
FINE-GRAIN IN-MEMORY DEDUPLICATION FOR

LARGE-SCALE WORKLOADS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

John Peter Stevenson

December 2013

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/rp831pj6163

© 2013 by John Peter Stevenson. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/rp831pj6163

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

David Cheriton

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Patrick Hanrahan

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

iv

Abstract

Memory is a large component of computer system cost and current trends indicate

this cost is increasing as a fraction of the total. Emerging applications such as in-

memory databases, virtual machines, and big-data key-value stores demand more

memory relative to compute. Some of these high-memory applications incidentally

store many duplicate values in memory: in some cases, duplicates account for over

75% of the total. Recent work on the HICAMP architecture provided a sophisticated

hardware mechanism for memory deduplication to implement memory versioning, but

without support for current software stacks. This thesis extends work on HICAMP

by evaluating a deduplicated memory that is compatible with existing hardware and

software. Memory content from actual workloads indicates that deduplicated memory

effectively doubles capacity. After understanding the baseline cost-benefit tradeoff in

terms of capacity, performance, and energy, this work proposes novel optimizations

for machines with deduplicated memory. These optimizations reduce memory traffic

and improve performance relative to both the baseline deduplicated memory and, in

many cases, relative to the original machine. Energy consumption is reduced because

memory devices are reduced with no penalty to performance. Further, deduplication

reduces data transfer and improves performance for certain scientific applications.

This thesis argues that in-memory deduplication is warranted by its own benefits,

which are likely to grow in the future, and that it enables low-cost memory snapshots,

as in the HICAMP architecture.

v

Acknowledgments

Dedicated to my wife, Siejen.

Most of all, this thesis is a product of the family that has supported me. Complet-

ing this work is a significant occasion along a longer trajectory – an arc of life that

I have been privileged to enjoy, and that I hope to repay in kind. Necessarily, this

trajectory begins with my mother and father, both of whom deserve first acknowl-

edgement. Mom and Dad – thank you both, for raising me, putting up with me, and

most of all, for inspiring me to go farther than I dared think possible.

Another significant turning point in my life was the day I met my future wife,

Siejen – a day and a time that I will remember fondly, forever. Now, years later, I

love her more and can say that she has made me a better man. My life has been

richer and more fulfilling during the time I have spent with her. Siejen – thank you

for loving me, and for supporting me through this program.

Mom and Dad – you let me wander far from home to seek my fortune. Siejen – you

joined me on this journey, for better or for worse, and the journey has taken you far

from home also. Many years later, I have completed this thesis, and I have also found

a new home: namely, that is wherever my best friend and wife happens to be – I am

at home, and safe. Personally, I have derived a great amount of satisfaction from

completing this task, and I want you all to be likewise proud of it, both now, and as

I continue this work – you gave me the freedom to walk down this path.

vi

Siejen and I have benefitted, both, from the support of the rest of our respective

families. To Debbie and Bill Edwards, my sister, and her husband, thank you for

opening your house to us and for inspiring me, at an early age, toward my future

alma mater, the U.S. Naval Academy. To Shong Yin, Ph.D., and Susing Yin, Siejen’s

brother and sister, thank you for providing good advice and friendship during the

course of this work. And finally, to Robert and Nancy Yin, Siejen’s parents, thank

you for believing in me and taking me in as a member of your family.

I owe a debt of gratitude to the U.S. Naval Academy, to its staff and faculty, and to

the U.S. Navy. At age eighteen, I knew the advantages and disadvantages of both ac-

tive and passive SONAR – critical knowledge for my future career in submarines – but,

I did not know where Stanford was or anything much about such opportunities. Tom

Brennan – thank you for suggesting that I pursue graduate education, I doubt very

much I would have thought of that myself. Larry Tankersley – thank you for teaching

the most wonderful physics class I can imagine, and if someday I have the privilege of

teaching, I hope to emulate your style. Carl Wick – thank you for being my advisor

and best advocate: you helped me navigate one of my early successes.

To Stanford, thank you for filling in the gaps in my undergraduate knowledge.

Tom Lee – I always knew that causality had to be a problem with the “ideal opamp”

model: I thoroughly enjoyed your courses, and learned a great amount. Umran

Inan – you laid to rest another engineering model that had always bugged me, for es-

sentially the same reason: I finally grok that voltage does not appear instantaneously,

thanks to you, and of course, James Clerk Maxwell. David Miller – thank you for

passing me. I so desperately wanted to take a course in quantum mechanics, having

no idea what it was, and being totally unprepared for the material. Of course, you

vii

inspired my short foray into song writing, and to claim rightful authorship for eter-

nity, I now, as befits such mathematically inspired work, using LATEX, give the lyrics,

sung to the music of Jingle Bells:1

Ohhh quantum well go to hell, I hate Erwin Schödinger

∇2ψ makes me cry, divide h by 2π

During this time, I have made many good friends, and among whom, I am humbled

and honored to be included as their colleague. Omid Azizi – thank you for being

my friend and officemate, and thank you for lending me your analytical mind and

incredible intelligence.2 Zain Asgar – thank you for being my friend, for being a fellow

circuit optimization enthusiast, and for coming up with all the good ideas on how to

divert my time toward better uses, such as camping trips and balloon festivals. Ofer

Shacham – thank you for being so welcoming when I joined Mark’s group; I know we

have followed similar paths from very different starting points and I look forward to

knowing your family and knowing of your successes in the future.

The work on this thesis has also been influenced by the ongoing work at a small

company, HICAMP Systems. Small, though it may be, the combined intellectual

quotient of its staff is formidable. Alex Solomatnikov and Amin Firoozshahian – thank

you for blazing the trail at HICAMP and for teaching me the basics, or advanced

basics, of computer architecture. Mahesh Maddury, Chandan Egbert, and Christophe

Joly – thank you for bringing real experience to the table and for steering a safe course

for our fledgling company.

Along this path I have learned more from one faculty in particular, and I hope

one day to pass on some of his wisdom – both academic, and life. Mark Horowitz,

thank you for taking me on as your student, and for inspiring me. You delivered

1 The lyrics are somewhat hyperbolic, I actually love him, his equation, and his cat.
2 i.e. Thank you for pre-screening all my ideas.

viii

my first lecture at Stanford, and I will always remember it. It won’t be so vivid in

the retelling, but I admired the delivery which turned the complex into the simple

and unveiled powerful ideas with large amounts of engineering leverage. It started

by proposing to take an idea, a big idea, and pack it into a little tiny rectangle. On

that rectangle, the contents of the idea would be drawn in basic primary colors, and

particular significance would be given to certain combinations of such colors, such

as red drawn over green. I had no idea, but it turns out that microchips are just

drawings, printed in layers of metal, on top of silicon. And making microchips is

as simple as making such drawings, where the colors distinguish the layers and red

over green makes a transistor. I was hooked, and that was just a beginning – there

was more to come, much more. Mark, you’ve been generous to me, and all of your

students – thank you.

Finally, this work is really the byproduct of the formidable intellect and visionary

creativity of David Cheriton. I chose to do a Ph.D. at Stanford not just because it

is a premier institution, but also because they had given me a very generous offer of

financial support, namely, the David R. Cheriton Stanford Graduate Fellowship. This

was somewhat of a better offer of financial support than I had received elsewhere,

and I already had it in my mind that Stanford offered a tighter link to what is

actually happening in the electronics industry. Early in my Ph.D. career, Siejen and

I happened to cross paths with David in the middle of downtown Palo Alto – in one of

my better life moments, I failed to not notice that this was happening, so I decided to

introduce myself and my wife. In this conversation David said he had a new project,

known as HICAMP, and asked if I would be interested. At the time, I knew a little

bit about computer architecture, enough to recognize HICAMP as being unorthodox,

brilliant, and quite fascinating. And the last of those qualities was enough for me – my

only criteria was to do interesting work. David Cheriton – thank you for generously

providing my Stanford Graduate Fellowship which supported me at Stanford for five

ix

years and thank you for bringing me on board to work on HICAMP. I have enjoyed

it immensely and I find every aspect of it incredibly fascinating.

I hope you the reader will agree: what follows is both interesting, and somewhat

surprising. In these acknowledgements, my meaning of inspired is twofold: academic,

of course, but also figurative – for example: the stars at night above the ship’s swaying

deck inspired me to think of mankind forging a path on new spacegoing vessels, through

the galaxies, (or some such); and of course, for now I will keep to academic writing.

Mark Horowitz and David Cheriton, thank you for inspiring this work.

x

Contents

Abstract v

Acknowledgments vi

1 Introduction 1

1.1 Cost of Memory . 2

1.2 Efficient Use of Memory . 5

1.3 Duplicates in Actual Workloads . 6

1.4 Deduplicated Memory: Performance and Power 7

1.5 Deduplicated Sparse Matrices . 8

1.6 HICAMP Architecture . 9

1.7 Summary . 11

2 Deduplicated Memory 12

2.1 Deduplicated Memory Organization 13

2.2 Processor Reads and Writes . 14

2.3 Content Lookup . 16

2.4 Hash Bucket Overflows . 18

2.5 Deduplication and Overhead . 21

2.6 Duplicates In Real Workloads . 22

xi

2.7 Operating System Support . 25

2.8 Summary . 28

3 Performance Optimizations 29

3.1 Direct Translation Buffer . 30

3.2 Deduplicated Cache . 31

3.2.1 Coherency . 32

3.2.2 Physical Resources . 34

3.2.3 Content Lookup . 38

3.2.4 In-Cache Allocation . 38

3.2.5 Zombie Suppression . 40

3.2.6 Prefetching . 41

3.2.7 Multi-Bank Implementation 42

3.3 Summary . 44

4 Performance and Power 45

4.1 Evaluation Methodology . 47

4.1.1 Simulated Machine Configurations 47

4.1.2 Performance Model . 48

4.1.3 Performance Metrics . 49

4.1.4 Simulated Workloads . 50

4.2 Performance . 52

4.2.1 Synthetic . 53

4.2.2 Standard CPU Benchmarks 54

4.2.3 Datacenter Workloads . 56

4.2.4 DDC Performance . 57

4.3 Power Savings . 59

4.4 Summary . 61

xii

5 Sparse Matrix-Vector Multiply 62

5.1 Hierarchical Deduplication . 63

5.2 Deduplicated Sparse Matrix Storage 66

5.2.1 Row Major Array . 67

5.2.2 Quad-Tree Symmetric . 67

5.2.3 Hierarchical Compressed Sparse Row 69

5.2.4 Hierarchical Coordinate Format 69

5.2.5 Non-Zeros Dense Format . 70

5.3 Sparse Matrix Compaction . 71

5.3.1 Compaction Results . 72

5.3.2 Storage Bounds . 73

5.4 Deduplicated Sparse Matrix-Vector Multiply 74

5.4.1 SpMV Evaluation Methodology 75

5.4.2 SpMV Results . 78

5.5 Iterator Register Hardware . 80

5.6 Iterator Register SpMV . 82

5.7 Sparsity Oblivious Algorithms . 84

5.7.1 Sparse Vector Add . 85

5.7.2 General Matrix-Matrix Multiply 86

5.7.3 Sparsity and Cache Oblivious

Tree-Recursive Matrix-Matrix Multiply 87

5.8 Summary . 89

6 HICAMP and Related Work 91

6.1 The HICAMP Architecture . 92

6.1.1 The Need for Parallel Machines 92

6.1.2 Transactional Memory . 94

xiii

6.1.3 Multi-Versioned Memory . 95

6.1.4 HICAMP Memory Model . 96

6.1.5 Atomic Segment Update . 98

6.1.6 Advantages of HICAMP . 99

6.2 Related Work . 100

6.2.1 Page Deduplication . 100

6.2.2 Exploiting Zero Values . 101

6.2.3 In Memory Compression . 101

6.2.4 Sparse Matrix-Vector Multiply 103

6.3 Summary . 106

7 Conclusion 108

Bibliography 112

xiv

List of Tables

2.1 Read and Write Sequences . 15

2.2 In-Memory Content Lookup . 17

2.3 Hash Table Notation . 18

2.4 Duplicates in Real Workloads . 23

3.1 Cached Reference Count States . 34

3.2 DDC Physical Resources . 35

3.3 Translation and Data Line Eviction for In-Cache Allocation 39

4.1 Common Machine Parameters . 48

4.2 Individual Machine Configurations 48

4.3 Overall Results: DDM and DDC-ICA 52

4.4 Synthetic Benchmark Results: DDM and DDC-ICA 53

4.5 Average speedup for all workloads and machines 54

4.6 Average bandwidth for all workloads and machines 54

4.7 Line Statistics Comparison . 59

4.8 Power Savings from Deduplicated Memory 59

5.1 Comparison of Deduplicated Matrix Formats 72

5.2 SpMV Machine Specifications . 75

5.3 HCOO Compaction and SpMV Speedup 79

6.1 Comparison of Non-Symmetric SpMV Compaction Techniques 106

xv

List of Figures

2.1 Deduplicated Memory Layout . 13

2.2 Address Translation and Content Deduplication 14

2.3 Write Sequence Dependencies . 15

2.4 Hash Array Layout . 16

2.5 Minimal Overflows . 20

2.6 Cumulative Reference Count Histogram 24

3.1 Direct Translation Buffer . 30

3.2 CPU With DDC and DTB . 31

3.3 PLID Composition . 37

3.4 Conceptual Illustration of a Deduplicated Cache 37

4.1 SPEC CPU 2006: Compaction & Speedup Results 55

4.2 PARSEC & Datacenter Applications: Compaction & Speedup Results 55

4.3 Bandwidth Results . 56

4.4 DDC-P: Line Statistics . 59

4.5 DDC-ICA: Line Statistics . 59

5.1 Hierarchically Deduplicated Vector 64

5.2 Path Compaction . 65

5.3 Quad-Tree Symmetric Matrix . 68

xvi

5.4 Hierarchical Coordinate Encoding . 70

5.5 Non-Zeros Dense Format . 71

5.6 Sparse Matrix Compaction Results 73

5.7 DAG Traversal Code . 76

5.8 SpMV Speedup and Performance Limits 80

5.9 Iterator Register Overwriting Portions of a DAG 81

5.10 SpMV Using an Iterator Register . 83

5.11 Sparsity Oblivious Vector Addition 85

5.12 Sparsity and Cache Oblivious Tree-Recursive Matrix-Matrix Multiply 87

6.1 HICAMP Architecture Memory Layout 96

6.2 HICAMP Virtual Segment Map . 97

xvii

xviii

Chapter 1

Introduction

Computer technology has advanced at an ever increasing rate, a trend referred to as

“Moore’s Law.” This increasing rate of return has been so reliable that we have come

to believe that it is inevitable, but, continued advances require solving ever more

difficult problems. Technology trends indicate that demand for memory capacity is

growing at an increased rate while growth in capacity – Moore’s Law – is slowing.

To address this issue, this thesis studies deduplicated memory – namely, a computer

memory that eliminates duplicate values to provide increased memory capacity. His-

torically, deduplication has not been used for main memory and there is very little

on this topic in the literature. In-memory deduplication was first proposed in a dif-

ferent context, namely, to provide architectural support for parallel programs. Prior

work on the HICAMP architecture [24] had used deduplication to provide efficiently

versioned instances of memory. This thesis extends this prior work and applies dedu-

plication to current CPU memory systems. The results indicate that deduplication

provides effectively twice the capacity for many large-scale applications and that it

also saves power. Although a significant departure from mainstream memory archi-

tecture, current trends may compel its use to increase capacity – once implemented,

deduplication also opens the door to many further innovations, such as HICAMP.

1

2 CHAPTER 1. INTRODUCTION

1.1 Cost of Memory

Memory has always been a significant cost in computer systems. Each new generation

of memory technology requires an investment, but the size of that investment is now

growing relative to the capacity increase delivered. At the same time, programmers

have become accustomed to allocating large amounts of memory without worrying

very much about its cost. The rise of internet technology, granting near ubiquitous

access to communication, entertainment, and commerce, is fueling unprecedented

demand for compute resources on many frontiers. This demand, in turn, has given rise

to “cloud service providers” who specialize in providing the compute infrastructure

and in hosting third-party applications. In the wake of this, a new sector, referred

to as “big-data analytics” has emerged – these companies collect large amounts of

seemingly trivial data and try to extract useful information. Collectively, these trends

are driving an increased demand for memory.

In more detail, driven by emerging applications such as in-memory databases and

key-value stores and by techniques such as server consolidation and virtualization,

demand for memory is increasing relative to compute [47]. In-memory databases and

key-value stores use terabytes of memory to minimize or completely avoid disk access

thereby providing increased performance – in these applications, the ratio of memory

to compute is very high. Further, memory is a significant cost in datacenters which

run large-scale applications, such as the web services provided by Google or LinkedIn,

and which provide hosting services, such as Amazon’s Elastic Compute Cloud. The

datacenter business model requires efficient utilization of all resources. In this context,

virtualization and opportunistic batch scheduling have delivered significant increases

in efficiency by effectively sharing CPU time across many applications, but it remains

difficult to share memory resources. Therefore, each new workload directly increases

memory pressure, but only marginally increases the load on other resources.

1.1. COST OF MEMORY 3

As an example of the foregoing, the popular website Twitter runs memcached,

a key-value store, on a cluster of 500 machines with 30 TB of DRAM [57]. Today,

vendors are selling in-memory database appliances with 4 TB of DRAM total, in

which each server board hosts 512 GB [1]. The memory analysis results in this work,

given in Chapter 2, indicate that “big-data” workloads also require servers with large

memories – for example, Shark,1 an in-memory data mining engine [29], fully utilized

680 GB of DRAM on a cluster of 100 virtual machines hosted by Amazon Web

Services. To quantify the cost of this memory, at the time of this writing, machines

with 128 GB of DRAM are common [69]. At 128 GB of capacity, DRAM costs

$14002 or close to 50% of the entire machine cost. Further, DRAM is 20% to 30%

of machine energy and because each memory module has a high fixed cost in power,

this cost grows as a fraction of the total when the datacenter is underutilized [10].

Therefore, DRAM is a significant fraction – about 1/3 – of datacenter total cost of

ownership (TCO).

Furthermore, the issue of memory capacity is likely to become more significant

in the future: in addition to increased application demand for memory, the trend

is toward slower DRAM scaling and higher DRAM pricing. Forecasts indicate that

DRAM prices will go up by 40% and that the total market will expand by 28%

in 2013 [3, 4]. Tighter supply reflects the increasing challenge of DRAM scaling.

Current 1T-1C DRAMs require 25 fF of capacitance per bit, and it is difficult to use

smaller capacitors because of data refresh overheads [53]. While scaling continues for

other silicon designs, it is increasingly difficult to translate this into DRAM scaling

because maintaining the minimum required cell capacitance requires higher aspect

ratios which put cell reliability at risk [40, 54, 30]. Demand for higher peak bandwidth

further exacerbates the capacity issue: to improve channel electrical characteristics

1 i.e. Hive (data warehouse software) on Spark (a distributed in-memory execution engine).
2 16 DIMMs, ECC DDR3-1600, ABMX & NewEgg accessed July 2013.

4 CHAPTER 1. INTRODUCTION

and hence improve bandwidth, the next generation DDR4 specification allows only

one memory module per memory channel [60]. Because of chip pin-count limitations,

the number of memory channels is unlikely to scale up significantly, therefore, at one-

half the number of modules per channel, the cost of capacity for DDR4 is relatively

higher than for DDR3: each module must provide twice the (normalized) capacity.

