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1. Introduction

Let Xi, XE, ooy X; be independent, identically distributed
random variables with distribution function F°. These are the true
lifetimes of the items under observation. Associated with each X;

is an independent censoring variable Yi’ and Yl’ Y2’ ooy Yn are
assumed independent, identically distributed with distribution

function G. The observations are the n pairs (X1’61>’ ceey (Xn,Sn),
where X, = min(X;,Yi) and Gi = 1{Xi=X;}. (Throughout, 1{A} is the
indicator function for the event A.) The distribution function of

the Xi's is F and satisfies 1¥F(t) = [l—F°(t)][l—G(t)]. Two

subdistributions functions F' and F¢ are defined as

u
F(£) = Prix <t, §.=1},
and

F© (t)

Pr{Xif_t, Gi=o} .
The following relations hold:
(1) aF’(t) = [1-6(t)1dF°(t)
(i) () = pris=1}, F(=) = pr{s =0}
(ii1) F(t) + FO() = F(t) .
Corresponding to each of these distribution functions is an empirical

distribution function based on the n observation pairs. These

empirical c.d.f.'s are indicated by a subscript n. For example,

‘ 1
e =y

i~

1{x <t} ,
i=1 T



and

Fo(t) = = IXI 1{x,<t, 8.=0}
n i—"? i *

T oi=1

Because the random variables Xi are thought of as lifetimes, it
will be convenient to have additional notation for the cumulative
survival functions corresponding to the cumulative distribution
functions. For future reference, S(t) = 1-F(t) and S°(t) = 1-F°(t).
The subsurvival functions are Su(t) = Pr{Xi>t, Si=l} and Sc(t) =
Pr{Xi>t, 6i=0}. The empirical survival functions are subscripted
with an n.

Raplan and Meier (1958) suggested estimating the conditional
probability of failure at time t by the observed proportion of
failures at time t, and combining these estimates in the usual
manner to obtain an estimate of the underlying survival distribution
S°. This gives the Kaplan-Meier estimate, denoted §°, and defined
I (—’-‘—Ti—)s(i) t

n=-i+1 5-X(n)

0 t>X(n) s

where X(l) 5-X(2) < ... f-X(n) and 'é(i) = l{X(i) uncensored}.

(By convention, uncensored observations are ranked ahead of censored
observations with which they are tied.) Note that by defining §°(t)
to be 0 for t > X(n)’ we are treating the largest observation as
uncensored, whether or not it is. This is convenient for theoretical
reasons, and does not affect asymptotic calculations. However, it is

Pal
more suitable in practice to leave §S°(t) wundefined for t > X

(n) if



5(n)=0. The function §°(t) is comstant between uncensored observa-
tions. The size of each jump is a function of the sample size n and
the censoring pattern between each pair of the ordered uncensored
observations.

The properties of the Kaplan-Meier estimate have been studied by
Kaplan and Meier (1958), Efron (1967), and Breslow and Crowley (1974).
In particular, it is the maximum likelihood estimate, it is strongly
consistent, and asymptotically normal. Regarded as a stochastic pro-
cess, {§°(t); tzp} converges weakly to a Gaussian process. In the
presence of no censoring, §°(t) reduces to the usual empirical cumu-
lative survival function. Efron (1967) formulated the random censor-
ship model used here, and Breslow and Crowley (1974) exploited this
formulation in proving weak convergence. Meier (1975) established
weak convergence of §°(+) when the censoring variables are arbitrary
unknown constants. The Kaplan-Meier estimate has been extended to the
problem of competing risks by Peterson (1975) and Aalen (1976).

The Kaplan-Meier estimate was shown by Efron (1967) to be the

point of convergence of the iterative scheme defined by

ge

ns® (&) = ) dxp>el+ ] @-s) B
(p) i=1 X <t Slp=1) X))

and for this reason he called §°(t) a self-consistent estimate of
S°(t). This version of the Kaplan-Meier estimate is constructed by
the E-M algorithm (Dempster, Laird and Rubin, 1977). The first term
z 1{Xi>t} is the number of observations observed to be larger than

t, and the second term is the expected number of observations greater



than t, based on the information in the censored observations and the
current estimate of S°,

The role of censored and uncensored observations in the construc-
tion of §°(t) can be clarified by a representation of the estimate
in terms of the empirical subsurvival functions Sz(t) and Sg(t).
This representation is due to Peterson (1977). He showed that the
true survival function S°(t) can be expressed as a functional of

the two subsurvival functions:

t u . u, + c, +
S°(t) = exp J ——Q§—£§l—— X exp Z n S(s)+85(s) . (1.1)
0 (s"+5%) (s) st S'(sT) + 8%(sT)

The region of integration is the union of open intervals of points
less than t for which Su(') is continuous, and the summation is
over points s which are points of discontinuity of sU(*). 1If sY(+)
is wholly continuous the second factor is identically 1, and if s*(+)
is wholly discrete the first factor is identically 1. The relation

(1.1) is a generalization of the relation

tare(s)

s°(t) = exp - J 1-Fo(s) °

0

Because SZ and Si are the maximum likelihood estimates of the sub-
survival functions, it follows from the invariance property of the
maximum likelihood estimate that the m.l.e. of $°, which is the

Kaplan-Meier estimate, satisfies

n t dSu(s) Su(s+) + Sc(s+)
S°(t) = exp J __E—EE—_—— X exp ) fn — 2 . (1.2)
: 0 (S7+87)(s) s<t S (sT) + S°(s)



(Even though the first term is 1, we leave it in for later calcula-
tions.) This functional form of §°(t) will be the form suitable for
deriving the influence curve,

The influence curve of a statistic regarded as a functional is
the first derivative of the functional evaluated at some point in the
space of distributidn functions. Differentiation of statistical func-
tionals was originally proposed by von Mises in 1947, and a von Mises
statistic is a functional sufficiently regular to have a series expan-—
sion in functional derivatives. For a thorough study of von Mises
expansions, see Reeds (1976).

