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Abstract

We often envision a future where computers answer our questions. This is inference:

coming to conclusions about the world based on a limited amount of information. One

formulates a hypothetical world (model), then simulates and analyzes its behavior

with respect to evidence.

Probabilistic programming languages are a recent approach where we can express

any hypothetical world as a program with random choice primitives. However, this

descriptive power often sacrifices performance of inference. In my work, I explore exe-

cution traces as a solution that enables high performance while preserving descriptive

power. This leads to three subsequent developments.

The first is Shred, a tracing compiler that generates efficient Metropolis-Hastings

MCMC code from probabilistic programs. Performance was seen to be competitive

with hand-coded MCMC in some cases. Like the tracing just-in-time (JIT) compilers

that served as the inspiration, there is a sacrifice of efficiency in representing multiple

control flow paths.

Unlike with traditional JIT compilers, the execution target of probabilistic pro-

gramming language traces is not limited to straightforward execution on a low-level

language, but also includes state-of-the-art inference engines. I developed Solitaire, a

language for procedural content generation with constraints, combining trace graph

compilation with SMT solving and probabilistic languages.

Finally, rather than being limited to an intermediate representation, execution

traces can also be treated as abstract objects of inference. The third development is

model accretion, a stochastic search-based MAP inference algorithm that improves

performance of procedural content generation by re-using previous executions.

iv



Acknowledgements

I would like to thank my advisor Pat Hanrahan, who has been very patient and

supportive with me over the years, and has contributed much to my intellectual de-

velopment. Noah D. Goodman has also been a steady source of learning and knowl-

edge, especially in strenthening my connections between computer science, math, and

physics. Programming languages and compilers have been a difficult field to enter for

my Ph. D work, and Alex Aiken has been very supportive and generally a confidence

builder when it comes to learning these subjects. I would also like to thank my wife

Jasmine for her patience and support. Finally, I thank my parents.

v



Contents

Abstract iv

Acknowledgements v

1 Introduction 1

2 Background 4

2.1 Probabilistic inference . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Approximate inference . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Formulation of MCMC . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Probabilistic programming languages . . . . . . . . . . . . . . . . . . 15

2.3.1 Lightweight M-H . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Execution traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Procedural content generation . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 The need for content . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.2 The easy case . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.3 Content generation is hard in general . . . . . . . . . . . . . . 23

2.5.4 Solving for constraints by inference . . . . . . . . . . . . . . . 23

3 Shred: Compiling Efficient MCMC Kernels 25

3.1 Optimizing M-H: Ising example . . . . . . . . . . . . . . . . . . . . . 25

3.2 Slicing for the minimal change . . . . . . . . . . . . . . . . . . . . . . 26

vi



3.3 Structural changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Shred System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Tracing and slicing algorithm . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Effect of tracing . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.2 Effect of slicing . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.3 Costs of tracing and slicing . . . . . . . . . . . . . . . . . . . 41

3.6.4 Open-universe models . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 45

4 Solitaire: Traces for Procedural Modeling 47

4.0.1 How versus What . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Solitaire Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Non-determinism and constraints . . . . . . . . . . . . . . . . 49

4.1.2 Concise specifications through recursion and iteration . . . . . 51

4.1.3 Structural variation . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.4 Satisfying constraints by trace exploration and SMT solving . 53

4.1.5 Trace graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Mitigating path explosion . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Finding solutions . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Trace exploration . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Trace graph evaluator . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 74

vii



5 Model accretion 78

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.1 Building and Furniture Layout . . . . . . . . . . . . . . . . . . 92

5.5.2 Video Game Levels . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.3 LEGO Buildings . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 102

6 Conclusion 104

6.1 Broader impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 More inference algorithms run from traces . . . . . . . . . . . 107

6.2.2 Increasing performance of tracing . . . . . . . . . . . . . . . . 107

6.3 Better representations of the space of executions . . . . . . . . . . . . 108

Bibliography 109

viii



List of Tables

2.1 Outcomes of two dice rolls . . . . . . . . . . . . . . . . . . . . . . . . 6

ix



List of Figures

2.1 A probability distribution visualized as a tree of events. Every possible

sequence of events is a path through this tree. Every path through the

tree is assigned a probability. . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Ising model on 5 sites. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Lightweight M-H scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 A stochastic L-system (left) and the generated flowers (right). This is

taken from Figures 1.26 and 1.28 of The Algorithmic Beauty of Plants [35] 22

3.1 More efficient M-H by running the minimal necessary change. . . . . 27

3.2 Shred system design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Speedup due to tracing. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Performance of hand-coded C++ versus traced Church programs. . . 40

3.5 Speedup due to slicing. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Cost of slicing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Performance on open-universe models. . . . . . . . . . . . . . . . . . 44

4.1 Solitaire system design. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Workspace layouts: a domain where forward generation is difficult. . . 50

4.3 Initial trace graph and SMT formula. . . . . . . . . . . . . . . . . . . 58

4.4 Next trace graph and SMT formula. . . . . . . . . . . . . . . . . . . . 59

4.5 LEGO spaceships generated by Solitaire. . . . . . . . . . . . . . . . 76

4.6 Office building interior layouts generated by Solitaire. . . . . . . . 77

x



5.1 Model accretion (MA) input: program generating LEGO spaceships

and initial solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Mechanics of a copy proposal. . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Synthesized LEGO spaceship models. . . . . . . . . . . . . . . . . . . 84

5.4 The start of a copy proposal for LEGO spaceships. (Left) The current

assignment x3 and assignment copying from, x2. . . . . . . . . . . . 85

5.5 Choices to copy are grouped in prefix trees. . . . . . . . . . . . . . . 86

5.6 (Top left) c′ is formed by replacing pfrom with pto in its addresses.

(Bottom left) x′3, the assignment after the copy proposal. . . . . . . 87

5.7 Office buildings with furniture synthesized using MA. (Left) The ini-

tial solutions include 1-hallway floor plans with furniture (top left) or

2-hallway floor plans without furniture (bottom left). (Right) MA-

synthesized 3-hallway layout with furniture. . . . . . . . . . . . . . . 91

5.8 The control flow (blue) of the office building/furniture layout program

along with random choices (red) and constraints (green). Brackets

show dependencies of constraints. Some constraints are omitted due

to space constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Distribution of time elapsed from start of run to the first satisfying

office layout with 3 hallways and furniture, comparing model accretion

(ma-incr) and the Z3 SMT solver (smt). M-H never finished in less

than 1 hour (3600s). Vertical lines show individual samples. . . . . . 93

5.10 Acceptance rates of copy proposals arranged by callsite. . . . . . . . . 94

5.11 Mario levels synthesized using MA. (Top left) The short levels are the

set of initial solutions. (Top right) The long levels are synthesized using

MA. (Bottom) Enlarged view. . . . . . . . . . . . . . . . . . . . . . . 95

5.12 The control flow (blue) of the Mario level layout program along with

random choices (red) and constraints (green). Brackets show depen-

dencies of constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xi



5.13 Distribution of synthesis times for Mario level synthesis, comparing

model accretion (ma-incr), model accretion without accretion sequence

(ma-noseq), M-H (mh), and Z3 SMT solver (smt). Vertical lines show

individual samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.14 Number of visually different solutions generated per second (in Hz)

after the first satisfying solution, comparing SMT solving (smt) and

model accretion (ma-incr). . . . . . . . . . . . . . . . . . . . . . . . . 98

5.15 Synthesizing LEGO building designs. (Left) Initial solutions. (Right)

Synthesized models using MA. Note how tower and building structures

interact with roof decorations; there are many constraints that cut

across hierarchies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.16 Breakdown of LEGO buildings into structures placed by program. . . 100

5.17 Call graph of program generating LEGO buildings. . . . . . . . . . . 101

5.18 Distribution of first solution times comparing MA (3 units from 2) and

SMT solving for LEGO buildings. Vertical lines show individual samples.102

xii



Chapter 1

Introduction

Execution traces are a feasible and effective way to achieve specialization of inference

languages to particular problems.

Inference by computer is playing an increasingly large role in science and our daily

lives. The most prominent is inference for analysis. Our email programs infer which

incoming messages are likely to be spam and filter them away. The weather is often

predicted by simulating the interactions among wind, temperature, and the clouds.

Physicists simulate individual interactions between magnetic domains in a material

in order to discover properties about the material at critical temperatures.

Inference can also be used to make things. In the procedural generation of trees

and flowers, it can be useful to describe the set of all valid plants as a probability

distribution. We can then use probability queries to control which ones are generated.

The general setup is to take some part of the world, describe its possibilites in

terms of a probability distribution

p(x1 . . . xn),

and express inference as a conditional distribution

p(x1 . . . xi|xj . . . xn)

where xj . . . xn correspond to observations and/or constraints of interest.

1



CHAPTER 1. INTRODUCTION 2

Traditionally, this has been accomplished by constructing a bespoke implemen-

tation of an inference algorithm and model representation for a given application.

Although this is effective, it is difficult to rapidly prototype models and inference

algorithms.

To solve this problem, there have been recent efforts to build probabilistic pro-

gramming languages whose purpose is inference. They allow us to express any set of

possible worlds as the steps of evaluation of a program. By having a formal, executable

definition of models, we can separate the implementation of inference algorithm from

the specification of the model. This makes machine learning and AI techniques much

more accessible.

However, while probabilistic programming languages can describe almost any

probabilistic model, this can come at a cost of performance, which tends to be inferior

to that of hand-written algorithms tuned for particular problems. In fact, probabilis-

tic languages are in a uniquely difficult place, as our probabilistic language runtime

must essentially take as input a program whose time and space usage generally cannot

be predicted.

In this thesis, we explore an approach to improving performance by generating

execution traces of the probabilistic program. The idea is that no matter how sophis-

ticated the input program, the execution trace exposes a finite sequence of primitive

operations and random choices taken on a particular control flow path. With a proper

choice of primitive operations, this allows specialization of inference by generating fast

code to compute probabilities and to use existing powerful inference engines as back-

ends. Finally, the execution trace can also inspire an inference algorithm that works

by saving previous ”good” execution traces.

This thesis is organized into 3 sections, each of which highlights a different use of

execution traces.

1. Traces can be compiled to fast scoring code for the Metropolis-Hastings algo-

rithm on a variety of machine learning problems (inference for analysis). We are

able to acheive the speed of hand-written implementations through analyzing

and compiling the trace to a lower-level langauge.
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2. Traces allow interoperation with state of the art inference engines. In the do-

main of constrained procedural modeling (inference for synthesis), I show that

by compiling traces to SMT formulae and feeding them to the Z3 SMT solver,

there are several classes of models that cannot be feasibly synthesized using

MCMC-like stochastic search methods alone.

3. Finally, traces are not just useful as an intermediate representation, but also

as an abstract object of inference in a novel MAP inference algorithm: model

accretion. Model accretion applied to procedural modeling shows a significant

speedup even compared to the SMT solving backend.



Chapter 2

Background

This work focuses on the use of execution traces to increase performance of inference.

We draw on concepts from both probabilistic inference and probabilistic programming.

We prefer to characterize our methods in the context of an application of inference.

The field of procedural content generation thus features as an application throughout

this work. In this chapter, I introduce relevant topics from each of these fields.

2.1 Probabilistic inference

Probabilistic inference is the computation of event probabilities given possibly incom-

plete observation data. The degree of plausibility of an event is tied to a real number

in the range [0, 1]. The world is modeled as a chain of interacting events that possibly

affect the plausibility of other events down the chain.

For example, if we model event B as happening after event A, and we model B as

having influence on whether A happens, then the number P (B|A), representing how

likely it is that B happens if A happens, is different from P (B) which only represents

how likely B is to happen given no information about whether A happened.

An interesting result is that the entirety of the probabilistic framework of thinking—

Bayes’ rule [23], dependent/independent probability calculation, expected value, vari-

ance, etc.—can be derived from just the two assumption above, that probabilities are

real numbers in the range [0, 1], and we have decided on a particular sequence of

4



CHAPTER 2. BACKGROUND 5

events and interactions. This is covered in more detail in “Probability Theory: The

Logic of Science” by E.T. Jaynes [18].

To provide intuition, we will now cover a simple example of probabilistic inference.

Suppose we are playing a dice game and we are interested in the probability distri-

bution over the resulting sum of two independent dice rolls. If betting and money is

involved, it will be important to compute these probabilities correctly.

We can represent the outcome of the first dice roll as a random variable X, and the

second, Y . Probability distributions are defined by combining these random variables.

In this case, we are interested in the distribution over the sum of the outcomes, or

P (X + Y ).

Situation 1: No observed variables. Suppose no dice have been thrown yet; we

have no observation data. We must then rely completely on prior knowledge (i.e.,

assumptions) of how dice rolls and addition works. One assumption is to suppose

both dice are fair dice; this can be specified by assigning a uniform distribution U to

each of X and Y over the integers {1, 2, 3, 4, 5, 6}:

X ∼ U{1, 2, 3, 4, 5, 6},
Y ∼ U{1, 2, 3, 4, 5, 6}.

This means the probability of some number showing up for the first dice X is equal

to that of any other number; the probability P (X = i) = 1/6 for all i ∈ {1 . . . 6}, and

the same goes for P (Y ). We have thus cast our assumptions in terms of probability

distributions. These are called prior probability distributions. Inference necessarily

requires a set of such prior distributions; otherwise no probabilities can be calculated.

We can then consider computing (inference over) P (X + Y ), describing the out-

come in terms of the sum of the numbers on the dice. We need to compute the

probability P (X+Y = k) for all possible k, given that P (X), P (Y ) have the uniform

distributions shown above.
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Table 2.1: Outcomes of two dice rolls

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Inference is in general difficult because there are many ways that random variables

can combine to produce different outcomes. It is often infeasible to compute them

all. In this case, however, we can feasibly enumerate all possible outcomes of the

two individual dice rolls along with their sum. Table 2.1 shows the possibilities. The

first row and column enumerate the possible outcomes (X, Y ) of the two dice rolls,

respectively. The remaining cells show the sum X + Y given the values of (X, Y ) at

the row and column.

Each pair of dice rolls can be simulated by selecting a number from the first row

and first column uniformly, and then pointing to the “outcome cell” at the selected

row and column. Since the selection of the two numbers each has probability 1/6, the

probability of selecting the outcome cell is (1/6)(1/6) = 1/36. We can then assign

the probability 1/36 uniformly to each outcome cell.

However, we see that not every outcome of X + Y occurs uniformly; 7 occurs

the most, while 2 and 12 occur only once. Thus, in computing P (X + Y = k), we

need to properly count multiple ways of producing the same outcome from different

settings of X and Y . In this case, since the occurrence of outcome cells is mutually

independent, we can just add up the probabilities:

P (X + Y = k) =
1

36
Nk,

where Nk is the number of ways we can obtain k as the sum of two dice rolls, and
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is the number of occurrences of k as an outcome cell in the table above. The resulting

distribution P (X + Y ) is then:

P (X + Y = 2) = 1/36

P (X + Y = 3) = 2/36 = 1/18

P (X + Y = 4) = 3/36 = 1/12

P (X + Y = 5) = 4/36 = 1/9

P (X + Y = 6) = 5/36

P (X + Y = 7) = 6/36 = 1/6

P (X + Y = 8) = 5/36

P (X + Y = 9) = 4/36 = 1/9

P (X + Y = 10) = 3/36 = 1/12

P (X + Y = 11) = 2/36 = 1/18

P (X + Y = 12) = 1/36

We see that 7 has the highest probability of occurring, while 12 and 2 have the

least. Craps, a casino game, utilizes this sum of two independent dice rolls in its

beginning stages. We can come up with strategies for these games using inference

techniques similar to those shown here.

Situation 2: First dice rolled. Now suppose the first dice has been rolled. What

is the distribution of P (X + Y )? This is unlike Situation 1, where there was no

observable data to influence our inference. In terms of probability theory, we may

recast our inference query P (X + Y ) to the conditional distribution P (X + Y |X),

which takes into account the observation. Inference is most commonly applied in this

setting where incomplete observations are given and we would like to know something

about the outcome.

There are many ways to represent conditional distributions, but in this work, the

most relevant way to represent a conditional distribution P (A|B) is as a function
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that takes a sampled value b of B as input, and returns a distribution over A taking

b into account.

For the conditional dice roll, we are interested in coming up with a function F

that takes as input the value of the first dice roll X, and then returns a distribution

over the sum X + Y .

Going back to our tabular representation, we can think of this function as first

selecting a column for the outcome of X, and then noting that whatever value Y can

be, the resulting X + Y will be in the same column. The resulting distribution over

X +Y is then over the column. The conditional distribution then takes the following

form, with one entry for each possible value of the second dice:

P (X + Y |X = x) :

P (X + Y = x+ 1) = 1/6

P (X + Y = x+ 2) = 1/6

P (X + Y = x+ 3) = 1/6

P (X + Y = x+ 4) = 1/6

P (X + Y = x+ 5) = 1/6

P (X + Y = x+ 6) = 1/6

We see that the condition distribution P (X + Y |X), given x the resulting value

of the first dice roll, is uniform over {x+ 1 . . . x+ 6}.

Building probability distributions by composition The above example illus-

trates a very simple probability distribution: the sum of two independent random

variables. The distributions in this work will not contain such simple structure and

will not feature as many convenient independencies. Yet, they are very similar in

their essence; one forms complex distributions by composing together a set of prim-

itive distributions on which no further decomposition is possible (here, the uniform

distributions over integers). Our composition operators can be any deterministic
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function (here, it was the addition operator).

In this work, we deal in probabilistic programming languages, which take this idea

of composition to the extreme and consider, as composition operator, the action of a

computer program on the random variables.

Probability distributions as event trees To summarize the intuition, Figure 2.1

shows a general way to visualize inference and probability distributions through an

tree of events (aka decision tree). Each event corresponds to a node, and the outcome

of each event corresponds to following an edge from that node.

Each path from the root of the tree to a leaf corresponds to a possible sequence of

event outcomes. Every such sequence is assigned a probability. The path probabilities

then must add up to 1. Inference can be seen as counting the paths of this tree that

correspond to some real-world observation or constraint

Note that each event can be of varying data type; e.g., we can have the first

event have an integer outcome, the second event a boolean, the third a floating point

number, and so on. We exploit this capability when using probabilistic programs to

describe outcomes of events.

In addition, note that not every possible outcome of an event holds given outcomes

of past events. For instance, if E1 = 0, then E2 can only be true. In a similar sense,

we can incorporate observations by actively restricting the outcomes of certain events

to their observed values.

Difficulty of inference First, note that this restriction of outcome values can

complicate the computation of the number of paths in support (P (x) > 0) of the

distribution, which is crucial in normalizing the path probabilities to add up to 1.

The computation of thios number is not a simple matter of multiplying together all

domain sizes of each event, and in general is as difficult as inference itself. The number

of points in support weighted by the path probabilities is known as the normalizing

constant, and is of complexity class # P-complete.

In addition, some of the path probabilities can be quite small, which will make

naive algorithms fail. For example, if we simply follow the event tree according to
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. . .
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Figure 2.1: A probability distribution visualized as a tree of events. Every possible
sequence of events is a path through this tree. Every path through the tree is assigned
a probability.

the probabilities of individual event outcomes, we will have a hard time counting

these small-probability events. Overall, the full event tree is usually quite large and

is infeasible to compute over directly. This also makes inference difficult.

Inference algorithms and this work In the dice roll example, the inference

algorithm used was direct enumeration of all possible outcomes. While this can

be fast for simple distributions with mostly independent parts, more sophisticated

techniques are necessary in order to obtain answers in feasible amounts of time; the

full event tree is usually infeasibly large to operate over directly.

In this work, the focus is on increasing the efficiency of inference in two main ways:

making an existing inference algorithm faster or more easily applicable, or designing

an algorithm around a different perspective of the distribution.

In the following section, we will introduce a key class of inference algorithms,

Markov Chain Monte Carlo (MCMC), that features throughout the work.
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2.2 Markov Chain Monte Carlo

The inference techniques in this work are mostly Markov Chain Monte Carlo (MCMC)

inference methods. In this section, we give background on MCMC.

2.2.1 Approximate inference

We begin by discussing the class of inference methods MCMC falls under: approxi-

mate inference.