Given that the dominant memory technology, DRAM, is showing diminishing

returns in terms of capacity, it makes sense to look for alternatives. Emerging non-

volatile memory technologies may enable a new level in the memory hierarchy referred

to as “storage-class memory” or “SCM.” An SCM solution would provide much more

capacity than DRAM, with the additional benefit of retaining its data, even when

powered down – this compares quite favorably to DRAM which needs millisecond

scale refresh. Unfortunately, there is no viable SCM solution available today, and

the most promising candidates for commercialization are still 5x to 10x slower than

DRAM [9, 39]. Further, many of the non-volatile memory technologies face the chal-

lenge of limited write endurance and therefore require sophisticated wear leveling

techniques, in effect, introducing a level of indirection. Even when SCM systems be-

come available, it is unlikely that they will completely replace DRAM – rather, due

to their relatively higher latencies, it is very likely that a large DRAM cache will be

necessary to provide acceptable performance. Finally, given that deduplication can

reduce the number of data writes into memory, the work in this thesis may be even

more applicable to SCM, that is, to provide both increased capacity and increased

write endurance.

This thesis answers to a critical need by addressing the issue of memory capac-

ity. Emerging applications and the growing importance of datacenter computing are

driving increased demand. Current price points make memory up to 50% of capital

expenditure and 20% of operating expenditure, and worse, the memory continues to

consume power, even when machines are idle. Empirically, DRAM scaling has already

1.2. EFFICIENT USE OF MEMORY 5

slowed and will very likely continue to slow. Finally, no current technology is likely

to completely replace DRAM. Together, these trends and observations indicate that

memory capacity will become more, not less, of a concern in the future.

1.2 Efficient Use of Memory

These trends, increased demand for memory capacity and slowing DRAM scaling,

point to a need to make more efficient use of memory. Software techniques, both for

compression and for deduplication, have been deployed to answer to this need, but

these techniques find limited use due to significant costs and show little benefit relative

to the opportunity. On the other hand, special purpose hardware can be used to the

same end. Although such hardware requires a significant investment to design, verify,

and deploy, these expenses appear warranted given that software solutions cannot

fully exploit the opportunity without significantly harming user program performance.

As evidence of the need, three software techniques for increasing memory capac-

ity have found wide-spread use. Virtual machine hosts use transparent page sharing

to deduplicate memory at 4 KB page granularity [66]. Recently, the popular OS X

operating system implemented page compression [5], and nearly every operating sys-

tem provides virtual memory to user applications using demand paging. Although

promising, these techniques all come with serious performance penalties.

In more detail, both compression and transparent page sharing steal CPU cycles

from user applications. Therefore, when used, the operating system also throttles

each of these techniques to a point where their performance impact is minimal. For

example, in VMware ESX, transparent page sharing is limited to scan all of memory

only once every ten minutes [32]. With such a slow scan rate, transparent sharing

cannot deduplicate any pages that have been written to recently – a serious drawback

that limits its potential upside. Moreover, to reduce page table lookup costs, virtual

6 CHAPTER 1. INTRODUCTION

machine hosts are compelled to use much larger page sizes which further limits the

utility of transparent page sharing. Turing to page compression, OS X compresses

only the least recently used pages and only under memory pressure, again, to minimize

performance impact. Succinctly, page compression is a last resort to avoid paging to

disk. And although demand paging provides the illusion of near infinite memory

capacity, paging to disk is generally avoided if at all possible.3

Because software techniques incur high costs, the question of implementing special

purpose hardware appears viable. In particular, a hardware solution would not steal

any CPU time from the running applications. Although such hardware does not

directly steal CPU cycles, it does potentially increase the memory access latency

which incurs an indirect performance cost. Therefore, this thesis evaluates a direct

hardware implementation of fine-grain memory deduplication, both in terms of its

benefit and performance. The remaining paragraphs in this introduction provide a

brief overview of each of the chapters – the reader may skip these entirely, or refer to

them as a guide to what each chapter has to offer.

1.3 Duplicates in Actual Workloads

While duplicates are known to be common for virtualized workloads, such as Ama-

zon Elastic Compute Cloud (EC2), this thesis shows that they are also common in a

broader class of non-virtualized datacenter workloads. Most computer architecture re-

search questions are answered by running benchmark applications such as SPEC CPU,

but these benchmarks do not contain representative data – rather, they use either

random, constrained random, or null data. Therefore, to understand how common

duplicate values are, this thesis turns to real workloads running in actual datacenters.

3 Of course, the need to avoid paging had motivated the otherwise expensive page compression.

1.4. DEDUPLICATED MEMORY: PERFORMANCE AND POWER 7

Results from counting duplicate values in these large-scale application memories,

including results from well known companies such as Yelp and LinkedIn, indicate that

duplicates account for nearly 2/3 of all memory content. If this could be exploited

with no overhead, then 2/3 of memory is made redundant, or capacity is increased

by 3x. To eliminate duplicate values, but still provide the abstraction of memory, the

relationship between original content and unique content must be memorized, but in a

compressed form – this is known as the translation. Including the cost of translation,

the savings are reduced to 2.21x: conservatively, a factor of 2x increased capacity, or

50% cost savings on memory. Looking at datacenter total cost of ownership, or TCO,

this translates into 15% savings, or $75 million over the lifetime of a datacenter.

1.4 Deduplicated Memory: Performance and Power

Motivated by the high potential gains, this thesis investigates the cost of dedupli-

cated memory in terms of application performance and memory system power. In

the worst case, the time to read a memory location, or read latency, is doubled be-

cause a deduplicated memory read requires first a translation fetch, and then a data

fetch. Furthermore, a deduplicated memory write requires first duplicate search and

then translation update, thus making what was originally a single memory operation

into several. Therefore, deduplicated memory can increase both read latency and

memory bandwidth. Prima facie, higher read latency degrades program performance

and increasing bandwidth requires more power.

This thesis proposes novel optimizations that reduce the performance impact of

deduplicated memory. Using the optimizations, this work shows that, in general, per-

formance remains largely unchanged. More specifically, translation fetch is removed

from the critical path using a direct translation buffer: a cache similar to the well

known translation lookaside buffer. The cost of the direct translation buffer is low,

8 CHAPTER 1. INTRODUCTION

relative to other caches, because the translation itself is a compressed representation

of the original memory content. Further, the processor last level cache is extended to

be duplicate aware, an optimization referred to as deduplicated cache or DDC. The

DDC provides an effectively larger cache capacity, therefore reducing cache miss-rate,

and therefore reducing memory bandwidth. To reduce memory accesses on write-

back, the DDC also provides in-cache duplicate search. If a duplicate is not found by

in-cache duplicate search, the DDC allocates an entry, and defers the costly global

duplicate search until that entry is evicted and written back to main memory. A

state-of-the art simulator is modified to model performance of systems with dedu-

plicated memory. Simulation results indicate that a minority of applications suffer

minimal performance degradation, and, on many applications, performance actually

improves as a result of increased cache capacity.

In addition to providing increased capacity, deduplicated memory also saves power

because the number of memory devices is reduced. With fewer memory devices, each

individual device serves more requests and therefore power per device goes up. Al-

though power per device increases, the savings on replacing two devices with one

outweighs this increase. The deduplicated cache further improves power savings be-

cause it reduces the number of memory operations, in many cases to an amount lower

than that required by the original non-deduplicated system.

1.5 Deduplicated Sparse Matrices

Using hierarchical deduplication, as used by HICAMP, this thesis shows that in-

memory representations of large scale physical problems – or sparse matrices – can be

significantly reduced in size. In the deduplicated memory introduced in Section 1.4, no

duplicate values remain from the original content, but its compressed representation,

the translation, may have duplicate entries. A hierarchically deduplicated memory

1.6. HICAMP ARCHITECTURE 9

also deduplicates the translation, and that translation’s translation, until the origi-

nal content is described by the connections between a set of unique memory blocks.

Because certain sparse matrices contain many replicated sub-matrices, hierarchical

deduplication can provide compounded benefit: a factor in excess of 4096:1 compres-

sion is achieved by a hierarchy of 2:1 compressions.4 Using off-the-shelf hardware and

software, this thesis shows that such memory savings improve performance in the

context of scientific and industrial computing. HICAMP provides further speedup

because it inherently recognizes the connections between unique memory blocks in

hierarchical deduplication.

1.6 HICAMP Architecture

This thesis was inspired by previous work on the HICAMP architecture [24], which

had been introduced to provide architectural support for parallel programs. Technol-

ogy trends have pushed parallel computing into the mainstream: once the domain of

supercomputers, today, even cellular phones have highly parallel processors. When a

program is structured such that many machines can simultaneously work on the same

problem, conflicts over the actual state of memory can arise. This happens when two

or more machines, unbeknownst to each other, simultaneously attempt to update the

same memory location – a problem referred to as a memory race. Memory races are

a challenging problem: programmers who are aware of the issue can still introduce

subtle, but fatal, program bugs known as deadlocks. A deadlock occurs when the

programmer stops one portion of the program to prevent a race, but inadvertently

introduces a cyclic chain of such dependencies eventually blocking the progress of

the entire program. The specter of deadlock causes many programmers to sacrifice

parallel program efficiency for program correctness.

4 This is lossless compression, later referred to as “compaction.”

10 CHAPTER 1. INTRODUCTION

HICAMP addresses these issues by providing a multi-version memory, made effi-

cient by deduplication. In HICAMP, each concurrently executing portion of a program

logically accesses and updates its own version of memory, including shared program

state. As each concurrently executing task finishes, its updates are published, or

committed, to the most up-to-date version of memory. Observing that most con-

current tasks do not produce true memory conflicts, HICAMP detects and resolves

conflicting updates at the time of commit, thus allowing the most work to be accom-

plished in parallel.

1.7. SUMMARY 11

1.7 Summary

As described above, and as noted in the literature, application trends are driving

demand for memory capacity up relative to demand for compute performance. Fur-

ther, the dominant memory technology is showing diminishing returns in terms of

capacity. Therefore, this thesis addresses a critical problem, namely that of providing

extra memory capacity.

Using techniques described by HICAMP, this thesis proposes fine-grain memory

deduplication for current CPU architectures. By analyzing memory content in actual

large-scale application memories, this thesis demonstrates that duplicates are common

enough to be reliably exploited. It shows that the cost of duplicate suppression is

very low, in terms of performance, and that memory system power is reduced.

Looking toward the future, continued performance gains must come from imple-

menting parallel programs. As shown by the HICAMP Architecture, a multi-version

main-memory is a natural fit for parallel programs. On the other hand, the cost of a

multi-version memory is prohibitively high without duplicate suppression. Therefore,

this thesis addresses the critical problem of providing extra memory capacity, and, by

enabling multi-version memory, it also addresses the longer term problem of providing

architectural support for parallel programs.

Chapter 2

Deduplicated Memory

The purpose of deduplicated memory is to provide extra capacity, but with the same

physical resources – that is, to directly reduce the cost of memory capacity by never

storing the same data twice. This chapter shows that deduplicated memory is feasible

using current commodity memory devices and that it incurs only modest overhead.

In specific, it shows that by reprogramming the CPU memory controller logic, dedu-

plicated memory can be implemented using industry standard memory modules with

no further changes. To prevent duplicate entries from being allocated, deduplicated

memory must be able to check if some given data is already stored. Further, to

maintain its function as a memory, deduplicated memory pays a cost, referred to as

translation, to record the relationship between original memory content and the set

of unique memory blocks that have been deduplicated. This chapter analyzes these

costs. In specific, it shows that the proposed hash-based global content search is

efficient and has few hash table overflows. Because of the cost of translation, dedu-

plicated memory pays off only if enough duplicates exist. To motivate the remainder

of the thesis, this chapter shows that duplicates are indeed common, that they occur

with high reliability in many large-scale workloads, and that after accounting for the

cost of translation, memory capacity can be doubled.

12

2.1. DEDUPLICATED MEMORY ORGANIZATION 13

lin
e	

lin
e	

lin
e	

Transla'on	 Array	 Overflow	 Hash	 Array	

PLID	 =	 0x00000000	 Top	 of	 physical	 memory	

lin
e	

lin
e	

lin
e	

Figure 2.1: Deduplicated Memory Layout

2.1 Deduplicated Memory Organization

A deduplicated memory, or DDM, presents the abstraction of a standard computer

memory, but application memory content is made unique at some granularity. To

preserve application memory, the relationship between original content and unique

content must be memorized, but in a compressed form – this is referred to as the

translation. The translation has one entry per nominal memory location and each

such entry specifies a certain block of unique content. If, for example, an application

stores the same sequence of values to memory several times, then multiple entries

in the translation refer to the same block of unique content. Logically, entries in

the translation must be smaller than the unique blocks of memory. To maintain

compatibility with existing hardware and software, deduplicated memory exposes the

same interface as standard computer memory. To write to deduplicated memory,

first, a duplicate search is performed, and second, the translation is updated.

In a deduplicated memory, the CPU does not have direct access to physical mem-

ory. Rather, the physical memory is managed by the memory controller as an array

of 64 byte memory lines. Shown in Figure 2.1, the lines are identified by physical line

id, or PLID, and are divided into three regions: the translation array, the hash array,

and the overflow. When there is no ambiguity, a line is referred to by its purpose: as

in data line, a line that stores unique content in the hash array, or translation line,

14 CHAPTER 2. DEDUPLICATED MEMORY

Linearly	 Addressed	 Memory	 (seen	 by	 CPU	 cores)	 Deduplicated	 Memory	

transla;on	 line	

data	 lines	 in	
hash	 array,	 or	 overflow	

bus	 address	

Figure 2.2: Address Translation and Content Deduplication

a line that stores several PLIDs and provides a mapping from processor bus address

to deduplicated content.1 As an optimization, a zero stored as a translation refers to

a completely zero valued data line. Thus, the content referred to by the zero valued

PLID never needs to be fetched from memory, and the PLID referring to zero valued

content is known without the need for duplicate search.

To distinguish from locations in physical memory, this work refers to the nominal

location of memory content, as seen by the CPU, as a bus address. Therefore, a bus

address specifies a particular translation line, and also an entry in that translation

line. That entry contains a PLID, which in turn specifies a particular data line.

Figure 2.2 illustrates these ideas by showing the view of memory as seen by a CPU

core and the actual memory content after deduplication. In the illustration, there are

logically five lines stored in the system, but only three data lines and one translation

are actually required.

2.2 Processor Reads and Writes

A processor write causes the deduplicated memory to search for a pre-existing instance

of the content being written. This operation, referred to as content lookup, returns a

PLID that points to a data line. On lookup, if no pre-existing identical content can

1 A reference count line contains packed reference counts and is stored in the hash array, a
signature line contains packed data line signatures and is stored in the hash array, an overflow line
contains program data and is stored in the overflow region.

2.2. PROCESSOR READS AND WRITES 15

Read Sequence Write Sequence
1. Read translation line 1. Hash Content
2. Extract PLID 2. Lookup content, using hash value from (1)
3. Read content 3. Read translation line

4. Extract PLID from translation line from (3)
5. Update translation line from (3) with PLID from (2)
6. Write translation line from (5) back to memory
7. Increment reference count of PLID from (2)
8. Decrement reference count of PLID from (4)

Table 2.1: Read and Write Sequences

Rd Translation Line

Overwrite PLID

Lookup Content

Extract PLID +1 RC new PLID

-1 RC old PLID

Hash Content

Wr Translation Line

Figure 2.3: Write Sequence Dependencies

be found, a new data line is allocated. The write is recorded by storing the PLID

in the translation array at an offset determined by the bus address. On read, the

deduplicated memory returns a copy of either a data line or overflow line.

Table 2.1 shows the specific sequence of actions for a processor read or write.

Without further optimization, deduplicated reads require two memory fetches, there-

fore potentially causing a CPU to stall while waiting on an additional memory read.

On the other hand, the more complicated write sequence does not directly impact pro-

gram performance because CPUs do not need to wait for writes to complete. Many

steps in the write sequence can execute concurrently as illustrated in Figure 2.3.

Logically, the write sequence requires only content lookup (Table 2.1 step 2), and

translation update (Table 2.1 steps 3, 5, and 6): several other steps are listed for

completeness; their purposes are explained in the following sections.

16 CHAPTER 2. DEDUPLICATED MEMORY

Figure 2.4: Hash Array Layout

2.3 Content Lookup

A deduplicated memory must function both as a linearly addressable memory and as

a content addressable memory, or CAM. Compared to a linearly addressable mem-

ory, which uses an array index to access content, a content addressable memory uses

content as an index into the memory. Typical implementations of CAM in hardware,

often used in internet routers and switches for IP lookup, provide very low latency at

the expense of high power and low capacity. On the other hand, a deduplicated mem-

ory needs high capacity, but CAM functionality is only required on write – because

write latency usually does not impact CPU performance, the deduplicated memory

can trade latency for capacity when implementing CAM.

To distinguish from typical CAM hardware, deduplicated memory implements

an operation referred to as content lookup which indexes memory using content and

returns the PLID which points to the data line containing that content. If no pre-

existing instance of the content is found, space is allocated, the content is written,

and the PLID is returned.

2.3. CONTENT LOOKUP 17

Content Lookup
1. Read signature line from hash bucket
2. Compare signature of content against entries in signature line
3. If no signature match, but a zero entry exists in signature line:
... 3.1. Allocate: insert signature of content into signature line from (1)
... 3.2. Write signature line to memory
... 3.3. Write content to memory
4. If no signature match, and no zero entry in signature:
... 4.1. Allocate in overflow: read next free entry from overflow free list
... 4.2. Write content to memory at location given by (4.1)
5. If signature match(es) exist:
... 5.1. For each signature match, read and compare content
... 5.2. If a content match is found: Return PLID for content
... 5.3. If no content match is found: Allocate content, as in (3) or (4)

Table 2.2: In-Memory Content Lookup

To avoid the high cost of special purpose CAM hardware, deduplicated memory

uses an efficient in-memory hash table described by Cheriton, et al., in their work on

HICAMP [24]. Shown in Figure 2.4, it contains a number of hash buckets, m, each

with a number of data lines, n. Each bucket also contains two additional memory

lines of metadata: the reference count line and the signature line. The signature

line is used to optimize content lookup. For each of the n data lines in its bucket,

it contains either a signature (a small, non-zero, secondary hash value) or zero to

indicate a free line. Because the content of every line in a given bucket is represented

in a compressed form in each signature, reading the signature line effectively searches

the entire hash bucket in a single DRAM operation. For content lookup, two common

cases exist: either no signature match exists and a free line is immediately allocated

based on a zero entry in the signature line, or exactly one signature match exists and

a subsequent data line read and content comparison verifies that a duplicate has been

found. If there is more than one signature match, multiple data line reads and content

comparisons are required. Table 2.2 describes the complete content lookup sequence.

To provide efficient deallocation when content is no longer in use, the deduplicated

memory keeps a reference count for each data line in the hash array. To minimize

18 CHAPTER 2. DEDUPLICATED MEMORY

Symbol Meaning
m Number of hash buckets
n Bucket capacity (ways)
u Number of unique memory lines
l Table load: l = u / (m · n)
o Number of memory lines that spill to overflow
pb Probability of hashing to a given bucket
k Load of a given hash bucket

P (k) Probability that a given hash bucket has load k
N(k) Expected number of buckets with load k

Table 2.3: Hash Table Notation

reference count overhead, all reference counts for a given hash bucket are packed into

a single memory line – the reference count line – which contains a narrow (1 byte)

reference count for each data line in the bucket. If a given data line’s reference count

is greater than 250, a value between 251 and 254 indicates that its reference count is

stored in one of the wide entries, also in the same reference count line. In the unlikely

event that more wide reference count entries are needed than available,2 the narrow

reference count entry is assigned the value 255 to indicate “stuck at infinity,” after

which, it cannot be deallocated. The reference count lines are updated in accordance

with the write sequence shown in Table 2.1.

2.4 Hash Bucket Overflows

Even using an ideal hash function, as content is added to memory, some hash buckets

fill up before others – therefore, the deduplicated memory includes an overflow provi-

sion. This section first analyzes overflow behavior in the hash table from Section 2.3

and then explains allocating memory content in the overflow provision.