In many estimation problems the statistic 8 can be expressed as
a functional of the empirical cumulative distribution function,

6 = T(Fn), and the unknown parameter as the same functional of the
true distribution function, 6 = T(F). For example, the sample mean
6 = n'l zi:l X, can be written 8 = T(Fn) = [ xan(x); the true mean

1

is T(F) = /xdF(x). If T is a von Mises functional
T(G) = T(F+G-F) = T(F) + j IC(T,F;y)d(G<F) (y) + higher order terms. (1.3)

If the distribution function G is sufficiently close to F, the
behavior of T(G) may be'described by the behavior of the first two
terms in (1.3). This is the basis for the usefulness of influence
curves in calculating asymptotic distriﬁutions. Substituting Fn
for G din (1.3) we have

n
T(F_ ) = T(F) +l Z IC(T,F,X,) - I IC(T,F;y)dF(y) + h.o.t. (1.4)
n n i=1 €L



The higher order terms are o (l;) because Fn—F is of stochastic
n
order -l;. The random variables IC(T,F;Xi) are independent and

identiciﬁiy distributed with mean u = J IC(T,F;y)dF(y) and variance
J (IC(T,F;y)—u)ZdF(y). It follows from the central limit theorem
that
d
Vo (T(F )-T(F)) ~ N(O, J (IC(T,F;y)-u)zdF(y)) .
Considering (1.3) as an expansion of T(F+€(G-F)) evaluated at

€=1, about the point €=0, we see that

d
EE-T(F+€(G—F))

= J IC(T,F;y)d(G-F)(y) , (1.5)
€=0

which gives us a simple method for calculating influence curves. (Some
authors (e.g. Andrews et al. 1972, Huber 1977), define the influence
curve to have mean zero. For our purposes however the above defini-
tion is more convenient.)

Hampel (1974) exploited the use of influence curves as a tool
in robust estimation. If the distribution function @ puts all its
mass at the point x, G(y) = §x(y), then

d
1c T(F+e(6-F))

d
— T((1-e)F + 8§ )
e=0 9 X =0

j IC(T,F;y)d(5x-F)(Y)

IC(T,F3x) - U .

Except for the constant term 1y, this derivative measures the effect

on the functional T of a small (infinitesimal) change in the weight



the distribution function F gives to the point x, that is, the
"influence" on the statistic of an additional observation at the
point x. The shape of the influence curve provides information
about the robustness of a statistic. For T(F) = [ yd(G-F)(y),
é%~T(F+€(G—F)) e=0 = S yd(G-F)(y), so IC(T,F;x) = x. The sample
mean is sensitive to large observations and this is reflected in
the fact that the influence curve is unbounded. The effect on the
sample mean of an additional observation i§ directly proportional to
the value of the observation. In contrast to this, the influence
curve of the median is a step function. The median is expressed as

a functional by F(T(F)) = %3 and the influence curve is

1

-1,1
-7 > x <F (3
£ ) 2

IC(T,F3x) =

o, otherwise .

A statistical functional with a bounded influence curve is not sensi-
tive to extreme observations, so is robust in this sense. If the
influence curve IC(T,F;x) is continuous in F, the statistic T

is robust to departures from assumptions about the underlying form
of F. Such departures are often modeled as a "contaminated' dis-
tribution; the true underlying distribution is Fl = F+eH. Robust
statistics will perform well for such distributions. For a thorough

discussion of the uses of the influence curve in robust estimation,

the reader is directed to Hampel (1974) and Huber (1977).



The statistic T(F) need not be a functional of only one distri-
bution function. The differential T is merely an operator on the
appropriate space of functions, and can be defined for functionals
T(F,u), u € R (see Reeds, 1976, sec. 1.6), or for bivariate func-

tionals T(Fl’FZ)' The bivariate von Mises expansion is

T(G,,G,) =qT(F1,F2) + J IC, (T,F;,F,3y)d (G -F;) ()
(1.6)
+ J ICZ(T,Fl,FZ;y)d(GZ-Fz)(y) + higher order terms .

The two influence curves are defined by

d [ | ‘
e TF+e(G -F ), F48(6,~F ) | __, = | IC, (T,F;,F,3y)d(6,-F ) (y)
8=0 (1.7)
3 _ CE
35 T(Fl+€(Gl—Fl), F2+6(G2—F2)) e=0 = | ICZ(T,Fl,Fz,y)d(Gz—Fz)(y) .
18=0

2. The Influence Curve of the Kaplan-Meier Estimate

The Kaplan-Meier estimate §°(t) jumps only at uncensored obser-
vations. The size of the jump at each uncensored observation is a
function of the number of observations and the pattern of losses
occurring before that failure. An additional observation will change
all the jump sizes of the estimate. If the new observation is uncen-
sored, an extra jump will be introduced into I OR However, if the
new observation is censored, no such jump will be added. It is this
essential difference in the effect of new observations that makes it
natural to consider two influence curves, i.e. partial functional deri-
vatives. We have already seen that §°(t) can be represented as a

bivariate functional of the empirical subsurvival functions of censored

and uncensored observations.



To calculate the influence curve of §°(t), we first consider

the influence curve of the cumulative hazard function K°(t), defined

as R°(t) = -fn §°(t). Writing A°(t) as a bivariate functional, we
have
2 u .c t dSz(s) : s¥(sTy + sS¢sh
A2 (e) = T<Sn’sn’t) T J v ot ) -fn 3 — 2 -
0 (s 48)(s) s<t S_(sT) +57(sT)

and the corresponding functional for the true cumulative hazard function
is

E a5 (e) o SosD) + 5%(sh)

0 (s%48%)(s) s<t  s%(sT) + sS(s7)

T(s",s%,t) = - J

The functions Sz and ng are discrete, so the first term of
T(Sz,sg,') is zero. We assume that the true subsurvival functions
are continuous, so the second term of. T(Su,Sc,') is zero.