In inference, we are prohibited from using direct enumeration in all but the sim-

plest cases. In fact, such exact inference methods are usually infeasible, and we must

turn to approximate ones.

Approximate inference covers such methods as:

1. Belief propagation [32]: locally updating interaction terms between random

variables to approximate marginal probabilities.

2. Variational inference [9]: using a simple distribution to approximate a more

complex one.

3. Monte Carlo sampling: producing random outcomes and estimating probabili-

ties by binning the random outcomes.

Although the techniques described in this work can apply to any inference scheme,

here, we are mainly concerned with the random sampling methods. Markov Chain

Monte Carlo (MCMC) falls under this third category.

MCMC is a class of approximate, sampling-based inference methods that works by

repeatedly perturbing a vector that represents the current setting of random variables:

an outcome that is treated as the “current” one. This is also called the state. The

next setting (or state) is obtained by applying the perturbation operator.

As we keep applying perturbations, we visit more states. The idea of MCMC is

that we can design a perturbation operator so that if we record all the states that have

been visited, we obtain an approximation of the distribution of interest; there will be

more states clustered in areas of high probability, and states with lower probability

will occur less often.
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MAP inference. Note that in many situations where MCMC is used, we in fact

cannot hope to obtain a reasonable approximation of the entire distribution. However,

we are also often interested in inferring only the modes of the distribution (the states

with the highest probabilities).

There are many situations in which MCMC is not usable for characterizing the

entire distribution, but can easily find modes. This is called maximum a posteriori

(MAP) inference, and many examples in this work are examples of MAP inference.

As a further note, if MAP inference is desired, the “MCMC” perturbation operator

need not even approximate the distribution in the limit, but is still useful for finding

modes and conducting MAP inference. The stochastic perturbation of MCMC serves

as a simple and general scheme for global optimization.

2.2.2 Formulation of MCMC

MCMC methods largely consist of two elements:

1. A perturbation operator K(x′|x).

2. The distribution of interest P (x), and a way to evaluate (possibly unnormalized)

densities P (x).

P (x) gives us the (possibly unnormalized) probability at any point in the state

space, and K(x′|x) tells us how to perturb one state x to find the next state x′.

Approximation criteria. Clearly, not every choice of K(x′|x) will end up gen-

erating a trajectory of states that approximates P (x). In fact, many things about

K(x′|x) can “go wrong” along the way.

Therefore, practitioners have come up with a set of criteria for the resulting tra-

jectory of states to approximate P (x). The first two, given below, are what it takes

for the resulting trajectory of states to even approach a well-defined distribution in

the first place:

1. Recurrent : that every state x with P (x) > 0 is reachable from any other such

state using K(x′|x). In other words, if Kn(y|x) represents the application of the
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perturbation n times, we can always pick n large enough so that Kn(y|x) > 0

for all (x, y).

2. Aperiodic: that the greatest common divisor of revisit times is equal to 1; that

is, the g.c.d. of all the least k such that Kk(x|x) > 0 (a revisitation) is equal

to 1.

With these two conditions, it is guaranteed that the resulting trajectory of states

will converge to some distribution of states in the limit of infinite perturbations. The

third condition, stationarity or global balance, is a check that the resulting distribution

is the distribution of interest:

∑
x′

P (x)K(x′|x) =
∑
x′

P (x′)K(x|x′) = P (x).

In other words, P (x), the probability of interest, should be the fraction of time

the chain spends in state x. This fraction is equal to both the total probability of

being in some other state x′ (possibly equal to x) and arriving at x, and the total

probability of being at x and leaving to some other state x′ (possibly equal to x).

In this work, we mainly focus on the Metropolis-Hastings MCMC method. For

Metropolis-Hastings, a stronger condition, reversibility, is imposed on K(x′|x) that

allows more user-friendly constructions of perturbation operators:

P (x)K(x′|x) = P (x′)K(x|x′).

2.2.3 Metropolis-Hastings

We now explain Metropolis-Hastings, which features in many of the inference methods

in this work. Metropolis-Hastings (M-H) is a very general, widely used, and simple

MCMC inference algorithm. A more detailed treatment can be found in the original

paper by Hastings et al [17]. M-H takes a probability density function P (X) as input.

P (X) does not need to be normalized to 1. M-H repeatedly applies a ”proposal
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operator” Q(X ′|X) to a current state (assignment to X). As with other MCMC

methods, the trail of states visited comprise a collection of states whose distribution

approximates P (X). The M-H algorithm is given below.

Algorithm 1: Metropolis-Hastings

Input: Density P , # iterations N , proposal operator Q
Output: Set S of samples approximating P

1 S ← {}
2 X ← Initialize()
3 for i ∈ 1 . . . N do
4 X ′ ∼ Q(X ′|X)

5 α← min{1, Q(X|X′)P (X′)
Q(X′|X)P (X)

}
6 X ← X ′ w.p. α
7 S ← S ∪ {X}
8 return S

At each iteration, if the proposal state density P (X ′) > P (X), X ′ is accepted as

the next state. Otherwise, acceptance depends on the ratio of probabilities.

The combination of applying the proposal and accepting or rejecting the result

induces a MCMC kernel K(X ′|X). We assume a choice of Q that makes K(X ′|X)

irreducible; that is, any state can be visited. K(X ′|X) also satisfies detailed balance:

P (X)K(X ′|X) = P (X ′)K(X|X ′).

In other words, the probability of going from any state A to any other state

B is the same as the other way around. A consequence of detailed balance is the

aforementioned stationarity ; that the sequence of states approximates the distribution

of interst.

In practice, however, M-H, like most MCMC methods, may take an unreasonable

amount of time to converge. The utility of M-H is that it is a very general inference

algorithm that is simple to apply; many choices of Q(X ′|X) are possible as long as

the forward/backward transition probabilities can be computed, and the resulting
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K(X ′|X) always satisfies detailed balance, and thus will always result in a Markov

chain that converges to the distribution of interest.

In this work, we will assume that the current state consists of a vector of more

primitive random choices: X = (x1 . . . xn). For instance, in the Ising model, such a

primitive choice could be a binary random variable (0 for one spin, 1 for the opposite

spin).

Single-site and block perturbations. The proposal operator Q(X ′|X) is applied

to the current state, producing X ′. In many cases, only one component of the vector

X is perturbed. This is known as a single-site proposal. Single-site proposals work

well in many situations, as they minimize the amount of change the perturbation

applies and thus maximize the probability of acceptance.

However, in situations where there are strong correlations between random choices,

the single-site proposal is inefficient. To address this, many practitioners have adopted

perturbations that change multiple components xb1 . . . xbk This is known as a block

proposal. If block proposals are carefully designed in such a way that they respect

correlations between variables, they can be more efficient.

2.3 Probabilistic programming languages

This work concerns the problem of how to increase efficiency of probabilistic program-

ming languages, which are a general way to represent probability distributions.

The specification of probability distributions and inference algorithms can involve

much labor; one is often programming the low-level representation of distributions,

random variables, MCMC perturbations, and how these parts all work together.

It is desirable to have a more high-level solution: write down the distribution once,

and have the inference automatically set up. This is the idea behind probabilistic

programming languages.

A probabilistic programming language is an executable specification of a proba-

bility distribution. This goes beyond simply a way to write down the distribution;

a probabilistic program runs on an execution engine for performing inference. Once



CHAPTER 2. BACKGROUND 16

-1 -1 1 0 1 -1 -1 -1 1

x0 x1 x2 x3 x4f01 f12 f23 f34

Spin at site Interaction potential

Figure 2.2: Ising model on 5 sites.

the distribution is specified by the program, the execution engine is free to employ a

variety of inference techniques on the distribution.

In this work, I employ a variant of the Church [16] probabilistic programming lan-

guage. This section gives background on how Church and probabilistic programming

languages work.

Consider an example from statistical physics: the 1-D Ising model. Although this

is a simple model that has been solved analytically, it well illustrates all of the essen-

tial mechanisms of a probabilistic programming language. The model (Figure 2.2)

describes a line of sites, each of which has one of two spin states. There are inter-

actions between every consecutive pair of spins, encouraging neighboring spins to be

aligned (same state).

Figure 2.2 shows a 5-site 1-D Ising model. Orange nodes denote spins (of value -1

or +1), and square, blue nodes denote interaction potentials (-1 for pairs of opposite

spins and 0 for pairs of like spins). The probability of any state x consists of the

individual site probabilties times the weights due to interaction:

P (x) = p(x1)
N∏
i=2

f(xi−1, xi)p(xi)

f are the interaction potentials, also called ”factors” or ”assertions” throughout

this thesis. In Church, the Ising line model on N sites is expressed through the
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following program:

(letrec ([site (lambda () (= 0 (randint 0 1)))]

[ising -loop

(lambda (prev n)

(if (= n 0) #t

(letrec ([next (site)]

[interact (assert (= next prev ))])

(ising -loop next (- n 1)))))])

(ising -loop (site) (- N 1))

Everything is now described in terms of how it was generated. site is a function

to sample a spin state. This function is used in a looping procedure ising-loop, which

takes as argument the previous site sampled and the number of sites yet to generate.

Interaction between sites is accomplished through the assertion statement (assert (= next prev)),

which specifies constraints on what is generated, ”encouraging” the program to exe-

cute in a way that does not violate any assert statement.

In the formulations, each program execution is assigned a probability, and each

violated assert statement weights the probability of the execution down by a pre-

defined factor.

If more control over such weighting is desired, we use the (factor ...) primitive,

which weights the probability of the current execution by log of whatever number is

fed to it. We could have rewritten the [interact ...] binding using factors like so:

[interact (factor (? (= next prev) 0.0 -10.0))]

where ? chooses between the second and third argument depending on if the

first argument evaluted to true. Unlike normal if-statements, both alternatives are

evaluated. Note that this is important for tracing, because ? will be treated as another

primitive operator and not incur overhead by depicting more program paths.

To sum up, with probabilistic programming languages, one expresses a probability

distribution (and thus inference problems) by writing a program that shows how

to generate each random variable. Assertions and factors provide a conditioning

construct, allowing arbitrary constraints to be applied to the set of things generated.
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2.3.1 Lightweight M-H

The promise of a probabilistic program is the ability to run inference out of the box

using its execution engine. Much of this work can be seen as addressing inefficiencies

in current execution engines for probabilistic programming languages.

To give intuition about how probabilistic program inference works, this section

describes Lightweight M-H [46], a general and simple Metropolis-Hastings MCMC

scheme for probabilistic programs that will also feature throughout the work in this

thesis.

Need for naming random choices. One does not simply plug a probabilistic

program into an existing inference algorithm. Probabilistic programs can express

models with a varying set of random choices; randomness combined with the full

expressivity of control flow operators allows many different sets of random choices to

result from different exeuctions. This presents a problem for formulating inference

algorithms such as M-H on probabilistic programs, as the vector of random choices

will not be consistent.

Lightweight M-H [46](LWMH) is a recent, accepted method for running M-H

on probabilistic programs. One of its key contributions is that it solves this naming

problem; LWMH defines a scheme for naming random choices, allowing a well-defined

scoring procedure. With each execution of the program, the set of random choices are

computed, common choices are kept, and choices not common to both are discarded,

with their density added to a transition factor that recapitulates the reversible-jump

MCMC (RJMCMC).

Figure 2.3 is a flowchart captures the behavior of LWMH. We see that the scoring

step involes some potential inefficiencies. First, it can be expensive to re-compute

and look up the name of each random choice. Second, the whole program is being

re-run from scratch, while many models do not require all random variables to be

regenerated per scoring step. In the chapter on Shred, I will describe how to use

execution traces to address these inefficiencies.
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Figure 2.3: Lightweight M-H scheme.
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2.4 Execution traces

Key to this work is the concept of the execution trace. As a probabilistic program (or

any program) runs, one can record all of the primitive operations performed, such as

factor, =, +, etc. This is called the execution trace and is the focus of this thesis. We

will discuss how to use execution traces in order to specialize inference. The following

is an execution trace of the 1-D Ising program:

x1 <- randint (0,1)

x2 <- randint (0,1)

b0 <- x2 == x1

assert(b0)

x3 <- randint (0,1)

b1 <- x3 == x2

assert(b1)

...

xN <- randint (0,1)

b_{N-1} <- xN == x_{N-1}

assert(b_{N-1})

randint is produced by all of the calls to ‘site‘ in the original program. The repeated

visits to [interact (assert (= site prev))] show up as the repeated xi == x_{i - 1} and

assert(bi). We see that all control flow and non-primitive function calls have been

removed, leaving behind only the sequence of primitive operations performed during

execution.

The advantage of an execution trace is that it is in an extremely simple, portable

format; it can then be re-compiled to a low-level language, or translated to a format

suitable to run on a state-of-the-art inference engine.

Note that this depicts only one control flow path through the program. Any

compilation or analysis of this trace would apply only to this control flow path. There

is a tradeoff inherent in using traces; tracing becomes more applicable the better the

set of traces captures interesting program behavior. On the other hand, if it takes

too many traces to capture any program behavior of interest, it is better to use a

different method.
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In this case of the 1-D Ising model, there was only one possible program path.

Throughout this work, I will show that there are many other useful problem domains

that can be depicted using just one or a few traces.

2.5 Procedural content generation

Throughout this work, procedural content generation features as an application of

probabilistic inference and probabilistic programming languages. Procedural content

generation is the production of artwork and graphics through specification as a pro-

gram. It has a long history, such as L-systems being used to create models of plant

life [35] in the 1960s.

Probabilistic programming languages, being a general way to specify probability

distributions, are also a viable method for procedural content generation; one simply

defines the distribution over the artwork of interest. Inference can then be used to

zero in on “desirable” variations.

In this section, we summarize the context in which procedural content generation

is used, and its relationship to probabilistic programming.

2.5.1 The need for content

The booming entertainment industry (and increasingly other fields such as fashion,

industrial design and architecture) relies to a large extent on visual spectacle. Leaving

aside the question of whether this should be the case, the top grossing movies in

Hollywood all feature the latest and greatest in computer generated imagery, such as

the Transformers series of movies. Additionally, the video game industry will eclipse

both movie and music industries, and their primary mode of interaction is through a

virtual 3-D world.

Some of the technological issues in what can be generated and displayed by com-

puter have been solved. There has been progress in this area. Rather, I focus on

the problems that remain in what to display and how. In order to generate, say, a

cityscape in which the Transformers play around and destroy things, it is traditionally
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Figure 1.27: Stochastic branching structures

Figure 1.28: Flower field

1.6. Branching structures 27

n=5, δ=18◦

ω : plant
p1 : plant → internode + [ plant + flower] − − //

[ − − leaf ] internode [ + + leaf ] −
[ plant flower ] + + plant flower

p2 : internode → F seg [// & & leaf ] [// ∧ ∧ leaf ] F seg
p3 : seg → seg F seg
p4 : leaf → [’ { +f−ff−f+ | +f−ff−f } ]
p5 : flower → [ & & & pedicel ‘ / wedge //// wedge ////

wedge //// wedge //// wedge ]
p6 : pedicel → FF
p7 : wedge → [‘ ∧ F ] [ { & & & & −f+f | −f+f } ]

Figure 1.26: A plant generated by an L-system

1.6. Branching structures 27

n=5, δ=18◦

ω : plant
p1 : plant → internode + [ plant + flower] − − //

[ − − leaf ] internode [ + + leaf ] −
[ plant flower ] + + plant flower

p2 : internode → F seg [// & & leaf ] [// ∧ ∧ leaf ] F seg
p3 : seg → seg F seg
p4 : leaf → [’ { +f−ff−f+ | +f−ff−f } ]
p5 : flower → [ & & & pedicel ‘ / wedge //// wedge ////

wedge //// wedge //// wedge ]
p6 : pedicel → FF
p7 : wedge → [‘ ∧ F ] [ { & & & & −f+f | −f+f } ]

Figure 1.26: A plant generated by an L-system

30 Chapter 1. Graphical modeling using L-systems

The essence of this modification is to replace the original production
p3 by the following three productions:

p′3 : seg
.33→ seg [ // & & leaf ] [// ∧∧ leaf ] F seg

p′′3 : seg
.33→ seg F seg

p′′′3 : seg
.34→ seg

Thus, in any step of the derivation, the stem segment seg may either
grow and produce new leaves (production p′3), grow without producing
new leaves (production p′′3), or not grow at all (production p′′′3 ). All three
events occur with approximately the same probability. The resulting
field appears to consist of various specimens of the same plant species.
If the same L-system was used again (with different seed values for the
random number generator), a variation of this image would be obtained.

1.8 Context-sensitive L-systems

Productions in OL-systems are context-free; i.e. applicable regardlessContext in
string
L-systems

of the context in which the predecessor appears. However, production
application may also depend on the predecessor’s context. This effect is
useful in simulating interactions between plant parts, due for example to
the flow of nutrients or hormones. Various context-sensitive extensions
of L-systems have been proposed and studied thoroughly in the past
[62, 90, 128]. 2L-systems use productions of the form al < a > ar → χ,
where the letter a (called the strict predecessor) can produce word χ if
and only if a is preceded by letter al and followed by ar. Thus, letters
al and ar form the left and the right context of a in this production.
Productions in 1L-systems have one-sided context only; consequently,
they are either of the form al < a → χ or a > ar → χ. OL-systems,
1L-systems and 2L-systems belong to a wider class of IL-systems, also
called (k,l)-systems. In a (k,l)-system, the left context is a word of
length k and the right context is a word of length l.

In order to keep specifications of L-systems short, the usual notion
of IL-systems has been modified here by allowing productions with
different context lengths to coexist within a single system. Further-
more, context-sensitive productions are assumed to have precedence
over context-free productions with the same strict predecessor. Conse-
quently, if a context-free and a context-sensitive production both apply
to a given letter, the context-sensitive one should be selected. If no pro-
duction applies, this letter is replaced by itself as previously assumed
for OL-systems.

Figure 2.4: A stochastic L-system (left) and the generated flowers (right). This is
taken from Figures 1.26 and 1.28 of The Algorithmic Beauty of Plants [35]

the job of many artists working together, with each artist creating a small part.

Modeling and placing objects in a virtual environment represents a tremendous

amount of manual labor. This makes the automatic generation of such environments

by computer a very attractive idea. It saves the time of artists, who then after using a

procedural modeling system become more critics and judges—selectors—of computer

generated art than the laborers involved in creating the pieces.

2.5.2 The easy case

In many cases, automatic content creation by computer works very well, such as

with the generation of trees and cityscapes by grammars. This is because trees and

cityscapes are extremely hierarchical and self-similar, which is natural to express by

computational process. With a grammar, one can manually specify merely the rule

to generate a single tree branch, and then rely on the grammar derivation process to

produce trees of astounding complexity.

Figure 2.4 shows an example domain, flowers, that are amenable to this easy

case of rule-based generation. The flowers were created by a L-system [35]. The

L-system can be seen as a program that executes by repeatedly expanding the bold

symbols according to what is on the RHS of the arrow (→). The L-system may do



CHAPTER 2. BACKGROUND 23

some stochastic sampling, but the simplicity is in the fact that every ”run” of the

”program” yields a plausible looking model.

2.5.3 Content generation is hard in general

In general, things are not so easy. In other cases, the purely forward-generative

approach of grammars does not work so well. Consider the placement of furniture

in a room according to practical and aesthetic constraints. It is difficult to specify a

rule that will produce all plausible arrangements of a certain class of objects subject

to constraints. If one wants the sofa to face the TV and to be flush against the wall,

which do we generate first? The TV? The sofa? The wall?

What if we generated the TV and it was directly up against the wall, disallowing

the placement of a sofa? With a purely forward generation approach, we are generally

stuck; we need to make up further rules that tell us what to do in this situation, and

more and more until we admit that is easier simply to place the furniture manually

in Maya or 3ds max.

2.5.4 Solving for constraints by inference

This is where the relationship to probabilistic inference and probabilistic program-

ming languages takes place. Instead of hard-coding forward generation rules that

grow ever more cumbersome, one can simply encode what to generate, possibly as a

probability distribution. The problem of solving constraints then becomes a problem

of probabilistic inference.