To minimize overflows, deduplicated memory uses a highly associative hash table,

that is, a hash table with many ways or entries in each bucket. An ideal hash function

2 Several highly referenced lines would need to map to the same bucket.

2.4. HASH BUCKET OVERFLOWS 19

produces a uniform random distribution of hash values which, in turn, produces a

binomial distribution in the hash buckets. Very strong hash functions with highly

efficient hardware implementations already exist [14], therefore, deduplicated memory

uses such a function. Using the notation shown in Table 2.3, the following analysis [18]

provides hash table overflows as a function of table load and the number of ways per

bucket. Assuming an ideal hash function, the following is by definition:

pb =
1

m
(2.1)

The probability of a bucket with a given load k, P (k), and the number of buckets

with that load, N(k), follow from the binomial distribution:

P (k) =

(
u

k

)
pkb (1− pb)u−k (2.2)

N(k) = m · P (k) (2.3)

Using Equation 2.3, the total number of memory lines that spill to overflow can be

calculated by summation:

o = m ·
∞∑

k=n+1

(k − n) · P (k) (2.4)

When the hash table is under heavy load, the Poisson approximation can be used in

place of the binomial distribution. Using the Poisson approximation, and normalizing

the number of overflows, o, to the total number of entries in the table, m · n, the

percentage of lines that overflow is:

percent overflow =
1

l · n
·
∞∑

k=n+1

(k − n) · (l · n)k

k!
e−l·n (2.5)

20 CHAPTER 2. DEDUPLICATED MEMORY

10 30 50 70 90 110
0%

2%

4%

6%

8%

10%
At l = 90%

P
e
rc

e
n
t

O
v
e
rfl

o
w

Bucket Capacity n
80% 85% 90% 95% 100%

0%

2%

4%

6%

8%

10%
At n = 56

Table Load l

P
e
rc

e
n
t

O
v
e
rfl

o
w

Figure 2.5: Minimal Overflows

Hash bucket overflows, therefore, occur with some probability based on hash table

load, l, and bucket capacity (or ways), n.

Figure 2.5 plots the percentage overflow (Equation 2.5) both as a function of table

load and as a function of bucket capacity. Two observations follow: the overflow

percentage is a decreasing function of bucket capacity, and, with sufficiently high

bucket capacity, there are few overflows, even at high table load.

For simplicity, and because few lines spill to overflow, overflow lines are not dedu-

plicated. Using a well-known technique [64], a list of unused overflow lines, referred

to as the free list, is kept in the unallocated overflow memory. If the content lookup

operation (Table 2.2) cannot allocate in the hash bucket, it allocates an overflow line

from the free list. Therefore, the number of memory operations for content lookup

is bounded by the bucket capacity, n. Although O(n) operations are required in the

worst case, the cost of content lookup seldom approaches this limit because the prob-

ability of multiple false signature matches is very low. Bucket overflow is normally

detected without the need for content fetch and compare. Because the free list entries

are packed, overflow allocation normally requires no additional memory accesses, and

at most, requires one extra memory access to fetch the next free list entry.

2.5. DEDUPLICATION AND OVERHEAD 21

2.5 Deduplication and Overhead

After deduplication, only unique memory lines remain. Ignoring the cost of trans-

lation, the maximum upside to deduplication is the ratio of total memory lines to

unique memory lines, referred to as the total-to-unique ratio or TTU :

total -to-unique ratio =
Nlines-total

Nlines-unique

(2.6)

A large total-to-unique ratio indicates that many duplicates exist. For example, with

TTU = 100x, logically, only 1/100th of memory resources are required, or capacity is

increased by 100x when using those resources provided.

The practical benefit, referred to as compaction, is limited by the overhead of

storing the translation, and, to a lesser extent, limited by the overhead of reference

count and signature metadata. Fundamentally, the ratio of memory line size to PLID

size sets the maximum compaction. Smaller lines increase deduplication but also cost

more in terms of translation overhead. Larger PLIDs allow more unique data lines to

be stored, but also increase the overhead of translation. To demonstrate the benefits

of deduplicated memory, this work uses the following parameters in its evaluation: a

memory line size of 64 bytes, a PLID size of 4 bytes, and 56 ways per hash bucket.

In this implementation, the line-size to PLID-size ratio is 16 – therefore, the max-

imum compaction is effectively 16x, even if the TTU is 100x. With 56 ways per

bucket, there is room for two wide (4 byte) reference count entries per hash bucket.

As shown in Figure 2.5, with 56 ways, even under high table load, overflows re-

main low. Therefore, signature and reference count metadata incur approximately

2 extra bytes per unique data line. Revising the total-to-unique ratio to include all

22 CHAPTER 2. DEDUPLICATED MEMORY

overhead – translation, reference counts, and signatures – the deduplication benefit,

hereafter referred to as compaction, is given by the following:

compaction =
Nlines-total

1/16 ·Nlines-total + 66/64 ·Nlines-unique

(2.7)

The memory line size, 64 bytes, is chosen to match the cache line size used on

many current CPU architectures. The PLID size, 4 bytes, is chosen to be evenly

divisible into the memory line size, but also to be narrow and therefore limit the

translation overhead. One limitation of using narrow 4 byte PLIDs is that only

232 memory lines or 256 GB of DRAM can be addressed. This limit can be over-

come by using wider PLIDs, which increases the overhead of translation, or by using

multiple deduplication domains. For example, a two-socket server board may imple-

ment a separate deduplicated memory for each socket. In this two-socket system,

512 GB of DRAM can be addressed, but up to two instances of a given line of

content may exist at any given time. Although not investigated in this work, this

strategy of using multiple deduplication domains is expected to provide nearly the

same compaction: as shown in the next section, deduplication is effective for differ-

ent memory sizes from 7 GB to 1024 GB and a large amount of the benefit comes

from data lines with high reference counts.

2.6 Duplicates In Real Workloads

Given that the translation is a direct overhead to deduplicated memory, a key

question is how common are duplicate memory lines, and how much compaction is

achieved after including that cost. It is well known that many coarse grain duplicates

exist in virtual machine hypervisors [66], therefore, fine-grain duplicates also exist in

2.6. DUPLICATES IN REAL WORKLOADS 23

Company Workload Dataset Memory TTU Compaction
Facebook Tao Social Graph 144 GB 1.07x 0.98x

Lightminer Benchmark TPCH 256 GB 1.76x 1.54x
SAP SAP HANA-One Private 1024 GB 1.94x 1.68x

Quantifind Data Mining Social web data 64 GB 2.87x 2.37x
LinkedIn Profile Page Professional Profiles 48 GB 3.09x 2.52x

Arista Build Server Private 128 GB 3.10x 2.53x
UC Berkeley Shark Conviva Server Logs 68 GB 3.18x 2.58x

NHN Memcached Private 48 GB 3.36x 2.71x
Yelp Hadoop (EMR) Private 7 GB 4.21x 3.25x

Ayasdi Data Mining Patient Health Records 96 GB 5.30x 3.89x
Geomean - - - 2.68x 2.21x

Table 2.4: Duplicates in Real Workloads

these systems. On the other hand, there is no published work describing how many

duplicate values exist in non-virtualized application memories. Furthermore, this

question cannot be addressed using standard benchmark programs, such as SPEC

CPU: such benchmarks typically use random, constrained random, or completely

null data. To answer this question, this thesis provides data from actual large-scale

deployed workloads.

A two step process is used to count duplicates. To avoid corrupting memory

content, an image of physical memory is recorded to disk using the minimally invasive

Linux Memory Extractor, or LiME [63]. After LiME, zest, a separate program, is

used to count the number of unique memory lines. For these results, at least three

images were recorded, and the reported values are for the largest number of unique

lines found in each set. Little variation was observed in any given set of three,

an observation consistent with prior results reported for memory compression (as

opposed to deduplication) methods [28, 55].

Table 2.4 shows the results from zest, both as a total-to-unique ratio and as

effective compaction. All of the workloads shown in Table 2.4 are non-virtualized.

The results show that duplicate values are common in actual large-scale applications,

and that in many cases, enough duplicates exist to provide an effective factor of 2x in

24 CHAPTER 2. DEDUPLICATED MEMORY

Unique Content

Zero Valued Content

Non Zero & Deduplicated Content

Figure 2.6: Cumulative Reference Count Histogram

memory capacity improvement. In aggregate, there are almost three times as many

stored values as unique values.

Figure 2.6 shows that a significant amount of the savings comes from lines with a

high reference count. In more detail, it shows the percentage of the original memory

which had a reference count less than or equal to its corresponding coordinate on

the abscissa.3 About 22% of the original memory content was completely unique

and therefore had a reference count of exactly one. On the other hand, 40% of the

original memory had a reference count of 100 or more. The slope, measured at a given

reference count, indicates the amount of memory that would have been consumed,

i.e. without deduplication, by memory lines with that reference count.

Although much of the savings come from high reference count lines, the most

common reference count is one, as indicated by its outsize contribution to the total:

3 Data in Figure 2.6 is from Quantifind.

2.7. OPERATING SYSTEM SUPPORT 25

namely 22% versus just a few percent, or less, for all reference counts greater than

one. Despite this, the accumulated effect of deduplication pushes the total-to-unique

ratio almost to three and the resulting compaction is 2.37x.

As expected, not all workloads create many duplicate entries in memory. For

example, the application Tao, running at Facebook, has a total-to-unique ratio of only

1.07x which is not enough to cover the overhead of translation: for Tao, compaction

is 0.98x. Other workloads, not sampled in this study, may also have a very low

total-to-unique ratio. For such workloads, deduplication does not pay off and only

incurs the cost of extra memory operations for content lookup and capacity overhead

for translation.

On the other hand, all results in Table 2.4, except Tao, have a high, or very

high, total-to-unique ratio. Since Table 2.4 includes all data from all respondents,

this suggests that duplicate values are common even in workloads not yet sampled.

Based on this data, by geometric mean, average compaction is 2.21x. Thus the results

indicate that duplicates are indeed common in deployed large-scale applications. And,

for many applications, deduplicated memory reliably provides 2x compaction.

2.7 Operating System Support

Although deduplicated memory, as described to this point, is transparent to the

operating system, some modification to operating system memory management is

prudent. As shown in Section 2.6, many applications have a very high steady-state

total-to-unique ratio – on average, 2.68x – but, if a new application is started, or if

application behavior changes, this total-to-unique ratio may drop. If the operating

system is unaware of the current degree of compaction, there is a risk that a write

to the DDM will fail: this happens if the write maps to a full hash bucket and there

are no free overflow lines. Such a write failure can, in turn, cause an unrecoverable

26 CHAPTER 2. DEDUPLICATED MEMORY

CPU error – an unacceptable situation. To prevent such unrecoverable errors, the

operating system memory manager needs to know both the apparent size of memory

and the actual utilization of memory resources.

To supply this information, namely the actual utilization of memory resources,

deduplicated memory exposes an additional interface referred to as the statistics in-

terface. This interface can be accessed with current CPU instruction sets by extending

pre-existing opcodes.4 The statistics interface provides both the total number and the

number of allocated lines in both the hash array and overflow region. It also provides

reference count sampling based on ranges of CPU visible bus addresses. In partic-

ular, it provides a count of lines that would be deallocated – i.e. data lines whose

reference count is one and overflow lines – if a page was completely overwritten. The

deduplicated memory maintains internal registers which track both hash array and

overflow utilization and it issues an interrupt if the overflow region is dangerously

close to exhaustion.

As shown by transparent page sharing [66], implemented in VMware ESX, operat-

ing system techniques for overcommit of physical memory are already well understood

and tested. To prevent out-of-memory conditions, VMware ESX uses two techniques:

ballooning and demand paging. Ballooning is used when apparent memory consump-

tion is low, but actual utilization is high: the operating system allocates pages and

writes them with zeros which drives up apparent memory consumption without us-

ing any extra physical resources. Demand paging frees memory by saving, to disk,

the least recently used pages that also have a low reference count. Because of its

significant performance penalty, most infrastructures are designed to avoid paging.

Further, because the process of writing to disk is slow, there is a risk that paging

cannot keep up with demand. As a last resort, the operating system pauses all user

processes, stops allocating new memory, and continues paging.

4 For example, in x86-64, opcodes rdmsr and wrmsr.

2.7. OPERATING SYSTEM SUPPORT 27

Given that the operating system tracks the true state of memory utilization

through the statistics interface, and that it can do so in conjunction with requests

for new memory from user processes, the deduplicated memory should not normally

approach the threshold at which it issues an interrupt for low memory. Therefore,

such an interrupt is also a last resort. The threshold for this interrupt depends on two

parameters: the maximum rate at which overflow lines can be generated (essentially

the LLC write bandwidth to DRAM) and the worst case time for the operating sys-

tem to receive the interrupt and pause non-critical processes. To illustrate, consider

a system with four DDR3 1333 MHz memory channels (42.6 GB/sec), with 64 GB

of physical memory, and with 128 GB apparent capacity made visible to the operat-

ing system. Based on Section 2.4, conservatively, 10%, or 6.4 GB, is provisioned for

overflow. Conservatively assuming that 5 milliseconds are required for the operating

system to receive an interrupt, then the threshold is 220 MB of overflow remaining:

only 3% of overflow space or 0.15% of apparent capacity. Therefore, memory can be

nearly fully utilized before it is necessary to issue an interrupt for demand paging.

These techniques cover both steady state and transient memory demands. During

steady state, ballooning prevents further overcommit because all apparent capacity

is already marked as in use. Demand paging is invoked either when the operating

system detects a near out-of-memory condition, or by an operating system interrupt,

issued by deduplicated memory. The successful use of transparent page sharing in

VMware ESX provides evidence that these techniques enable both correct and reliable

deduplicated memory management.

28 CHAPTER 2. DEDUPLICATED MEMORY

2.8 Summary

This chapter shows that deduplicated memory is feasible using only commodity mem-

ory devices, that the cost of deduplication is low, in terms of translation overhead and

hash table overflows, and that many duplicates exist in real application memories.

In more detail, deduplicated memory is implemented by modifying the memory con-

troller logic to perform the read and write sequences shown in Table 2.1. Deduplicated

memory uses the highly efficient in-memory hash table described by HICAMP [24],

which, in the common case, achieves content lookup in only two DRAM operations.

Translation overhead is minimized by using a line-size to PLID-size ratio of 16. Al-

though this limits maximum compaction to 16x, this sufficiently exceeds typical total-

to-unique ratios, and therefore, this cost is minimal. Further, this chapter proposes a

highly associative in-memory hash table and shows that such highly associative hash

tables minimize bucket overflows.

Importantly, duplicates are common in deployed, large-scale, application memo-

ries. While some applications do not contain many duplicates, many more do. Across

all applications sampled, the average compaction is 2.21x. Therefore, this chapter

shows that deduplicated memory reliably provides a factor of 2x extra memory ca-

pacity for a wide variety of high-memory, large-scale, workloads.

Chapter 3

Performance Optimizations

Based on results from actual large-scale applications (Table 2.4), deduplicated mem-

ory increases capacity by 2x, but it requires extra memory accesses for content lookup

and, in the worst case, doubles memory read latency – this chapter describes simple

and low cost hardware caches that can be used to mitigate these costs. As shown in

Table 2.1, without further optimization, both deduplicated reads and writes require

more memory accesses and therefore take longer to complete – that is, deduplicated

reads and writes have higher latency. Although most reads are served from the CPU

data cache, on cache miss, the CPU can stall while waiting on a value to be read

from memory. Therefore, the additional latency incurred by translation fetch can de-

grade program performance. Although deduplicated writes have even higher latency,

application performance is not very sensitive to this because, logically, the CPU does

not have to wait for writes to complete. Although writes do not directly harm per-

formance, their extra memory operations can consume hardware resources and starve

reads from accessing memory.

This chapter describes two types of caches that optimize performance for dedu-

plicated memory. The direct translation buffer (DTB) optimizes reads by remov-

ing translation (Table 2.1, read sequence) from the critical path. The deduplicated

29

30 CHAPTER 3. PERFORMANCE OPTIMIZATIONS

Bus	 Address	 Standard	 Cache	

DTB	
PLID	

Read	 Request	

Interface	 to	
deduplicated	
memory	

Figure 3.1: Direct Translation Buffer

cache (DDC) attempts to serve all deduplicated memory operations – including con-

tent lookups and reference count updates – and therefore further reduces memory

accesses. Because of deduplication, the DDC is effectively larger and therefore also

improves program performance.

3.1 Direct Translation Buffer

Shown in Figure 3.1, the direct translation buffer, or DTB, removes translation fetch

from the critical path. The DTB caches translation lines and is searched in parallel

with the last non-deduplicated cache. In the event of a cache miss, but DTB hit, the

data line can be accessed directly because the translation has already been obtained:

in this case, the read latency is exactly the same as with a non-deduplicated system.

Because each cache line contains many translations, the DTB does not need to be very

large to provide a significant hit rate. For example, if a program makes sequential data

accesses, only one out of every 16 cache misses requires an extra translation fetch: the

remaining cache misses all hit in the DTB. Because application performance is much

more sensitive to read latency, as opposed to write latency, with sufficient hit rate,

the DTB enables a deduplicated memory with little to no performance degradation.

3.2. DEDUPLICATED CACHE 31

L2#

L2#

L1I#

L1D#

L1I#

L1D#

DDC# MC#

DDRn#

DDR0#core0#

coren#

L2#

DTB#

L1##DDC#

Direct'Transla-on'Buffer'

Deduplicated'Cache'

Deduplicated'Memory'Controller'

Figure 3.2: CPU With DDC and DTB

3.2 Deduplicated Cache

The deduplicated cache (DDC) implements a cached version of deduplicated memory.

It exposes the same interface as a normal last level cache (LLC), but explicitly caches

translation lines, data lines, and reference counts. The main purpose of the DDC is to

reduce the number of DRAM accesses required by deduplicated memory, but, because

of deduplication, it also provides an effectively larger cache capacity. Therefore,

programs that are sensitive to LLC size also experience an actual performance gain.

Figure 3.2 illustrates a multi-core CPU system with both DTB and DDC.

In specific, the DDC executes the read and write sequences (Table 2.1). For the

read sequence, either (or both) translation read and data read can hit in the cache.

For the write sequence, because the cache is maintained inclusive,1 the translation line

read and update always hit in the cache. For writes, the DDC also provides in-cache

content lookup. If an identical data line to the content being written is currently held

in the DDC, then the DDC serves the content lookup operation without accessing

1 Inclusive LLC is common in current CPUs.

32 CHAPTER 3. PERFORMANCE OPTIMIZATIONS

DRAM. If such a data line is not cached, there are two options: immediately perform

content lookup in DRAM, or allocate in-cache without deduplication. The following

subsections elaborate on the details of the DDC, starting with cache-coherency.

3.2.1 Coherency

As the last level cache, the DDC is responsible for implementing the cache coherence

protocol. The cache coherence protocol guarantees that any read obtains the most

up-to-date version of a cache line: if core0 updates a line, then core1 updates the

same line, and then, core0 reads that line again, core0 will receive the value written

by core1 – as you would expect. But, this anticipated behavior is non-trivial to guar-

antee: the value cached in the LLC, and indeed the value written to DRAM, may be

stale – therefore, in such cases, the read must be served from the L1 or L2 cache that

belongs to the CPU core having executed the most recent write.

This work investigates the performance of an inclusive DDC that implements a

modified-exclusive-shared-invalid (MESI) protocol using directory information stored

in, or with, the DDC.2 In the MESI protocol, a write causes the L1 cache to request a

line in the exclusive state – after which, it can locally transition the line to modified.

A request for exclusive invalidates any copies of this line held in other L1 and L2 caches

(see Figure 3.2 for an illustration of a typical system). Similarly, a read from one core

can downgrade a line held in a separate L1 or L2 cache, from exclusive or modified,

to shared. Most often, no such downgrades and invalidations are required. To avoid

sending unnecessary downgrade and invalidation commands, the DDC tracks which

child caches have what data. To do so, it stores a sharing vector per translation line.

The sharing vector requires one bit per translation entry per CPU, or 16 ·NCPU bits.