For the functions Fy and Gy of equation (1.7) we substitute
Fu, the true subdistribution function of the uncensored observations,
and FE the corresponding empirical subdistribution function.
Similarly F2 and G2 are replaced by F¢ and F;. Because there
is a one-to-one relationship between the subdistribution and the

corresponding subsurvival functions, we continue to use the more

u [} C

concise notation Su, S, S5, S .
n n
T(Su+€(S§-Su), s°+6(s§-s°), t)
t u
- J d[(1-)8"(s)]

0 [8%+e(S -8 1(s) + [%+8(55-5%)1(s)

; [s%+e(st-sM1(s) + [8%+8(sS-59)1(sh
- in .
s<t [ST+e(s-8M) 1(sT) + [8%+8(ST-5)1(s7)




. . u .
Here the integration is over 0 < s < t because we assume S is
. . . . . u . .
continuous and the summation is over jump points of Sn’ which is
discrete,

Now

2 u u . u c c .c
= T(s"+e(s7-8"), s°+8(s°-8%), t)
oe n n (0,0)

s¥(sD)+s5¢sT)
0 [Su(s)+Sc(s)]2 s<t Su(s+)+Sc(s+)

Jt [s¥(s)+sC(s) 1(as™ (s)) + (SE—SU)(s)dSu(s)

(828 (6N 5% (455N - (828" (5T [8% (s D45 (s

[s%(s7)+s%(s7) 12

Jt __c_1_§_1.._1_(_SL___ + J’t (S;—Su) (S)dsu(s) Sz(s-l-)_s:l(s_)

0 s%(s)+5%(s) Yo [s(e)4s%(s)1%  s<t §%(s)+5(s)

where for the last equality we have used the fact that s' is continuous.

A similar calculation gives

t (s5-5%) (s)ds®(s)
—.a% T(s"+e(s -s"), s°+6(sr°‘1—s°), t) = J I

0 [s%(s)+s(s)1°

Writing -(Sﬁ(s)-Su(s)) =,f: d(SE—Su)(u),

Jt [Sz(s)—Su(s)]dSu(s) Jt Jw —d(SE—Su)(u)dSu(s)

0 (s%45%) 2 (s) s (s%+5%)2 ()

S SAL u
- - J J 35 W) a(sPs% (e
070 (8%s%)“(w) n

where saAt = min(s,t). Also

10



S2(s)-8(s7) _

s<t s%(s)+5%(s)

u u
jt d(Sn—S ) (s) ) Jt dSu(s)

0 s%(s)+s%(s) 0 s"(s)+5(s)

We conclude, using integral representation (1.7), and recalling that

d(SE—Su)(s) = -d(FE—Fu)(s),

JSAt
0

JsAt
0

10, (1,8",5%8) (¢)

ICZ(T,Su,Su;s)(t)

» \
dSu (u) l{Sf_t}
°+52 @)  (s%45%) (s)
(2.1)
as" (u)
(s%+5%)2 (u) )

To find the influence curves for the Kaplan-Meier estimate, we

write §°(t) as the functional T°(S§,S;,t) = exp T(Sz,Sz,t)

(because §°(t) = exp Re ().

Icl(T°,s“,s°;s)(t)
ICZ(T°,Su,Sc;s)(t)

Certain features of the

Then

S° (t) ICl(T,Su,SC;s)(t)
©(2.2)

S°(t) ICZ(T,Su,Sg;s)(t) .

Kaplan-Meier estimate are reflected in

(2.1). The first term of 1IC.,(T,s",s%;s)(t) represents the change
, 1

in the size of each jump in

]\to

when a new observation is added to

the sample, and the second term in IC,(T,S",5%;s)(t) represents the
l ]

additional jump introduced when the added observation is uncensored.

The influence curve is constant for s>t because a new observation

at s>t affects AK°(t) only through a change in sample size. The
function ngt 38(2)2 is decreasing in s until s=t. Note
(S+87) " (u)

that, for s<t

11



JsAt dSu(u) . 1{§§p} ] JS dSu(u) . 1
0 (s%sH%) (%59 (s) o (s%sHZ(w)  (5%4s) (s)

>

=l— =1,
0 %S  (5%+5%) (s) (s"+5%) (s)  (s%+s%) (s)

S u C
J d(s™+87) (u) 1 1 . 1

so ICl(T,Su,Sc;s)(t) is > 1 for s<t, and is increasing in s.
If both s and t are large, with s<t, introducing a new observa-
tion at the point s has a large effect on the cumulative hazard at
the point t. This is‘not translated into a large effect on §°(t),
however, becausé .§°(t) decreases to 0 as t2o, TFigure (2.1)

sketches ICi(T,Su,SC;s)(t) as. functions of s for fixed t, when

the underlying distribﬁtion F° is exponential. The censoring distri-

bution G is uniform in Figure 2.l.a and exponential in Figure 2.1.b.
Note that ICi(T°,Su,SC;s)(t) is a function of s defined at

a fixed value of ﬁ; it is the influence curve of the point estimate

'§°(t). However, the Kaplan-Meier estimate itself can be regarded as

an element in the space of distribution functions, and similarly

ICi(T°,Su,Sc;s)(t) for fixed s can be regarded as a process in t.
In order to calculate the asymptotic variance of K°(t), we sub~-

stitute expressions (2.1) into the asymptotic expansion (1.6).

T(SE,Si,t) - 1(s%,s%¢t) = J ICl(T,Su,SC;s)(t)d(Sz—Su)(s)

+ J ICz(T,Su,SC;s) (t)d(S;-’-Sc)(s) + higher order terms

_1 o ; u LC 1 9 u ,c

=5 L 10,mstsSx e + = ] o1, (r,8%s 3%, ()
i=1 i=1 A
6i=1 61=0

- j Ic, (1,5",5%s) (£)ds¥(s) - [ IC,(T,s",5%s) (£)ds®(s) + h.o.t.

12
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The third and fourth terms of this expansion are the bivariate ana-
logue of the term u = J IC(T,F;x)dF(x) in (1.4). We first show
that for each fixed t, the sum of these two terms is zero. From

(2.1)

J ICldSu(s) + J ICzdSc(s)

Jw (JsAt as¥ () . 1{s<t} ) as® (s
0 .