Merrell et al [29] considered this problem. Their solution was to employ a general

inference technique, parallel tempering Markov Chain Monte Carlo. Similar ideas

were tried in the paper on Metropolis procedural modeling by Talton et al [38],

where an existing forward-generating grammar is tagged with random variables and

inference is performed over them, constraining the resulting model.

The general idea behind all of this work is that if one can specify some kind of

scoring function or soft recognizer—a function that is simple to compute that tells us

how far off we are from a satisfying model—one can then apply general optimization
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techniques in order to produce satisfying models, rather than painstakingly make up

forward generation rules for satisfying constraints.

In this work, we are interested in increasing the efficiency of inference by special-

ization through the construction of execution traces. Our techniques therefore apply

to procedural content generation by probabilistic programs. In particular, in the

chapter on model accretion, we show how execution traces can underpin the design

of a more efficient algorithm to generate content by inference.

We will now go over the three contributions of this thesis in detail.



Chapter 3

Shred: Compiling Efficient MCMC

Kernels

Shred is a tracing compiler for Metropolis-Hastings (M-H) on probabilistic programs.

Shred is able to achieve MCMC kernel throughput (iterations per second) that is

competitive with hand-coded solutions do not use probabilistic languages, using trac-

ing and slicing to determine a minimum amount of computation to perform per M-H

iteration.

3.1 Optimizing M-H: Ising example

The 1-D Ising model illustrates well how LWMH can be inefficient, and how Shred

improves efficiency. Recall that the probability density of the N -site 1-D Ising model

is

P (x) = P (x1 . . . xN) = p(x1)
N−1∏
i=2

p(xi)f(xi, xi+1).

An iteration of M-H would proceed by constructing a perturbed vector x′ that is

different from x at a single site. Then the M-H acceptance ratio is

min{1, P (x′)/P (x)}.

25
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Recall that our goal is to minimize the cost of this perturbation-acceptance/rejection

procedure. It may be needlessly expensive to re-compute the entire ratio in each it-

eration of M-H. In fact, only a small, constant part needs to be recomputed if only

one site is different. This can be seen by expanding the acceptance ratio out to the

individual factors:

P (x′)/P (x) =

p(x′1)f(x′1, x
′
2)p(x

′
2)f(x′2, x

′
3)p(x

′
3)f(x′3, x

′
4) . . . p(x

′
N−1)f(x′N−1, x

′
N)

p(x′1)f(x1, x2)p(x′2)f(x2, x3)p(x′3)f(x3, x4) . . . f(xN−1, xN)
.

If only say, x3 is different from x′3, then the above ratio reduces to

f(x′1, x
′
2)f(x′2, x

′
3)f(x′3, x

′
4)f(x′5, x

′
6) . . . f(x′N−1, x

′
N)

f(x1, x2)f(x2, x3)f(x3, x4)f(x5, x6) . . . f(xN−1, xN)

=
f(x′2, x

′
3)f(x′3, x

′
4)

f(x2, x3)f(x3, x4)

From how these terms line up, we see that if x′ is only different from x at one

site, only one or two f(·, ·) need be recomputed. In general, P (x′) is only different

from P (x) by at most two factors f . If the number of sites is n, we have achieved an

optimization from O(n) to O(1). The situation is summarized below in a diagram for

the case of 5 sites and 3 M-H iterations.

Shred automatically performs this optimization by tracing and slicing. In the next

section, I explain how slicing works.

3.2 Slicing for the minimal change

Recall the trace:

x1 <- randint (0,1)

x2 <- randint (0,1)

b0 <- x2 == x1

assert(b0)
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Figure 3.1: More efficient M-H by running the minimal necessary change.
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x3 <- randint (0,1)

b1 <- x3 == x2

assert(b1)

...

xN <- randint (0,1)

b_{N-1} <- xN == x_{N-1}

assert(b_{N-1})

Slicing is formulated in terms of computing a minimal subset of the statements

above for each possible proposal. Each ‘randint‘ represents a choices that may be the

target of a proposal. For example, suppose a proposal is made to x1 <- randint(0,1).

We then look for statements that use x1. We find one: b0 <- x2 == x1. So that’s a

statement that needs recomputation. We now also look for statements using b0 in

addition to those that use x1. We only find assert(b0). The slice then consists of

x1 <- randint (0,1)

b0 <- x2 == x1

assert(b0)

Note that when we run a slice, these statements by themselves are not sufficent;

x2 is free and must be defined somewhere else already. We assume an enclosing scope

where all LHS variables of statements are already defined. Running the slice then

amounts to modifying some of these variables.

In general, for each random choice statement in the trace, we compute the en-

tire set of statements directly or indirectly dependent on the value computed by the

random choice statement. I will give a formal definition later.

3.3 Structural changes

The basic idea of tracing and slicing to recover the minimal M-H update is now

clear, but what if the program has more than one possible trace? I call this phe-

nomenon ”structural change.” Because the program execution is determined given

random choices, we can isolate all choices that may result in a different trace or

structure change.
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Naturally, I will refer to these random choices as structural choices. All other

random choices are assumed not to affect the set of random choices and are called

structure-preserving choices.

3.4 Shred System

Shred then consists of the following components:

1. A trace generator and slicer for fast computation of M-H scores.

2. A mechanism to decide when a structural change has occurred, upon which a

new trace is formed, or the existing trace remains in usage.

Since both are only concerned with what happens inside each iteration of M-H,

the interface to Shred can then be essentially identical to that of Church Metropolis-

Hastings (M-H): the program is run for a specified number of M-H iterations (ex-

pressed in terms of samples and lag) and a set of samples is returned.

The differences now primarily lie in the underlying behavior during each iteration

of Metropolis-Hastings. Both systems will run the probabilistic program against a

given set of random choices. However, when Shred runs the program, it will do so

in one of two modes: 1) compiling traces and 2) running compiled traces. The first

path is slow and the second is fast.

Figure 3.2 illustrates this design. For each MCMC proposal, Shred first executes

the perturbation. If the perturbation happened to a structural variable, Shred first

checks if there is an existing trace in the trace cache. This cache is keyed on the list

of all values of structural variables. If the trace does not exist, Shred compiles and

stores the trace as it execute the program to determine the score. The trace is stored

and the proposal accepted or rejected according to the M-H acceptance ratio.

If the trace already exists, then Shred loads the trace, install the random choices

in its memory, and runs the trace, which is fast. The trace produces a score and then

the proposal state can be accepted or rejected. Note that if the perturbation is done

on a structure-preserving proposal, we are assured that the current trace can be used,

so Shred immediately runs the fast path.
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Figure 3.2: Shred system design.
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Again, this performs better the less often traces are compiled; that is, the fewer

paths occur in program execution.

3.5 Tracing and slicing algorithm

I now formally describe the tracing and slicing technique in this section. I build on

the formulation used in the LWMH paper [46], which we briefly review here. Each

run of the probabilistic program assigns values to a vector of random choices X =

(x1...xK), where K is assumed to upper bound the maximum number of steps in the

computation. This leaves some elements in the vector to correspond to non-”existent”

random choices. Let θi be the parameteres associated with each component xi of X.

The distribution associated with the program is then P (X) =
∏K

i=1 p(xi|θi, x1...xi−1).
To save space, let fi denote p(xi|θi, x1...xi−1).

We split the xi into *structural* choices xS that affect existence of other choices

and *structure-preserving* choices xN that do not. Without loss of generality, let

xS = x1 . . . xS and xN = xS+1 . . . XK be the structure-preserving choices. Note that

this does not violate the conditional dependencies p(xi|θi, x1 . . . xi−1). No structure-

preserving choice may influence any structural choice, otherwise it would be struc-

tural. Then the probability density of program executions is

P (X) =
S∏
i=1

fi

N∏
i=S+1

fi = P (S)P (N).

3.5.1 Tracing

Our tracing algorithm dynamically constructs subsets of P (N) that correspond to ex-

tant sets of structure-preserving choices. We define our tracing interpreter as acting

on a Church-like, call-by-value functional probabilistic language. This is for clar-

ity and precision; in principle, our technique applies to any language admitting an

implementation of Lightweight-MH.

Our language syntax is a variant of Church. Below is a grammar defining the
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syntax. v are variables, c constants, p density functions, op primitive operations (such

as +,−,×, cons, car, and cdr), and smp are primitive sampling functions. Brackets

denote a list of the included element.

e = lambda [v] e | app e [e]

| if e e e | op [e]

| v | c | letrec v = e in e

| S p smp [e] | N p smp [e]

This is lambda calculus with structural (S) and structure-preserving (N) elementary

random choice primitives (ERPs) [16]. S,N are user annotations that distinguish

structural versus structure-preserving ERPs. Each ERP is parameterized by a scoring

function, a sampling function, and a list of parameters.

Our tracing interpreter is a procedure that produces a trace along with the pro-

gram execution. Traces take this form:

t = s t | END

s = tv <- T-Score p tv [tv] | tv <- T-PrimOp op [tv]

T-PrimOp represents a primitive operation. T-Score takes a scoring function, the

value of a random choice, and parameters as input, returning the value and in-

crementing a global score variable as a side effect. Executing a trace computes a

corresponding probability density.

I now describe how traces are produced from Church programs. Our tracing

interpreter, with a few exceptions, works just like a normal interpreter for a call-by-

value functional language. See SICP 4.1 [3] for a canonical definition. We first run a

pre-process that puts a unique label ‘lab‘ at each syntax element for computing ERP

addresses [46]. Actual tracing starts at a structure-preserving ERP:

T(addr , env , N lab p smp [e]):

v+ = next_trace_variable ();

i+ = next_trace_variable ();

x+ = [ T(addr , env , e_i), e_i <- [e] ];

x- = [ trvals[v], v <- x+];

this_addr = cons(lab , addr);

if ERP_exists(this_addr) then

trvals[v+] = ERP_val(this_addr );
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this_score = p(trvals[v+], x-);

score = score + this_score;

update(this_addr , p, smp , this_score , trvals[v+], x-);

else

v- = smp(x-);

trvals[v+] = v-;

this_score = p(v, x-);

score = score + this_score;

update(this_addr , p, smp , this_score , v-, x-);

add_stmt(v+ = T-score p i+ x+)

return v+;

This behaves identically to the inner loop body of Algorithm 3 in the paper [46]

describing Lightweight-MH, except we also add a T-score statement to the trace

and return a trace variable, not the sampled value. update changes the database

of ERP values, parameters, and scores to reflect the latest program execution. The

detailed workings of update can be found in Algorithm 3 in the LWMH paper [46].

next_trace_variable produces a new unique symbol for use as a trace variable. i+

is an free input variable which will be set by the MCMC kernel at each proposal.

The result is a direct correspondence between structure-preserving choices and input

variables. [ f(x) , x <- l] depicts a mapping operation over elements x in the list l,

producing a new list with the transformed elements. The function add_stmt appends

its argument, a trace statement, to the global trace. trvals associates trace variables

with the normally interpreted values (if a normal value is input, it acts as the identity

function).

For structural ERPs, T works the same way except no tracing is done and all

parameters are normally interpreted:

T(addr , env , N lab p smp [e]):

x+ = [ T(addr , env , e_i), e_i <- [e] ];

x- = [ trvals[v], v <- x+];

this_addr = cons(lab , addr);

if ERP_exists(this_addr) then

this_score = p(ERP_val(this_addr), x-);

score = score + this_score;

update(this_addr , p, smp , this_score , ERP_val(this_addr), x-);
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else

v- = smp(x-);

this_score = p(v-, x-);

score = score + this_score;

update(this_addr , p, smp , this_score , v-, x-);

return v+;

This is key to our tracing technique: it has the effect of *partially evaluating* (pre-

computing) away the computation associated with P (S) and all naming computation.

The interpreter than resumes, working (mostly) just like a normal interpreter for

a call-by-value language, treating the trace variable as another kind of value. In fact,

the interpretation of letrec bindings, non-primitive function defintiions lambda and

non-primitive function calls (f x1 x2 ...) is the same as that of a normal interpreter

for Church. For branching and primitive operations, it is necessary to deal with trace

variables and their associated values explicitly. Branches are handled as follows.

T(addr , env , If e1 e2 e3):

v1 = T(addr , env , e1);

if trvals[v1] then

return T(addr , env , e2);

else

return T(addr , env , e3);

At this point, we are already in the structure-preserving part P (N) of the distri-

bution. This allows us to assume that if the conditional part of the branch e1 is a

trace variable, the branch resulting from using its actual value trvals[v1] is the one

always taken.

For primitive operations, we trace if the arguments contain trace variables and

evaluate normally if not. This is because it is not necessary to trace things like

X3 = 2 + 2; it is faster to use the computed result somewhere else, e.g. X6 = 4 + X5.

This is known as constant folding in the compilers literature.

Let any_trace_var? be a function that checks whether or not a trace variable occurs

in a list of values.

T(addr , env , op [e]):

vs = [T(addr , env , e_i), e_i <- [e]];
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if any_trace_var ?(vs) then

v+ = next_trace_variable ();

trvals[v+] = op([ trvals[v_i], v_i <- vs]);

add_stmt(v+ = T-PrimOp op vs);

return v+;

else

return op(vs);

Our final step is to translate the traces to a low-level language. The generated

traces do not contain any control flow, looping, or recursion. Additionally, they only

assign a value to each variable once. Such programs are said to be in static single

assignment (SSA) [5] form. SSA programs are easily translated into a number of

low-level languages.

We generate a C++ function that calculates the subset of P (N). Its arguments

are the input variables corresponding to each structure-preserving choice, and its

body is the C++-translated version of each trace statement specialized to the types

used at each point. This is then used in the MCMC loop as a way to compute the

density. Note that it is also possible to compile to other low-level languages such as

LLVM [24] and Terra [14], which can more directly map to machine instructions on

common hardware.

Stochastic memoization

Although it is not essential for tracing, models with Dirichlet processes [40] are in-

cluded in the benchmarks used in this weork. I elected to represent them using

Church-inspired syntax constructs: DPmem alpha f and mem f [16].

DPmem takes a concentration parameter alpha and a function f representing the base

distribution, producing a function whose distribution is a Dirichlet process with the

given parameters. mem takes a function, transforming it to only run once and have

one return value for each unique incoming argument. In this work, we assume that

no structural choices take place inside the procedures called by DPmem or mem, and that

all procedures input to DPmem take no arguments. This is sufficient to express complex

machine learning models.



CHAPTER 3. SHRED: COMPILING EFFICIENT MCMC KERNELS 36

We deal with these primitives in a manner that avoids trace switching, but gener-

ates code with control flow. We track which primitive operations and random choices

take place under a DPmem or mem call. These form sub-traces. These sub-traces are

then compiled to loop-free C++ programs that conditionally execute based on the

corresponding (stochastic) memoization semantics.

For example, the f in DPmem is traced out as a sub-trace, and for each call to the

DPmem-transformed f, a call out to the sub-trace is surrounded by an if-statement that

involves a draw from the uniform distribution u U [0, 1]. If u < α (alpha parameter),

the sub-trace is re-run. Otherwise, a value is re-computed by re-drawing from a

collection of samples.

Slicing

We adapt the general concept of slicing [45] to generate computations that do the least

amount of work in accept/rejecting proposals to structure-preserving choices. We

define our slice S(vi) as all trace variables (i.e., statements) needing recomputation

upon change to vi. Each such trace variable corresponds to a trace statement, so it

tells us which statements to re-run upon the change to vi.

S(vi) computes all direct and indirect dependencies. For a given trace variable vi,

vi may appear on the right hand side of the statements of other trace variables vj:

v_j = T-PrimOp op ... v_i .. or ‘v_j = T-Score op v ... v_i .... In this case, we define

vj as directly dependent on vi. We use D(vi, vj) to denote the set of all such pairs of

trace variables.

We now define indirect dependency. For the T-PrimOp above, it may be necessary

to further compute the direct dependencies D(vj, vk) of the LHS variable, and so on.

For T-score statements it is not, as they merely return the value of some other input

variable. Let Dp(x, y) = {(x, y)|y = T-PrimOp op vs, x ∈ vs} capture this fact. The

indirect dependence relation I(·, ·) is inductively defined as
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I(x, y) = D(x, y)

∪ {(x, z)|(x, z) ∈ Dp(x, z) ∧ (z, y) ∈ I(z, y)}.

Then, the slice is the collection of trace statements corresponding to the following

set of trace variables:

S(vi) = {vi} ∪ {vj|vj ∈ I(vi, vj)}.

In code generation, we associate a function S_vi for each trace variables slice

S(vi) that executes its corresponding statements in order. We then promote all trace

variables to global scope so that they are visible from every slice. We also avoid

redundantly generating code. For example, if we already computed S(v4), and v4 ∈
S(v2), we replace the resulting set of statements with a call to S_v4. Computing the

density relevant to each structure-preserving choice xk then amounts to setting the

input variable ik to xk and running the corresponding slice S_ik.

Our algorithm for computing S(vi) is the memoized depth-first search suggested

by the definition of I(x, y) above and our avoidance of generating redundant code. It

produces a directed graph where each node represents a trace variable and each edge

a direct dependency. The set of descendants of a node is the slice.

3.6 Results

We evaluated:

1. Effect of tracing and slicing on kernel speed (in iterations per second).

2. Cost of tracing and slicing.

We used the following probabilistic programs to evaluate tracing and slicing.

These are widely used in machine learning.
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1. Linear regression. This performs linear regression on a set of 100 (x,y) data

points using Gaussian priors on the slope and intercept of the unknown line.

There is almost no independent structure; we expect slicing to not benefit.

2. Hierarchical regression. This is an adaptation of the Rats example model in

Volume I of the OpenBUGS examples repository. 30 rats are modeled, each

with five data points describing weight per week. There is much independent

struture; the estimated slope and intercept of the growth model for a particular

rat can be updated independently of the others. We expect slicing to help a lot.

3. Dirichlet-multinomial mixture. This classifies four objects into three categories.

This is a small model.

4. Infinite mixture model. Same as the previous model, but with a Dirichlet pro-

cess (DP) prior over the set of categories.

5. LDA topic model. This is a synthetic example with 21 documents, vocabulary

size 4 and two topics.

6. HDP topic model. Same as the LDA topic model, but with a DP prior on

topics.

7. Citation matching. There is a DP prior on papers. There are 5 citations along

with paiwise citation-paper similarity factors and paper-paper dissimilarity fac-

tors.

These models are all closed-universe models; i.e., they only have one possible

trace. No extra time is spent compiling further traces and switching between them,

as would be the case in open-universe models. We include a separate analysis of

open-universe models later that factors in compilation time.

We ran these benchmarks with four different MH implementations: Church’s

Lightweight-MH, Shred, and hand-coding. The OS/hardware used was a Mac OS X

10.9 laptop running on a 2.3 GHz Intel Core i7 with 8 GB RAM. Ikarus, a native-code

Scheme compiler, was used to implement Lightweight-MH and our tracing/slicing al-

gorithms. Hand-coded models were programmed in C++. For probabilistic language



CHAPTER 3. SHRED: COMPILING EFFICIENT MCMC KERNELS 39

Tracing: 32x avg. speedup

linear-regression

hierarchical-regression

mixture

infinite-mixture

topic-lda

topic-hdp

citation-matching

Iterations per second
0.00E+00 2.00E+05 4.00E+05 6.00E+05 8.00E+05

Untraced
Traced

Slicing: 5x avg. speedup vs. tracing

linear-regression

hierarchical-regression

mixture

infinite-mixture

topic-lda

topic-hdp

citation-matching

Iterations per second
0.00E+00 5.00E+05 1.00E+06 1.50E+06 2.00E+06

Traced
Shred

Cost of Slicing (avg. 1.25x vs. 
tracing)

linear-regression

hierarchical-regression

mixture

infinite-mixture

topic-lda

topic-hdp

citation-matching

Compile Time (seconds)
0 0.6 1.2 1.8 2.4

Traced
Shred

Tracing vs. hand-coded (non-
incremental)

linear-regression

hierarchical-regression

mixture

topic-lda

Iterations per second
0.00E+001.50E+053.00E+054.50E+056.00E+05

Hand
Traced

Speedups Slicing Factor (SF) Traced / Untraced Shred / Traced Shred / Untraced Traced / Hand Shred / Hand-incr

linear-regression 1.5 37.72 0.63 23.60 1.41 0.58

hierarchical-regression 31.3 68.45 8.76 599.91 0.57 0.77

mixture 2.9 17.40 3.44 59.94 0.80 0.62

infinite-mixture 2.3 30.80 1.60 49.29

topic-lda 10.1 17.76 18.66 331.42 1.22 0.57

topic-hdp 1.1 21.57 2.31 49.82

citation-matching 1.2 29.33 1.34 39.40

38x

68x

17x

31x

18x

22x

30x

bar labels: speedupx

Efficiency Shred

linear-regression 0.45

hierarchical-regression 5.90

mixture 3.28

infinite-mixture 1.52

topic-lda 13.08

topic-hdp 1.82

citation-matching 1.27

Cost Ratio Shred

linear-regression 1.38

hierarchical-regression 1.49

mixture 1.05

infinite-mixture 1.05

topic-lda 1.43

topic-hdp 1.27

citation-matching 1.06

0.63x (1.5)

8.8x (31.3)

3.4x (2.9)

1.6x (2.3)

19x (10.1)

2.3x (1.1)

1.3x (1.2)

bar labels: speedupx (slicing factor)

1.38x

1.49x
1.05x

1.05x

1.43x

1.27x

1.06x

bar labels: slowdownx1.41x

0.57x

0.80x

1.22x

bar labels: speedupx

Figure 3.3: Speedup due to tracing.

implementations, we ran each model for 105 iterations. Hand-coded models were run

for 106 iterations each.