Because a translation line contains references to several data lines, evicting one

translation line from the DDC can cause multiple invalidations in any single child

2 This is similar to many current x86-64 CPU designs.

3.2. DEDUPLICATED CACHE 33

cache. In the worst case, all 16 cache lines referred to by a given translation are

invalidated in several children. This scenario is rare because content referred to by

cold translation lines is typically already evicted from the caches closer to the cores.

Data lines are immutable over their lifetime. Therefore, they cannot be incon-

sistent and thus never require any coherence protocol actions. Although inclusion is

enforced for translation lines, without a back-map from data to translation, it is not

possible to guarantee inclusion for data lines. In other words, inclusion guarantees

that if a child cache holds a particular cache line, then the translation for that line is

in the DDC. Because translations are packed, 16:1 in this work, this actually reduces

the cost of inclusion – cold data lines are evicted regardless of whether a child cache

has a copy, and refills follow demand. Although immutable, a data line is considered

dirty if its cached reference count changes. Evicting a “dirty” data line is actually

reference count write back, but can cause a data line deallocation in the DDM.

The coherence directory sharing vector can be used to further optimize certain

cache accesses. Recalling that inclusion cannot be maintained for data lines, for a

read that has a translation line hit, but data line miss, it is possible that a child

cache has a copy of the data. This can be detected and exploited using the sharing

vector – although a data line miss normally requires DRAM access, this data line

miss can be served out of the child cache. Such accesses often require an invalidation

or a downgrade from exclusive to shared, therefore serving the content out of a child

cache is a built-in cost, and in any event, lower latency than accessing DRAM. In a

related scenario, although DDC reads normally require two cache accesses, a read for

exclusive access only requires one access if it is actually an upgrade request, that is

if a child cache requests a shared to exclusive transition.

34 CHAPTER 3. PERFORMANCE OPTIMIZATIONS

RC Status Bits Meaning
00 Unmodified absolute value
01 Modified (dirty) absolute value
10 Reference count delta (RC∆)
11 RC∆, was absolute one

Table 3.1: Cached Reference Count States

3.2.2 Physical Resources

The DDC uses the same underlying physical resources as a standard set associative

LLC, but a small amount of additional tag data is required. The tag overhead depends

on certain implementation choices: for example, if the sharing vector is stored in the

tag, then each translation line requires 16·NCPU bits of additional tag storage. This

work evaluates two implementations – partitioned and merged – and compares them

in terms of tag overhead and, in Chapter 4, in terms of performance.

Partitioned DDC

The partitioned DDC reserves a certain number of cache ways to contain only data

lines while the remaining ways contain translation lines. Because a small fraction

of the total is translation, a large translation tag does not significantly impact the

total resources required. Therefore, in the partitioned DDC, the translation line tag

includes the sharing vector in addition to the MESI bits. For data lines, the MESI

bits are repurposed to indicate the reference count status, as shown in Table 3.1.

Therefore, the data line tag identifies its PLID, and tracks the reference count and its

status. As an implementation choice, this work uses 16 bits for the cached reference

count – if these bits overflow, or underflow, the reference count is written back to

memory and its status is reset to RC∆ = 0.

3.2. DEDUPLICATED CACHE 35

Common System Parameters
CPU address space addr -bits 48 bits
Line size line-size 64 bytes
Number of CPUS NCPUs 8 cores
LLC size LLC size 20 MB
Total LLC cache lines Nlines 327,680 lines
Number of LLC banks LLC banks 10 banks
LLC bank associativity LLC assoc 16 ways
LLC sets per bank Nsets 2048 sets
L2 size (per core) L2size 256 kB
PLIDs per translation line NPLIDs 16 PLIDs

Conventional LLC
Line address tag 42 - log2(Nsets) 31 bits
Tag + metadata 31 + 2 MESI + 8 sharing 41 bits
Tag store 41 bits ·Nlines 1,640 kB
Data store 64 bytes ·Nlines 20,480 kB
Total tag store + data store 22,120 kB

Partitioned DDC
Translation line tag 42 - log2(Nsets) - log2(NPLIDs) 27 bits
Data line tag 32 - log2(Nsets) 21 bits
Translation tag + metadata 27 + 2 MESI + 16·8 sharing 157 bits
Data tag + metadata 21 + 2 RC status + 16 RC 39 bits
Translation size 2/16·Nlines 40,960 lines
Data size 14/16·Nlines 286,720 lines
Translation tag store 157 bits ·Ntr-lines 785 kB
Data tag store 39 bits ·Ndata-lines 1,365 kB
Total tag store + data store 22,630 kB

Merged DDC
Translation line tag 42 - log2(Nsets) - log2(NPLIDs) 27 bits
Data line tag 32 - log2(Nsets) 21 bits
Translation tag + metadata 27 + 2 MESI + 16 sharing 45 bits
Data tag + metadata 21 + 2 RC status + 16 RC 39 bits
Tag + metadata max(translation tag, data tag) 45 bits
Directory cache entries NCPUs · L2size/line-size 32,768 entries
Directory cache entry size NCPUs 8 bits
Directory cache tag size 42 - log2(Nsets) 31 bits
Directory tag + metadata 31 + 1 valid 32 bits
Directory cache size 8 bits ·Nentries 160 kB
Tag store 45 bits ·Nlines 1,800 kB
Total data store + tag store + directory cache 22,440 kB

Table 3.2: DDC Physical Resources

36 CHAPTER 3. PERFORMANCE OPTIMIZATIONS

Merged DDC

The partitioned DDC is a simple design, but merging translation and data – allowing

translation and data lines to compete for space in the cache – improves overall system

efficiency. In the merged DDC, the degree of content locality in the underlying data

access pattern determines the ratio between translation and data lines in cache. If

the cores access sequential addresses, then the cache refills a translation only once

every 16 accesses and the number of translation lines floats down to 1/16th of the

total capacity. If the cores access random addresses referencing random values, then

the cache refills a translation and data line on every access: in this case, the cache is

filled with 50% translation and 50% data lines.

For the merged DDC, providing a complete sharing vector of 16·NCPU bits for

every cache line is wasteful over-provision: the physical resources required for a

20 MB DDC grow to 26,760 kB, an increase of 20% relative to a 20 MB non-

deduplicated LLC. Therefore, the merged DDC uses a separate sharing vector cache:

the number of entries in this cache depends on the total L2 capacity, and not on

the number of DDC cache lines. Because the sharing vector cache is not guaranteed

to contain an entry corresponding to a certain bus address, the translation line tag

contains a fixed-size sharing vector with one bit per translation entry. If the sharing

information is not found in the directory cache, but this bit is set, it implies that the

specified bus address is cached in either one, or several, child caches – therefore the

coherence protocol must conservatively send invalidations or downgrades to all cores.

Finally, in the merged DDC, each tag must be large enough to serve the needs of

either data or translation.

Table 3.2 compares the physical resources required for a conventional LLC, a

partitioned DDC, and a merged DDC. The calculation assumes a CPU with 8 cores

that has access to a 48 bit address space; both the conventional LLC and DDC use 64

byte cache lines. All caches, conventional and DDC, track which children caches are

3.2. DEDUPLICATED CACHE 37

bucket	 index	 way	 index	

hash	 of	 content	

cache	 set	 (LSBs	 of	 hash)	

PLID	

Figure 3.3: PLID Composition: hash bits and way index

sets

content	 hash	
generator	

way0	 way1	 wayn	

= = = = = =

match0 match1 matchn

PLID	

Figure 3.4: Conceptual Illustration of a Deduplicated Cache: hardware to provide
cache search by address and in-cache content lookup

sharing a cache line on a per CPU basis. For the partitioned design, total resources

grow by only 2% because the large translation tag impacts only a small fraction of

the cache. By storing the sharing information in a separate cache, sized to achieve

high utilization, the merged DDC actually incurs slightly less overhead than the

partitioned DDC. Its overhead is 1.4%: significantly lower than the 20% overhead

required to reserve space for a sharing vector for every possible cached translation.

38 CHAPTER 3. PERFORMANCE OPTIMIZATIONS

3.2.3 Content Lookup

As proposed by HICAMP [24], the DDC provides in-cache content lookup. Normal

caches only provide search by address, which returns data content. In addition to

search by address, the DDC provides search by content, namely, the content lookup

operation. To enable this, a data line PLID, as shown in Figure 3.3, contains both the

hash of its content and the index to its entry (way index) in the DDM hash bucket.

Therefore, a partial PLID can be generated by hashing the content: after obtaining

this partial PLID, the correct cache set is selected and each data line is compared

to see if it is a duplicate to that being searched on. Because this comparison can

be performed in parallel across all lines in the set, the in-cache content lookup is

accomplished in a single cache access. Figure 3.4 shows a conceptual illustration of a

cache that supports content lookup.

This design enables the DDC to complete the entire write sequence (Table 2.1)

without accessing DRAM. For content lookups that do not find a duplicate

in cache there are two options: eager or lazy deduplication. With eager dedupli-

cation, a content lookup that misses in the DDC is immediately served by content

lookup in DRAM. The next section describes lazy deduplication, referred to as

in-cache allocation.

3.2.4 In-Cache Allocation

With in-cache allocation (ICA), a write-back to the DDC does not require content

lookup to succeed, rather, if in-cache content lookup fails, then the content is directly

written into the cache, possibly creating a duplicate value. Therefore, the write-

back itself requires no DRAM access. On the first such write-back to a given bus

address, the DDC must allocate an entry in which to store the content which typically

requires that another line be evicted – this eviction may require DRAM access, i.e.

3.2. DEDUPLICATED CACHE 39

Translation Line Eviction Data Line Eviction
1. Buffer dirty translation line 1. Lookup ICA content in DDM
2. In parallel, for each TLID: 2. Update translation line using back-pointer
... 2.1. Lookup content in DDM 3. Invalidate ICA content in DDC
... 2.2. Update translation with PLID
... 2.3. Invalidate ICA content in DDC
3. Write translation line to DDM

Table 3.3: Translation and Data Line Eviction for In-Cache Allocation

if the victim is a dirty translation line, a data line with non-zero reference count

delta, or non-deduplicated (temporary) data. Rather than identify in-cache allocated

content by PLID, because such content is not stored in DRAM, it is identified by

temporary line id or TLID. A TLID is distinguished from a PLID either by adding

one bit of metadata to the cache tag, or by stealing one bit from the PLID itself.

Because this temporary content is not yet stored in DRAM, if its respective translation

line is evicted, then memory is corrupted. To implement in-cache allocation, both

translation and data eviction must be handled correctly.

Translation Line Eviction

When the DDC evicts a translation line that refers to some ICA content, it must

first deduplicate that content and then update the translation. To do so, it buffers

the evicted translation line and then issues content lookup commands to the DDM

on the content referred to by the TLID(s). After a PLID is obtained for each ICA

data line referred to by the TLID(s), the updated translation is written back to

the DDM. The non-deduplicated ICA content is invalidated and the translation line

eviction is complete.

40 CHAPTER 3. PERFORMANCE OPTIMIZATIONS

Data Line Eviction

To evict a non-deduplicated ICA data line, the DDC first issues a content lookup

operation to the DDM, but a back-pointer is required to update the translation. Al-

though a general back-map is difficult to implement because the relationship between

deduplicated content and translation is one-to-many, this back-map is feasible be-

cause ICA data is not deduplicated and therefore its relationship to translation is

one-to-one. This back pointer is generated when the non-deduplicated content is al-

located in the cache and used at time of eviction. Logically, the translation line must

still be in the DDC because a translation line eviction has not yet caused this ICA

content to be deduplicated. Therefore, as an implementation choice, this work uses

a back-pointer large enough to span only the DDC, not the entire physical memory:

the otherwise unused 16 bit reference count field (Table 3.2) is sufficient. Table 3.3

details the sequence for both translation and data line eviction.

3.2.5 Zombie Suppression

A zombie is a live data line whose absolute reference count is zero. Zombies occur

because the DDC normally treats the reference count as a difference, rather than

absolute value.3 A negative RC∆ can cause deallocation on RC write-back: if so,

then that data line was a zombie. Such a line cannot be referenced by a program,

and keeping it in the cache reduces efficiency. Therefore, it is desirable to detect and

evict potential zombies.

If the DDC does not know the reference count absolute value, then a heuristic

method is needed for zombie detection. As shown in Figure 2.6, the most probable

reference count is 1. Therefore, RC∆ = -1 is a good indicator of zombie status.

3 RC∆ is used because it requires fewer DRAM read operations.

3.2. DEDUPLICATED CACHE 41

In-cache allocation allows immediate zombie suppression because it offers an ex-

tra degree of freedom in choosing a replacement candidate. In specific, the non-

deduplicated ICA content can be placed in any cache set because it can be found

directly, that is without search, by the TLID held in the translation line. Rather

than picking an eviction candidate in the “correct” cache set, a DDC with ICA can

overwrite data content in place. To suppress zombies, the DDC uses a simple heuris-

tic to choose whether or not to use update in-place: if the reference count delta is -1,

then update in-place is chosen because it is statistically likely that the line in question

will be deallocated when its -1 reference count delta is written back to the DDM.

3.2.6 Prefetching

Two kinds of prefetching are feasible with deduplicated memory: translation prefetch,

and data prefetch. Hardware prefetch units normally work by finding sequential or

strided access patterns, or even more simply by always fetching the next cache line

in sequence, regardless of access pattern. In the DDC, the same patterns can be

observed by monitoring the bus addresses requested by the L2 caches.4

Therefore, by observing bus address access patterns, prefetch can be implemented

with the DDC, but new prefetch policies are possible. For example, to speculatively

read the translation for an entire 4 kB page requires only three extra cache lines

after the initial page touch. And, because each translation line contains multiple

translations, translation line prefetch is statistically more likely to pay off. For se-

quential access, data line prefetch is implemented using the current translation line

to speculatively fetch the next, or next several, data line(s) in the sequence.

4 Alternately, a prefetch unit can be implemented in each L2.

42 CHAPTER 3. PERFORMANCE OPTIMIZATIONS

3.2.7 Multi-Bank Implementation

In current CPU designs, each request to the LLC is mapped to exactly one cache

bank, but in a DDC, a translation line, and the data lines it points to, may map

to different cache banks. As described to this point, data lines are unique across all

DDC cache banks. In this scheme, referred to as cooperative banking, a request to

the DDC is mapped to a particular cache bank based on the bus address, but the

data line may need to be served from a separate bank. To simplify the design and

to reduce read latency, the DDC can be designed such that both translation lines,

and the data referred to thereby, all reside in the same cache bank. This scheme,

referred to as co-located, trades DRAM bandwidth and effective cache capacity for

read latency and design simplicity.

In more detail, co-location simplifies protocol design because a given cache bank

cannot cause an eviction in any other cache bank. By contrast, with cooperative

banking, serving a read in one bank may require a data line refill in a different bank.

If data and translation share the same resources (merged design), this refill may evict

a translation line, which would require a different bank from the one serving the read

to take action according to the coherence protocol. In a partitioned design, this same

read scenario is less complicated because the data line refill can only cause a data line

eviction. In either case, with cooperative banking, this read is slower because it incurs

the latency of two messages sent across the bank-to-bank interconnect. Therefore,

co-location provides lower read latency and it significantly reduces complexity in the

cache protocol.

On the other hand, with co-location, the mapping from unique content to cache

bank is no longer one-to-one. This reduces the probability that a given in-cache

content lookup succeeds which increases DRAM bandwidth relative to cooperative

banking. Further, because duplicate data lines may exist in different cache banks,

effective capacity is lower relative to cooperative banking. For simplicity, the DDC

3.2. DEDUPLICATED CACHE 43

performance evaluation, presented in Chapter 4, does not explicitly consider the issue

of multiple cache banks. Rather, it treats the DDC as one bank, and conservatively

charges two full access latencies (i.e. both including the latency of interconnect) for

translation and data access.

Although co-location logically does reduce effective capacity and increase band-

width, neither of these effects may be significant. As shown in Section 2.6, much of the

deduplication benefit is conferred by lines with a high reference count. As with multi-

ple deduplication domains (Section 2.5), this suggests each respective cache bank will

experience the same increase in effective capacity and the same number of successful

in-cache content lookups. Therefore, evaluating the trade-off between co-location and

cooperative banking is an interesting topic for future work.

44 CHAPTER 3. PERFORMANCE OPTIMIZATIONS

3.3 Summary

This chapter describes cache techniques that can be used to mitigate the cost of

deduplicated memory. In more detail, it describes a direct translation buffer (DTB)

that removes translation from the critical path on DTB cache hit. The purpose

and operation of the DTB are similar to the well known translation lookaside buffer

(TLB) used to hide the cost of virtual to bus address translation. Because many

PLIDs are packed into each translation line, a small DTB covers a wide range of bus

addresses – therefore, DTB overhead is low relative to its benefit.

This chapter describes how the CPU last level cache (LLC) can be modified to

implement a deduplicated cache (DDC). Through deduplication, the DDC provides

extra cache capacity and therefore decreases the number of DRAM accesses for CPU

reads. The DDC further reduces the number of DRAM memory operations because

it implements in-cache content lookup which decreases the number of DRAM ac-

cesses on write-back. In more detail, this chapter shows that the DDC uses the

same underlying physical resources as a standard LLC, and requires only a modest

increase in tag storage overhead. The next chapter, Performance and Power, eval-

uates the performance impact of the deduplicated cache and its extensions, such as

lazy deduplication.

Chapter 4

Performance and Power

Chapter 2 showed that deduplicated memory is feasible, and that it provides a factor

of 2x increased capacity – using the direct translation buffer (DTB) and deduplicated

cache (DDC) optimizations described in Chapter 3, this chapter shows that systems

with deduplicated memory provide application performance at parity with their non-

deduplicated counterparts and, at the same time, save power. A state-of-the-art

cycle-accurate x86 CPU simulator is modified to model systems with deduplicated

memory. To understand performance in various corners, several types of workload

are simulated. A synthetic benchmark is used to stress the memory system and verify

that the simulator produces reasonable performance results. Two different benchmark

suites, SPEC CPU 2006 and PARSEC, are simulated to show general purpose and

worst-case performance. Finally, three workloads from the targeted datacenter envi-

ronment are simulated: PostgreSQL, a widely used database, memcached, a widely

used webserver frontend, and Hadoop, a widely used distributed task engine.

Averaged across SPEC and the datacenter workloads, the results show an ap-

plication performance improvement of 1.06x – indicating that deduplicated memory

provides at least the same, if not better, performance as conventional systems. As

45

46 CHAPTER 4. PERFORMANCE AND POWER

expected, applications in the PARSEC benchmark have few duplicates and have ran-

dom memory access patterns. In spite of this, PARSEC application performance

remains at 0.98x – a far smaller degradation than expected for what is essentially the

practical worst case.

Although deduplicated memory nominally requires more memory accesses to ac-

complish the same reads and writes to memory, the DTB and DDC are effective

in filtering those accesses. Deduplicated memory with deduplicated cache and in-

cache allocation, described in Chapter 3, Section 3.2.4, requires only marginally more

bandwidth in the worst case: 1.38x for PARSEC and 1.36x for Hadoop. For other

workloads, bandwidth is reduced to 0.79x relative to a non-deduplicated machine.

Because deduplicated memory reduces the number of memory devices, it also

saves power. Assuming a 2x increase in memory capacity, deduplicated memory

saves 40% of memory system power. This savings translates to 4% to 8% of to-

tal datacenter power given that memory is 10% to 20% of that total [10].1 This

savings is significant given that current datacenters are power constrained. Fur-

thermore, in the worst case where deduplicated memory requires extra bandwidth,

this bandwidth is already available because datacenter workloads use only a small

fraction – about 5% – of available bandwidth.

In the following sections, this chapter elaborates on the above. It starts by de-

scribing the performance simulation methodology. After which, it provides a de-

tailed analysis of the simulation results. Finally, using the simulation results, it

shows power savings due to reduced device count, even in the worst case of increased

bandwidth use.