0 %92 (8%4s%) (s)
. J,m(Jsl\t dSu(u) ) dSc(S)
oMo (s%s%)%(u)
’-oo

sAt u t u
- (J -9§—£E%———) d(s%+s%) (s) + J 45 (s)
‘o VMo (s%4sH) %) 0 (s%+s%) (s)

[ ety o) —aStw Jt ds”(s)
Jo Ju s%s59%w)  Jo (s%45%) (s)

= O L]

- It as'@ Jt as(e)
0 (s"458%) (s)

0 (s"45%) (u)
Then, disregarding the higher order terms,

B{r(s?,sS,t) - 7(s%,8%,¢) }2

- 1 % u .C 1 9 u ,c 2
= El= ] IC,(T,8%,853% ) (8) += ] Ic,(T,87,5 73X ) (¢)
i=1 i=1
§.=1 §.=0
1 1

%-J ICi(T,Su,SC;s)(t)dFu(s) +

=B

J IC%(T,SU,SC;S)(t)ch(s)

14



The limit of E(T(Su,Sc,t) - T(Su,Sc,t))2 as n> gives the asymp-
n’"n ym

totic variance of the estimate,

A
n % A. Var T(Sg,S;,t) = n % A, Var A°(t)

(w 1{sfp} (JsAt dSu(u) 2
= ——eeeee— - &2 Y]
Jo | (s%+s%)2(s) 0 (su+s°)2(u))

as" (u)
0 (s%+s9) 2% )

+ 2

1{s<t} SAt
‘J ar" (s)

(s"+5%) (s)

. Joo (Jsl\t dSu(u) )2 dFC(S)
o Mo (s%+s%)% )

_ Jt dFu<s) . on (JS/\t dsu(u) )2 d(Fu+Fc) (s)
0 %459%(s)  Jo Vo o (5% (w)

00 1{s<t} sht u
+ 2 J = J dsS™ (u)

u _c u c.2 dFu(S) *
0 (S+57)(s) ‘0 (8 +87) (u)

The third term of this expression equals the negative of the second

term. This is established by integrating the second term by parts

(see Miller, 1975).

0o sSAt u 2 s esht u 2
J (J -—iﬁiliﬁ———) a(E%47°) (s) = - (J -—fglifQ-——) d(s%45%) (s)
0

0 (s%s%)% () JoMo  (s%+5%)2(w)
4 sAt dSu(u) 2y s=x
= —(s%45%) (s) (J —————-2——)
0 (Su+Sc) (w) s=0
+ 2 Jt (Su+SC)(s) JS dSu(u) dSu(s)
0 0 (8% %) (5%45%)%(s)

15



o 1{s<t} sAt u
2 J —e. J __jﬁi_SEl____ dSu(s) .

0 (559 () Jo (559 %)

Recalling from Section 1 that dFu(s) = [1-G(s)]dF°(s) and

s (s)+s%(s) = 1-F(s) = [1-G(s)][1-F°(s)], we see that the asymptotic

N
variance of A°(t) is

1 Jt dF°(s)
n J, [I-F(s)][1-F°(s)] °
which is equatioﬁ (7.11) of Breslow and Crowley (1974).

The above calculation appears in Miller.(l975) in connection with
the use of the jackknife for the Kaplan-Meier estimate. The jackknife
and the influence curve approaches lead to the same asymptotic calcu~-
lation because the jackknife is a finite sample approximation to the

influence function. An approximation to expression (1.5), with F=F

1

n-1°

n’

the empirical c.d.f. based on a sample Xl’ X2’ cee, Xn’ € =

. .t . .
and G = GX » a4 point mass at the i h sample point, is
i

T(F+e(G-F)) - T(F) _ A _
) = (a-1)(B-0_) = 8-,
é ﬁ(é\;x ),

where 0§ = T(Fn) is the parameter estimate, é—i "is the estimate of
0 recomputed with the ith sample point deleted, and 61 is the ith
pseudo-value. If ‘EE(T(Fn);y) converges to IC(T,F;y), then the
jackknife estimate of.variance converges to the asymptotic variance

given by the influence function approach. For a fuller discussion

of this point, the reader is referred to Miller (1978) or Miller

16



(1974). The function fE(T(Fn);y) is also related to Tukey's sensi-
tivity curve, discussed, for example, in Huber (1977).

It is not possible to conclude that A°(t) is asymptotically
normal with the above variance without examining the regularity con-
ditions under which "higher order terms" in expression (1.6) converge
to zero as n>®, The first condition is that the functional T(Su,Sc,')

be Frechet differentiable in each argument s%  and SC. In order to

check Frechet differentiability it is necessary to specify a norm on

the space of subdistribution functions. The second condition is that

Sz and S; converge to s and s© in this norm, at stochastic rate
;L-. These regularity conditions are verified in the Appendix.

/o .

3. Functions of the Kaplan-Meier Estimate

Parameters of the underlying distribution function F° can be
estimated using F°. For example, Kaplan and Meier (1958) suggested
estimating the mean of F° by ﬁKM = f Xd§°(x). The influence curves
for the functionals T°(Su,Sc;t) = l—f°(t) and Tl(G) = [ xdG(x) are
known. In this section we establish a chain rule for influence curves,
enabling us to find the influence curve and asymﬁtotic variance of
ﬁKM’ and other estimators based on §°(t).

The chain rule follows directly from the chain rule for differ-
ential operators. Let B be the space of bounded positive measures.
We suppose that there are two. functionals, le B*R and T2: B383.
Then V = Tl(TZ) is a functional from {8 to R. The differential

of Tl’ denoted dTl’ maps [ to R and is defined by
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dTlIF ol = J Ic(T,F3t)ufde} .

Here p Weans evaluated at the point F. Similarly dT2 maps §

to B and is defined by
(dTZIG oV) (t) = J IC(TZ,G;s)(t)v{ds} .