3.6.1 Effect of tracing

First, we compare our tracing interpreter with Church and hand-coding. Figure 3.3

shows the change in iterations per second of the MH kernel using tracing versus

without tracing. We see that tracing results in an average spedup of 32x, well over

an order of magnitude.

The speedup also varies between models. Hierarchical regression model is sped

up by 68x, while the mixture model is sped up by only 17x. We attribute this to

the tracing interpreter removing overhead of the addressing scheme, and there being

different amounts of addressing overhead for different models. Hierarchical regression

contains many more random variables that go through a much longer loop than

that of the mixture model, resulting in longer addresses and thus more addressing
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Figure 3.4: Performance of hand-coded C++ versus traced Church programs.

overhead. We also observe that larger models such as the LDA topic model achieve

fewer iterations per second than the simpler models (such as the mixture model).

This is a consequence of the amount of computation needed per iteration.

Figure 3.4 compares performance relative to that of a hand-coded implementation.

We see that the code generated by tracing is about as fast as that of hand-coding,

being close to the same speed on average.

3.6.2 Effect of slicing

Now we consider the effect of slicing, which attempts to recover the minimal compu-

tation per M-H iteration. Figure 3.5 shows speedup of slicing versus tracing. We see

that slicing can sometimes be of a huge benefit, such as with hierarchical regression

and the LDA topic model (8.8x and 19x speedups), while it can make the performance

of the linear regression model worse.
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Figure 3.5: Speedup due to slicing.

We hypothesize that the longer (on average) the slices are in relation to the original

trace, the smaller the speedup will be. We thus define a slicing factor : the trace length

(number of statements in the trace) divided by the average length of a slice (averaged

over all variables). A slicing factor of 1 means that slices are each as long as the full

trace and we do not expect any speedup. A slicing factor of 10 means that slices have

on average 1/10 the number of statements as compared to the full trace, and we expect

the speedup to be around 10 times faster. Note that this is a coarse approximation;

not every trace statement takes the same amount of time. Nevertheless, we see that

the speedup is on the same order of magnitude as the slicing factor, and the two are

correlated.

3.6.3 Costs of tracing and slicing

Figure 3.6 shows the contribution of slicing to the time taken to compile a trace.

We see that cost versus tracing alone is generally within a factor of two. This

is despite that our algorithm for slicing is O(N logN) (N is the number of trace
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Figure 3.6: Cost of slicing.
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statements) while tracing is O(N). We attribute this to the fact that tracing has a

much bigger constant factor involved in interpreting the original program step by step,

while we employ data structures for slicing that do not have almost no interpretative

overhead.

In absolute terms, we observe that the cost of slicing is small relative to the

speedup. For instance, the LDA topic model costs 43 percent longer compile time to

give a M-H kernel that is 1200 percent faster.

Overall our technique generates MCMC kernels that are dramatically faster than

the unoptimized Lightweight-MH. This is especially true when models exhibit lots

of independent structure, allowing slicing to isolate smaller computations. In the

hierarchical regression and LDA topic model benchmarks, we achieve speedups of

598x and 342x relative to the untraced version!

3.6.4 Open-universe models

Open-universe models require the compilation of multiple traces and impose an over-

head in both generating and compiling the extra traces and switching between them

at runtime. We ran two open-universe models:

1. Model selection, choosing between the sum versus the product of two Gaussian

variables.

2. Polynomial regression for degrees of polynomial 1 through 4 on 9 (x, y) data

points.

We compared SHRED against hand-coding and Lightweight-MH, evaluating both

iterations per second and total runtime.

We see that although our technique results in a clear speedup of the kernel by

around an order of magnitude, hand-coded versions of the open-universe models are

still much faster, by around an order of magnitude. We attribute this to the need to

repeatedly save and load traces whenever a structural change occurs.
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Open-Universe - iter/s Untraced Shred Hand

model-selection 8.51E+04 1.11E+06 8.77E+06

polynomial-regression 5.21E+04 7.47E+05 2.72E+06

Table 1

Open Universe - Runtime Untraced Shred Hand

model-selection 11.756 2.149 0.114

polynomial-regression 19.181 3.848 0.368

model-selection

polynomial-regression

Iterations per second
0.00E+00 2.25E+06 4.50E+06 6.75E+06 9.00E+06

Untraced
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Figure 3.7: Performance on open-universe models.

3.7 Related Work

Probabilistic programming languages. Our system provides a much more effi-

cient implementation of Metropolis-Hastings-based queries [46] for the Church prob-

abilistic programming language [16]. Other inference algorithms for Church can be

better for some classes of programs [37]. Our techniques could likely be used to accel-

erate these other Church algorithms, and also algorithms for a variety of other uni-

versal probabilistic programming languages (such as Hansei [22] and Figaro [34]).

Other probabilistic programming languages take a different approach, using a

simpler, non-Turing-complete language specialized for certain kinds of probabilistic

computations. BUGS [41] and JAGS [1] focus on simpler probabilistic models with

fixed control flow. Our techniques could apply to these languages as well.

Just-in-time compilation. Our technique has some aspects in common with Just-

in-time (JIT) compilation, where we opportunistically replace segments of a running

program with optimized versions of it to improve performance. JIT has a long his-

tory [6], with trace-based JIT compilation receiving renewed interest. Much of the

work focuses on applying such techniques to JavaScript, a widely used language for

specifying client-side scripts on web pages. In particular, by specializing the code in

loops to the types actually used in them at runtime, speedups of an order of magnitude

are possible [15].
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Incremental computation. The discipline of incremental computation aims at

minimizing computation in the situation of a function receiving a series of changing

inputs. We do not address incremental computation in the same generality as those

who have worked on self-adjusting computation [4]. Rather, we focus incrementalizing

only our traces, which do not contain control flow and consist of a static sequence

of function calls. We use a program slicing-like [45] method to compute the set of

statements affected by a proposal to a random choice.

3.8 Discussion and Future Work

We have shown that compilation techniques—tracing and slicing—can generate MCMC

kernels whose performance is on par with hand-written code. While the initial com-

pilation overhead, which is sometimes in seconds, is not justified for simple models

that are only run once, it is very useful in even somewhat complex models. Never-

theless, improving compilation efficiency is a viable avenue of future work. Adapting

further techniques from the compilers literature such as hot path detection and trace

trees [40] would allow online detection of such complexity, adaptively selecting paths

to compile based on execution frequency. For MCMC, this would mean only tracing

paths where MCMC will spend the most iterations. In addition, for some programs

it is not necessary to generate the entire trace to determine the form of the slices. For

example, for an Ising line model on a thousand sites, there are only three different

forms the slice can take, not a thousand.

Our technique also motivates further work that simply use the optimized code.

Two such ways include compiling ahead of time for an unknown data set and running

several copies of the same compiled code in parallel, which both further amortize

compilation time. We are exploring the generation of probabilistic hardware, which

has extreme “compilation overhead” but lends itself well to these use cases. Moreover,

there are inference algorithms such as locally-annealed reversible jump [49] that rely

on running on a fixed set of variables for many iterations.

The original Lightweight-MH paper [46] highlighted the possibility of using

general code transformations to improve performance of probabilistic inference. We
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have largely succeeded, and we attribute this to the fact that the model represen-

tation is programmatic, allowing application and adaptation of general compilation

techniques. Our technique could be the first of many ways in which such general

techniques can be adapted to perform efficient inference.



Chapter 4

Solitaire: Traces for Procedural

Modeling

Now, we consider how traces are useful for performing an altogether different kind

of inference: systematic search. Systematic search, at its essence, is going through

all possibilities one at a time until one finds some answer that satisfies some desired

constraints.

1. In probabilistic inference, it can be useful to use systematic search to find points

in the support of a distribution, or to repeatedly use it to find the MAP assign-

ment.

2. For inference languages in general, systematic search can be quite useful when

the constraints are difficult to satisfy and there are not that many satisfying

assignments compared to the product of all domains of choice variables.

In this chapter, we investigate the use of systematic search for procedural content

generation in graphics. We also address a limitation of the Shred system described

in the previous chapter: having to generate and switch between multiple traces.

I therefore introduce Solitaire: a trace graph compiler for systematic search prob-

lems. Solitaire, like Shred, traces, but does not save individual paths; it saves a trace

graph that can represent multiple control flow paths in one loop-free program. This

47
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is a very flexible representation that can then be compiled to a formula for any state

of the art constraint solver, such as Satisfiability Modulo Theories (SMT).

4.0.1 How versus What

The game of procedural content generation with constraints is finding the right spot

in the classic tradeoff in difficulty between recognizing and generating. If it’s easy

to recognize it might be hard to generate. If it’s hard to generate it’s probably easy

to recognize. With procedural modeling with constraints, it’s replacing user-specified

generation rules with user-specified recognizing functions. Although the difficulty is

then left to the computer to generate satisfying models, we obtain an interface with

greater expressive power.

And in this game, languages for inference such as probabilistic programming lan-

guages are the endpoint. This is because they allow an arbitrary mix of constraint-

based modeling with forward generation. One can forward generate the parts that

are obvious and leave the difficult parts in the form of constraints. The inference

language’s inference algorithm then (hopefully) produces satisfying models.

This is not a new idea; the notion of a language with both generation and con-

straints goes as far back as the ‘amb‘ operator for Lisp (aka nondeterministic program-

ming). In this work, we apply probabilistic/nondeterministic programs to procedural

modeling. We produce a trace graph, allowing us to leverage the state of the art in

existing algorithms for finding satisfying assignments (SMT solving).

4.1 Solitaire Overview

We cast procedural modeling with constraints as non-deterministic programs with

assert statements used to denote constraints. Then, we repeatedly trace the original

program, building up a trace graph. We then compile the trace graph to a SMT

formula. Satisfying models correspond to satisfying assignments to the formula. This

figure summarizes the situation:

To guide intuition, we will first explain how Solitaire is used to describe and
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Models satisfying 
constraints

Exploration iteration (using 
trace graph compilation)

Solution iteration (using SMT 
solver)

Input program

F(x) = if c then F(y) else G(x)...
m = F(range(4, 10))...
constr = 
  assert(rule1(m) and rule2(m)...)
…

Satisfying assignments:
Program executions satisfying 
assertions

Trace graph:
x3 <- x2 == 0
x4 <- if(x3, uneval, x0)
...

Updated 
trace graph
x3 <- x2 == 0
x4 <- if(x3, 
x1, x0)
...

...

Figure 4.1: Solitaire system design.

generate a group of tables and chairs, with the tables adjacent to each other to form

a larger table, and the chairs all facing the tables. Such layouts featuring furniture

have featured in several instances of previous work [29, 50, 49] in which random

walk techniques based on Meteropolis-Hastings were used to generate them. The

constraints used in this example are as follows:

1. The tables touch to form a bigger table, and there are two tables.

2. All furniture elements are inside the room, and the room’s shape fits the group.

3. The first three seats face the first table, and the second three seats face the

second table.

Figure 4.2 shows an example layout.

4.1.1 Non-determinism and constraints

In Solitaire, the user specifies constraints using a combination of non-deterministic

values along with the assert primitive. For instance, this is the program describing a
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Figure 4.2: Workspace layouts: a domain where forward generation is difficult.
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pair of numbers x, y, each between 0 and 10, such that their sum was 10.

x = range (0 ,10);

y = range (0 ,10);

assert(x + y == 10);

return x,y;

range specifies a non-deterministic value, much like a random choice in the prob-

abilistic programming languages. assert essentially blocks any execution where its

argument is false. In this case, satisfying assignments to (x, y) would then include

pairs such as (4, 6) or (1, 9).

For a more complex usage of non-determinism and constraints, below is the defi-

nition of the facing constraint for furniture layouts:

facing = fun(from , to) {

let rot = from.rot;

assert ((( from.x2 >= to.z1) => (rot == 0)) and

((to.x2 >= from.x1) => (rot == 2)) and

((from.y2 >= to.y1) => (rot == 1)) and

((to.y2 >= from.y1) => (rot == 3)));

}

x1 and x2 are accessors for the left and right edges of an object, respectively. rot

is the orientation of the object. There are four allowed orientations corresponding

to the cardinal directions; the object is rotated by rot * pi / 2. To perform non-

deterministic object modeling with a facing constraint, the model writer creates ob-

jects where the x1,y1,x2,y2 fields are assigned to non-deterministic values. Functions

such as facing then restrict possible arrangements.

4.1.2 Concise specifications through recursion and iteration

The above mechanics of non-deterministic values, assetions, and systematic search

are reproduced in existing constraint languages. However, Solitaire is built on top of

a general purpose language, allowing such constraint programming to take advantage

of the full expressives. This includes not just grammar-like recursion schemes, but

arbitrary iteration patterns from programming languages.
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In this instance, the layout includes two tables, four chairs, and one sofa. The

code relevant to generation of tables follows:

make_table = fun () {

width , height = 6, 3;

rot = range(0, 3);

x, y = range(0, 32), range(0, 16);

return Obj(" table", widht , height , rot , x, y);

}

repeat = fun(n, f) {

if (n == 0)

then return [];

else return [f()] + fun(n - 1, f);

}

...

tables = repeat(2, make_table );

...

Note the definition of repeat, which is a recursive function for specifying multiple

objects. This is similar in spirit to attribute grammars with recursive non-terminals

carrying parameters, which are also suited for specifying multiple objects. Note that

a recursive function was not necessary; it would have served just as well to employ an

iteration construct such as for or while. Sofas and chairs are generated in a similar

manner:

chairs = repeat(4, make_chair );

sofas = repeat(1, make_sofa );

Finally, the facing constraint is applied to the generated tables and chairs from be-

fore through iterating over each chair, selecting one of two tables non-deterministically,

and applying the facing constraint:

chair_table_facing = fun(chairs) {

t = tables[range (0 ,1)];

for c in chairs:

facing(c, t);

}
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The utility of languages such as Solitaire for procedural modeling should now be

clear: the user has separated the concerns of generating the model versus specifying

constraints on it. This allows the user to deal with each one without having to account

for idiosyncracies in the definition of the other.

4.1.3 Structural variation

Note that the layout discussed above constrains a fixed number of layout elements.

With a non-deterministic/probabilistic language, one can easily express uncertainty

in the number of elements. Solitaire can express arbitrary recursion and iteration

with branch constructs, which makes it easy to express uncertainty in the number

of elements in the layout. Design parameters over such structural properties can

therefore be changed in a way that does not involve a protracted editing process. For

instance, if the user wished that the number of tables and chairs were varying, and

that there were more chairs than tables, only the lines specifying their generation

need be changed, and the proper assertion added:

tables = repeat(range(1,5), make_table );

chair = repeat(range (2,6), make_chair );

sofas = repeat(range (1,3), make_sofa );

assert(length(tables) < length(chairs ));

By changing just four lines, the program now specifies an open-world model; there

are one to three tables, four to six chairs, and additionally the number of chairs is

greater than the number of tables. We show the resulting layouts in the Results

section.

4.1.4 Satisfying constraints by trace exploration and SMT

solving

How does the algorithm behind Solitaire search for executions of the program that

satisfy assertions? One can partition the entire space of possible executions (corre-

sponding to models) into individual control flow paths, each of which are represented

by a single trace.
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In our case, we form traces and then pass each trace to a systematic search solver

(here, the Z3 SMT solver). Our bet is that it is easy to find a path with solutions on

it, and that satisfying models on these paths can be easily found using SMT solving.

Because each trace only represents a previously-seen control flow path, the possible

program executions that a set of traces represent are in general a subset of all possible

program executions. We construct a trace graph; an abstraction that compactly covers

the program executions that are the union of all possible program paths represented

by individual traces in aggregate.

Our algorithm can be separated into two separate phases, exploration and solving.

The exploration phase simply constructs a trace graph. The solving phase employs

the SMT solver to find satisfying assignments to the formula compiled from the trace

graph. Below is pseudocode for our algorithm:

Algorithm 2: Solitaire

Input: Program P , # exploration iterations EN , # solution iterations SN .
Output: Set S of models satisfying constraints

1 S ← {}
2 T ← EmptyTraceGraph()
3 for i ∈ 1 . . . EN do
4 T ← TraceExplore(P, T )

5 Tsmt ← CompileToSMT(T )
6 for i ∈ 1 . . . SN do
7 s← SMTSolve(Tsmt, S)
8 if Unsat(s) then
9 return S

10 S ← S ∪ {s}
11 return S

We are given a program P describing a layout along with the number of explo-

ration and solution iterations (respectively, EN , SN). The output is a set of models

S satisfying constraints. Each exploration iteration updates a trace graph T using

TraceExplore.

TraceExplore is the symbolic compiler heart of Solitaire. TraceExplore

runs the program freshly sampling all random choices, then adds the branches taken
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by the resulting program path to T . Because we explicitly track control flow merges

and common segments between paths, there may be many paths depicted for the cost

of one extra random program run.

Next, the solution phase comes up, where we compile T to a SMT formula. Each

solving iteration SMTSolve attempts to find one satisfying model that is not equal

to any model found so far. Note that it is possible to run out of solutions because all

of them have been found, or that the original model is infeasible to construct in the

first place. In this case we exit early and return the current set of solutions.

4.1.5 Trace graphs

Trace graphs are a close cousin to the directed graph of basic blocks and trace trees

in the compilers literature. Trace graphs avoid duplication of code that is common

to multiple control flow paths. All control flow join/meet events are explicitly repre-

sented in the trace graph. This has two advantages, the first of which is to cut down

on the amount of memory needed to represent the space of executions compared with

just recording a flat list of traces. The second advantage is a little more subtle and

has to do with how much of the space of execution is known after each exploration

iteration. Our exploration step is based on running the program with a refreshed, ran-

dom assignment of values to non-deterministic choices. While only one more concrete

program path was actually visited by our exploration step, it may result in a dispro-

portionate number of other paths that have been discovered by tracking join/meet

events.

We illustrate the advantages of a trace graph over a flat set of traces by an ex-

ample. Suppose the original program included many control flow events, such as the

computation of a random subset of {1 . . . n}:
flip ():

x <- range (0 ,1):

return (x == 0);

subset(n):

if n == 0:

then return [];
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else if flip ():

then return [n] + subset(n - 1)

else return subset(n - 1)

subset forms a list of random numbers that is some subset of the integers {1 . . . n}.
On each iteration, subset first checks if n == 0 in which case we are done with the

subset. On other cases, it first samples a non-deterministic Boolean using the flip()

function. If the flip() returns true, subset appends the current value of n to the result

and continues. Otherwise it simply continues.

In terms of program paths, the possible set of paths is O(2n), exponential, because

every different control flow path can represent only one possible subset. However, if

we explicitly track control flow joins during trace exploration, and properly merge

program states when control flow joins happen, we can cut this down to O(nk).

Similar results have been reported in recent work on solver-aided DSLs and symbolic

execution [42].