1 Barroso states memory is 30% of server power, therefore these numbers are derated for PUE.

4.1. EVALUATION METHODOLOGY 47

4.1 Evaluation Methodology

To evaluate performance, this work uses zsim [61], a state-of-the-art cycle-accurate

architectural simulator. Using dynamic binary translation [48], zsim intercepts all

opcodes of the specified processes on a Linux/x86-64 machine – thus, zsim simulates

a computer architecture based on an instruction trace from a process running on

actual hardware. To simulate systems with deduplicated memory, zsim is modified

to read memory content from the actual running process on every simulated LLC

miss. In response to LLC misses, the zsim memory controller code is modified to

perform the read and write sequences given in Table 2.1. For deduplicated cache, the

zsim set-associative cache and coherence protocol objects are subclassed and modified

to implement in-cache translation and in-cache content lookup. When simulating a

system with deduplicated cache, application memory content is sampled as required

by DDC misses.

4.1.1 Simulated Machine Configurations

This work compares performance amongst three categories of machine: a server-grade

cache-coherent multicore (CC), the same machine with deduplicated memory (DDM),

and with deduplicated memory and deduplicated cache (DDC machines). The base-

line simulated machine is specified in Table 4.1. Its parameters are based on the cache

sizes, memory channels, and latency measurements from an Intel Xeon E5-2670 CPU.

Table 4.2 describes the individual machine configurations: for DDC, three sepa-

rate variants are simulated – using optimizations described in Chapter 3, each is an

improvement on the prior. The DDC-P(artitioned) machine is the baseline DDC ma-

chine. The DDC-M(erged) machine improves on the DDC-P by allowing translation

and data lines to compete for space in the cache. The DDC-ICA machine also uses a

48 CHAPTER 4. PERFORMANCE AND POWER

Parameter Value Latency Instances
Core Frequency 2.6 GHz 8
Private L1I 32 KB, 4-way 1 cycle 8
Private L1D 32 KB, 4-way 1 cycle 8
Private L2 256 KB, 4-way 18 cycles 8
Shared L3 20 MB, 16-way 22 cycles 1
Memory Channels DDR3 1333 MHz 215 cycles 4

Table 4.1: Common Machine Parameters

Machine Name Memory Type LLC Type
CC Standard Standard

DDM Deduplicated Standard
DDC-P Deduplicated Deduplicated (partitioned)
DDC-M Deduplicated Deduplicated (merged)

DDC-ICA Deduplicated Deduplicated (merged) + ICA

Table 4.2: Individual Machine Configurations

merged DDC and implements in-cache allocation to further reduce DRAM accesses.

Each machine with deduplicated memory has a direct translation buffer (DTB). The

DDM machine has a 16 line (1024 byte) DTB, and the DDC machines have a 4 line

(256 byte) DTB included with each private L2 cache. Because the baseline machine

(CC), unmodified from zsim, does not have prefetch, prefetch is not implemented for

any machine.

4.1.2 Performance Model

In zsim, the baseline machine is a modern 4-issue out-of-order architecture with a

tiered and coherent cache system. As shown by Sanchez, et al. [61], zsim accurately

models fine grain performance details as well as overall performance based on com-

parisons to actual systems. To further improve accuracy, that is, to remove any

common mode simulation errors, results for machines with deduplicated memory are

normalized to the simulated baseline system.

4.1. EVALUATION METHODOLOGY 49

In zsim, instructions requiring memory access, and their dependents, are retired

according to a latency calculated by the simulated cache and memory system. Sim-

ulated latency accumulates according to the fetches required by each level of the

memory hierarchy and according to any invalidations required by the coherence pro-

tocol. For the DDM and DDC systems, the rules for accumulating latency are based

on the read and write sequences given in Table 2.1. For example, in the DDC system,

a read that requires both data and translation refill accumulates the latency of two

cache accesses and two DRAM accesses: a total of 493 CPU cycles (Table 4.1).

Because the CPU does not wait for writes to complete, write latency has only

an indirect impact on CPU performance. The simulator calculates write latency and

accounts for memory system resource contention: in certain cases, the higher write

latency causes the memory system to starve reads – succinctly, the effect of write

latency is captured in the simulation. For DDM and DDC, the performance model

includes all DRAM operations for content lookups, signature line updates, and refer-

ence count updates – in short, it includes all operations shown in Tables 2.1 and 2.2.

4.1.3 Performance Metrics

The following key performance metrics are measured: speedup, compaction, and

bandwidth. In the following, the subscript dd is used for machines with deduplicated

memory and cc for the baseline (cache-coherent) machine. Compaction, calculated by

Equation 2.7, uses the total number of conventional line addresses accessed and the

highest number of unique memory lines across the entire simulation. For deduplicated

50 CHAPTER 4. PERFORMANCE AND POWER

machines, the terms bytesrd and byteswr include all DRAM operations for content

lookup in DRAM, for signature lines reads and writes, and for reference count updates.

speedup =
texe cc

texe dd

(4.1)

BW =
bytesrd + byteswr

texe
(4.2)

Additional BW Required =
BWdd

BWcc

(4.3)

4.1.4 Simulated Workloads

To understand performance in different corners, several different benchmarks and

applications are simulated. In particular, three different benchmarks are simulated: a

synthetic benchmark that has both random and highly duplicated data, SPEC CPU

2006, a general purpose benchmark, and PARSEC, a highly parallel scientific and

high performance computing benchmark. Additionally, three different representative

datacenter workloads are simulated: PostgreSQL, Hadoop, and memcached. To more

accurately capture the impact of deduplicated memory, for the latter two of these,

an attempt is made to use representative input data. PostgreSQL uses constrained

random input data as specified by the TPC-E benchmark.

Synthetic Benchmark

The synthetic benchmark is multi-threaded and each thread executes a small code

kernel whose only purpose is to stress memory bandwidth. It is essentially read only

and it has two data access patterns: random, and sequential, and two underlying

datasets: random, and highly duplicated.

4.1. EVALUATION METHODOLOGY 51

Standard CPU Benchmarks

SPEC CPU 2006 is used to understand general purpose performance and PARSEC

is used to understand performance for applications with little to no deduplication

benefit. For SPEC CPU 2006, each benchmark application is run single-threaded

for 20B instructions. For PARSEC, each benchmark is run with eight threads for

80B instructions, approximately 10B instructions per-thread. Both benchmarks are

run with the full-size input data sets, but the benchmark input datasets themselves

do not necessarily contain representative data. Many benchmarks use random, or

constrained-random, input data, but it is difficult to gage the impact of this. In

PARSEC, one benchmark was clearly skewed to favor deduplicated memory. This

benchmark, blackscholes, uses the same option price data for many “different” option

price calculations. Therefore, results for blacksholes are discarded because its com-

paction is unrealistically high: near to 16x. In general, duplicates are not expected

in the PARSEC applications, regardless of whether the underlying dataset is random

or actually representative data.

Datacenter Workloads

To understand performance in a context where deduplicated memory provides a great

advantage, three different representative datacenter workloads are simulated. In par-

ticular, PostgreSQL is simulated running DBT-5, an implementation of TPC-E, mem-

cached is simulated serving tweets scraped from the Twitter public API, and Hadoop

is simulated creating an inverted index over Wikipedia data from the PUMA MapRe-

duce benchmark [6]. Memcached is configured to use 8 threads and, to simulate the

relative popularity of individual Tweets, the load generator (not running in zsim)

requests tweets according to a Zipfian distribution. PostgreSQL is configured for

8 CPUs with 16 GB DRAM, the practical limit of zsim. Because PostgreSQL uses

52 CHAPTER 4. PERFORMANCE AND POWER

Compaction Speedup Additional BW
Line Page DDM DDC DDM DDC

SPEC CPU 2006 2.62x 1.29x 1.01x 1.09x 2.08x 0.93x
PARSEC 1.28x 1.04x 0.96x 0.98x 1.99x 1.38x

Memcached 1.50x 1.01x 0.87x 1.05x 1.74x 0.71x
PostgreSQL 1.40x 1.01x 0.99x 1.04x 1.86x 0.76x

Hadoop 2.10x 1.04x 0.98x 1.05x 3.29x 1.36x

Table 4.3: Overall Results: DDM and DDC-ICA

sys-v shared memory, zsim is further modified to map all shared memory virtual

addresses to the same physical addresses. Finally, Hadoop is similarly configured to

take advantage of a machine with 16 GB DRAM and also all 8 CPUs.

The simulation results report application speedup, but with the same amount of

physical memory revealed to the application. On the other hand, both PostgreSQL

and memcached are sensitive to memory capacity. For such applications, adding

memory tends to increase application performance as measured by queries-per-second,

or similar metrics. In particular, for PostgreSQL, the operating system disk cache is

actively exploited by the program, but it is not visible in user space and therefore

not visible to zsim. Because it is difficult to measure, the additional application level

benefit of adding memory is not shown in the results.

4.2 Performance

Table 4.3 shows the overall simulated performance results. Unless otherwise spec-

ified, the deduplicated cache is merged (Section 3.2.2) with in-cache allocation (Sec-

tion 3.2.4). In general, the results indicate no penalty to application performance and

that bandwidth is reduced. In the worst case, there is little penalty to performance

and marginally increased bandwidth. For example, taking the geometric mean across

the three datacenter workloads, the DDC machine achieves a speedup of 1.05x and

uses only 0.90x of the bandwidth.

4.2. PERFORMANCE 53

Access Data Compaction
Speedup Additional BW

DDM DDC DDM DDC
Sequential Duplicated 15.9x 0.94x 4.08x 1.00x 0.51x
Random Duplicated 15.9x 0.50x 0.96x 1.00x 1.00x

Sequential Random 0.9x 0.94x 0.94x 1.00x 1.00x
Random Random 0.9x 0.50x 0.50x 1.00x 1.00x

Table 4.4: Synthetic Benchmark Results: DDM and DDC-ICA

The following subsections describe these results in more detail. Using various cor-

ners, such as random access to random data, the synthetic benchmark demonstrates

that the simulation provides reasonable performance estimates. All five simulated ma-

chines are compared on the three categories of workload: general purpose (SPEC),

worst-case (PARSEC), and datacenter. Finally, the effect of various DDC optimiza-

tions is investigated.

4.2.1 Synthetic

The synthetic benchmark results (Table 4.4) show that the simulation produces rea-

sonable performance estimates and correctly models limited memory system band-

width. The synthetic benchmark achieves maximum sustainable bandwidth on the

simulated machine. Thus, no result shows any bandwidth increase, rather, if more

memory accesses are required, performance degrades.

The deduplicated machines (DDM and DDC) perform at near parity for stream-

ing sequential data access patterns, even though no prefetch is used (Chapter 3,

Section 3.2.6). Fundamentally, this is because the memory access overhead is low:

only 1 out of every 16 cache accesses requires translation refill. At a more nuanced

level, this shows that the DTB (Chapter 3, Section 3.1) is effective for both the DDM

and DDC machine. Without the DTB, both the DDM and DDC show further slow-

down in the {sequential, random} corner. In the {sequential, duplicated} corner, the

DDC machine provides a 4.08x speedup, limited only by the rate of instruction fetch.

54 CHAPTER 4. PERFORMANCE AND POWER

DDM DDC-P DDC-M DDC-ICA

SPEC CPU 2006 1.01x 1.07x 1.10x 1.09x

PARSEC 0.96x 0.97x 0.98x 0.98x
Memcached 0.87x 0.98x 0.98x 1.05x

PostgreSQL 0.99x 1.03x 1.03x 1.04x

Hadoop 0.98x 1.02x 1.00x 1.05x

Table 4.5: Average speedup for all workloads and machines

DDM DDC-P DDC-M DDC-ICA

SPEC CPU 2006 2.08x 1.39x 1.27x 0.93x

PARSEC 1.99x 2.04x 1.93x 1.38x

Memcached 1.74x 0.91x 0.91x 0.71x

PostgreSQL 1.86x 3.43x 3.43x 0.76x

Hadoop 3.29x 6.14x 6.00x 1.36x

Table 4.6: Average bandwidth for all workloads and machines

4.2.2 Standard CPU Benchmarks

Compaction, performance, and bandwidth results for SPEC CPU 2006 and PARSEC

are shown in Figures 4.1, 4.2, and 4.3 and in Tables 4.5 and 4.6. For datasets that

were compacted to fit in-cache, the DDC machine achieves orders of magnitude band-

width reduction – conversely, for applications with very small uncompacted working

sets, the DDC requires a disproportionate bandwidth increase. Therefore, to make

a fair comparison, bandwidth results include only those benchmarks whose working

set exceeds the cache capacity either uncompacted (traditional machine and DDM

machine), or deduplicated (DDC machines).

The SPEC CPU 2006 results indicate that machines with deduplicated memory

perform well for general purpose workloads. For DDC-ICA, the speedup is 1.09x and

bandwidth is reduced by a factor of 0.93x. As expected, the compaction in PARSEC

is low: on average, only 1.28x (excluding blackscholes due to its replicated dataset).

Even with low compaction, performance is near parity for PARSEC (Figure 4.2).

Fundamentally, this is because translation line caching is effective at minimizing ad-

ditional performance critical DRAM reads.

4.2. PERFORMANCE 55

1x

2x

4x

8x

16x

co
m
pa
ct
io
n

43
4.

ze
us

m
p

45
9.

Ge
m

sF
DT

D
45

6.
hm

m
er

43
6.

ca
ctu

sA
DM

41
0.

bw
av

es
43

7.
les

lie
3d

46
4.

h2
64

re
f

44
4.

na
m

d
43

5.
gr

om
ac

s
48

1.
wr

f
44

7.
de

alI
I

40
1.

bz
ip2

45
0.

so
ple

x
46

5.
to

nt
o

45
3.

po
vr

ay
41

6.
ga

m
es

s
45

8.
sje

ng
47

3.
as

ta
r

44
5.

go
bm

k
48

2.
sp

hin
x3

40
3.

gc
c

45
4.

ca
lcu

lix
43

3.
m

ilc
40

0.
pe

rlb
en

ch
47

1.
om

ne
tp

p
47

0.
lbm

48
3.

xa
lan

cb
m

k
46

2.
lib

qu
an

tu
m

42
9.

m
cf

line
page

1x

2x

4x

8x

16x

co
m
pa
ct
io
n

flu
ida

nim
at

e
sw

ap
tio

ns
bo

dy
tra

ck

vip
s

x2
64

fe
rre

t
de

du
p

fre
qm

ine
ra

ytr
ac

e
str

ea
m

clu
ste

r

m
em

ca
ch

ed
po

stg
re

sq
l

ha
do

op

line
page

0.5x

1x

1.5x

2x

2.5x

3x

sp
ee
du
p

43
4.

ze
us

m
p

45
9.

Ge
m

sF
DT

D
45

6.
hm

m
er

43
6.

ca
ctu

sA
DM

41
0.

bw
av

es
43

7.
les

lie
3d

46
4.

h2
64

re
f

44
4.

na
m

d
43

5.
gr

om
ac

s
48

1.
wr

f
44

7.
de

alI
I

40
1.

bz
ip2

45
0.

so
ple

x
46

5.
to

nt
o

45
3.

po
vr

ay
41

6.
ga

m
es

s
45

8.
sje

ng
47

3.
as

ta
r

44
5.

go
bm

k
48

2.
sp

hin
x3

40
3.

gc
c

45
4.

ca
lcu

lix
43

3.
m

ilc
40

0.
pe

rlb
en

ch
47

1.
om

ne
tp

p
47

0.
lbm

48
3.

xa
lan

cb
m

k
46

2.
lib

qu
an

tu
m

42
9.

m
cf

DDM
DDC(P)
DDC(M)
DDC(ICA)

Figure 4.1: SPEC CPU 2006: com-
paction at line and page granularity
and speedup for machines with dedu-
plicated memory

0.5x

1x

1.5x

sp
ee
du
p

flu
ida

nim
at

e
sw

ap
tio

ns
bo

dy
tra

ck

vip
s

x2
64

fe
rre

t
de

du
p

fre
qm

ine
ra

ytr
ac

e
str

ea
m

clu
ste

r

m
em

ca
ch

ed
po

stg
re

sq
l

ha
do

op

DDM
DDC(P)
DDC(M)
DDC(ICA)

Figure 4.2: PARSEC and Datacenter
Applications: compaction at line and
page granularity and speedup for ma-
chines with deduplicated memory

56 CHAPTER 4. PERFORMANCE AND POWER

1.0x

2.0x

3.0x

4.0x
D

R
A

M
 B

W
 R

at
io

41
0.

bw
av

es
43

6.
ca

ctu
sA

DM
45

9.
Ge

m
sF

DT
D

45
8.

sje
ng

43
3.

m
ilc

46
2.

lib
qu

an
tu

m
47

0.
lbm

42
9.

m
cf

48
1.

wr
f

47
3.

as
ta

r −
ra

ytr
ac

e
str

ea
m

clu
ste

r
flu

ida
nim

at
e

x2
64

fre
qm

ine
fe

rre
t

de
du

p −
m

em
ca

ch
ed

po
stg

re
sq

l
ha

do
op

9.9x 6.1x

DDM
DDC(P)
DDC(M)
DDC(ICA)

Figure 4.3: Bandwidth Results: benchmarks with working set size exceeding both
LLC and DDC capacity

4.2.3 Datacenter Workloads

On the targeted datacenter workloads, the DDC-ICA machine provides an average

speedup of 1.05x and reduces bandwidth by a factor of 0.90x. The average com-

paction, 1.64x, is slightly lower than indicated by counting duplicates in real work-

loads (Chapter 2, Table 2.4). This is because zsim only captures duplicates in the

simulated process, and cannot find duplicates across the entire system: in specific,

it does not include those duplicates that arise from operating system IO buffers and

disk cache. Furthermore, although care was taken to mimic representative data for

memcached (Tweets) and for Hadoop (Wikipedia), the underlying data for TPC-E is

effectively random.

4.2. PERFORMANCE 57

4.2.4 DDC Performance

The main purpose of the DDC, as opposed to DDM with non-deduplicated LLC, is

to reduce the number of memory accesses required for deduplication. Because it is

deduplicated, the DDC also provides increased cache capacity. To evaluate how well

the DDC meets these goals, three different DDC configurations are simulated:

1. DDC-P: partitioned, 2 ways for translation, 14 ways for data

2. DDC-M: merged, translation and data compete for space

3. DDC-ICA: merged, with in-cache allocation

Looking only at the results for SPEC CPU 2006 (Tables 4.5 and 4.6), the DDC-P ap-

pears effective in both regards: it reduces bandwidth for deduplicated memory (from

2.08x to 1.39x) and improves performance (from 1.01x to 1.07x). Relative to DDM,

DDC-P improves performance on all simulated workloads. On the other hand, rather

than reduce memory operations for all workloads, for some workloads – PostgreSQL

and Hadoop, in particular – relative to DDM, DDC-P actually increases bandwidth.

The following paragraphs further elaborate on the effect of DDC optimizations.

Merged vs. Partitioned

In the DDC-M, the ratio between translation and data lines depends mainly on their

respective miss rates: if there are more translation line misses – for example, a pro-

gram accessing random, rather than sequential, addresses – then more translation

refills are required and the percentage of cache lines holding translations increases.

As shown in Tables 4.5 and 4.6, for SPEC CPU 2006, DDC-M provides improved

performance and reduced bandwidth relative to DDC-P. For other benchmarks, the

improvement is less significant. For Hadoop, despite slightly lower performance, it

still reduces bandwidth. Therefore, for deduplicated caches, the distinction between

merged and partitioned is not particularly significant.