By the chain rule, dVIG = dT . Substituting, we find

° de

1]T2(G) G

dle o)A J IC(Tl,TZ(G);t)(dT oA) {dt}

2|G

,

= IC(Tl,TZ(G);t) J IC(TZ,G;s)({dt})x{ds}
J

i
= JJ IC(Tl,Tz(G);t) IC(TZ,G;s)({dt})A{ds}

r

J IC(V,G3s)A{ds} .

>

Hence
ICc(V,G;s) = J IC(Tl,Tz(G);t) IC(TZ,G;S)({dt}) .

The extension to bivariate functionals is again straightforward.

If T2: 3 X@B*B then V = Tl(TZ) maps 3 X @ to R and has two

influence functions:

ICl(V,Fl,FZ;s) = J IC(Tl,TZ(Fl,FZ);t) ICl(Tz,Fl,Fz;S)({dt})
(3.1)
ICZ(V,Fl,Fz;s) = IC(Tl,Tz(Fl,Fz);t)~ICZ(TZ,Fl,Fz;S)({dt}) .

18



Integrating (3.1) by parts we obtain
d :
Ici(V’Fl’FZ;S) = J ICi(TZ,Fl,FZ;s)(t) [EE IC(Tl,Tz;ti]dt, i=1, 2, (3.2)

which is valid as long as ICi(Tz,Fl,FZ;s)(t) X IC(Tl’TZ;t) vanishes
at t=-~ and t=,

Using the relations (3.2) we can calculate the asymptotic vari-

ance of any functional of the Kaplan-Meier estimate as long as the

influence curve of that functional is known. In this case §°(t)

o C N °
T (sg,sg,t) and V(SE,Sn) = T,(8°) = T,(T (s%,8%,°)). Let g(t)

Jl-IC(Tl,TZ;t). Then

dt
r00 rSAt u 1{s<t}
Ic,(v,5%,8%s) = | s°(¢) ( SS éu; + )g(t)dt
o ‘00 (ST48)T ) (5T+s%)(s)
(3.3)
OO rSAt u
ICz(V,Su,SC;s) = | s°(t) ( ——§§—£E%*——)g(t)dt .
Jo Jo (s"45%)%(s)

From the asymptotic expansion (1.6),

{oe] {oe]
n % A, Var, V = J Ici(v,s“,sc;s)dF“(s) + J Icg(v,s“,sc;s)ch(s)
0 0

oo 00 sAt dSu( ) l{sfp} 2
J J S°(t)(J “2 + )g(t)dt ar" (s)
ol/o 0 MsHwW %% (s)

o S At u 2
+J “ S°(t)J -—M%——-—g(t)dt} dr® (s)
o Up 0 (%) (u)

ol W 1{s<t} 2
J j s°(t) —m———— g(t)dt} dr' (s)
olVo  (s%s%(s)

19



o [ oo 1{s<t}
+ 2 J J $°(t) ————— g(t)dt
o Vo (8"4+5%) ()

00 sAt u
. “ s°(t) J ,,__(_1_5__(_1%2__ g(t)dt} ar*(s)
0 ™89 W)

. poo oo sAt u 2
+ J :[ S°(t) J ——§§—§E%——— g(t)dt} d(FHFS) (s) .
0

Jo 0 (S +57) " (uw)

We write the third term of this expression as J xdy where

0 sht dSu 2
X = (J' s°(t) J W g(t)dt)
0 0 S48

and
y = -(s"4s%) (s) ,

and integrate by parts. The third term of expression (3.4) is

o SAt dSu(u) 2 u e §=c0
_(J S°(t) J — e g(t)dt) (87+587) (s)
0 0 ("% (u) s=0

00

SAt dSu(u)

. g(t)dt
0 (s%4s%)% ()

+2 f (s%45%) (s) j 5°(t) J
0

0

1{s<t}

(s"+5%)2 (s)

0 ‘o0 SAL u
-2 J {j (s° (¢) J —8 ) g(t)dt}
Jo Vo 0 (s"s%)%(s) :

o 1{s<t}
. J S°(t) ———— g(t)dt{ds(s) .
0 %% (s)

. J S°(t) glt)dt ds¥(s)
0

20
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This is precisely the negative of the second term, and we are left
with a relatively simple expression for the asymptotic variance of

any functional of the Kaplan-Meier estimate:

Ao 1 1 * o 2 u
A. Var V(8°) = —-——-——————-{f 5°(t) g(t)dt} arF (s) . (3.5)
s

[1-F(s)]?

=}

The influence.function approach can be used to prove the asymp-
totic normality of V., The functional V will be Frechet differ-
entiable when Tl and T° are Frechet differentiable. (In fact,
to prove asymptotic normality it is sufficient that V be compactly
differentiable, a slightly weaker requirement.) Differentiability
of T° is discussed in the Appendix. The functionals T1 in all
the examples that follow are known to be differentiable. (See, for
example, Reeds, 1976, Chapters 5 and 6.)

Example 1. The Kaplan-Meier mean: ﬁKM = f§ §°(t)dt.

We have seen in Section 1 that the appropriate functional is

Tl(F) = J tdF(t), with influence curve IC(Tl,F;t) = t., Writing

u .c oral oC .
V(Sn,Sn) = Tl(T (Sn,Sn,')), it follows that

o ( 1{s<t} SAt u
ICl(V,Su,Sc;s) = J S°(t) [—-————'—'—————+ J —is—‘-—(—“—)——-}dt :

0 %59 () o (s%5%) %)

the influence curve of the mean is the mean of the influence curve,

From (3.5)

00 CO 2
A. Var 1 = _11; j ———l—-—z- (J S°(t)dt) dr(s)
0 [1-F(s)] s

which is the result given by Breslow and Crowley (1974, equation 8.2).
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It may be more relevant. in practice to calculate the restricted
~KM b 2
mean (Meier, 1975), U= fo §°(t)dt, particularly when the largest
observation of a sample is censored. The asymptotic variance of