4.2 Formulation

At a high level, the Solitaire algorithm combines symbolic execution/bounded

model checking with a probabilistic/non-deterministic language [3], producing propo-

sitional logic formulae whose satisfying assignments correspond to program executions

that do not violate any assert statement. In this section, we give the formulation of

our symbolic execution in detail.

Interface. The input is how many times the program is symbolically explored: the

number of exploration iterations. Each exploration iteration symbolically executes the

program along a random control flow path until program halt, adding as much infor-

mation as possible to an existing trace graph, which is compiled to a SMT formula.

In each exploration iteration, every random choice is freshly sampled to encourage

exploration of different paths.
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4.2.1 Mitigating path explosion

The goal of symbolic execution coincides with ours: to find executions of a non-

deterministic program that do not violate any assert statements. A major design

decision is whether or not the space of program executions is explored on a path-by-

path basis. In our setting, we would like to deal with 3D models that have a varying

number of objects and consequently, a potentially very high number of valid program

paths.

It may then be exceedingly costly to encode every path separately, which easily

becomes a formula whose size is exponential in the average number of program steps.

We would like a compact encoding that depicts possibilities of multiple paths in a

way that maximizes the amount of shared structure, leading to a smaller formula.

Our solution is to allow path by path exploration, but at the same time, en-

code control flow merges explicitly, as is often the case in many symbolic execu-

tion/bounded model checking systems [12, 47]. Each exploration iteration on the

program remembers the current trace graph, updating it in the portions where unex-

plored segments of paths exist.

This approach some similarities with a recently developed technique, the lightweight

symbolic virtual machine [42], which addresses similar needs. Solitaire is different

in that it allows multiple executions of the input program. In particular, we do not

eagerly evaluate both branches when encounting an if-statement; we only expand

branches that have been concretely visited. Yet, due to explicit tracking of control

flow merges, we are still able to obtain information about many unexplored paths.

Bitvector domain. Another set of design decisions concern the domains over

which we are finding satisfying assignments. We chose to use integer arithmetic

with booleans, with all values represented as 16-bit integers. It captures an inter-

esting subset of all procedural models while at the same time, much work has been

devoted to making this case run efficiently. In particular, Z3 [13], the solver we use,

has optimizations specifically tailored to the bitvector case. While we can in princi-

ple extend our technique to handle arbitrary nonlinear real arithmetic with arbitrary

data structures, such formulae can even be undecidable for satisfiability.
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StructureInitial Trace Graph

x0 <- range(0,4); // x0 sampled as 1
x1 <- x0 % 2;
x2 <- x1 == 0;
x3 <- -5;
x4 <- if(x2, ---, x3); // uneval branch

x5 <- range(0,1); // x5 sampled as 0
x6 <- x5 % 2;
x7 <- x6 == 0;
x8 <- 10;
x9 <- if(x7, x8, ---);

x10 <- x9 + x4;
x11 <- assert(x10 > 0);
return x11;

Formula

0  x0  4^
x1 = x0 mod 2^

x3 = �5^
x2 = (x1 = 0)^

x2 ) R0^
¬x2 ) x4 = x3^

0  x5  1^
x6 = x5 mod 2^

x7 = (x6 = 0)^
x8 = 10)^

x7 ) x9 = x8^
¬x7 ) R1

x10 = x9 + x4^
x11 = x10 > 0 ^ x11^

¬R0 ^ ¬R1

Figure 4.3: Initial trace graph and SMT formula.

4.2.2 Example

We show how our technique works through a simple example program:

F = fun(x) {

if (mod(x,2) == 0) then return 10 else return -5;

}

n = F(range (0 ,4)) + F(range (0 ,1));

assert(n > 0);

return n;

The procedure F first checks whether or not its input is even with mod(x,2) == 0. If

the input is even, 10 is returned. Otherwise, F returns −5. We calculate n by calling

F twice, once with an integer in the range [0, 4] (range(0,4)) and another time with a

binary variable (range(0,1)). We then constrain n > 0 using assert. Upon executing

the program for the first time, we obtain an initial trace graph.

Figure 4.3 shows an initial trace graph along with the compiled SMT formula. The

trace graph consists of all primitive operations taken during the program run. Note
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StructureNext Trace Graph

x0 <- range(0,4); // x0 sampled as 2
x1 <- x0 % 2;
x2 <- x1 == 0;
x3 <- -5;
x12 <- 10;
x4 <- if(x2, x12, x3); // new branch

x5 <- range(0,1); // x5 sampled as 0
x6 <- x5 % 2;
x7 <- x6 == 0;
x8 <- 10;
x9 <- if(x7, x8, ---);

x10 <- x9 + x4;
x11 <- assert(x10 > 0);
return x11;

Formula

0  x0  4^
x1 = x0 mod 2^

x3 = �5^
x12 = 10^

x2 = (x1 = 0)^
x2 ) x4 = x12^
¬x2 ) x4 = x3^

0  x5  1^
x6 = x5 mod 2^

x7 = (x6 = 0)^
x8 = 10)^

x7 ) x9 = x8^
¬x7 ) R1

x10 = x9 + x4^
x11 = x10 > 0 ^ x11^

¬R1

Figure 4.4: Next trace graph and SMT formula.

how we only took one branch of each if of the two calls to F. The first call, the input

to F, x0, was sampled as 1, which is odd, so the else branch was taken. The second

call, the input to F was sampled as 0, so the then branch was taken. Unevaluated

branches are marked with ---.

At any point, a trace graph can be compiled to a SMT formula, unevaluated

branches and all. The right side of Figure 4.4 shows the resulting formula. Alterna-

tives of branches have been compiled to logical implications. x2 is the branch variable

associated with the first branch. Note how we avoid unexplored branches, which is

essential for the SMT solver to return a result consistent with program semantics.

The first unexplored branch is represented as x2 ⇒ R0 ∧ ¬R0; i.e., if the unexplored

branch is taken, the formula cannot be satisfiable.

Now suppose we run the program again, keeping the previous trace graph in mind.

Suppose all random choices were the same except for the first, where x0 has been

sampled as 2 (even). In this case, we have visited a new branch; the else-alternative

of the first if. Figure 4.4 shows the resulting trace graph and SMT formula.
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Note how the the unexplored branch is the only change to the formula. The rest

of the trace graph was common to both paths and is therefore unchanged. In the

SMT formula, R0 has been taken out because both alternatives of the first branch

have been explored. There is only one remaining unexplored branch, signified by the

¬R1 constraint. Then, in order to find satisfying assignments, it is a matter of taking

the generated SMT formulae and running a SMT solver.

4.2.3 Finding solutions

If a satisfying assignment exists, the SMT solver will return a model ; a set of as-

signments {(xi, vi)} that tell us what settings of variables it takes to make the entire

formula evaluate to true. Some of these variables will correspond to particular ran-

dom choices in the original program. We obtain the satisfying program execution

(and model) by re-running the program against those satisfying random choices. To

obtain further solutions, we ask for satisfying assignments that are different from all

those produced so far: the all-different constraint.

Path-sensitive all-different constraint. In this all-different constraint, there is

one more small though important implementation detail. Suppose the set of solutions

found so far is the set {sij}ij, where i ∈ 1 . . . n indexes the random choices and

j ∈ 1 . . .m indexes over different solutions. The traditional all-different constraint

would have us apply

m∧
j=1

n∨
i=1

¬(xi = sij).

However, this is not desirable, because if a random choice does not exist in a

particular solution, this can cause many additional solutions to be returned that

appear no different from the existing one, since it is frivolously assigning different

values to non-existent random choices. We also need to record the path conditions

pi . . . pn, one for each random variable. Then, we restrict solutions to those that are
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different on existing random choices:

m∧
j=1

n∨
i=1

(pi ⇒ ¬(xi = sij) ∧ ¬pi ⇒ xi = Q),

where Q is a reserved constant (any consistent choice will do). This causes the

solver not to pick different assignments to non-existent random choices, and allows

us to see a visibly different 3D model with each different solution.

4.3 Algorithm

We now give the full workings of the Solitaire symbolic compiler.

4.3.1 Trace exploration

The main part is the TraceExplore procedure (see Algorithm 2), which takes a

program P and current trace graph T , and returns an updated trace graph T ′ using

the trace graph evaluator Tge. TraceExplore is run iteratively for the desired

number of exploration iterations. Below is pseudocode for TraceExplore.

Algorithm 3: TraceExplore

Input: Program P , trace graph T
Output: Updated trace graph T (destructive update)

1 RewindState(T )
2 PushBranchFrame(T, top, true)
3 Tge(P, T )
4 PopBranchFrame(T )
5 return T

All the real action is in the call to Tge, but there are some salient details to

introduce already.

Trace graph data structure. We represent the trace graph as a stateful object.

The trace graph consists mainly of a hash table that maps from branch frames to
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trace segments and abstract stores. Branch frames form branch stacks. We will further

define these objects in the following paragraphs. The state also includes a cursor,

which always stores the current branch stack and offset into the corresponding trace

segment. RewindState restores the cursor to the empty branch stack and 0 offset.

Branch frames and branch stacks. A branch stack consists of a list of branch

frames. Each branch frame consists of a dynamically unique (but same if re-visited

on different runs) string label corresponding to the if-statement that caused it, along

with true/false which describes which branch alternative is in question (then/else

respectively). The current branch frame is the top of the branch stack, and the

operations PushBranchFrame and PopBranchFrame push or pop one branch

frame.

Unique but predictable variable names. We employ the addressing scheme [46]

to obtain dynamically unique labels that are the same if re-visited on different runs.

For the branch frame labels discussed above, a unique address is associated with the

condition part of the if-statement. We also associate an address with every primitive

operation. This is essential to being able to re-visit and update a trace graph on

multiple program runs.

Trace segments and abstract stores. Trace segments are sequences of primitive

operations that do not include branching. Trace segments are what is compiled to

SMT formulae. Abstract stores depict concretely/partially evaluated values and list

data structures that allow us to emit code to trace segments that do not include any

list operations, leaving it in pure integer arithmetic and boolean logic. We can do

this because our constraints all directly operate only on booleans and integers, save

for null?, which we show can be reduced to decision trees over booleans.

4.3.2 Trace graph evaluator

Now we describe Tge, the trace graph evaluator. Tge is based on existing simple

interpreters for call-by-value functional languages [3]. The difference is that when
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executing primitive operations, statements are added to the trace graph, and when

executing and exiting branches, the branch frame that is being pushed or popped is

recorded, along with all integer/boolean values in the abstract store that may need

to be used later on.

Tge differs from a traditional interpreter primarily in handling of primitive val-

ues, primitive operations, and branches. If a non-primitive function call or function

definition occurs, we employ the same definitions as in a traditional call-by-value in-

terpreter. These cases are exactly the lambda, letrec and apply (non-primitive) cases

in SICP chapter 4 [3].

Primitive values. Our language operates on integers, booleans, and cons cells

(lists). Tge, however, needs to be able to emit code for trace segments and to

represent lists in the abstract store. We therefore pair every primitive value that is

computed with a unique variable name. We call this pair of (variable, value) a cell.

Tge expects all procedures to take and return cells.

Primitive functions. Primitive functions of the language are as follows:

+ | - | * | / | and | or | not | cond _ _ _

cons | car | cdr | null?

This is integer arithmetic, boolean logic with a ternary operator cond, and the

classic list operations. For primitive functions that are not list operations, Tge

works using the following pseudocode:

Algorithm 4: Tge-prim-nonlist

Input: Address i, Primitive operator p, input cells a1 . . . ak, trace graph T
Output: Output cell r, updated trace graph T

1 v1− . . . vk− ← Vals(a1 . . . ak)
2 r− ← p(v1 . . . vk)
3 v1+ . . . vk+ ← Vars(a1 . . . ak)
4 r+ ←MakeVar(i)
5 Emit(r+ ← p(v1+ . . . vk+))
6 return Cell(r+, r−)
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This works much like a normal tracing semantics; values and variables are ex-

tracted from the cells, the proper trace statement is emitted, the actual value is

computed, and finally we return a cell as a result.

MakeVar is a function that deterministically computes a variable name given

the current address. MakeVar in conjunction with the addressing scheme is used

instead of a gensym, because we require consistent variable names on subsequent runs

of the program.

Emit adds to the trace segment of the current branch frame. Note that Emit

needs to only add code when the current branch frame has never been visited before.

This is accomplished by querying the current trace graph’s hash table for the current

frame. If the current frame exists, Emit will do nothing. Otherwise, it will output

its input code at the current cursor position, and advance the cursor by one step in

its offset.

For the list operations

cons | car | cdr | null?

we need to do something more sophisticated, because we aim to emit only code

that operates on integers and booleans. Instead of directly emitting a statement,

these list operations act on the abstract store. A similar technique was used to

achieve allocation removal optimizations in the PyPy tracing JIT compiler [10]. The

pseudocode for each case is as follows.

Algorithm 5: Tge-cons

Input: Trace graph T , address i, input cells (x+, x−), (y+, y−)
Output: Output cell r, updated trace graph T

1 r+ ←MakeVar(i)
2 StoreWrite(T, r+ : Cons(x+, y+))
3 return Cell(r+, r−)

Tge-cons emits no code; rather, it updates the abstract store. StoreWrite

takes the current branch frame’s abstract store and updates it with the input associ-

ation of variable and abstract frame value.
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Abstract frame values. Abstract frame values can be the following:

V ::= Cons(s, s)|Const(v)|Ref(s)|Phi(s, s, s)

where s denotes some variable name used to lookup in the store, and v a primitive

constant value (nil, integer or boolean). We can depict arbitrary pointer structures in

this scheme. Cons represents a cons cell. Phi does the heavy lifting of representing

control-flow-merged objects; the first argument is the condition variable of the if-

statement of interest, and the second and third the identity of the object for true

versus false evaluations of the condition variable, respectively.

Algorithm 6: Tge-car

Input: Trace graph T , address i, input cell (x+, x−)
Output: Output cell r, updated trace graph T

1 r+ ←MakeVar(i)
2 r− ← car(x−)
3 a← StoreChase(T, x+, car, false)
4 if ¬List?(a) then
5 Emit(r+ ← FrameVal2Expr(a))

6 return Cell(r+, r−)

For car, we run Tge-car. In this case, StoreChase looks up the abstract frame

value associated with the first member of the list being processed. If the result is not

a list, we emit the resulting constant or reference. Otherwise, we simply continue

interpretation. StoreChase can be considered the heart of the symbolic compiler.

We will describe it in detail later.

Tge-cdr is similar, but uses cdr as the underlying primitive operation:

We now see the basic idea: perform an abstract store operation whenever a list

operation is involved, and if the result is not a list, make it visible to the current trace

segment. For Tge-null?, we know it will not return a list, so its implementation is

shorter than the others:
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Algorithm 7: Tge-cdr

Input: Trace graph T , address i, input cell (x+, x−)
Output: Output cell r, updated trace graph T

1 r+ ←MakeVar(i)
2 r− ← cdr(x−)
3 a← StoreChase(T, x+, cdr, false)
4 if ¬List?(a) then
5 Emit(r+ ← FrameVal2Expr(a))

6 return Cell(r+, r−)

Algorithm 8: Tge-null?

Input: Trace graph T , address i, input cell (x+, x−)
Output: Output cell r, updated trace graph T

1 r+ ←MakeVar(i)
2 r− ← null?(x−)
3 a← StoreChase(T, x+, null?, false)
4 Emit(r+ ← FrameVal2Expr(a))
5 return Cell(r+, r−)

Branching. Algorithm 9 describes the branching case of our trace graph evaluator.

Depending on the result of the condition part, we evaluate the then- or else-expression

using Tge. Branch frames are properly pushed and popped during this process.

We conceptualize branches as returning tuples of multiple values, each of which

represents control flow merged symbolic integers or booleans. UpdatePhi is used to

add new return values associated with the branch frame. In this case, if the branch

returns a non-list value, we need to update the associated tuple.

Abstract store update. Now we describe StoreChase, the key mechanism to re-

trieve a value from the abstract store given some primitive list operation (car/cdr/null?).

The pseudocode is given below:

v+, is the variable representing the abstract store value on which we would like to

perform the abstract operator f of interest. f returns car/cdr/null? of abstract store

values, whose definition is shown in Algorithm 12.

First, we use LoadVal to look up the abstract value associated with v+ from
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Algorithm 9: Tge-if

Input: Trace graph T , address i, condition cell (c+, c−), then-expression t,
else-expression e

Output: Output cell r, updated trace graph T
1 PushBranchFrame(T, c+, c−)
2 r+ ←MakeVar(i)
3 if c− then
4 (t+, t−)← Tge(e, T )
5 (e+, e−)← (uneval, uneval)
6 r− ← t−

7 if ¬c− then
8 (t+, t−)← (uneval, uneval)
9 (e+, e−)← Tge(e, T )

10 r− ← e−

11 PopBranchFrame()
12 if ¬List?(r−) then
13 UpdatePhi(c+, r+, t+, e+)

14 return Cell(r+, r−)

the store. The key to this algorithm is to avoid exponential time spent re-updating

data structures when there are an exponential number of possible paths. We use

memoization to accomplish this. ememo is a string that represents the variable being

operated on, v+, along with the current abstract value to which v+ is bound. If

this changes, we know that we need to re-update. If re-updating is necessary (ememo

not found in memory), we attempt to apply the abstract operator f to the abstract

value. If the abstract value merely points at other values, in the case of Ref(v) and

Phi(c, v, v1, v2), we need to recursively call StoreChase to find what actual value

they correspond to.

For control flow merged symbolic values Phi(c, v, v1, v2), StoreChaseBr (Al-

gorithm 11) recursively applies StoreChase and the operator f to each alternative

of a branch, but memoizing the branch involved, not visiting any branch more than

once for the current program run. This is key to achieving sub-exponential perfor-

mance. In case ememo is found in memory, the restriction R tells us whether or not

to restrict residual updating. Abstract store entries from previous program runs may
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Algorithm 10: Tge-storechase

Input: Trace graph T , variable v+, abstract operator f , is-restricted R
Output: Frame value a, updated trace graph T

1 e← LoadVal(v+)
2 ememo ← StringAppend(v+,ToString(e))
3 if ¬ExistsInMem(ememo) then
4 switch e do
5 case Const(v)
6 r ← f(e)

7 case Cons(x, y)
8 r ← f(e)

9 case Ref(u)
10 r ← StoreChase(T, u, f, R)

11 case Phi(c, t, e)
12 Ref(t+)← If(t =

uneval,Ref(uneval),StoreChaseBr(T, (c, true), t, f, R))
13 Ref(e+)← If(e =

uneval,Ref(uneval),StoreChaseBr(T, (c, false), e, f, R))
14 emerge ← StringAppend(ir, v+)
15 efinal ← Phi(c, t+, e+)
16 WriteToParentFrame(c, emerge, efinal)
17 if ¬List?(t+) then
18 UpdatePhi(c, emerge, t+, e+)

19 r ← Ref(emerge)

20 WriteMem(ememo, r)

21 else
22 if ¬R then
23 StoreChase(T, v+, f, true)
24 else
25 return LookupInMem(ememo)



CHAPTER 4. SOLITAIRE: TRACES FOR PROCEDURAL MODELING 69

Algorithm 11: Tge-storechasebr

Input: Trace graph T , branch frame (c+, b), variable v+, abstract operator f ,
is-restricted R

Output: Frame value a, updated trace graph T
1 ememo ← StringAppend(v+, c+,ToString(b))
2 if ¬ExistsInMem(ememo) then
3 PushBranchFrame(T, c+, b)
4 a← StoreChase(T, v+, f, false, R)
5 WriteMem(ememo, a)
6 PopBranchFrame(T )
7 return a

8 else
9 return LookupInMem(ememo)

have been affected by the current run of StoreChase. If R is false, we continue

to run StoreChase but with R set to true. This induces some slowdown, but is

polynomial, not exponential.

Implementation. Solitaire and the above algorithms were implemented in Haskell [27].

As for the implementation of Tge, we used the tagless-final style [11]. In this style,

metalanguage (Haskell) constructs dictate mechanisms of variable binding and func-

tion application for the non-primitive constructs lambda,let,apply. The implementa-

tion details then concern only the semantics of primitive functions and evaluation

order. This is a good fit for our setting because we do not change how the non-

primitive language constructs work; we only need to deal with definitions of primitive

functions and branching.

