms for implementations in a pervasive computing environment. 
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CHAPTER 5: CONCLUSIONS 

Neither chip cooling nor dynamic thermal management will be able to address 

microprocessor thermal management challenges alone. Advances in cooling, 

particularly for high performance microprocessors, are required to push the power 

limits of future generation microprocessors. Low-cost, small-form factor cooling 

advancements will be needed for mobile applications. While developments on cooling 

are critical, it is unlikely they will resolve the hotspot challenges that occur over the 

various length and time scales of the processor. At the package length scale, 

minimizing temperature non-uniformities is critical for mitigating thermo-mechanical 

stress on the chip and package. At the length scales of the active processor regions, 

temperature variations in space and time can lead to local temperature excursions 

above critical temperatures posing system failure risks. The temperature reported from 

any particular thermal sensor does not capture the temperature of neighboring regions, 

which may be higher or lower than the measured location. Similarly, rapid transient 

fluctuations in temperature due to processor activity must be accounted for when 

specifying reliable operating temperatures. By throttling chip power in response to 

thermal signals, dynamic thermal management (DTM) can directly address these 

multi-scale spatial and temporal temperature fluctuations. Overly conservative DTM 

schemes, however, cause unnecessary computational performance degradation; DTM 

techniques must be optimized for chip thermal management and chip performance. 

Understanding the magnitude and effects of measurement uncertainty in DTM 
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schemes and developing techniques for uncertainty reduction is central to the task of 

designing robust, efficient DTM schemes.  

The present work offers novel computational tools for characterizing and minimizing 

hotspot detection uncertainty and predicting transient hotspot response. A novel 

inverse heat transfer solution is introduced that leverages analytical, spatial-frequency 

domain analysis of heat transfer in a chip. The solution technique is implemented 

across randomized chip heat flux profiles to demonstrate the generalized limits of 

hotspot detection using spatially discretized thermal signal from either laboratory 

thermography or on-chip sensors. Under particular test conditions, the inverse 

technique reduces the normalized mean absolute error in the calculated heat flux by as 

much as 30% as compared to direct interpretation of the thermal data. Parametric 

studies of sensor vertical proximity, sensor measurement error, convective boundary 

conditions, and chip thermal conductivity provide regime maps of performance 

improvements.  

To address transient hotspot fluctuations and sensor placement limitations, an ultra-

efficient transient model for chip hotspots is developed. The technique employs 

network identification deconvolution (NID) for characterization of chip thermal 

response using step-function response from either finite element modeling or 

experimental results. Based on the thermal response characterization, a digital signal 

processing technique is used to rapidly compute the chip response to an arbitrary 

transient power profile. An infinite impulse response (IIR) digital filter provides 

highly accurate results with the best possible computational scaling and reduced 
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memory requirements. This improvement in computational efficiency facilitates the 

on-chip, run-time prediction of transient hotspot behavior, enabling numerous possible 

improvements in dynamic thermal management schemes. 

The improvements in hotspot detection and prediction offered by the present study 

contribute to an emerging field of research focused on the optimization of dynamic 

thermal management schemes. Research efforts to improve dynamic thermal 

management schemes include improved sensor design, high-resolution laboratory 

thermography, and sensor signal processing. Past research on thermal sensor design 

has yielded higher accuracy sensors, some of which demonstrate robustness to 

fabrication process variations. However, these designs remain too large for most 

applications. Advances in the design of smaller, accurate sensors that are largely 

independent of process variations would enable new levels of precision in DTM 

schemes. Smaller sensor size would allow integration of more sensors throughout the 

chip, both in the plane of the chip and also in the vertical dimension as manufacturers 

move to three dimensional integrated circuit (3D-IC) architectures. Control algorithms 

could also be designed more aggressively with more accurate sensors. Improvements 

in thermal sensing can be made by leveraging arrays of sensors. Research reviewed in 

this area showed computationally-efficient techniques for deconvolving spatially 

discretized thermal signals as well as networking techniques to minimize sensor signal 

traffic. Further work is needed to extend these techniques to 3D-IC applications where 

heat is dissipated from stacked components. Recent demonstrations of high-resolution 

laboratory thermography techniques, especially infrared (IR) and micro-Raman 
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thermography, were presented. While higher resolution thermal sensing techniques are 

known (e.g. scanning thermal microscopy), techniques that can be implemented with a 

high-heat flux cooling solution are of particular interest because they permit 

measurements with realistic chip traffic conditions. Though extremely challenging, the 

development of laboratory thermography techniques capable of resolving thermal 

profiles throughout a 3D-IC would be especially powerful for characterizing 3D-IC 

dynamic thermal management techniques. These new research directions offer 

exciting opportunities as state-of-the-art thermometry and signal processing are 

extended for next generation dynamic thermal management. 

Well-established trends for microprocessor development indicate that the challenges 

ahead for thermal management are enormous. Both cooling and dynamic thermal 

management will need to play central roles in effective thermal management solutions. 

Improvements in hotspot detection and prediction, which constitute the central 

contribution of the present study, will be critical for managing the multi-scale, spatial 

and temporal temperature fluctuations in microprocessors. As these advances are 

made, unprecedented computational performance will become possible.  
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