58 CHAPTER 4. PERFORMANCE AND POWER

Eager vs. Lazy Deduplication

Lazy deduplication significantly reduces DRAM bandwidth relative to eager because

it avoids unnecessary content lookups in DRAM – specifically, it avoids repeated

lookups for content generated by writes to the same bus address, an effect referred to

as deduplication induced write-through. With the DDC-P and DDC-M machines, the

DDC must issue a content lookup to the DDM if a write-back from L2 cannot be served

by in-cache content lookup. For many applications this is not a problem: frequently

updated memory locations normally do not require content lookup for every write

because the modified cache line remains in the L1 or L2 cache. However, some multi-

threaded programs make frequent updates to values shared between cores – with eager

deduplication, this increases bandwidth with no corresponding deduplication bene-

fit. In-cache allocation (Section 3.2.4), simulated by the DDC-ICA machine, defers

deduplication until eviction from DDC and write-back to DRAM.

The DDC-ICA machine effectively eliminates deduplication induced write-through.

Again, looking at Hadoop, the DDC-P machine increases bandwidth to almost twice

that of the DDM machine, or to 6.14x relative to the baseline machine. Although

relatively high, in absolute numbers, this is only 20% of peak theoretical bandwidth

(8.6 GB/sec out of 42.6 GB/sec). For Hadoop, in-cache allocation reduces bandwidth

by 4.4x relative to eager deduplication, and requires only 1.36x bandwidth relative

to the baseline machine. Therefore, in-cache allocation, or lazy deduplication, is a

significant improvement over eager deduplication.

Zombie Suppression

As described in Chapter 3, Section 3.2.5, zombie lines cannot be referenced by a

program, and therefore consume resources that could otherwise be put to use. As

shown in Table 4.7, by using a zombie suppression heuristic, the DDC-ICA machine

4.3. POWER SAVINGS 59

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

46
2.

lib
qu

an
tu

m
43

3.
m

ilc
47

1.
om

ne
tp

p
42

9.
m

cf
45

8.
sje

ng
45

0.
so

ple
x

45
9.

Ge
m

sF
DT

D
48

3.
xa

lan
cb

m
k

41
0.

bw
av

es
48

1.
wr

f
47

0.
lbm

44
5.

go
bm

k
48

2.
sp

hin
x3

40
0.

pe
rlb

en
ch

47
3.

as
ta

r
40

3.
gc

c
44

4.
na

m
d

43
6.

ca
ctu

sA
DM

40
1.

bz
ip2

45
4.

ca
lcu

lix
43

7.
les

lie
3d −

ra
ytr

ac
e

str
ea

m
clu

ste
r

x2
64

fe
rre

t
de

du
p

flu
ida

nim
at

e
fre

qm
ine

bo
dy

tra
ck

vip
s −

m
em

ca
ch

ed
po

stg
re

sq
l

ha
do

op

trans data ICA zombie

Figure 4.4: DDC-P: Line Statistics

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

45
9.

Ge
m

sF
DT

D
43

3.
m

ilc
48

2.
sp

hin
x3

48
1.

wr
f

46
2.

lib
qu

an
tu

m
45

4.
ca

lcu
lix

48
3.

xa
lan

cb
m

k
43

4.
ze

us
m

p
47

1.
om

ne
tp

p
42

9.
m

cf
45

8.
sje

ng
41

0.
bw

av
es

47
3.

as
ta

r
47

0.
lbm

40
0.

pe
rlb

en
ch

45
0.

so
ple

x
44

5.
go

bm
k

43
6.

ca
ctu

sA
DM

40
1.

bz
ip2

43
7.

les
lie

3d
40

3.
gc

c −
ra

ytr
ac

e
str

ea
m

clu
ste

r
fe

rre
t

x2
64

de
du

p
vip

s
fre

qm
ine

flu
ida

nim
at

e
bo

dy
tra

ck −
m

em
ca

ch
ed

po
stg

re
sq

l
ha

do
op

trans data ICA zombie

Figure 4.5: DDC-ICA: Line Statistics

DDC-P DDC-ICA

Translation 12.5% 15.9%

In-Cache Allocated 0.0% 20.7%

Zombies 7.9% 0.9%

Table 4.7: Line Statistics Comparison

significantly reduces zombies: from 7.9% to 0.9%. Figures 4.4 and 4.5 show the

relative distribution of line types in the DDC-P and DDC-ICA machines, respectively.

4.3 Power Savings

Deduplicated memory, with, or without deduplicated cache, reduces memory system

power. The main cost of deduplicated memory is the additional DRAM memory

operations required for content lookup and for updating hash table metadata. On

the other hand, deduplicated memory cuts the most significant power cost in modern

Parameter Units Baseline DDM DDC-ICA
Utilized Bandwidth GB/sec 3.00 6.60 2.71
Number of DIMMs - 8 4 4
BW/DIMM GB/sec 0.38 1.65 0.68
Power/DIMM Watts 2.65 3.16 2.77
Memory Power Watts 21.2 12.6 11.1

Table 4.8: Power Savings from Deduplicated Memory

60 CHAPTER 4. PERFORMANCE AND POWER

DRAM systems, namely, the fixed cost of powering up a DIMM. Memory power is

nearly linear with bandwidth, therefore, the following, extracted from the Micron

DDR3 power calculation data-sheet [2], provides a good estimate of memory power:

PDIMM = 2.5 + 0.4 · BW (4.4)

Table 4.8 compares memory system power for the baseline system against two systems

with deduplicated memory: DDM and DDC-ICA. The bandwidth cost for DDM

and DDC-ICA is the geometric mean across datacenter applications (Table 4.6), and

the calculation assumes that deduplicated memory provides a factor of 2x increased

memory capacity (Table 2.4). Although the power per DIMM increases, the total

memory system power decreases because static power is reduced by fewer DIMMs.

The power savings are the same if one uses deduplicated memory to provide extra

capacity with the same number of DIMMs, and the savings are again the same when

translated to energy per bit.

Even with a significantly lower compaction factor, power is saved. For the DDM

machine (2.20x bandwidth) power is saved with compaction factors as low as 1.2x and,

for the DDC machine, power is saved down to a compaction of 1.1x.2 With a capacity

expansion of 2x, deduplicated memory saves 40%, or more, memory system power.

Further, assuming that extra bandwidth is required, it is already available: data-

center memory bandwidth is highly over-provisioned. Kozyrakis, et al. [44], show that

Microsoft Bing uses only 2% of provisioned bandwidth, and that Microsoft Cosmos,

a distributed task execution engine (similar to Hadoop), uses only 1% of provisioned

bandwidth. Ferdman, et al. [31], find 5% average bandwidth utilization across a suite

of representative datacenter applications – the authors specifically state “Off-chip

bandwidth exceeds needs by an order of magnitude.” Table 4.8 uses 3 GB/sec as

2 Calculation assumes amortized cost across many machines.

4.4. SUMMARY 61

the baseline because results in this work indicate 6.3% percent average bandwidth

utilization across simulated datacenter applications.

4.4 Summary

Using a state-of-the-art, cycle-accurate, x86 CPU simulator, this chapter shows that,

in general, systems with deduplicated memory attain application performance at par-

ity with their non-deduplicated counterparts, and that in the worst case, the perfor-

mance penalty is negligible. In fact, for all workloads except for PARSEC, perfor-

mance improves slightly – 1.06x average speedup – because of effectively increased

cache capacity. For PARSEC, which is not expected to have duplicate values, the

performance impact is negligible: 0.98x.

This chapter shows that deduplicated cache effectively reduces the number of

memory accesses required for deduplication: DDC-P reduces bandwidth from 2.08x

to 1.39x relative to DDM. For some multi-core workloads, frequently updated values

are live in the last-level cache and cause deduplication induced write-through. In-

cache allocation eliminates this, and in some cases, reduces bandwidth below that

required by a non-deduplicated system. Further, DDC-ICA immediately evicts po-

tential zombies, thereby reducing zombies from 7.9% to 0.9%. Although technically

more efficient, DDC-M provides only marginal improvement over DDC-P.

Finally, because deduplicated memory requires fewer devices, it saves power. The

savings depend both on deduplication and bandwidth, but, because each DIMM in-

curs a high fixed cost, even a small amount of deduplication saves power.

Chapter 5

Sparse Matrix-Vector Multiply

This chapter shows how to use deduplicated memory to improve program performance

in the domain of scientific and high performance computing. Applications in these

domains often model large physical systems using sets of related equations known

as linear systems. For practical models, most variables only strongly influence what

can be thought of as their local neighbors. Because of this, many of the equations

in large-scale linear systems each contain only a few variables out of thousands, or

tens of thousands. In computer systems, such models are represented as a matrix

that has one row per equation and one column per variable. Because most variables

are logically omitted from each equation (matrix row), most matrix entries are zero

valued. Such a matrix, that is mostly filled with zeros, is known as a sparse matrix.

Machines with deduplicated memory offer new and potentially much more efficient

methods for handling sparse matrices, as described in the following.

Hierarchical deduplication, as opposed to deduplicated memory as described in

Chapter 2, provides the ability to efficiently store and manipulate a sparse matrix

as if it were a dense matrix – a significant advantage that eliminates the need to

handle sparse and dense as two separate cases – and, it also significantly reduces

the storage, and therefore bandwidth, required when accessing certain large sparse

62

5.1. HIERARCHICAL DEDUPLICATION 63

matrices. Hierarchical deduplication recursively deduplicates each translation, until

all memory blocks are made unique, and the original content is represented by the

connections between a set of unique and deduplicated blocks.

Sparse matrix-vector multiply, or SpMV, is a performance critical computational

kernel in many high performance computing and scientific applications, but its per-

formance is limited by main memory bandwidth. Because a hierarchically compacted

sparse matrix requires less memory, it can be read from memory with fewer memory

accesses, and therefore SpMV completes in less time. Using a hierarchically dedu-

plicated SpMV algorithm implemented in software, this work demonstrates SpMV

speedup on current off-the-shelf hardware. The algorithm requires extra CPU op-

codes to interpret the hierarchically deduplicated data structure which suggests that

hardware support for hierarchical deduplication would provide further speedup. Prior

work on the HICAMP architecture [24] introduced such hardware, known as the it-

erator register. Using the iterator register, this work shows that hierarchical dedupli-

cation provides sparsity and cache oblivious linear algebra computations.

5.1 Hierarchical Deduplication

In hierarchical deduplication, the translation is deduplicated – recursively – until each

memory line, whether translation or data, is unique. Figure 5.1 illustrates hierarchical

deduplication using memory lines that contain either two PLIDs, or two data values,

each. In Figure 5.1, notice that vector v contains the sequence x0, x1, x2, x3 twice.

In a non-hierarchical deduplicated memory, as described in Chapter 2, the memory

line referring to this sequence, namely that line containing PLID1 and PLID2 would

appear twice in the translation. Here, because of hierarchical deduplication, that line

is also made unique: rather than being stored twice, it is referred to twice, by the line

that contains PLID3, and PLID3.

64 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

PLID1	 PLID2	 PLID5	 PLID5	

PLID4	 PLID7	

PLID3	 PLID3	 0	 PLID6	

Zero	 Sub-‐Trees	 Eliminated	

Duplicates	 in	
TranslaBon	
Suppressed	

x0	 x1	 x2	 x3	 x4	 x5	

Root	 Vertex	

€

v = x0 x1 x2 x3 x0 x1 x2 x3 0 0 0 0 x4 x5 x4 x5[]

Leaf	 Offsets	 0	 &	 2	 Leaf	 Offsets	 1	 &	 3	 Leaf	 Offsets	 7	 &	 8	

Figure 5.1: Hierarchically Deduplicated Vector: vector v, recursively deduplicated as
a DAG

In hierarchical deduplication, the arrangement of memory content, as originally

stored by linear index, is memorized by the connections between a set of unique mem-

ory lines – or, using some additional terminology, each memory line is a unique vertex

in a directed acyclic graph or DAG. The program data is stored in the leaf vertices,

or leaves, of the graph. If the data were completely unique and non-zero, the graph

would become a fully balanced binary tree (assuming a 2:1 line to PLID size ratio).

Because it is recursive, hierarchical deduplication can provide compounded benefit.

For non-hierarchical deduplication, the maximum compaction is fixed by the number

of PLIDs that fit into one memory line; in hierarchical deduplication, this quantity is

referred to as the branching factor, denoted by F . With F = 2, the maximum non-

hierarchical deduplication is 2x. But, using hierarchical deduplication, this factor of

2x is compounded: in the best case, each level in the DAG multiplies the benefit such

that the compaction is 2N for a DAG with N levels from root to leaf vertex. The

maximum hierarchical deduplication possible is given by the following:

N = logF (number of leaf vertices) (5.1)

maximum hierarchical compaction = FN (5.2)

5.1. HIERARCHICAL DEDUPLICATION 65

0	 P2	

non-‐zero	 non-‐zero	

Internal	 Node	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Replaced	 With	

0	 P1	

P3	 0	

P4	 0	

Leaf	 or	 Internal	 Node	

Without	 Path	 Compac?on	

non-‐zero	 non-‐zero	

10010011	 P4	

Same	 Leaf	 or	 Internal	 Node	

Path	 Compacted	
with	 8	 bit	 pointer	 (for	 example)	

Path	 Bits	
1:	 	 MSB	 –	 flags	 path	 compac?on	
0:	 	 unused	
0:	 	 unused	
1:	 	 path	 stop	 bit	
0:	 	 leN	
0:	 	 leN	
1:	 	 right	
1:	 	 right	

Figure 5.2: Path Compaction

Hierarchical deduplication can also use a technique known as path compaction to

reduce the number of DAG vertices when storing sparse data. Although the DAG

efficiently represents sparse data by referring to large zero valued subtrees with a zero

PLID stored near the root vertex (Figure 5.1), it still takes several internal vertices

to describe the path to the leaf. As shown in Figure 5.2, rather than store all the

internal vertices leading to a filled in portion of sparse data, a path compacted vertex

points directly to the filled in portion and encodes the path in the otherwise unused

portion of the memory line.

In this chapter, several smaller, or finer granularity, memory line sizes are investi-

gated. The deduplicated memory described in Chapter 2 used 64 byte memory lines

and 4 byte PLIDs and therefore had a branching factor of 16. This chapter also uses 4

byte PLIDs, but reduces memory line size to 8, 16, or 32 bytes – thus, the branching

factor is 2, 4, or 8, respectively. As a convenience, the following informal notation is

adopted: a DAG with a branching factor of 2 is referred to as a binary-tree (b-tree),

a DAG with a branching factor of 4 is referred to as a quad-tree (q-tree), and 8 is

referred to as an oct-tree (o-tree).

66 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

5.2 Deduplicated Sparse Matrix Storage

Because hierarchical deduplication removes zero valued subtrees, it provides inher-

ently efficient sparse matrix storage, as compared to non-deduplicated systems which

must use specialized sparse matrix storage formats. Therefore hierarchical deduplica-

tion provides sparsity oblivious storage. Alternately, hierarchical deduplication can be

directly applied to the specialized data structures used by non-deduplicated systems.

In the first strategy, referred to as logically dense, the row and column indices for

each matrix value are implicit in that value’s location in the data structure. In the

second strategy, referred to as compressed, the row and column indices are explicitly

stored with the non-zero values and zero, the most common value, is assumed for

every entry not explicitly stored. Finally, a third strategy, referred to as hybrid, uses

a logically dense matrix to store some portion of the matrix data and a compressed list

for the remainder. This section describes hierarchically deduplicated matrix formats

using these three techniques.

The canonical non-deduplicated compressed sparse row or CSR format is used as

the baseline for comparison. While there are many efficient storage formats for non-

deduplicated systems, CSR is simple and highly efficient: it is, essentially, the default

sparse matrix format. In CSR, each matrix non-zero value is stored, packed together,

in a list. A separate list stores the column index for each respective non-zero value.

And, a third list indicates where in each of the previous two lists each new row begins.

For an m by n matrix with nnz non-zero values, the first two lists have size nnz and

the third list has size m. Assuming double precision floating point values, and 4 byte

matrix indices, CSR storage size is given by the following:

bytesCSR = 12 · nnz + 4 ·m+ 4 (5.3)

5.2. DEDUPLICATED SPARSE MATRIX STORAGE 67

Because nnz is typically larger than either matrix dimension, m or n, the cost of

storing the list of non-zero values and their column indices, 12 · nnz, dominates the

storage cost for CSR. Therefore, CSR storage is considered order nnz, or O(nnz).

5.2.1 Row Major Array

The simplest matrix format, in general, is row major – although it is not used for

sparse matrices on non-deduplicated systems, it is efficient for sparse matrices when

hierarchically deduplicated. Given an m by n matrix A, every value in A is stored

in a list. The row index is given by the list index, divided by the matrix column

dimension, n, and the column index is given by the list index, modulo the matrix

column dimension. In other words, each matrix row is stored together in memory.

When hierarchically deduplicated, this is referred to as row major array or RMA.

Although simple, this method achieves storage efficiency at parity with the canonical

CSR format (see Table 5.1).

5.2.2 Quad-Tree Symmetric

A second logically dense format, quad-tree symmetric (QTS) hierarchically exploits

any amount of matrix symmetry. A given matrix, A, is symmetric if A(r, c) = A(c, r)

where r and c, respectively, denote a specific row and column in the matrix. Therefore,

there are many duplicates in symmetric matrices, but importantly, there are also

entirely replicated sub-matrices. Non-deduplicated systems typically store only the

matrix upper (or lower) half because the remaining entries can always be inferred

by transposing the row and column indices in the half that is explicitly stored. This

strategy is efficient for symmetric matrices, but some non-symmetric matrices still

have regions with symmetry: the QTS format inherently deduplicates symmetric

regions, oblivious to how much, or how little, symmetry exists.

68 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

1	 2	 3	 4	 5	 6	 7	 8	

P1	 0	 P2	 0	 P3	 P4	

A11	 A22	 A21	 A12
T	

P9	 P10	

€

1 0 6 8
0 2 5 7
6 5 3 0
8 7 0 4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Figure 5.3: Quad-Tree Symmetric Matrix

To exploit symmetry, quad-tree symmetric divides the matrix into four sub-

matrices (A11, A12, A21, and A22) and stores each in a separate sub-tree in the DAG.

This pattern is repeated, recursively, until the sub-matrix has dimension 1 by 1, that

is, a single non-zero value. When a given sub-matrix is on the main diagonal, the

storage order is A11, A22, A21, then AT
12. If the matrix is symmetric, then A21 = AT

12.

Because these two matrices are in explicitly separate sub-graphs in the DAG, their

root vertex is identical and all of their values and internal vertices are stored exactly

once in the hierarchically deduplicated memory. In this way, the QTS format auto-

matically exploits the duplicate content found in symmetric matrices. Even if the

entire matrix is not symmetric, but only a portion, the QTS format completely dedu-

plicates that region. Figure 5.3 shows an example, using a small symmetric sparse

matrix mapped to a QTS encoded DAG.

5.2. DEDUPLICATED SPARSE MATRIX STORAGE 69

5.2.3 Hierarchical Compressed Sparse Row

The hierarchical compressed sparse row or HCSR format uses the same underlying

data structures as non-deduplicated CSR, but stores them in hierarchically dedupli-

cated DAGs. To enhance deduplication, the column indices and row breaks are delta

encoded. Delta encoding exposes more duplicate values where regular patterns exist.

For example, the sequence 10, 11, 12, 13, 15 becomes 10, 1, 1, 1, 2 when encoded as con-

secutive differences, or delta encoded; note that an additional value, the seed value,

is stored first. The same sequence can be delta encoded as 10, 0, 0, 0, 1 if one assumes

that each value is incremented by one. Because column indices are often clustered

in sequential order, in HCSR, they are delta encoded, with an assumed increment of

one, to expose extra zeros. The row pointers are similarly delta encoded.

5.2.4 Hierarchical Coordinate Format

The hierarchical coordinate format, or HCOO, hierarchically deduplicates a common,

but less efficient, non-deduplicated sparse matrix format known as coordinate, or

COO. On non-deduplicated systems, the CSR format requires less storage than COO.