As Haskell is a non-strict language, branching is easy to re-define in terms of lazy

procedures that replace if. The one remaining issue is to make sure our language

has call-by-value evaluation order. This is accomplished by wrapping all primitive

functions in a continuation monad, which forces an eager evaluation order.
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Algorithm 12: Abstract store operations

Input: Abstract value v, abstract operator f
Output: Abstract output value y

1 switch f do
2 case car
3 switch v do
4 case Const(v)
5 return car(v)

6 case Cons(x, y)
7 return Ref(x)

8 case otherwise
9 Error

10 case cdr
11 switch v do
12 case Const(v)
13 return cdr(v)

14 case Cons(x, y)
15 return Ref(y)

16 case otherwise
17 Error

18 case null?
19 switch v do
20 case Const(v)
21 return null?(v)

22 case Cons(x, y)
23 return false

24 case otherwise
25 return false
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4.4 Results

The purpose of Solitaire, like grammars before it, is to replace a manual creation

process with a concise description of the model in a formal language. It is about

saving work in generating a wide variety of models, efficiently. Therefore, this section

evaluates the Solitaire algorithm in terms of its efficiency and the visual diversity

of generated results. Efficiency will be evaluated against a random walk technique.

Simulated annealing was chosen because of its effectiveness as a general optimization

technique and its similar behavior to MCMC-based algorithms such as Metropolis-

Hastings in this setting of finding satisfying solutions.

The following domains will be considered:

1. Workspaces. Refer to the overview section for a description of the constraints.

The basic concept of a table and chair group is preserved. Here, I consider room

layouts that include a varying number of groups along with secondary objects

such as bookcases and whiteboards. The benchmarks evaluate fixed-structure

layouts of varying size: room-1 where there is 1 group of tables and chairs,

room-2, where there are 2, up to room-4. workspace-open is a benchmark

that combines the possible layouts of the other workspaces through making the

number of table/chair groups uncertain over 1,2,3. The resulting possible set

of models is then the union of those of workspace-1,2,3. Exploration iterations

produce larger formulas that represent a bigger subset of this model space.

2. Office building layouts. In these benchmarks, layouts of the interiors of office

buildings are synthesized, including the arrangement of hallways and offices.

Each office building consists of a set of connected hallways, each of which has

one or more sets of incident offices. In each such set, the offices are constrained

to be adjacent to the hallway and next to each other, so that they line up.

Their dimensions are also constrained to be 4x8 or 8x8, with positions and di-

mensions of all other elements constrained to be multiples of 4. I evaluated office

buildings where the connectivity structure of the hallways formed a diamond

(office-d4-4-4); that is, there are 4 hallways and each hallway is connected
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to the next, including the last and first hallways. The first two hallways have

two groups of 4 adjacent rooms adjacent and the last two hallways have just

one group of 4 adjacent offices. There are also two other, smaller versions,

office-l3-3-4 and office-l2-2-4, where there are three (two) hallways con-

nected in a chain with three (two) corresponding groups of offices.

4.4.1 Efficiency

This section compares Solitaire against simulated annealing (SA). Simulated an-

nealing is a global optimization technique, suited to searching for a single solution.

In contrast, Solitaire intends to produce a different and satisfying model every

iteration. All experiments were run on an Intel Core i7 2.3 GHz on an early 2012

Macbook Pro.

Comparison with simulated annealing. Solitaire was run for 8 exploration/-

solution iterations (yielding 8 different solutions). Simulated annealing was run for

8000K iterations or 5400 seconds (90 minutes), whichever came first. The formulation

of the SA kernel was a single-site proposal for each non-deterministic choice in the

corresponding SMT formula. Every assertion statement violated was given a cost of

9000 to allow for partial credit. The annealing schedule increased the inverse temper-

ature lineary from 0 to 100 in a number of steps equal to the number of iterations.

Results are summarized in the table below. “sol” and “sa” refer to the average and

standard deviation of time the solver spent to produce a satisfying assignment, taken

over the single run of 8 iterations. Exploration iterations and the constraint to avoid

previous solutions introduce sequential dependencies, resulting in increased variance.



CHAPTER 4. SOLITAIRE: TRACES FOR PROCEDURAL MODELING 73

Benchmark, Time (s) sol sa

workspace-1 4.45 avg, 0.10 stdev -

workspace-2 16.89 avg, 0.59 stdev -

workspace-3 53.43 avg, 2.46 stdev -

workspace-open 59.70 avg, 41.15 stdev -

workspace-4 121.91 avg, 7.07 stdev -

office-l2-2-4 9.35 avg, 1.96 stdev -

office-l3-3-4 45.67 avg, 13.17 stdev -

office-d4-4-4 583.58 avg, 242.44 stdev -

SA was never able to find a solution for any of the examples in the time allotted. It

is clear, therefore, that the scope of problems Solitaire capably handles is different

from that of simulated annealing, and in turn, any MCMC method that shares its

behavior. In addition, structural variation results in high variance in runtime. This

could be due to the fact that at the beginning, the formula is small. Then as the

exploration phase expands the formula, more time is needed to produce a solution.

4.4.2 Diversity

In this section, I show and discuss selected models taken from the benchmarks above.

All models in the figures were taken from runs of 8 iterations (8 models) on the

fixed-structure models (not workspace-open).

Workspaces. Figure 4.5 shows representative workspace furniture arrangements.

The room’s dimensions adapt to the number of groups. Furniture groups can either

be laid out in a line or packed into a square. In addition, the pairs of tables can attach

a variety of ways, subsequently allowing further variation in chair/sofa arrangements,

even as they are restricted to face the tables. It is apparent that many visually

and semantically different combinations of furniture are possible given the relatively

simple set of constraints.
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Office buildings. Even though the structural relationships between hallways was

fixed, there is a large amount of variability of secondary structure and form, that is

readily explored by the algorithm. Figure 4.6 shows the interiors synthesized from the

corresponding benchmarks. Many of the buildings exhibit realistic features such as

central courtyards, symmetric wings, and load-bearing spaces. These were emergent;

i.e., not explicitly planned or specified as part of the constraints, and only apparent

as the whole system including the solver is taken together.

As the difficulty of procedural modeling schemes increase, an important research

area will be in combining probability and logic: what kinds of bias do randomly

restarted systematic search techniques like the ones in Z3 exhibit for visually complex

problems?

4.5 Discussion and Future Work

A non-deterministic language is capable of expressing and solving constrained pro-

cedural modeling problems. Program analysis provides tools and techniques to ef-

ficiently explore the execution space of a non-deterministic program and find solu-

tions: directed testing and SMT solvers. Solitaire proved capable of generating

constrained models in a wide range of domains: workspace furniture arrangements,

office building interior layout, and platform game levels. All of these domains can be

of sufficient complexity to be out of the reach of stochastic local search techniques

like simulated annealing. The systematic search employed in SMT solvers is clearly

more suitable for these domains.

This could be due to the higher level of coupling between constraints. In a fur-

niture arrangement, it is sometimes possible to move just one furniture piece and

improve the constraint satisfaction, but in a this setting, there is not much space for

furniture pieces to move freely to an optiaml solution. In office building layouts, the

situation becomes harder: no changes can be made to any model parameter without

breaking some constraint. For the connected platforms, there were constraints dic-

tating the position and length of walkways in relation to platforms, which themselves
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needed to be away from other platforms by certain distances. Finally, there were con-

straints that the platforms touched particular points in space. It would be impossible

to move or resize a walkway or platform without violating a constraint.

Broadly speaking, the potential for techniques like Solitaire is to uncover new

domains that were previously closed to procedural modeling techniques due to ex-

pressivity or efficiency problems. Game content synthesis is such a domain, with

many complex pieces being required to fit together in space and satisfy semantically

important constraints. Beyond that, computer-aided design (CAD) has traditionally

dealt with the specification and direct manipulation of single models with many de-

sign constraints. It would be fruitful to explore how interaction techniques in CAD

can integrate with the database-amplification advantages of procedural modeling, and

conversely, to see how constraint satisfaction techniques employed in CAD apply to

procedural modeling.

Another potential line of inquiry will be into refining the distinctions between the

set of constrained procedural modeling problems efficiently solvable by systematic

search such as SMT solving versus random walk techniques. Solitaire is simply

one of the early steps in a line of development of algorithms that bridge random

sampling techniques with systematic search, where random sampling is only used to

explore the set of possible paths. What essentially makes a constraint hard to solve by

random walk? In what settings does systematic search of SMT solvers fail compared

to random walk? And finally, is there a viable way to combine the techniques? A

good answer to the last question demands further exploration of both fields as they

apply to procedural content generation.
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Figure 4.5: LEGO spaceships generated by Solitaire.
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Figure 4.6: Office building interior layouts generated by Solitaire.



Chapter 5

Model accretion

In this chapter, we present an algorithm that is inspired not with traces as intermedi-

ate representations for some other inference backend, but traces as abstract objects of

inference themselves. Can we design an inference algorithm around recording previous

program executions? What are its applications?

Procedural modeling using stochastic, generative processes can generate complex

models starting from just a few symbols and rules. One common set of methods for

creating generative models are L-systems [25] and shape grammars [36, 30]. Pro-

gramming languages that make random choices can also be used to generate models.

An office building with furniture in each office can be built using a program with

nested loops. The outer loop generates high-level structure such as hallways, while

the inner loops generate individual rooms, and then a furniture layout in each room.

More recently there has been interest in using probabilistic programming languages

to create generative models.

However, a long-standing problem with generative models is that it is hard to

control the output. Without controllability it is difficult for artists to generate the

content they want. One solution is to specify constraints on the output of the genera-

tive process. Hard constraints are logical conditions that must be absolutely satisfied

and often deal with physical validity (e.g., two pieces of furniture do not intersect ),

and alignment (the left edges of the tables are along the wall). Soft constraints are

continuous probability/cost functions describing relative desirability of models.

78



CHAPTER 5. MODEL ACCRETION 79

The most common method for finding models satisfying hard constraints is sys-

tematic search, such as using a SAT solver [28]. SAT solving techniques cannot

guarantee a solution in less than exponential time O(2N), although in practice they

employ heuristics that may allow them to find solutions more quickly. Stochastic

search can also be used [29, 48]. Stochastic search-based solvers take O(N2) in the

best cases, but unfortunately are not guaranteed to find a solution.

Our observation is that procedural models used in computer graphics often contain

repetition and hierarchical constraints. Subsequently, one can rearrange or recombine

portions of an existing model to generate new models. Since the existing models

satisfy the constraints, the new combinations are also likely to satisfy the constraints.

For instance, the furniture layout of one office can sometimes substitute for a layout

in another office, since the constraints on furniture do not span multiple offices.

We thus propose a stochastic search-based synthesis algorithm, model accretion

(MA). MA works by copying blocks of random choices from a set of initial solutions,

recombining and rearranging known good configurations. The key idea behind MA

is that the structure of the models reflects the hierarchical structure of the program.

For example, the layout of furniture in an office is generated by a function call. If we

group random choices within a function, we can copy them as a block into another

run of the program calling that function.

We show that synthesis using MA is much more efficient than using existing sys-

tematic or stochastic search methods. We evaluated MA on office layouts, video game

levels, and LEGO buildings. MA produced solutions 5-20x faster than systematic (by

SMT solving) and stochastic (Metropolis-Hastings) searches. For video game levels,

after MA generated the initial solution, MA produced further solutions 75x faster

than the SMT solver.

5.1 Related Work

Example-centric synthesis. The synthesis of textures [44] and layouts, particu-

larly from examples or a few template parts, is the most closely related set of tech-

niques. There are image synthesis techniques that reuse or otherwise recombine its
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portions, such as PatchMatch [8]. Synthesis with hard constraints can also benefit

from examples [48]. There is also interest in synthesis off of the 2-D grid, such as

with discrete element textures [26] and deformable templates [33]. We can also learn a

complete generative process from the examples [19][39]. Model accretion adapts such

example-centric techniques to general procedural modeling with constraints. Instead

of a grid or a specialized set of geometric primitives, it employs the structure of a

grammar or program (loops and recursion) to dictate the situations in which reuse

happens.

Solver-based and procedural synthesis. Other approaches focus on using a

solver and/or generative process to synthesize [30]. Quadratic programming [7],

stochastic search [50] [29][49] and systematic search [28] are popular approaches.

When one deals with arbitrary constrained generative processes, general stochastic

searches [38] and systematic searches [28] are used. We thus compared model accre-

tion (MA) against two leading approaches for synthesis of general procedural models

with constraints: Metropolis-Hastings (M-H) and SMT solving. However, model ac-

cretion is more than another isolated solving technique; in the long term, its value

is in amplifying the power of any given solver through recombination of the solver’s

outputs.

Tempering methods. Markov Chain Monte Carlo (MCMC) is a set of techniques

for approximating a given probability distribution. The simplest and most general is

Metropolis-Hastings (M-H) [17]. Optimization techniques such as simulated anneal-

ing [21] can also be formulated based on M-H. Based on this core concept, there are

also tempering [31] schemes that employ a sequence of temperatures that serve as

varying levels of difficulty for the search, so we can arrive at global optima sooner.

Model accretion can be placed in the design space of such tempering methods. Rather

than difficulty being controlled by an annealing sequence, it is controlled by copying

random choices from less complex distributions. In our setting, easier models are not

merely at a higher temperature, they are simpler models.
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5.2 Overview

In this section, we give the intuition behind model accretion (MA) through an exam-

ple: LEGO spaceship synthesis. Our spaceship program (Figure 5.1 left) generates a

list of N spaceship structures.

Program generating the model:

main(N):
    res = struct_loop(N, [cruiser_base(0,0,0)]);
    pair_loop(res, lambda a, b: 
                      assert(non_overlap(a, b)));
    return res;

struct_loop(n, acc):
    if (n == 0): return acc.
    else: let next = structure();
          assert(at_least_1_connected(acc, next));
          return struct_loop(n - 1, cons(next, acc))

structure():
    x <- randint(-20, 20); y <- randint(-20, 20); 
    z <- randint(-20, 20);
    return with_type(x,y,z);

with_type(x,y,z):
    i <- randint(0, 9);
    if (i == 0): return cruiser_0(x,y,z);
    else if (i == 1): return cruiser_1(x,y,z);
    ...

Structures:

Initial solutions
(N = 2):

callsite
random choice

Figure 5.1: Model accretion (MA) input: program generating LEGO spaceships and
initial solutions.

Each iteration of struct loop calls structure, to randomly generate one struc-

ture. Each structure has a type and a position (x, y, z), which are random values.

However, a random list of structures does not correspond to a valid spaceship. assert

statements are used to apply hard constraints. assert(at least 1 connected(. . . ))

asserts that each new structure must connect to some structure already generated,

and pair loop(res,. . . assert(non overlap(. . . )) ensures that structures do

not intersect. A satisfying model is a program execution that does not violate any

assert statement.
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We define a probability distribution p(x) over the possible program executions,

where log p(x) is proportional to the number of satisfied constraints and log p(x) = 0

when all constraints are satisfied. We would like to produce samples x from the class

log p(x) = 0. As this is also the maximum probability, synthesis can be seen as an

optimization problem, using p(x) as a landscape to navigate to log p(x) = 0. This is

as opposed to other formulations that produce samples from the entire distribution.

MA begins with a set of satisfying initial solutions. In this thesis, we produced

initial solutions by tracing the program and turning the trace into a logic formula [42],

querying satisfying assignments using systematic search with the Z3 SMT solver [13].

In general, any method to obtain satisfying program executions (including by hand)

is suitable.

Given program and initial solutions, MA repeatedly copies from the initial so-

lutions using the function call hierarchy. For example, a call to structure causes

sampling of the (x, y, z) and part type, defining a block of four random choices asso-

ciated with that procedure. Similarly, with type makes a single random choice over

part type, and defines another block of choices. Each block is defined by the proce-

dure call that produced it and the random choices made in that procedure call. Then,

the block from the initial solutions overwrites a block in the current assignment. We

call this a copy proposal. The mechanics of a copy proposal are shown in Figure 5.2.

This is in contrast to flat stochastic and systematic searches, such as single-site

Metropolis-Hastings (M-H) and SMT solving, which perturb only one random choice

at a time.

After the copy proposal is made, we still need to check that the program execution

satisfies the constraints. In our spaceship example, copying a structure block copies

in a spaceship structure of a given type at some (x, y, z) position, but the structure

may not satisfy the constraint. To encourage movement through the space, we follow

up every copy proposal with a single-site Metropolis-Hastings step.

The resulting synthesized models are shown in Figure 5.3, up to N = 6. We can

employ model accretion in a feedback loop; the models synthesized by MA in turn

can be used as the initial solution set for yet more complex models. If i = 1 . . . N ,

models from pθi can be synthesized from all solutions over pθ1 . . . pθi−1
. By building
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structure

with_type

structure
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x y z i x y z i

structure

with_type

structure

with_type

structure

x y z i x y z i x y z i

x

x0

Copying from (#parts = 2)

accept/reject, 
single-site M-H step, 
repeat

Before

After

Copy proposal

with_type with_type

Figure 5.2: Mechanics of a copy proposal.

up complex models from previous simpler ones, there are situations where models can

be synthesized faster than with techniques that proceed directly from scratch. We

refer to such a sequence of parameters as an accretion sequence.

5.3 Formulation

MA is a stochastic search-based optimization algorithm using the copy proposal. The

copy proposal randomly selects a solution xs from the initial solutions along with a

random block of choices c in xs. It then selects another random block of choices r in

the current assignment x, and replaces r with c, resulting in x′, which is accepted or

rejected as the next assignment according to the ratio:



CHAPTER 5. MODEL ACCRETION 84

Synthesized (N = 3):

N = 4

N = 5 N = 6

Using model accretion
with N = i off solutions for N = 2…i - 1:

Figure 5.3: Synthesized LEGO spaceship models.

min{1, pθi(x′)/pθi(x)}.

Note that MA does not satisfy detailed balance and is therefore not a valid pro-

ducer of samples of pthetai(x), despite the resemblance of the acceptance ratio to

Metropolis-Hastings’. This is fundamentally because the copy proposal only copies

from the initial solutions and never writes back to them.

We evaluate pθi(x
′) by running the program against a table of choices set to

those in x′ and keeping a running total of log pθi(x
′). See the paper on Lightweight

M-H [46] for details. We would like pθi to be lower when constraints are violated,

so every violated assertion multiplies the current value by some w < 1. We chose

logw = −10 in our examples, though the choice is not critical. Let ai denote all

assertion statements. Then the total unnormalized (log) probability is
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log pθi(x) =
K∑
i=1

(logw) · I{ai = False}.
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Assignment to copy from

pfrom pto

Figure 5.4: The start of a copy proposal for LEGO spaceships. (Left) The current
assignment x3 and assignment copying from, x2.

We now describe how random choice blocks are defined. Figure 5.4 shows the

start of the copy proposal depicted in Figure 5.2 in more detail. The left side shows

the assignment x3 (θ = 3) before the copy proposal along with the assignment being

copied from: x2 (θ = 2). Let x′3 be the assignment after the copy proposal.

Addressing scheme: a basis for copy proposals. The addressing scheme[46]

tells us how to collect choices to form blocks and track them during program execution.

In Figure 5.4, the vertical sequences of color labels underneath each random choice

is an address. The address ai of each random choice xi records the stack of program

locations at the time when the choice was made. For example, the first component of

x3 has an address that representing the first call to randint in the first iteration of

struct loop. There is then a corresponding vector l3 of addresses parallel to random

choices x3.
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Consequently, a block of random choices corresponding to a procedure call is

computed as a set of choices that share the same prefix in their addresses. Repeated

calls to the same procedure are then any two prefixes that end with the same program

location. We will call them compatible. This can be visualized (and implemented)

in terms of prefix trees, depicted in Figure 5.5). Note that not every callsite will be

useful. We have found it useful to annotate callsites to be used in copying.

Prefixes to copy

C1

C2

xi

main

structure_loop

Legend of program locations

sample_structure

structure_at

randint(..)