ﬁEM, from (2.5), is

00

b 2
acvar -2 [ L (] (o) are) .
0 [1-F(s)] s
. . ARM . 1
Example 2. The Kaplan-Meier median m = inf{m: F°(m) 255}.
Let m be the median of the underlying distribution F° which
we suppose has a density £°., The appropriate functional Tl(G) is
defined by G(Tl(G)) = %u The influence curve is an indicator

function (see Section 1), so

S (£~
g(t) = "f(ot(n?;) 3

where &8(x) is the Dirac delta function. Writing V(SE,SE) = ﬁKM,

' o SAM u l{s<m}
Icl(V,Su’Sc;S) = S (m) {J ds (u) + —_— }

@ Up  s%H2w@)  (s%4+5%) (s)
= e TC. (T°,5%,5%: 8) (m)
250 @) C1t1.S .55

and

A. Var ﬁKM

]
8=

o 00 2
1 J S° (£)§ (t-m) dt} a7 (s
Io [1=F(s)]2 { s @

ar’ (s)

J’“ 1 [s°(m)1?
0 [1-F(s)1% [£°(m)]?

[
B |-

1 1 Jm dF" (s)

SR e @)’ Jo [1er(e) 12

This formula was derived by a different method in Sander (1975a).
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Example 3. Kaplan-Meier L-estimators.

An L-estimate is a linear combination of order statistics
A 1 n
0 "H'Xi=1 a5n%(
entiable function J(*) on [0,1] satisfying J(0) = 0. The

= 7(-L1_ ; _
1)? where a.-= J(n+l) for some bounded differ
estimate © can be written as a functional of the empirical c.d.f.
as Tl(Fn) = [x J(x)an(x). The corresponding Kaplan-Meier L-estimate

is defined as Tl(§°). The influence function for this functional is

t
IC(Tl,F;t) = J J(F(s))ds ,
0 ;

SO

g(t) = J(F(t)) .

The functional T1 has been shown to be Frechet differentiable by
Boos (1979). The conditions Boos imposes on J are weaker than those
given above.

.. u ¢y _ 0ral oC
Defining V(Sn’sn) = Tl(T (Sn,Sn)), we have

00

sSAt

dSu(u) +
u. c\2

l{sfp}
}dt
0 (s"489)°)  (s"+s%) (s)

ICl(V,Su,Sc;s) = J S°(t)J(S°(t)){J

0

00 o 2
J ____é;__i-{J S°(t)J(F°(t))} dr" (s)
0 [1-F(s)] s

Bl

A, Var V

J - 2 j J S°(E)JI(F° (£))S°(u)I(8°(u))
0 [1-F(s)]1™ ‘0 ‘0

¢ 1{s<t} 1{s<uldt du dF (s)

UuAt 1

5 dt du . (3.6)
0 [1-F(s)]

B

J J S°(t)J(5°(t))S° (u)J(S°(u)) J
070
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Expression (3.6) was derived by a different method in Sander (1975b).

A special example of an L-estimate is the p-trimmed mean. Let

~KM = _.l‘_ l—p AO 2 o . - 1
H(p) = 1-2p Jp tdF°(t). This is T,(F°) with J(t) = 55

l{p <t f_l—p}. Here 2p 1is a number between 0 and 1 repre-
senting the proportion of extreme observations excluded from the
calculation of the mean. The influence curve for the trimmed mean

is a combination of those of the median and mean, and reflects the
fact that new observations in the middle of the range of the data
affect the statistic in proportion to their value, but extreme obser-

vations have a bounded effect on the statistic.

1 1

(1-2p) 7t F i t <F U (p)
IC(ﬁKM(p),F;t) = (l-2p)'l t, ,F_l(p) t< F—l(l-p)

20t Fra-p , e > rlaep) .

Y (v ' tAu u
A. Var My = L 1 5 J J $°(£)S° (u) J —‘d—F—g-S—)—-Z—dt du ,
n (1-2p)~ “x ‘x 0 [1-F(s)]

where

-1 o—1
x=F° (p), y=F (1-p) .

Example 4., Kaplan-Meier M-estimates.

An M-estimate is defined as the solution to

1§ A
5'-51 v(x,,0 =0,
for some given function ¢(+). If Y(x,0) = g%- log £(x,8), where

f is the density of the random variables Xl’ ""'Xn’ then
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~N
0 is the maximum likelihood estimate. The appropriate functional

0. The influence curve of T is

form is [ w(x,Tl(F))dF(x) 1

Y(x,T, (F))
J Y (x, T, (F))dF(x) °*

IC(Tl,F;x) =

where '(x,9) =-§% ¥Y(x,60). The influence curve is directly pro-
portional to the function ¥ that defines the estimate. Thus
M-estimates with influence curves of a desired form are easy to
define. Huber (1964) proposed M-estimates as a generalization of
maximum likelihood estimates, with desirable robustness properties.

Two important examples are Huber's M-estimate,

) Y(x) = x -k < x <k
k k <x,
and Tukey's biweight
x(l—xz)z, |x| <1
V) = 0 |x] > 1.

These P-functions were suggested for the problem of locating the center
of a symmetric distribution, in which case the defining equation
becomes S P(x-T(F))dF(x) = 0. In applying M-estimators to survival
data, it will usually be appropriate to transform the observations
(possibly by taking logarithms) in order to symmetrize the underlying
distribution. In addition, in practice it is usually necessary to
estimate the scale parameter of the underlying distribution, but this

will not be considered here.
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For the Kaplan-Meier estimate, V(SE,S;) = T1(§°) is defined

implicitly by
J P(e-T, (F°))af(r) = o .

From (3.3) and (3.5)

(e SAL u 1{s<t}
Ic, (v,s"%,5%s) = | 8°(t) = P! (=T (F°)) {J ds (u; + = } dt ,
0 0 (™85 W)  (s%4s%) ()

1 (% 1 ® 9 2 o
A. Var V = —j —— j 5 S°(E) Y (e-T(F°))dt{ dF’(s) ,
2o [1-F(s)]1° s

where

o = f P (e=T(F°))dF°(t) .
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4.  Appendix

In this section we give sufficient conditions for the asymptotic
expansions of Section 2 to be valid.