On the other hand, COO simplifies the insertion of new non-zero values by allowing

non-zero elements to be stored in any order, rather than grouped as rows. In the

coordinate format, each matrix element is stored along with explicit row and column

indices. This can be implemented by storing all elements in a single list of 3-tuples

(row index, column index, non-zero value), or as three separate lists: row indices,

column indices, and non-zero values. To expose more duplicate values, HCOO uses

delta encoding on the list of column indices (with an assumed increment of one) and

on the list of row indices. The delta-encoded row and column indices are interleaved

into a list of 2-tuples (row index, column index). Because the row and column indices

are 4 bytes each, there are logically as many bytes stored in the list of 2-tuples as in

70 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

€

1
1
1
2
2
2
3
3
3
4
4
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
3
4
2
3
4
1
2
3
1
2
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
6
8
2
5
7
6
5
3
8
7
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

€

1 0 6 8
0 2 5 7
6 5 3 0
8 7 0 4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 Row, Column, Value:

€

+

+

+

+

+

+

+

+

+

+

+

1
1
0
−3
0
0
−4
0
0
−3
0
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
+1 = 3
+1 = 4
+1 = 2
+1 = 3
+1 = 4
+1 =1
+1 = 2
+1 = 3
+1 =1
+1 = 2
+1 = 4

Δ Encode, Interleave & Store in DAG
 Store in DAG

€

+

+

+

+

+

+

+

+

+

+

+

1
0
0
1
0
0
1
0
0
1
0
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
=1
=1
= 2
= 2
= 2
= 3
= 3
= 3
= 4
= 4
= 4

€

1
6
8
2
5
7
6
5
3
8
7
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Figure 5.4: Hierarchical Coordinate Encoding

the list of 8 byte double precision (non-zero) values. The two lists, row and column

indices and non-zero values, are hierarchically deduplicated, which results in two

DAGs. Because each list is logically the same length, the two DAGs have the same

height – by itself, of no importance, but a fact which is later exploited in the software

implementation of sparse matrix-vector multiply. Figure 5.4 shows the delta encoding

and interleaving for the HCOO format.

5.2.5 Non-Zeros Dense Format

The hybrid format non-zeros dense, or NZD, stores a compressed list of non-zero

values and uses a pattern matrix stored in QTS format to indicate their row and

column indices. The pattern matrix leaf elements are logically only one bit in size,

therefore, 64 pattern matrix entries can fit in the same space as one double precision

floating point value. Figure 5.5 shows an example of the NZD format.

5.3. SPARSE MATRIX COMPACTION 71

1	 2	 3	 4	 5	 6	 7	 8	

P1	 P2	 P3	 P4	

P5	 P6	

€

1 0 6 8
0 2 5 7
6 5 3 0
8 7 0 4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

€

1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

€

1 2 3 4 5 6 7 8 5 6 7 8[]

P7	 P8	

P6	 0	 1100b	 1100b	

P9	 P10	

1111b	 1111b	

Pa/ern	 Matrix:	
Root	 Node	 (P9	 ,	 P10)	

Dense	 List	

Figure 5.5: Non-Zeros Dense Format

5.3 Sparse Matrix Compaction

Matrix compaction is the ratio of the storage required by the non-deduplicated CSR

format (Equation 5.3) to the storage required by deduplicated DAG:

matrix compaction =
bytesCSR

bytesDAG

(5.4)

Three different memory line sizes are used for the DAG compacted matrices: 8, 16,

and 32 bytes. The DAG storage requirement is the number of unique memory lines,

or DAG vertices, multiplied by bytes per vertex, and the number of bytes per vertex

is set by the memory line size:

bytesDAG =
bytes

vertex
·Nunique-vertices (5.5)

bytes

vertex
=

8 b-tree
16 q-tree
32 o-tree

(5.6)

72 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

Format Degree Geomean Best Worst Bound

RMA
b-tree 1.1x 18x 0.45x 0.06x
q-tree 0.8x 11x 0.28x 0.06x
o-tree 0.6x 8x 0.16x 0.05x

QTS
b-tree 2.5x 5719x 0.46x 0.06x
q-tree 2.3x 5244x 0.29x 0.06x
o-tree 1.8x 4028x 0.18x 0.05x

NZD
b-tree 2.5x 1182x 0.60x 0.06x
q-tree 2.8x 1160x 0.79x 0.06x
o-tree 2.6x 918x 0.79x 0.05x

HCSR
b-tree 1.9x 1289x 0.54x 0.50x
q-tree 2.2x 1289x 0.76x 0.75x
o-tree 2.2x 979x 0.88x 0.88x

HCOO
b-tree 1.8x 1513x 0.54x 0.38x
q-tree 2.2x 3185x 0.65x 0.56x
o-tree 2.0x 1141x 0.67x 0.66x

Table 5.1: Comparison of Deduplicated Matrix Formats

5.3.1 Compaction Results

Table 5.1 shows compaction for deduplicated sparse matrix formats over a set of

74 non-symmetric matrices from the University of Florida Sparse Matrix Reposi-

tory [26]. Figure 5.6 shows best case compaction (Equation 5.4) for each of the

74 non-symmetric matrices versus non-deduplicated size (Equation 5.3). As shown

in Figure 5.6, QTS and NZD tend to provide the best matrix compaction. This

is because QTS provides compounded benefit when entirely replicated sub-matrices

exist, and NZD provides compounded benefit when the pattern of non-zero values

is replicated.

5.3. SPARSE MATRIX COMPACTION 73

100K 1M 10M 100M 1B
0.25x

1x

4x

16x

64x

256x

1024x

4096x

16384x

bytesCSR

b
y

t
e

s
C

S
R

b
y

t
e

s
D

A
G

RMA
QTS
NZD
HCSR
HCOO

Figure 5.6: Sparse Matrix Compaction Results

5.3.2 Storage Bounds

As shown in Section 5.3, hierarchical deduplication provides very high compaction in

the best case – this section shows that it also provides reasonable bounds in the worst

case. Equation 5.7 shows the total storage requirement for a DAG with completely

unique leaf vertices as calculated by geometric series. For a matrix with unique non-

zero values, and pessimistically assuming that no duplicates are found in the row or

column indices, Equation 5.7 precisely computes storage for the compressed formats

HCOO and HCSR.

Ntotal-vertices =

2 · Nleaf -vertices b-tree

4/3 · Nleaf -vertices q-tree
8/7 · Nleaf -vertices o-tree

(5.7)

For HCOO and HCSR, the number of leaf vertices is O(nnz) and thus the storage is

bounded by O(nnz). For the logically dense formats, the number of leaf vertices is

nnz, in the worst case, and each of these costs up to log(m ·n) parent vertices. There-

fore, for the remaining hierarchically deduplicated formats, the storage is bounded by

74 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

O(nnz · log(m · n)). To tighten the bound, the calculation for RMA, QTS, and NZD

shown in Table 5.1, assumes that each logically dense matrix is filled in dense at the

top of each DAG and that each leaf vertex costs log(n) parent vertices, rather than

log(m · n). Given the empirical results shown in Table 5.1, even this bound is very

loose. This looseness results from both path compaction, which reduces the cost of

each leaf vertex, and the fact that non-zero values are often clustered, which makes

storage locally more efficient.

5.4 Deduplicated Sparse Matrix-Vector Multiply

Sparse matrix-vector multiply (SpMV) is a critical task in the inner loop of modern

iterative linear system solvers. In such programs, the linear system is defined by an m

by n sparse matrix, A, with nnz non-zero values. The goal is to find a vector, x, that

satisfies the equation y = Ax. Rather than directly find a matrix inverse, A−1 such

that A−1y = x, it is often much more efficient to iteratively search for the solution.

Using this strategy, a sequence of trial solutions is computed, and refined. To test

and refine each trial solution, xi, requires one sparse matrix-vector multiply: Axi.

The remaining steps to generate xi+1, for the next trial, are relatively inexpensive

compared to the SpMV operation. Therefore, any speedup to SpMV also speeds up

the entire equation solver.

The cost of SpMV is dominated by memory access latency because the CPU per-

forms very few operations per byte read from memory. Therefore, for non-deduplicated

matrices, every value must be read from DRAM memory on every iteration. As an

algorithm, SpMV is also easily parallelized, therefore these accesses occur at the

maximum sustainable rate, that is, at maximum memory bandwidth.

5.4. DEDUPLICATED SPARSE MATRIX-VECTOR MULTIPLY 75

Sockets 2
Cores 12

Threads 24
LLC 12 MB
fclk 2.93 GHz

Mem Channels 3
fmem 1066 MHZ

Mem BW 25.6 GB/sec

Table 5.2: SpMV Machine Specifications

Because of compaction, deduplicated sparse matrix-vector multiply requires less

data transfer and therefore takes less time. Although no matrix entry is reused algo-

rithmically, with deduplication, common values can be found in cache – for dedupli-

cated SpMV, not every matrix value need be read from memory. Therefore, in the

best case, deduplicated SpMV is limited by CPU speed, rather than main memory

bandwidth – and, on current CPUs, this confers a significant speedup. Furthermore,

this speedup will grow as the combined effect of Moore’s Law and limited IO pin

density drives up the compute to memory bandwidth ratio.

5.4.1 SpMV Evaluation Methodology

To evaluate deduplicated SpMV, this section compares a multi-threaded DAG travers-

ing SpMV kernel to a state-of-the-art multi-threaded CSR SpMV kernel. The pseudo-

code in Figure 5.7 provides a simplistic illustration of DAG traversal software using

a branching factor of two. This evaluation reports speedup and other related metrics

measured on actual hardware: an off-the-shelf x86-64 Linux machine with specifica-

tions shown in Table 5.2.

76 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

procedure TraverseDAG(vtxs, height):

sp = 1 # initialize stack pointer

ptrStack[0] = 0 # vertex pointer stack

offStack[0] = 0 # tracks the leaf index

lvlStack[0] = height # DAG level stack

while(sp):

sp -= 1

level = lvlStack[sp]

offset = offStack[sp]

ptr = ptrStack[sp]

vtx = vtxs[ptr]

if level == 0:

print ’offset =’, offset, ’, leaf =’, vtx

else:

if vtx.left & pathbit:

decode path & push new offset, level, & vertex pointer

else:

if vtx.right:

ptrStack[sp] = vtx.right

lvlStack[sp] = level

offStack[sp] = offset + 1 << level

sp += 1

if vtx.left:

ptrStack[sp] = vtx.left

lvlStack[sp] = level

offStack[sp] = offset

sp += 1

Figure 5.7: DAG Traversal Code

The DAG kernel implements SpMV using the HCOO format with quad-tree DAGs.

HCOO is used because it provides the best tradeoff in terms of SpMV kernel imple-

mentation complexity and matrix compaction. Although QTS and NZD provide bet-

ter compaction, their code is complicated by the requirement that they track the row

and column indices based on the path traversed to the leaf. Because HCOO has two

DAGs of the exact same logical size, its code is simplified relative to the implemen-

tation for HCSR. Quad-tree, or branching factor of 4, DAGs are used because they

provide the best compaction for HCOO. Because of deduplication, the memory access

pattern is random, rather than sequential as in the non-deduplicated CSR SpMV ker-

nel. To mitigate the effect of random memory access, the HCOO SpMV kernel works

on two regions of the matrix – therefore, 4 DAGs – simultaneously. This helps hide

latency because 4 DAG vertices are dereferenced on every pass through the loop.

5.4. DEDUPLICATED SPARSE MATRIX-VECTOR MULTIPLY 77

Execution time for matrices that exceed the LLC capacity is measured, and

speedup, defined by Equation 5.8, is reported.

speedup =
tSpMV -CSR

tSpMV -DAG

(5.8)

Although DAG storage significantly compacts some of the matrices, the two vector

operands are not deduplicated, and their storage cost is the same for both methods.

For each matrix, the cost of storing the two vectors is an additional 8 ·m+8 ·n bytes.

The working set size, including the cost of vector storage, is given by Equation 5.9.

working set size = matrix size + 8 ·m+ 8 · n (5.9)

Therefore, when memory bandwidth is the active limit, the speedup is correlated to

working set compaction, as defined in Equation 5.10.

working set compaction =
working set sizeCSR

working set sizeDAG

(5.10)

In some cases, the working set compaction is so large that the active limit is no

longer memory bandwidth, rather it is compute. To evaluate which limit is active,

several metrics are measured during SpMV execution and then used to compute

empirical performance limits. The bandwidth limit, defined in Equation 5.11, is

based on measuring the total amount of DRAM traffic during one iteration of SpMV.

bandwidth limit =
memory trafficCSR

memory trafficDAG

(5.11)

While the working set compaction shows the reduction in memory traffic that is

possible, the bandwidth limit shows the reduction in memory traffic that is achieved.

Therefore, the bandwidth limit shows the speedup that is possible, using the same

78 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

cache system, if instructions could be retired arbitrarily fast. The compute limit,

defined in Equation 5.12, is based on the number of CPU instructions required for

one iteration of SpMV and the maximum sustainable number of instructions retired

per clock cycle, or IPC.

compute limit =
Ninstructions-CSR/IPCCSR

Ninstructions-DAG/IPCmax

(5.12)

To show the speedup that is possible, regardless of the amount of memory traffic

required, the compute limit uses the maximum observed IPC to calculate clock cycles

required for DAG SpMV, and for other terms, the empirical measurements are used.

5.4.2 SpMV Results

Table 5.3 shows the speedup and working set compaction for each of the 28 matrices

that exceed the LLC capacity. The best speedup is 3.7x for matrix atmosmodl, and

the average speedup, by geometric mean, is 1.5x. As expected, SpMV speedup is

correlated to the total working set compaction and bounded by the compute limit,

but, the realized speedup is sometimes noticeably less.

To understand this discrepancy, Figure 5.8 plots speedup versus both the memory

traffic limit and the compute limit (Equations 5.11 and 5.12). For highly compacted

matrices, the active limit is compute, rather than bandwidth. In more detail, for

HCOO SpMV, the maximum sustainable IPC was 2.1 and for CSR SpMV, the average

IPC is 0.4. Therefore, the speedup should be approximately 4x. On the other hand,

HCOO SpMV requires an average of 31 CPU instructions per non-zero while CSR

SpMV requires only 14. After derating for instruction count, the expected speedup

drops from 4x to 2.4x, as indicated by the compute limit plotted in Figure 5.8.1

1 Figure 5.8 uses actual instruction count for each matrix, therefore it varies around 2.4x.

5.4. DEDUPLICATED SPARSE MATRIX-VECTOR MULTIPLY 79

Matrix
Uncompacted Compaction

Speedup
Matrix Working Set Matrix Working Set

barrier2-1 25 MB 27 MB 0.9x 0.9x 0.9x
poisson3Db 28 MB 29 MB 0.6x 0.7x 0.4x

mc2depi 26 MB 34 MB 1.9x 1.6x 1.6x
TSOPF RS b300 c2 34 MB 34 MB 13.4x 11.6x 1.9x

thermomech dK 33 MB 36 MB 0.9x 0.9x 0.7x
sme3Dc 36 MB 37 MB 0.9x 0.9x 0.7x
stat96v3 38 MB 47 MB 12.5x 4.0x 1.7x
xenon2 45 MB 47 MB 4.4x 3.7x 1.5x

webbase-1M 39 MB 55 MB 1.7x 1.4x 0.9x
rajat29 45 MB 55 MB 1.6x 1.4x 1.1x

stormG2 1000 42 MB 56 MB 6.5x 2.7x 1.6x
Chebyshev4 62 MB 63 MB 1.3x 1.3x 1.1x
largebasis 62 MB 68 MB 3.3x 2.7x 2.3x

pre2 69 MB 79 MB 2.8x 2.3x 1.3x
ohne2 79 MB 82 MB 1.0x 1.0x 0.9x

Hamrle3 69 MB 91 MB 85.9x 4.0x 2.2x
PR02R 94 MB 97 MB 1.1x 1.1x 1.1x
torso1 98 MB 100 MB 1.1x 1.1x 1.2x
Rucci1 97 MB 113 MB 5.7x 3.4x 2.8x

tp-6 133 MB 141 MB 2.3x 2.2x 1.5x
atmosmodl 124 MB 147 MB 3185.0x 6.4x 3.7x

TSOPF RS b2383 185 MB 186 MB 12.8x 12.3x 1.8x
circuit5M dc 184 MB 237 MB 1.7x 1.5x 1.2x

rajat31 250 MB 322 MB 115.1x 4.4x 2.2x
cage14 316 MB 339 MB 2.0x 1.9x 1.0x

FullChip 316 MB 362 MB 1.7x 1.5x 0.9x
RM07R 430 MB 436 MB 1.2x 1.2x 1.1x

circuit5M 702 MB 787 MB 3.0x 2.5x 1.8x
geomean n/a n/a 3.8x 2.1x 1.5x

Table 5.3: HCOO Compaction and SpMV Speedup

80 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

0.25x

0.50x

1x

2x

4x

8x

16x

32x

64x

128x

Im
pr

ov
em

en
t R

at
io

po
iss

on
3D

b
ba

rri
er

2−
1

sm
e3

Dc
the

rm
om

ec
h_

dK
oh

ne
2

RM
07

R
PR

02
R

tor
so

1
Fu

llC
hip

Ch
eb

ys
he

v4
cir

cu
it5

M_
dc

ca
ge

14
we

bb
as

e−
1M

ra
jat

29
mc

2d
ep

i
cir

cu
it5

M
tp−

6
pr

e2
Ha

mr
le3

Ru
cc

i1
ra

jat
31

lar
ge

ba
sis

sto
rm

G2
_1

00
0

atm
os

mo
dl

TS
OP

F_
RS

_b
23

83

TS
OP

F_
RS

_b
30

0_
c2

xe
no

n2
sta

t96
v3

actual speedup
mem traffic limit
compute limit

Figure 5.8: SpMV Speedup and Performance Limits

Therefore, HCOO SpMV is compute limited for highly compacted matrices. It is

compute limited because less data transfer is required since deduplication provides

data reuse where there was none before. This is in direct contrast to current state-

of-the-art SpMV implementations which are always bandwidth limited. All current

trends indicate that compute resources are increasingly relatively faster than main

memory bandwidth [11]. Therefore, HCOO SpMV performance will improve faster

than CSR SpMV performance.

5.5 Iterator Register Hardware

In addition to being compute limited because less data is transferred, HCOO SpMV

is compute limited because extra CPU opcodes are required to interpret the DAG

data structure. This suggests that dedicated hardware for DAG traversal would fur-

ther improve HCOO SpMV performance. The HICAMP architecture [24] describes

such special purpose hardware, known as an iterator register. The iterator register

5.5. ITERATOR REGISTER HARDWARE 81

d0	 d1	

p0	 p1	

d2	 d3	

p4	 p5	

d4	 d5	

p2	 p3	

d6	 d7	

p0	 p1	
d2	 d3	

p4	 p5	

Memory	 Content:	 	 t=0	 and	 t=1	

Iterator	 Register:	

t=0	
Reads	 data	 at	 offset	 3	

p0	 i	
d2	 d8	

i	 p5	

t=1	
Writes	 d8	 at	 offset	 3	

d0	 d1	

p0	 p6	

d2	 d8	

p7	 p5	

d4	 d5	

p2	 p3	

d6	 d7	

p2	 p3	
d4	 d5	

p7	 p5	

Memory	 Content:	 	 t=2	 and	 t=3	

t=2	
Reads	 data	 at	 offset	 4	

i	 p3	
d9	 d5	

p7	 i	

t=3	
Writes	 d9	 at	 offset	 4	

Figure 5.9: Iterator Register Overwriting Portions of a DAG

provides a programming interface to a hierarchically deduplicated memory. For hier-

archical deduplication, a deduplicated memory, as described in Chapter 2, is modified

to expose additional operations. In particular, the iterator register can directly is-

sue content lookup operations, directly dereference PLIDs, and issue reference count

increments and decrements.

The iterator register provides two fundamental operations: read value by logical

offset and write value by logical offset. The fundamental data size can be much smaller

than the memory lines size, and the logical offset is relative to the left most entry in

the left most leaf vertex. In response to a read, the iterator register automatically tra-

verses from DAG root vertex to the appropriate leaf vertex. It selects the appropriate

entry from the leaf vertex, and returns that to the CPU general purpose register.