C1
C1

pfrom pto

C1
x1
x2
x3

C2 x0

C1
x1
x2
x3

C2 x0

C1
x1
x2
x3

C2 x0

4
0
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3
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1
-9
3

Prefix trees and blocks to copy

C1
x1
x2
x3

C2 x0

C1
x1
x2
x3

C2 x0

2
3
-7
4
5
4
-9
2

Replace this block...

With this block
pfrom

pto r

c

Figure 5.5: Choices to copy are grouped in prefix trees.

A copy proposal then proceeds by first selecting a pair of compatible prefixes

(pto, pfrom), one for the current assignment and one for the assignment to copy from,

respectively. These correspond to the two blocks (r, c): the choices to replace and

the choices to copy in. This is shown in Figure 5.5.

Finally, replacing r with c comprises two steps: First remove all choices with prefix

pto in x3. Then insert choices that have prefix pfrom, after fixing up the addresses of

the result so that pfrom is replaced with the original pto. We show this replacement

process in Figure 5.6.
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Figure 5.6: (Top left) c′ is formed by replacing pfrom with pto in its addresses. (Bottom
left) x′3, the assignment after the copy proposal.

5.4 Algorithm

Algorithm 13 depicts the interface and main loop of model accretion. We are given

the program, synthesis parameter, set of initial solutions, and number of iterations.

Running Eval or Eval-Regen on an empty assignment initializes the assignment

and probability density. While Eval will re-sample each choice individually on the

first program run, Eval-Regen initializes using copy proposals, by copying blocks of

choices from the solutions whenever a procedure call is encountered during execution

that has not been seen. The effect is a slight boost in the initial density score;

Eval-Regen is not critical to performance.

Then, for each of the K iterations, we first run Copy (the copy proposal op-

eration), and then accept or reject the result according to our acceptance ratio. A

following step of Lightweight M-H encourages movement in the space. If the result-

ing assignment has log density zero, it satisfies all constraints and we add it to our

solution set. In this section, we describe Eval,Copy, and Replace (a subroutine

of Copy).
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Algorithm 13: MA

Input: Program P , parameter of synthesis θ, initial solutions S = {sm},
iterations K

Output: Final solutions Q (initially empty)
1 (x, pθ(x))← Eval-Regen(P, θ, S, ())
2 for i← 1 . . . K do
3 (x′, pθ(x′))← Copy(P, θ, S,x)
4 (x, pθ(x))← (x′, pθ(x′)) w.p. min{1, pθ(x′)/pθ(x)}
5 (x, pθ(x))← Lwmh(P, θ,x)
6 if pθ(x) = 1 then
7 Q← Q ∪ {x}

8 return s

Eval. Eval(P, θ,x) runs the program with parameter θ and choices x, much like the

Trace-Update procedure in Lightweight M-H. Eval returns pθ(x) given program

P , parameter θ, and assignment x. Eval also returns xc which is a “fixed up” version

of x that corresponds to an actual program execution.

This “fixing up” needs to be done whenever x does not correspond to an actual

program execution. We employ the same approachas in Lightweight M-H: through

a trial program execution against the addresses and choices in x [46]. Recall that

each component xi of any state x there is a corresponding address ai. If x does not

correspond to a valid execution (which can happen often), then either 1) there are

some addresses visited by the trial execution not in the assignment or 2) there are

some ai in the assignment not visited by the trial execution.

Copy. Copy updates its input state x, copying a random block of choices from a

random solution xs from the initial solutions S. Algorithm 14 lists pseudocode for

the copy operation. CommonProcs returns all relevant callsite locations common

to both the current state and selected solution. One such location l is sampled using

Select, which samples a member of its input uniformly at random. We then sample

prefixes to copy from and to (p1, p2 respectively) that end in the selected location l

using PrefixesWith to generate them and Select again to sample. Knowing p1

allows us to query the assignment using Trie-Query to return all components of xs
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Algorithm 14: Copy

Input: Program P , parameter θ, solution sets S, current state x
Output: Next state and density (x′, pθ(x′))

1 xs ← Select(S)
2 l← Select(CommonProcs(xs,x))
3 p1 ← Select(PrefixesWith(l,xs))
4 p2 ← Select(PrefixesWith(l,x))
5 c← Trie-Query(p1,xs)
6 x′′ ← Replace(x, p2, p1, c,Flip(0.5))
7 (x′, pθ(x′))← Eval(P, θ,x′′)
8 return (x′, pθ(x′))

having p1 as prefix, thus computing c, the block to copy in. Finally, we modify the

actual state using Replace (explained next) and re-run Eval to fix the state up

and obtain the density.

Replace. Algorithm 15 lists pseudocode for Replace, which overwrites a block

of choices in the destination state with c. There are two basic steps, deleting and

writing. Deleting is done by the first loop, which produces the input state without

the choices matching p2. The second loop writes. It creates c′, which is c but with

p1 replaced with p2 to fit, and then merges c′ with x. Set,Lookup set or retrieve

random choices, keying on addresses. x t y is the merge operation: combine all the

addresses and choices, favoring y on duplicates. Drop(n, x) returns x without the

first n elements.

It can be beneficial to replace only the choices immediately below a given prefix.

Replace comes with a flag choosing whether to do this context-only replacement.

We use Shallow-Match to determine choices immediately below a prefix. During

each copy proposal, Flip(0.5) randomly chooses between a full versus context-only

replacement with equal probability.

Implementation. The language and compiler used for the overall system was

Haskell 2010 on GHC 7.8.2. Initial solutions were stored as text files where each

solution was represented as a list of addresses and values of random choices. We
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Algorithm 15: Replace

Input: Source state c, source prefix p1, destination state x, destination prefix
p2, context-only flag f

Output: Next state x′′

1 xd ← ()
2 for addreses ai ∈ A(x) do
3 if ¬Prefix-match(p2, ai) ∨ (f ∧ ¬Shallow-Match(p2, ai)) then
4 xd ← Set(xd, ai,Lookup(ai,x))

5 c′ ← ()
6 for ai ∈ A(c) do
7 if f ∧ ¬Shallow-Match(ai, p1) then
8 Continue

9 a′i ← p2 + Drop(|p1|, ai)
10 c′ ← Set(c′, a′i,Lookup(ai, c)

11 x′′ ← xd t c′

12 return x′′

used standard techniques [5] to parse and compile the input programs. There were

two main compiler targets. One was a SMT solving component for generating ini-

tial solutions and comparing performance. The other component was for Eval and

Eval-Regen; to compute the probabilities pθ(x) and update x to correspond to

program executions.

The SMT solving component was built as a tracing compiler with the Z3 [13]

solver as backend. The trace was converted to a formula representing the constraints

at runtime. This is known as symbolic execution [20] and our implementation is similar

to recent work in solver-aided domain-specific languages [42]. The Haskell SBV library

greatly facilitated construction of this component. The Eval component was built

as a source-to-source transformation following the implementation of Lightweight M-

H [46]. In order to perform copy operations efficiently, a trie data structure with

address keys was used to store and prefix-query the sets of address. It was helpful to

pre-compute tries for each assignment in the initial solutions.
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1 hallway, furnished

2 hallways, unfurnished

3 hallways, furnished
Initial solutions: Synthesized:

Figure 5.7: Office buildings with furniture synthesized using MA. (Left) The initial
solutions include 1-hallway floor plans with furniture (top left) or 2-hallway floor
plans without furniture (bottom left). (Right) MA-synthesized 3-hallway layout with
furniture.

5.5 Results

In this section, we evaluate the performance of model accretion on three popular

applications of procedural modeling:

1. Office buildings with furniture layouts.

2. Video game levels.

3. Architectural design prototypes.

The program for each domain is included in the supplemental materials. We com-

pare the wall-clock time taken to synthesize using MA given initial solutions versus

two other techniques: 1) single-site Metropolis-Hastings (M-H) and 2) SMT solving.

M-H is a stochastic search technique applicable to general constrained procedural

modeling [38]. SMT solving is an equally applicable systematic search.

All evaluations were performed in OS X v10.10 on a 2012 Macbook Pro (Intel i7-

3615QM 2.30GHz, 8 GB RAM). For the SMT solver, the solver-aided DSL techniques
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used to generate solutions involve an initial symbolic execution phase [42]. This

time conservatively left out of timing numbers. Only the actual CPU time spent in

systematic search is counted.

5.5.1 Building and Furniture Layout

In this section, we evaluate the use of MA to synthesize building and furniture layouts.

These domains feature heavily in procedural modeling. It can be challenging to

synthesize both in one model.

We used a program whose parameters were the number of hallways and whether

or not to include furniture. Figure 5.8 shows the call graph. The main loop calls

wing, which samples a building wing. Each wing consists of a hall and two groups of

rooms, sampled through roomgroups, which has two inner loops sampling each group.

room samples a room and furniture layout, each comprising 2 accessory elements and

1-2 tables with 2 chairs. Our copy proposals thus perturb (from coarse to fine): wings,

room groups, rooms, furniture layouts, and then furniture elements. offset expresses

the position of each building element as a (x, y) offset from the element at a coarser

level.

The brackets in Figure 5.8 show selected constraints and approximate set of in-

fluenced random choices. Constraints mainly concern alignment and non-overlap.

We see that the influence of some constraints (e.g., furniture non-overlap) is com-

pletely contained within some block or hierarchy level, while the influence of others

(e.g., table-room-align, room-hall non-overlap) cuts across such boundaries. It

is not guaranteed for copy proposals to be accepted at a high rate.

MA was used to synthesize furnished building layouts with 3 hallways. We em-

ployed MA in an accretion sequence, where the initial solutions were 10 1-hallway,

furnished layouts and 10 2-hallway, unfurnished layouts (depicted on the left side

of Figure 5.7). These were first used to synthesize 10 2-hallway, furnished layouts

and then finally, these 30 solutions in aggregate were used to synthesize 10 3-hallway,

furnished layouts. The right side of Figure 5.7 shows such 3-hallway furnished layouts.
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Figure 5.8: The control flow (blue) of the office building/furniture layout program
along with random choices (red) and constraints (green). Brackets show dependencies
of constraints. Some constraints are omitted due to space constraints.

Time (s)

Office layout synthesis times (3 hallways, furnished)

Figure 5.9: Distribution of time elapsed from start of run to the first satisfying office
layout with 3 hallways and furniture, comparing model accretion (ma-incr) and the
Z3 SMT solver (smt). M-H never finished in less than 1 hour (3600s). Vertical lines
show individual samples.
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Table 1

Acc stats: Acceptance rate

wings:wing 1632 1203 2835 0.575661375661

wing:offset 1751 1058 2809 0.623353506586

hall 798 1888 2686 0.297096053611

roomgroups 1551 1264 2815 0.550976909414

roomgroups:offset1 246 2531 2777 0.088584803745

roomgroups:offset2 253 2441 2694 0.0939123979213

rooms1 1486 1301 2787 0.533189809831

rooms2 1471 1303 2774 0.530281182408

rooms<N>:room 750 2034 2784 0.269396551724

room:offset 231 2666 2897 0.0797376596479

furniture 1505 1212 2717 0.553919764446

table-groups 247 2515 2762 0.0894279507603

table-chairs 513 2317 2830 0.181272084806

accessories 158 2675 2833 0.0557712672079

C
al

ls
it

e

wings:wing
wing:offset

hall
roomgroups

roomgroups:offset1
roomgroups:offset2

rooms1
rooms2

rooms<N>:room
room:offset

furniture
table-groups
table-chairs
accessories

Acceptance rate
0% 17.5% 35% 52.5% 70%

Figure 5.10: Acceptance rates of copy proposals arranged by callsite.

Comparison versus M-H and SMT solving. Figure 5.9 shows distributions of

the time taken for model accretion and SMT. We do not show timing for M-H; M-H

never synthesized a satisfying model in any reasonable amount of time (1 hour). We

attribute this to the many interlocking constraints and high number of variables in

the model. SMT solving produced solutions in 1272.4s on average (210.5s standard

deviation); a systematic search can be more efficient than M-H in models with hard

constraints. Model accretion took 232.1s on average (339.8s standard deviation), a

5.5x average speedup over SMT solving. It can be faster to generate from a given set

of simple models than to solve completely from scratch.

Acceptance rate of copy proposals. Next, we evaluate how well individual copy

proposals work. Figure 5.10 shows the acceptance rate of copy proposals by callsite for

the above synthesis. furniture copies are accepted over 50% of the time. Figure 5.8

shows that table-room-align is the only constraint not contained completely within

calls to furniture. Therefore, furniture copy proposals already satisfy everything

except table-room-align. We attribute this high acceptance rate to this fact that

most constraints on furniture are self-contained. On the other hand, table-groups

copy proposals are accepted at a rate around 10%, as there is significant interaction
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with other furniture objects through the furniture-non-overlap constraint. Analo-

gously, at the level of building structure, it is simple to copy over an entire group of

rooms (roomgroups, rooms1, rooms2) (∼ 50% acceptance rate), but more difficult to

copy over the offset and dimensions of an individual room (room:offset, with ∼ 10%

acceptance rate). We conclude that copy proposals tend to work better when blocks

being copied have more constraints internal to the block and impact fewer external

constraints.

Initial Solutions: Synthesized:6 regions, 5 platforms, 2 regions are gaps 21 regions, 31 platforms, 5 regions are gaps

Synthesized level with 21 regions, 31 platforms, 5 regions are gaps (enlarged)

(level continues on)

Figure 5.11: Mario levels synthesized using MA. (Top left) The short levels are the set
of initial solutions. (Top right) The long levels are synthesized using MA. (Bottom)
Enlarged view.

5.5.2 Video Game Levels

Video game levels exhibit hierarchical, repeated structure with a few constraints on

individual pieces, such as non-overlap. There can also be a few global constraints as

well, such as the number of particular objects or level features. Super Mario Bros. [2]

is a prototypical example of this; there are several midair platforms within jumpable

distance of each other, and each ground region can have an arrangement of pipes and

blocks attached.

Figure 5.12 sketches out our program for synthesizing Mario levels. The level

consists primarily of region’s generated in a loop. Each region is either solid ground
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on region
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cloud cloud-dx cloud-dy
cloud-width
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non-overlap
(w/o elements)

platform
alignment

decor
alignment

Figure 5.12: The control flow (blue) of the Mario level layout program along with
random choices (red) and constraints (green). Brackets show dependencies of con-
straints.
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or a gap that Mario has to jump over. There is a hard, global constraint on the

number of gap regions. A varying number of pipes and blocks are arranged on each

region using the calls to elements, pipes, and blocks. Copy proposals can then copy

an entire region and its pipes and blocks, or just the pipes or blocks. Non-overlap

and inside-region constraints control the location and dimension of pipes and blocks

in each region. Our levels cannot be generated by a simple forward process alone.

The procedure platforms generates the hovering platforms. Copy proposals would

then transfer the offset and dimensions of an individual platform. Finally, decorations

are generated in the loops decorations and clouds.

The program had 3 parameters: number of ground/gap regions, number of plat-

forms, and the constraint on the number of gaps. The synthesis task was to produce

Mario levels with 21 regions, 31 platforms and 5 regions constrained to be gaps.

MA had initial solutions of 10 levels with 6 regions 5 platforms, and 2 regions as

gaps. Let these parameters be denoted as the triple (r, p, g). We synthesized accord-

ing to the accretion sequence (11, 11, 3), (16, 21, 4), and (21, 31, 5). After 5 solutions

were synthesized, MA moved on to the next parameter seting. From experiments, it

took 200 iterations between solutions for them to appear significantly different. To

evaluate the effect of the accretion sequence, this was compared against MA with no

nontrival accretion sequence, directly using solutions from (5, 4, 2) to synthesize those

of (21, 31, 5). Figure 5.11 shows the resulting levels.

Comparison versus M-H and SMT. Figure 5.13 shows synthesis times for Mario

levels. We see that model accretion synthesizes the first solution from its simple initial

ones much sooner than both M-H and SMT solving, producing the first solution in

36.7s average (9.5s standard deviation). Unlike with office building layouts, this

domain features fewer constraints and is more amenable to M-H search: M-H can

finish in a reasonable amount of time (704.2s average, 237s standard deviation). The

sophisticated techniques of systematic search as captured by the SMT solver still

leave it around 6x slower than model accretion, with 218.6s average solve time (47.2s

standard deviation).
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Mario level synthesis time 
(21 regions, 31 platforms, 5 regions are gaps)

Time (s)

Figure 5.13: Distribution of synthesis times for Mario level synthesis, comparing
model accretion (ma-incr), model accretion without accretion sequence (ma-noseq),
M-H (mh), and Z3 SMT solver (smt). Vertical lines show individual samples.

Mario 20 30 5

MA MA-skip MH SMT

1 4232 154.692423 1 4842 436.881763 1 125117 786.854356 209.360000134

1 6228 251.393168 1 3517 300.704202 1 151055 888.704554 193.25999999

1 4229 106.191494 1 3164 252.654928 1 72723 436.898297 301.309999943

1 4208 119.220746 1 2496 206.792367 0 199999 1204.854394 185.24000001

1 4707 96.006605 1 1966 162.330419 704.152402321 203.599999905

1 10800 587.338156 0 20000 1615.547241 236.985091061 Mean solvetimes:

1 6990 296.676668 1 4861 399.854948 218.553999996

1 5077 126.932170 1 4575 387.174833 47.1866408816

1 4603 150.993101 1 1497 130.075731 Post-SAT 
speedup:

1 4049 87.773447 1 3090 272.885802 30.472284959750215.2361424798751

1 3939 110.987426 1 2437 215.454406 Mean sol per s:

1 4464 153.863060 1 11277 942.625496 0.0045755282448196

1 4856 165.081961 1 3543 318.538306

1 3795 94.860923 0 20000 1757.746959

1 5880 189.014659 1 5543 495.261410

1 5936 245.874979 1 7201 673.571492

1 4949 129.515874 1 10541 896.760361

1 4609 167.822036 1 5048 432.485243

1 4579 115.937675 1 9624 858.695158

1 5450 142.427953 1 12299 1067.030441

1 6638 250.518934 1 3206 295.457244

1 10133 411.867067 1 6499 589.581832

1 3613 90.604024 1 11256 1023.770343

1 5117 156.430878 1 11678 1045.388897

1 3982 76.515760 0 20000 1723.198980

1 3852 105.071651 1 2073 185.669473

1 4303 99.270342 1 8668 764.344728

1 5653 168.319962 1 3652 304.578669

1 4008 92.726879 1 2446 205.725077

1 4144 107.789149 494.780521897

1 5023 152.249144 308.712752518

1 3727 88.471167

1 5591 201.328399

1 4916 101.989189

1 4703 170.959063

1 3836 99.881315

1 4405 125.315282

1 12788 699.146067

1 4516 143.368704

175.241730745

129.516000601

MA-SOLTIMES

1420674391.91 0.0

1420674393.42 1.50999999046326

1420674393.78 0.359999895095825

1420674394.22 0.440000057220459

1420674394.61 0.389999866485596

1420674395.04 0.430000066757202

1420674395.4 0.360000133514404

1420674395.8 0.399999856948853

1420674396.18 0.380000114440918

1420674396.56 0.379999876022339

1420674400.06 3.5

1420674401.41 1.35000014305115

1420674402.86 1.44999980926514

1420674404.22 1.3600001335144

1420674405.62 1.39999985694885

1420674406.97 1.35000014305115

1420674408.29 1.3199999332428

1420674409.78 1.49000000953674

1420674411.27 1.49000000953674

1420674412.76 1.49000000953674

1420674426.23 13.4700000286102

1420674430.2 3.97000002861023

1420674434.23 4.02999997138977

1420674438.01 3.77999997138977

1420674442.04 4.02999997138977

1420674445.95 3.91000008583069

1420674449.46 3.50999999046326

1420674452.92 3.46000003814697

1420674456.27 3.34999990463257

1420674459.53 3.25999999046326

1420674542.87 83.3399999141693

1420674550.32 7.45000004768372

1420674557.87 7.54999995231628

1420674565.58 7.71000003814697

1420674572.84 7.25999999046326

1420674579.76 6.92000007629395

1420674586.8 7.03999996185303

1420674593.78 6.98000001907349Mean sol/s:

1420674600.6 6.81999993324280.1394268005175280.0697134002587641

1420674607.42 6.820000171661387.17222224341498 0.3

-1420674607.42

Offices-1-2-2-3

MA MH SMT

1 17317 287.478957 0 599999 1352.278102 1410.41000009

1 24348 473.112540 0 599999 1286.105509 1208.51999998

1 13851 217.235933 0 599999 1319.971896 949.980000019

1 15191 266.669105 0 599999 1293.821864 1298.29999995

1 19443 375.002832 1494.96000004

1 22202 387.604929 Mean solvetimes:

1 27924 457.031424 1272.43400002

1 28734 607.391200 210.526618714

1 32040 672.078547 0.000785895378451285

1 12245 189.237517 10.7469087777009

1 26514 422.835200

1 55793 1329.575203

1 17614 307.682629

0 30000 478.804362

1 54353 1081.146179

1 12870 212.830356

1 15283 253.142724

1 18772 334.733928

1 17907 315.505310

455.016361833

305.374049791

Fine-grained 
solution times:

RUN

1420845500.57

1420845516.63

1420845533.26

1420845549.75

1420845565.04

1420845579.95

1420845595.62

1420845611.94

1420845628.11

1420845643.27

1420845710.12

1420845733.67

1420845757.77

1420845782.3

1420845807.05

1420845834.18

1420845858.43

1420845885.83

1420845912.93

1420845938.32

RUN

1420845980.74

1420845996.55

1420846058.14

1420846072.48

1420846086.59

1420846100.71

1420846115.48

1420846131.52

1420846146.74

1420846161.8

1420846455.13

1420846481.17

1420846508.47

1420846535.89

1420846563.22

1420846590.52

1420846617.73

1420846646.14

1420846671.95

1420846697.57

RUN

1420846770.47

1420846786.12

1420846800.78

1420846815.82

1420846831.39

1420846846.95

1420846861.75

1420846876.48

1420846891.17

1420846905.94

1420846945.69

1420846970.98

1420846996.49

1420847022.11

1420847047.95

1420847073.8

1420847098.83

1420847123.83

1420847148.56

1420847173.48

RUN

1420847216.93

1420847232.47

1420847247.55

1420847262.25

1420847276.83

1420847291.37

1420847324.79

1420847340.66

1420847356.27

1420847371.98

1420847487.9

1420847512.64

1420847537.35

1420847562.15

1420847586.88

1420847611.51

1420847636.2

1420847660.86

1420847685.63

1420847710.56

RUN

1420847752.13

1420847766.86

1420847781.76

1420847796.62

1420847811.46

1420847826.26

1420847841.23

1420847856.07

1420847870.94

1420847885.78

1420848126.01

1420848150.67

1420848175.48

1420848200.23

1420848225.1

1420848249.86

1420848274.58

1420848299.09

1420848325.53

1420848350.36

RUN

1420848464.74

1420848479.4

1420848493.94

1420848508.78

1420848523.31

1420848537.91

1420848552.51

1420848567.08

1420848581.61

1420848596.24

1420848783.96

1420848808.71

1420848833.34

1420848858.08

1420848882.7

1420848907.62

1420848932.53

1420848957.19

1420848981.86

1420849006.7

RUN

1420849261.9

1420849277.11

1420849292.38

1420849307.64

1420849322.91

1420849338.21

1420849353.47

1420849368.69

1420849384.07

1420849399.44

1420849492.15

1420849517.85

1420849543.5

1420849569.07

1420849594.77

1420849620.4

1420849646.18

1420849671.94

1420849697.65

1420849723.22

RUN

1420849765.28

1420849780.15

1420849794.85

1420849809.66

1420849824.49

1420849839.2

1420849854.09

1420849868.9

1420849883.75

1420849898.61

1420850364.46

1420850389.48

1420850414.54

1420850439.54

1420850464.64

1420850489.62

1420850514.78

1420850540.43

1420850566.12

1420850591.95

RUN

1420850664.1

1420850678.98

1420850693.76

1420850708.62

1420850723.47

1420850738.24

1420850753.13

1420850767.96

1420850782.78

1420850797.65

1420851315.42

1420851340.38

1420851365.42

1420851390.45

1420851415.43

1420851440.38

1420851465.38

1420851490.87

1420851515.82

1420851540.81

RUN

1420851597.9

1420851613.01

1420851628.23

1420851643.5

1420851658.61

1420851673.97

1420851689.21

1420851704.45

1420851719.7

1420851735.0

1420851776.11

1420851801.93

1420851827.7

1420851853.54

1420851879.43

1420851905.45

1420851931.3

1420851957.06

1420851983.05

1420852007.31

RUN

1420852197.14

1420852210.79

1420852224.5

1420852238.89

1420852254.09

1420852269.25

1420852283.96

1420852298.45

1420852312.87

1420852327.28

1420852467.66

1420852492.79

1420852518.15

1420852543.15

1420852568.82

1420852593.64

1420852618.49

1420852643.55

1420852670.17

1420852696.07

RUN

1420852738.43

1420852753.22

1420852768.52

1420852783.43

1420852798.53

1420852813.95

1420852829.48

1420852844.23

1420852858.84

1420852873.96

1420853651.63

1420853887.74

1420853904.06

1420853920.0

1420853935.35

1420853951.54

1420853967.91

1420853983.52

1420853999.19

1420854015.46

1420854058.31

1420854085.51

1420854112.28

1420854139.27

1420854166.34

1420854192.95

1420854219.56

1420854246.15

1420854272.8

1420854299.32

RUN

1420854407.19

1420854422.82

1420854438.64

1420854454.49

1420854470.34

1420854486.29

1420854502.17

1420854517.96

1420854533.97

1420854549.82

1420854646.12

1420854672.98

1420854699.93

1420854726.87

1420854753.68

1420854780.75

1420854807.75

1420854834.68

1420854861.53

1420854888.38

RUN

1420855428.23

1420855443.12

1420855456.78

1420855470.58

1420855484.7

1420855498.68

1420855513.08

1420855527.54

1420855542.2

1420855557.29

1420856315.82

1420856331.28

1420856346.71

1420856362.27

1420856377.66

1420856392.89

1420856408.0

1420856423.21

1420856438.34

1420856453.69

1420856494.62

1420856520.18

1420856545.75

1420856571.15

1420856596.51

1420856622.12

1420856647.63

1420856673.11

1420856698.6

1420856724.23

RUN

1420856766.43

1420856781.37

1420856796.24

1420856811.13

1420856826.22

1420856841.36

1420856856.35

1420856871.27

1420856886.43

1420856901.57

1420856967.34

1420856991.54

1420857015.97

1420857040.59

1420857064.97

1420857089.3

1420857113.9

1420857138.33

1420857162.8

1420857187.57

RUN

1420857243.94

1420857259.38

1420857273.92

1420857288.35

1420857302.98

1420857317.24

1420857331.63

1420857345.76

1420857359.9

1420857373.93

1420857484.05

1420857532.63

1420857556.86

1420857580.56

1420857603.87

1420857627.67

1420857651.9

1420857700.28

1420857724.6

1420857749.03

RUN

1420857818.8

1420857833.23

1420857847.78

1420857862.39

1420857876.81

1420857891.42

1420857906.03

1420857920.77

1420857935.29

1420857950.22

1420858115.49

1420858140.95

1420858166.17

1420858191.35

1420858216.52

1420858241.78

1420858267.06

1420858292.25

1420858317.41

1420858342.8

RUN

1420858414.64

1420858429.31 14.6699998378754

1420858443.43 14.1200001239777

1420858457.57 14.1399998664856

1420858472.4 14.8300001621246

1420858487.36 14.9599997997284

1420858502.46 15.1000001430511

1420858517.66 15.2000000476837

1420858532.87 15.2099997997284

1420858547.38 14.5100002288818

1420858687.36 139.979999780655

1420858711.3 23.9400000572205

1420858735.11 23.8099999427795

1420858758.66 23.5500001907349

1420858782.34 23.6799998283386

1420858805.87 23.5299999713898

1420858829.53 23.6600000858307

1420858853.05 23.5199999809265

1420858876.64 23.5900001525879

1420858900.48 23.8399999141693 23.6800000137753 118.400000068876 0.00844594594103271
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Figure 5.14: Number of visually different solutions generated per second (in Hz)
after the first satisfying solution, comparing SMT solving (smt) and model accretion
(ma-incr).

Effect of accretion sequence. Figure 5.13 also includes timing numbers for “ma-

noseq”, which is model accretion drawing directly on the set of initial solutions with

6 regions, 5 platforms and 2 regions as gaps, to the final set of parameters (21 regions,

31 platforms, and 5 regions as gaps), without creating and saving solutions at inter-

mediate parameter settings. Without an accretion sequence, MA was a little slower,

taking 47.8s on average (with higher variance: 28.8s stdev). The use of an accretion

sequence can help performance.
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Rate of solution production versus SMT. Because MA is a stochastic search, as

soon as the first solution is produced, more tend to follow. We tracked any “different-

enough” solutions that showed up after the first one. What defines “different-

enough”? The satisfying solutions in the top right of Figure 5.11 are 200 iterations

apart and are “different-enough.” By this metric, Figure 5.14 shows the solutions per

second (in Hz) comparing SMT solving and MA. We find that MA synthesizes models

at a rate 75x that of the SMT solver, nearing 2 orders of magnitude. This suggets

that MA is a very viable synthesis technique when used offline in the background to

produce levels in a setting without user attendance, especially after the first solution

has been found.

Initial solutions: 2 units Synthesized: 3 units

Figure 5.15: Synthesizing LEGO building designs. (Left) Initial solutions. (Right)
Synthesized models using MA. Note how tower and building structures interact with
roof decorations; there are many constraints that cut across hierarchies.

5.5.3 LEGO Buildings

Architecture is a common problem domain for procedural modeling, and LEGO can

be a suitable medium for prototyping architectural designs [43].

We use a program that generates arrangements of 3 types of structures: buildings,

towers, and roof decorations, shown in Figure 5.16. Building structures (middle) are

relatively simple, consisting of a single floor unit that is repeated, ending in a roof
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Figure 5.16: Breakdown of LEGO buildings into structures placed by program.

element. Towers (right) are made up of stacks of slices that end in a cap element.

Some slices stick out more than others. Roof decorations (left) consist of observation

decks, trim pieces, and tiles.

Figure 5.17 shows the control flow structure, random choices, and constraints of

the program. The high-level organization is over units consisting of a tower next to

a building, which has another tower on top. The top level function bldg-tower-loop

generates these units in a loop. Each unit is generated by the procedure b-t. For

each building, after the program samples the number of random choices, the procedure

roof-decor samples roof decorations (trim, observation towers, and roof tiles). All

decorations are sampled at some offset relative to the roof. Trim and observation

towers are constrained to be on the edge of the roof, while roof tiles to be within the

roof’s area.

The tower next to the building is sampled starting from an offset computed by

tower-offset. It is constrained to be next to the building through bldg-tower-align.

Between consecutive iterations of bldg-tower-loop, inter-bldg-tower align con-

strains the building or tower in separate units to be aligned. Finally, there is a global

non-overlap constraint.

The hierarchy of random choices then consists of units, the building and two

towers within each unit, and roof element layout. Our program was parameterized

on the number of units. We first synthesized 10 buildings with 2 units each using the

SMT solver. The synthesis goal was to extend to 3 units given these 10 solutions. We

ran model accretion until the first satisfying building appeared. Figure 5.15 shows

the synthesized models, with initial solutions on the left and models synthesized with
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Figure 5.17: Call graph of program generating LEGO buildings.
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Time (s)

Building design synthesis time (3 units)

Figure 5.18: Distribution of first solution times comparing MA (3 units from 2) and
SMT solving for LEGO buildings. Vertical lines show individual samples.

MA on the right.

Comparison with M-H and SMT solving. As before, we compared the time

taken to synthesize the first solution against M-H and SMT solving. Figure 5.18

shows distributions of such times. M-H never produced a satisfying assignment in less

than 3000 seconds. SMT solving was much faster, producing 3-unit buildings in 50.7

seconds on average (5.4s standard deviation). MA was the fastest, producing 3-unit

buildings from 2-unit buildings in 2.4 seconds on average (1.7s standard deviation),

a 20x average speedup.

5.6 Discussion and Future Work

We have demonstrated that MA can work for a wide range of constrained procedural

models, from office layouts to LEGO buildings. MA amplifies the power of existing

synthesis techniques, copying in and recombining parts of initial solutions. We see

that there are two kinds of efficiency gains that result: 1) faster synthesis times for

the first satisfying model and, as it is a stochastic search, 2) faster synthesis times for

subsequent models.

The key to why MA works is in exploiting repetition and hierarchy in procedural

models. Each sub-layout generated by the program can be considered as having con-

straints completely internal to the layout and constraints that interact externally with
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the rest of the model. Each copy proposal clearly maintains internal constraints; how-

ever, external constraints still need to be satisfied. We have shown some procedural

modeling domains where the external constraints are not too difficult.

The main avenue of future work is in further increasing the efficiency of MA. If we

can analyze the program so as to completely bound the space of random choices, we

can synthesize more efficient data structures over which to perform copy proposals.

In addition, we can also compile a compact formula for computing the acceptance

ratio for any copy proposal. Finally, we can apply techniques from machine learning

in order to learn the best copy proposal to perform given features of the current

assignment and solutions.

In the long term, we envision a learning system that performs synthesis over

many different models offline, then selects appropriate copy proposals and previous

solutions for any new synthesis problem that occurs. With sufficent generality in

what is learned, this would lead to much more efficient procedural modeling.



Chapter 6

Conclusion

Tracing is a simple technique, yet it is a powerful souce of information about the

execution space of an inference program. I have shown that execution traces are

useful for inference in three ways:

Shred As traces map out the execution of a program in fine-grained detail, they

allow us to improve the computational efficiency of a known inference algorithm,

Metropolis-Hastings. It can be costly to compile such traces, but the efficiency of the

resulting MCMC iterations more than makes up for it.

Simply by adopting tracing, a general method from compilers that is also quite

simple, we are able to generate extremely fast code that runs as fast or faster than

hand-coded versions.

The simple form of the trace allows us to perform fine-grained dependency anal-

ysis, recovering sophisticated incremental update schemes that are just about as fast

as possible.

Solitaire Traces are also a flexible representation where we can take an arbitrarily

complex inference program and run any state of the art inference engine, such as a

systematic search, over it. The tradeoff is that we need to explore on a path by path

basis.

By compiling traces to SMT formulae, which is also a simple concept, we are

104
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able to solve procedural content generation problems that would be infeasible for

techniques such as M-H, wspecially for office and furniture layouts, where constraints

prohibit the use of forward generation.

We have shown that in contrast to traditional views on probabilistic programming,

with traces we can take advantage of a state of the art inference engine and get good

results without having to develop more algorithms from the ground up.

Model accretion We have shown that by recording and replaying segments of

previous good program executions, we can greatly increase the efficiency of procedural

content generation problems that would bring even the SMT solver to its knees.

These results show the benefits of departing from inference methods such as

LWMH. In contrast to the previous approaches where a flat vector of random choices

removes all structure and repetition, we instead treat program structure and repeti-

tion as a core variable that changes how we approach the construction of inference

algorithms.

6.1 Broader impact

First, consider the impact of probabilistic programming languages. Probabilistic infer-

ence (including machine learning) is having an increasing impact in daily life, despite

its workings being relatively inaccessible to the end user. As a most basic example,

we would not be able to read through our email without Bayesian spam filters. Ex-

panding the scope a bit, we would not be able to enjoy stable prices on many things

without the power of inference in algorithms applied to trading in financial markets.

We cannot count on our mail arriving in a timely manner unless automatic inference

has been applied in optimizing the routing of mail.

Down the line, the role of the average person with a computer will become more

important. There is not going to be an ”inference app” for everything. We will need

to put the tools of inference directly in the hands of the end user; to democratize the

use of probabilistic inference. This has been a core motivation for probabilistic pro-

gramming languages, and even today, there are practitioners in industry and research
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who need specialized inference techniques.

For example, an aircraft engine manufacturer may use inference to evaluate the

safety risks and expected costs and longevity of using different materials and tech-

niques in the design of jet engine rotors. An analyst working in the campaign for the

next U.S. President may want to write probabilistic programs that take into account

the effects of both high-level campaign strategies and even the impact of individual

words spoken at a debate, to produce materials targeted at individual voters. Fi-

nally, an inspector for the Occupational Health and Safety Administration (OSHA)

may want to use a probabilistic program to simulate actual working environments, so

as to preemptively infer the existence of hazardous situations; not every future safety

regulation will have to be written in blood.

The costs of inference The role of this work is in increasing the efficiency of

probabilistic programming languages. Many problems we would like to tackle with

probabilistic programming languages have a prohibitive cost in computation cycles.

All of the above examples, though tempting, would require many supercomputers

worth of computing power in order to be feasible at scale. The average practitioner

does not have access to supercomputers nor hired experts in compilers and inference

for tuning the workings.

In this work, I have shown that by incorporating relatively simple ideas from

programming languages and compilers, probabilistic programming languages can be

made both general and high-performance. This reduces the cost of using inference

techniques and brings the desired future above closer to reality.

Creative activities Finally, I expect that these techniques will be increasingly im-

portant also for bringing probabilistic programming languages and inference to areas

of life not as tied to industry and research, but can be no less significant. The average

person will have creative recreational interests, such as in art and music. Inference

has a potentially big role to play in enhancing these activities. The procedural mod-

eling applications in this thesis show how we can put more power in the hands of the

individual artist.
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6.2 Future directions

I see execution traces for specialized inference as the first step of several possible

future lines of inquiry.

6.2.1 More inference algorithms run from traces

First would be cataloguing all possible inference algorithms that can run given a trace.

We have only explored two existing algorithms: Metropolis-Hastings and DPLL(T).

Belief propagation and gradient-based MCMC methods also seem amenable to being

run from traces.

It would also be interesting to see which optimizations would apply best for each

method. For instance, Hamiltonian Monte Carlo (HMC) operates on the entire vec-

tor of random choices, which would mean slicing does not apply to making HMC

faster. Yet, it is nontrivial to find the simplest form of a gradient, as many alge-

braic simplification rules can apply, up to polynomial factoring which is intractable

in genral.

6.2.2 Increasing performance of tracing

The primary way in which a tracing-based approach to specialized inference runs up

against a wall in terms of models that are easily representable, is when these models

contain a lot of control flow. In general, and especially for grammar-like models, the

set of unique control flow paths is exponential in the number of program steps taken

(or alternately, the length of any single path).

In order to address these models with tracing, we clearly need better tracing per-

formance. Currently, tracing and trace graph formation are very expensive operations.

In particular, optimizations and trace graph construction run what is essentially sym-

bolic virtual machines over the trace.

I see two ways to increase the performance of tracing. The first is to perform the

same constructions and optimizations, but more efficiently. A different implementa-

tion of the tracer may help here. I am looking toward implementations of fast JIT
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compilers, such as those of V8 and the Firefox JIT compilers, which reduce over-

head of tracing drastically compared to printing out C++ programs as traces and

compiling the with GCC.

The second is to consider more compact representations of multiple paths. Trace

graphs are such a method. However, like traces, they often repeat the same blocks of

code over and over due to loops. While this can be a source of why traces are faster,

there is no reason to perform the same symbolic virtual machine computations over

and over; we should be able to compute exactly the segments of code that repeat,

and patch together several trace segments to form any needed trace on the fly. These

segments and their joining parts can be pre-compile to binary code, making the

formation of any trace a matter of concatenating bits together.

6.3 Better representations of the space of execu-

tions

Next, traces rely on the overall concept that abstractions or approximations of the

execution space of a program are useful. Given such representations, one can create

a specialized version of an algorithm. This brings to mind some of the other ways to

obtain such representations of execution space, namely partial evaluation and more

broadly, supercompilation.

From this perspective, traces and trace graphs describe a very precise, underap-

proximate, finite approximation of the execution space. Partially evaluated/super-

compiled representations describe programs in their full generality, but selectively

evaluate some parts of the program ahead of time.

Making an inference algorithm run fast requires the proper representation, and

exploring generally partial evaluated and supercompiled representations seems like a

promising next step. In the future, I expect there to be a more thorough understand-

ing of the best unfolded program representation for each inference algorithm.
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