A von Mises expansion of a functional T is analogous to a
Taylor expansion of a function £, with the successive derivatives
of f replaced by the successive differentials of T. 1In order to
expand T in such a series it is necessary to check that T is k
times differentiable, where k is determined by the nature of the
problem. For expansions like (1.3), k=1; higher values of k could
Be used for Edgeworth expansion results.

Let Bl’ B, be normed topological vector spaces, and let

2

T: B1 > B2 be a given functional. Given F € Bl’ let dTF be a

linear transformation from Bl to BZ‘ Define R: B1 - B2 and

Q: R><Bl -> B2 by

T(F+HH) T(F) + dTF°H + R(F+H)

R(F+tH) /t t#0

Q(t,H)
0 t=0 .

Definition A.1. The functional T 1is Frechet differentiable

at F iff

IR (F+1) ]]BZ/]]H[]Bl +~ 0 as “H“Bl —» 0.

A different, but equivalent, definition of Frechet differentiability

is given in Reeds (1976, Chapter 2).

27



Definition A.2. (Reeds) The functional T is Frechet differen-—

tiable at F iff

V bounded sets B C Bl

“Q(t,H)“B +~0 as t—>0 wuniformly in H &€ B .
2

This definition is convenient for clarifying the relatio#ship between
different kinds of differentiability. If the phrase "Y bounded sets
Bc Bl" is replaced by "V compact sets B < B ", the functional T
is compactly differentiable, Definition A.2 is valid for nemnnormed
topological vector spaces.

In the above definitions, it is necessary that F and F+H be
elements of Bl' Most statistical applications use for Bl the space
of cumulative distribution functions generated by probability measures.
In this case H itself cannot be a cumulative distribution function,
but is usually written as G-F where G, F are distribution functions.
This emphasizes the underlying idea that .H is a small perturbation
of F. Reeds does not restrict his definitions to the space of func~
tions of total mass 1.

In checking definition A.l, the candidate for dTF is the Gateaux

differential of T.

Definition A.3. The functional T is Gateaux differentiable at

F iff

im T(F+tH) - T(F)

1 t

t->0

exists., The limit is called the Gateaux differential, and is written

dTF°H. There is no confusion with this label, because a function
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which is Frechet differentiable is also Gateaux differentiable, and
the differentials are the same. Compact differentiability is weaker
than Frechet and stronger than Gateaux differentiability.

In order to verify definition A.l it is necessary to specify a
norm on B, and B,. If ”F —F“ is 0 L » then the limit law

1 v 2 n B )
1 /o

of T(Fn) may be deduced from the limit law of the first two terms

of its von Mises expansion, T(F) + dTFO(Fn—F). Thus (1.4) can be

expressad as
‘T(Fn) = T(F) + J IC(T,F;x)d(F_-F) (x) + op(”Fn—F“Bl)

and we conclude
A (T(E )-T(E)) 4 no, J (IC—EFIC)Z dF (x)) .

The representation dTF°(G—F) = [ IC(T,F;x)d(G-F)(x) holds for
most statistical functionals; when it does not T is not a von Mises
functional (by definition), so can't have a von Mises expansion. If
G and F have total mass 1, IC(T,F;x) as'defined is only unique up
to translation by constants, so is often defined to have mean zero.

In the case of the Kaplan-Meier estimates, F and G are subdistribu-
tion functions so this convention is not necessary.

Invwhat follows we will show that the functional T(Su,SC) of
Section 2 is Frechet differentiable with respect to the sup-norm. It
is well known that “Fn-F”°° = Op(ig (see, e.g., Billingsley (1968,

. u _u 1 A u
Section 16)) and hence ”Sn—S ”°° = OP(_—) by definition of Sn'

n
From this the asymptotic normality of T(Sz,Si) follows directly.
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In addition it is easy to get a law of the iterated logarithm for
T(Su,sc) by using the fact that vn ”Su—Su“ = 0((log log n)l/z)
n’ n n ©

Wep. 1. Our approach is in the spirit of Boos and Serfling (1979). .
For many statistical functionals that are not Frechet differentiable,
the approach of Reeds via compact differentiability can be used to
obtain limit theorems of the same type.

Let @ be the space of subsurvival functions, i.e., the space
of decreasing left continuous functions: R+ + [0,0]}, where o < 1.
Let W, =S|l = sup |W (x)-5 x)].

1 "1lle 0<x<oo 1 1
Theorem A.1.” The function T(Sl,Sz) defined by (A.l) is Frechet

differentiable at Sl € ﬁ,-Sz € 3 with respect to

I'”m in each argu-
ment Sl and 32 for each fixed t < «» satisfying Sz(t) > 0. The

differential dTSl,SZ(Wl—Sl, SZ> is given by (A.2).

Proof: Let CF = {continuity intervals of a survival function F}

DF ='{jump points of F}

as, (s) i 5, (M, (™)
(s, ,8.) = J IR S fn " (A1)
1772 cg [0,t] (81+5,) (s) Dg [0,t) 5 (sT)+s,(s")

1 1
We first consider differentiability with respect to the first

argument, S

1
N J aw (s) W (s, (s
T(W,,S,) = ey + fn
1°%2 W, +5,) (s) - -
Cwl[O,t] 172 le[O,t) Wl(s )+Sz(s )

30



d(Wl—Sl)(s)

dT o(W s,) = ?§I:§;$T§$—

-s
S,,8, 17°1°%2 J
1°°2 | Cg NCy, NLO,t]

1 1

(Wl—Sl)(s)dSl(s)

3 (A.2)
cslncwln[o,t] (51+52) (s)

+ -
. (W,-5,)(s") i (W,-5,) (s )] .'

e e
g Uy 10,00 (5148 (M) (545 (67)

(For convenience, we have assumed that Wl and Sl do not jump
exactly at t.) Expression (A.l) is a valid representation of the
cumulative hazard only when S1 and 82. do not jump at the same
point (Peterson, 1977), so SZ(S+) = SZ(S-) in all the expressions

above.

First, assume S1 is continuous and Wl is a (left-continuous)

step function. The expressions simplify to

t dSl(s)
T(S,,S.) = J —
1°°2 0 (Sl+82)(s)

Wl(s+)+82(s)

) = zi in
le[O,t) W, (s7)+8, (s)

T(W,,S,

t dSl(s) It (Wl-Sl)(s)dSl(s)

dTS S O(wl—sl’sz) = -,J +Sz) (s) ~

125 o Sq 0 (sl+s2)2(s)
W (s1)-W, (s7)

5,75,) ()

+
D.. [0,t)
Wl

(This last expression is derived in Section 2.)
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T(W;,8,)=T(S;,S,) ~ dT °(W,-5,,5,) ' (*)

125, 175
Wl(s+)+82(s) t (W-8;)(s)ds (s) [t W, (s)

fn = + ) - (S.+5) (s)
Wl(s )+Sz(s) 0 (Sl+32) (s) 0 ‘"1 "2

S

SEle[O,t)

.wl(s+)+sz(s) ) 1} , Jt (W,-5,) (s)ds, (s) : jt @, (s)

| - 7 [CRTNIO)
SEle[O,t){Wl(s )+, (s) 0 (5,45,)%(s) o 51%5,

+ o[wy-s. [|.)

where the last line follows from the fact that

Wl(s+)—Wl(s-)

2
W, (s7)45, () "[Sz(t5T” 151

. dw, (s)
The first term simplifies to fo Tﬁ;;g;jzgy_, S0

t (W.-S,)(s)ds, (s) t
*) = J L 1 L j ( 1 - Sk ) aw, (s)
0 (Sl+82)2(s) 0 Wl(s)+82(s) Sl(s)+Sz(s) 1

+ o(|lw;-s, |L.)

) Jt (wl—Sl)(s)dSl(s) . Jt (Sl—Wl)(s)dwl(s)

+ o(|jw,-s_|| )
0 (5,45,)°(s) o W +5,)(s) (5,#5,) (=) w5, ]l

Jt (W,-8,) (s)ds, (s) ) Jt (W,-8,) (s)dw, (s)

W ; ' + o(|W,-s .l ) .
0 (5,45, o sy @ E s & oS

It remains to show that the first two terms of this expression are
o ( ”W]__S]_”oo) *
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IJt (Wl—Sl)(s)dsl(s) _ Jt (Wl—Sl)(s)dwl(s)
0 (W1+SZ)(S)(Sl+Sz)(S)

0 (Sl+52)2(s)

”t [(Wl-l-SZ) (s)dSl(s) - (Sl+52) (s)dWl(s)] (Wl—Sl) (s)

0 (5,45,) () (W5, (5)

| A

lJt (Wl-Sl)CS)[Wl(S)dSI(S) - Sl(S)dwl(S)]l

0 (Sl+32)2(s)(wl+82)(s)

. lJt (Wl—Sl)(s)Sz(s)d(Sl—Wi)(s)

0 (548,)%(s) (W +S,) ()

To show that the first term is °(“W1‘51”w)’ we use the following:

t t
@: || oy @ eres; @ - |

(W,-S,) (s)s, (s)ds, (s)
0 o 11 1 1

t 2
IJ -5 )2 ()as, (s)

0
2 Jap-sp ] [
< sup (W, -S,) (s) -I ds, (s)
To<s<t -1 o 1
i “W]__S]_”oo “Wl"s]_“oo ISl(t)-—Sl(O)l
e, o’
€l0,1]

°(”w1'51”m)
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t -t
(b): U (W, -8,) (S)Sl(S)dWl(s) - J (Wl—Sl) (S)Sl(S)dSI(S)
0 0

t
= Ho (W;=8,) (s)Sl(s)d(Wl—Sl) (s)

| A

t .
J (Wl—Sl)(s)d(Wl—Sl)(s)

s, (0)
1 0

f.Sl(O) ”Wl"sluw “Wl—Slum

N oo—

€l0,0]

= °(“W1‘31”m) .

To show that the second term is °(”W1—81”u)’ apply equation (b).
This concludes the proof of the theorem for the first argument, Sl’
and the case Sl continuous, Wl discrete. Differentiability with
respect to S2 is straightforward and will bg omitted.

To show (*) is o(”S W

|.) when s are arbitrary members
o 1

17| 1’
of @ (composed of discrete and continuous parts) involves essen-
tially the same argument, with some additional analysis to show that
the (Sl) measure of sets of the type '{DWl n Csl} goes to éero as
“Sl— 1”w > 0. The calculations are somewhat more tedious than the
above and will not be presented here. In fact, as Boos and Serfling
(1979) emphasize, for the asymptotic distribution results of Section 2
it is sufficient to establish that (*) is Op“Wl—Slu for the special

case W1 = Sln’ the empirical survival function associated with Sl.
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It is also possible to show Frechet differentiability by estab-

lishing that the Gateaux differential dT (Hl,Sz) is continuous

Sl’SZ

in S;» in the sup norm, for all H,. (This is Proposition A.2.3 of
Reeds, 1976,) Such a verification involves calculations essentially
similar to those presented above.

In the proof of Theorem A.2.1, bounding the expression (*) is

simplified by the fact that we are integrating over the finite interval

[0,t]. The condition that Sz(t) be strictly positive is natural in

the context of the censored data problem, In this case S, represents

2

the subsurvival function for the censored observations. It makes sense

to require that the support of the censoring distribution extend beyond

the point at which the survival function is being estimated, (See, for

example, the discussion following Theorem 5 of Breslow and Crowley
(1974).) 1t is probably possible to relax this condition on Sz(t)

by using a result like Proposition 11,4.18 of Royden (1968, p. 233).
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