On write, the iterator register provides the abstraction that the DAG is an array of

unbounded size. To write a value, the iterator register issues lookup commands to the

deduplicated memory and builds the path from leaf vertex to the root. Therefore, the

iterator register supports the creation of new leaf vertices, and automatically grows

the DAG if necessary. When overwriting a pre-existing leaf vertex, it modifies the

appropriate pre-existing internal vertices.

82 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

For efficiency, the iterator register caches the DAG internal vertices that it en-

counters while traversing from root to leaf. Therefore, subsequent reads near to the

current leaf do not require fetch of the entire path from DAG root to leaf: to read the

next data item, in the common case, only one memory operation is required because

the shared parent vertex is already cached.

Figure 5.9 illustrates both the read and write process using DAGs with F = 2

and a fundamental data size that is 1/2 of the memory line size. In Figure 5.9, at t0,

the iterator register is instructed to read the data at offset 3. To do so, it loads the

DAG root vertex, and the internal nodes along the path to appropriate leaf vertex.

At t1, the CPU writes a new value, d8, at offset 3. In response, the iterator register

marks the PLIDs along the current path as invalid – content lookup commands are

deferred until a vertex is evicted from the iterator register. At t2, the CPU loads data

at offset 4. In response, the iterator register loads one new internal vertex and the

appropriate leaf vertex. Lookup commands are issued to generate PLIDs p6 and p7,

and reference count decrements are issued to each line which is no longer included in

the DAG.

Therefore, the iterator register provides an efficient programming interface to a

hierarchically deduplicated memory. It minimizes read operations by caching DAG

internal vertices, and it also minimizes content lookup operations.

5.6 Iterator Register SpMV

By implementing DAG traversal, the iterator register removes instruction count over-

head from DAG based SpMV. Figure 5.10 shows pseudo-code for SpMV using an

iterator register and the RMA matrix format described in Section 5.2.1. Compared

to the pseudo-code in Figure 5.7, the code shown in Figure 5.10 eliminates the CPU

5.6. ITERATOR REGISTER SPMV 83

procedure RMA_SpMV(dagID, m, n, y, x):

it = IterReg(dagID)

it.SetSkipZeroSubTrees()

while(it.Pos() != it.End()):

v = it.Val()

p = it.Pos()

r = p / n

c = p % n

y[r] += v * x[c]

it.PosInc()

Figure 5.10: SpMV Using an Iterator Register

opcodes required for DAG traversal. Because adding more iterator registers is rela-

tively less expensive than providing additional memory bandwidth – by adding mem-

ory channels, for example – given enough iterator registers, DAG SpMV can work at

the bandwidth limit, rather than the compute limit. For some matrices, the potential

speedup is very large. As shown in Figure 5.8, for matrix stat96v3, data transfer

is reduced by 90x. Although a 90x speedup is unlikely, the iterator register enables

speedup beyond the best case of 3.7x demonstrated in this work.

Furthermore, the iterator register enables highly efficient concurrent symmetric

SpMV by using the quad-tree symmetric format (QTS), described in Section 5.2.2.

On current CPU architectures, concurrent symmetric SpMV is challenging. Sym-

metric storage promises a factor of 2x advantage in reduced data transfer, but it

also inhibits parallelism because it is more difficult to partition the work. For non-

symmetric concurrent SpMV, threads are normally assigned distinct matrix rows.

This works well because it guarantees that each thread has a disjoint write set. Un-

fortunately, this partitioning inhibits performance for concurrent symmetric SpMV:

because each thread now owns both one row and one column of the matrix, each

thread can write to any value in the output vector. Therefore, current approaches to

concurrent symmetric SpMV incur extra overhead for matrix permutation and write

synchronization [19, 45].

84 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

The QTS format logically stores a symmetric matrix as if it were non-symmetric,

but also achieves a factor of 2x reduction for storage and data transfer. Using QTS,

the same SpMV algorithm can be used for both symmetric and non-symmetric ma-

trices. If the matrix is symmetric, the QTS format inherently reduces data transfer

by deduplicating identical transpose sub-matrices. Although QTS SpMV incurs more

CPU instruction overhead than HCOO SpMV, QTS SpMV is made efficient by iter-

ator register DAG traversal. Therefore, the QTS format provides efficient symmetry

oblivious sparse matrix-vector multiply.

5.7 Sparsity Oblivious Algorithms

This section describes a class of sparsity oblivious algorithms, namely algorithms

which are work efficient for both sparse and dense input data. Such algorithms, when

implemented on a conventional architecture, incur a large performance penalty be-

cause many extra CPU opcodes are required to traverse the DAG based data struc-

tures. The iterator register, as described to this point, removes some overhead in

these algorithms by automatically fetching DAG leaf nodes for use by the arithmetic

execution units. On the other hand, an algorithm written for a dense input would

perform arithmetic for every zero valued leaf – even if those leaves are not actually

stored in memory, i.e. because of deduplication. Building on the bounds for logi-

cally dense sparse matrices given in Section 5.3.2, this section shows that sparsity

oblivious matrix-matrix multiply performs exactly the same number of floating point

arithmetic operations and makes efficient memory accesses to a data structure whose

size is at most O(nnz · log(m · n)) bytes.

To enable sparsity oblivious algorithms, the iterator register programming inter-

face is extended to support two new operations: read PLID by DAG level and linear

index and insert PLID by DAG level and linear index. The first of these operations

5.7. SPARSITY OBLIVIOUS ALGORITHMS 85

procedure DAGRecursiveSparseVectorAdd(c, a, b):

computes c = a + b

leaf = a.IsLeaf() and b.IsLeaf() and c.IsLeaf()

if leaf:

operands a & b are both non-zero

c = a + b

else:

for i = 1 to a.NumSubGraphs():

ai = a.SubGraph(i)

bi = b.SubGraph(i)

if ai.NonZero() and bi.NonZero():

ci = c.SubGraph(i)

DAGRecursiveSparseVectorAdd(ci, ai, bi):

else if ai.NonZero():

copy from a

c.InsertSubGraph(i, ai)

else if bi.NonZero():

copy from b

c.InsertSubGraph(i, bi)

Figure 5.11: Sparsity Oblivious Vector Addition

returns a PLID that refers to a root vertex for a sub-graph within the DAG, and the

second stores an entire sub-graph into the DAG. For the logically dense format QTS,

this sub-graph is actually a sub-matrix. High performance dense matrix-matrix mul-

tiply algorithms use operations over sub-matrices to achieve high cache hit-rates and

thus maximize performance. Because QTS allows both operations on sub-matrices

and efficient detection of zero-valued sub-matrices, it combines naturally with tree-

recursive cache-oblivious algorithms which have been proposed as a middle ground

between performance tuning [68] and näıve algorithms [16, 35].

5.7.1 Sparse Vector Add

Using sparse vector addition as a simple example, Figure 5.11 illustrates the key

insight that zero-valued sub-graphs are handled efficiently. Three iterator registers

are required: two for the operands, and one for the result. Rather than iterate over

individual vector elements (leaves), sub-vectors are added together by iterating over

internal vertices. If a zero valued sub-graph is encountered, it is much more efficient

to copy the non-zero sub-graph to the destination, rather than copy each individual

86 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

leaf. The copy operation maps to a single iterator register command, PLID insertion,

as described above. The PLID insertion command inserts the PLID, which refers to

a non-zero sub-graph from the non-zero operand vector, into an internal vertex of the

destination vector and it increments the reference count for that sub-graph.

In terms of floating point arithmetic, this algorithm is work efficient – it performs

exactly the required number of floating operations and no more. It is sparsity obliv-

ious, but it pays for that by using a modest additional amount of storage given by

Equation 5.7. In certain cases, this algorithm requires far fewer instructions because

large copies are made efficient by copying the root PLID of a DAG sub-graph. The

total number of memory accesses required depends on the amount of deduplication

in the source vectors, and the number of content lookups that escape to DRAM as

the destination DAG is built. If fewer CPU instructions are required, or if many

duplicates are found, then it is likely that fewer memory accesses will be required.

This simple example sets the pattern, namely tree-recursive and zero sub-graph de-

tection, used, in the following sections, to construct an efficient sparsity oblivious

matrix-matrix multiply.

5.7.2 General Matrix-Matrix Multiply

Dense matrix-matrix multiply, or general matrix-matrix multiply (GEMM), is an

important general purpose linear algebra algorithm. For large matrices, direct imple-

mentation of a dot product on each operand row and column is inefficient because

the CPU caches cannot hold the working set. High performance GEMM implemen-

tations operate on matrix sub-blocks (also known as tiles), rather than individual

rows and columns. The sub-blocks are sized so that the maximum number of arith-

metic operations can be performed over some working set that fits entirely in the

CPU L1 cache. On current CPUs, for peak performance, the algorithm must be im-

plemented with several tiers of sub-blocks, each sized appropriately according to the

5.7. SPARSITY OBLIVIOUS ALGORITHMS 87

procedure DAGRecursiveMtxMtxMult(C, A, B):

computes C = A*B

leaf = A.IsLeaf() and B.IsLeaf() and C.IsLeaf()

if leaf:

can cause insertion if C is zero valued

C = C + A*B

else:

for i = 1 to A.NumSubMatricesInCol():

iterate, as sub-matrices, over rows in A

for j = 1 to B.NumSubMatricesInRow():

iterate, as sub-matrices, over columns in B

(and) grab the destination sub-matrix from C

Cij = C.SubMtx(i, j)

for k = 1 to A.NumSubMatricesInRow():

Aik = A.SubMtx(i, k)

Bkj = B.SubMtx(k, j)

if Aik.NonZero() and Bkj.NonZero():

never get here for zero valued sub-DAGs in A or B

DAGRecursiveMtxMtxMult(Cij, Aik, Bkj)

Figure 5.12: Sparsity and Cache Oblivious Tree-Recursive Matrix-Matrix Multiply

multi-level cache hierarchy. Therefore, there is no generic GEMM implementation

that consistently achieves peak performance across all available CPUs. Rather, high

performance GEMM implementations are typically tuned to a specific CPU cache

hierarchy by setting the tile sizes as a parameter [68].

Tree-recursive algorithms have been proposed to resolve the difficulty of tuning

algorithms for different multi-core CPUs [16, 35]. Because such algorithms recurse

into smaller and smaller tiles, they naturally create working sets that fit into each

level of the CPU cache hierarchy. Therefore, tree-recursive algorithms are said to be

cache-oblivious.

5.7.3 Sparsity and Cache Oblivious

Tree-Recursive Matrix-Matrix Multiply

Although less widely used than dense matrix-vector multiply, sparse matrix-matrix

multiply, or SPGEMM, is important in the context graph algorithms and is also used

as a subroutine in other linear algebra algorithms [21]. The most common sparse

matrix-matrix multiply algorithm, introduced by Gustavson [33], works column by

88 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

column using the compressed sparse column, or CSC format.2 When computing the

matrix product C = A · B, matrix C is computed one column at a time by reading

from matrix B one column at a time. Therefore, the values from source matrix B

need be read from memory only once, but the values from the other source matrix

A are brought in from memory, on demand, as non-zero intersections are discovered.

This guarantees that values from B are reused from processor registers, or L1 cache,

but values from A, when reused, are likely to incur the full latency of DRAM access.

In effect, for each non-zero value, B(k, j), matrix A is searched for corresponding non-

zero entries A(i, k). Because new entries in the current column of C can be discovered

as the algorithm works on a particular column in B, an associative array is used to

store the current output column of C.

A sparsity and cache oblivious tree-recursive sparse matrix-matrix multiply algo-

rithm is shown in Figure 5.12. As with highly tuned dense matrix-matrix multiply

algorithms and tree-recursive cache oblivious algorithms, it iterates over sub-matrices.

The sub-matrices are extracted from a logically dense matrix format, such as QTS, us-

ing the DAG internal vertices. For QTS, each sub-matrix has dimension m/2 by n/2,

relative to its parent matrix. The sub-matrix accessor, denoted as M.SubMtx(i, j)

in Figure 5.12, maps to a single iterator register operation, namely read PLID by DAG

level and linear index. The number of levels beneath the root vertex is, trivially, the

current level plus one. The linear index is a function of the row and column indices

i and j and it is calculated based on the underlying matrix format, such as QTS.

As with sparse vector add, this algorithm is work efficient because only the non-

zero pairs A(i, k) and B(k, j) are visited. Storage is O(nnz · log(m · n)) in the worst

case, but this is empirically quite pessimistic as shown in Table 5.1. By extension, the

number of operand fetches is a factor of log(m · n) worse than the minimum possible

number of operand fetches. This worst case estimate is likely to be very pessimistic

2 CSC is essentially the transpose of CSR.

5.8. SUMMARY 89

for three reasons: the bound is empirically very loose, the iterator register itself

maximally reuses internal DAG vertices, which further tightens the bound, and the

tree-recursive algorithm naturally utilizes the CPU cache hierarchy. Although there

is a cost to sparsity oblivious, it is very efficient compared to the cost of näıve which

is m · n. Furthermore, there is an intuitive argument that it may be competitive in

practice: because it uses matrix tiles, it is arguably more effective at using the CPU

cache than competing sparse matrix-matrix multiply algorithms.

5.8 Summary

This chapter shows that hierarchical deduplication provides efficient sparse matrix

storage. In current computer systems, sparse matrix formats are special cased to

avoid the overhead of storing many zeros. In contrast to current software, hierarchical

deduplication provides sparsity oblivious, yet efficient, sparse matrix storage. In fact,

hierarchical deduplication improves storage efficiency for sparse matrices with many

replicated non-zero values and replicated sub-matrices. The quad-tree symmetric

(QTS) format, designed to take advantage of replicated sub-matrices, provides a

best case compaction of 5700x relative to the canonical CSR format, which already

eliminates the overhead of storing zero valued entries.

In addition, this chapter shows that hierarchical deduplication speeds up sparse

matrix-vector multiply (SpMV), a critical task in the inner loop of modern itera-

tive linear system solvers. Using the hierarchical coordinate (HCOO) format, this

chapter demonstrates an average speedup of 1.5x. Although there is very little algo-

rithmic data re-use in SpMV, the speedup is a result of finding cache hits because of

duplicate values.

90 CHAPTER 5. SPARSE MATRIX-VECTOR MULTIPLY

Importantly, speedup is demonstrated using current off-the-shelf hardware. Be-

cause this hardware has no support for deduplicated memory or for hierarchical dedu-

plication, extra CPU opcodes are required to traverse the DAG. These extra opcodes

reduce the efficiency of hierarchically deduplicated SpMV. With iterator registers,

projected speedup improves from 1.5x to 4x for compacted matrices that are not band-

width limited. The speedup of 4x is based on current CPU architectures, but compute

resources are increasing faster than bandwidth. Therefore, hierarchically deduplicated

SpMV is expected to provide further speedup given current technology trends.

Finally, this chapter describes a new class of sparsity and cache oblivious linear

algebra algorithms that are enabled by the iterator register programming model. A

key insight is that the iterator register provides an efficient programming interface

for tree-recursive algorithms. In addition, the iterator register provides insertion at

arbitrary locations in arrays of unbounded size. If implemented using actual iterator

register hardware, such algorithms would reduce the need to special case linear algebra

subroutines based on particular matrix properties such as sparsity.

Chapter 6

HICAMP and Related Work

This thesis was influenced by many prior research efforts, and, in particular, was in-

spired by prior work on the HICAMP architecture [24]. The HICAMP architecture

provides improved CPU support for parallel programming by implementing a multi-

versioned main memory. To reduce the cost of keeping many versions of memory

content, and to isolate concurrent workers from corrupting their counterparts’ work,

it introduced fine-grain hierarchical deduplication. This thesis extended work on HI-

CAMP. In particular, it provided a deduplicated memory compatible with existing

hardware and software, and showed that such a memory saves 2x capacity and 40%

memory system energy. By extending the deduplicated memory to provide hierarchi-

cal deduplication, it also showed significant compaction for certain large-scale sparse

matrices and improved performance for sparse matrix-vector multiply. This chapter

places this work in the context of HICAMP and other related work. It first describes

the HICAMP architecture and how it uses deduplicated memory to provide improved

architectural support for parallel programming. Next, it reviews other related work,

such as prior work on in-memory compression.

91

92 CHAPTER 6. HICAMP AND RELATED WORK

6.1 The HICAMP Architecture

Today, multi-core CPUs have become the norm because single core performance no

longer improves at the rate of technology scaling [25]. Despite this, the individual

processing cores expose nearly the same instruction set and memory interface as were

in use twenty years ago. To support parallel programs, the HICAMP architecture pro-

vides a fundamentally new way for program logic to interface with machine memory.

6.1.1 The Need for Parallel Machines

Originally, Moore’s Law was an observation, made in 1965 by Gordon Moore, founder

of Intel, that the transistor density on silicon had been doubling every year, and he

predicted that this would continue into the near future [51]. Since computer architects

use these transistors to improve performance, it also became a self-fulfilling prophecy

that computer performance will continue to grow exponentially.

Because smaller transistors are both faster and more power efficient, scaling down

transistor size increases the performance of a given design, but during the 1990s,

designers scaled machine performance even faster than transistor scaling. This addi-

tional performance scaling, through circuits and architecture, required higher energy

per instruction executed [25]. Historically, this growing energy was not a concern

because the early designs, constrained by area, were relatively simple and not power

limited. But, in the early 2000s, designs became power limited. Since power is the

product of energy per instruction and instructions per second, in a power limited

design, the only way to improve performance (instructions per second) is to decrease

energy per instruction. Thus the industry opted to reduce the performance of each

processor – decreasing energy per instruction – and replicate multiple processing cores

6.1. THE HICAMP ARCHITECTURE 93

on the same silicon die, to increase the total number of instructions per second. This

began what is now referred to as the “multi-core” era.

Although it is now common to have 8 cores in a multi-core CPU, it is difficult to

write a program that can perfectly exploit this and therefore complete 8 times faster.

As pointed out in 1967 by Gene Amdahl, there are practical difficulties in writing

parallel programs [7]. Every program has instructions that inevitably depend on

prior program results, that is, a sequential dependency. Fortunately, many programs

of practical interest have large portions that can be factored into independent tasks,

and therefore can benefit from parallel machines. Ultimately, because these separate

tasks are all part of the same program, they all must access, and update, shared

program state. Difficulties arise when more than one concurrent task attempts to read

from and write to the same shared memory location. Specifically, it is possible that

one task reads a value – ostensibly the most up-to-date value – at the same time as

another task makes an update to that value. In this scenario, known as a memory race,

the task reading the value has stale data and therefore, the program may also produce

incorrect results. It is difficult to detect, let alone correct, such subtle program logic

errors, therefore, the task of dealing with memory races in parallel programs has its

own history of research and literature [46, 62].

Such problems are exacerbated by the lack of hardware support for parallel pro-

grams. Today, most programmers avoid memory races by explicitly synchroniz-

ing access to shared program state. Current mainstream CPU hardware provides

atomic – that is race free – update over very small regions of memory. To synchro-

nize access, such a region is used as a lock – that is, a value in memory that signals

whether or not a concurrent task is granted access to a larger region of shared program

state. Locks tend to reduce performance, because a given concurrent task will stall

if it is locked out of a region. To avoid this behavior – that is, to avoid blocking on

synchronization – programmers use separate, or fine-grain, locks to protect logically

94 CHAPTER 6. HICAMP AND RELATED WORK

distinct regions of shared state. In all but the simplest cases, fine-grain locks are

difficult to reason about and eventually lead to even more intractable problems such

as deadlock: for example, two separate tasks, each waiting on a lock that the other

task holds, stall and therefore the program itself makes no progress. These problems

motivate both different programming models and thus hardware support for them.

6.1.2 Transactional Memory

First described by Herlihy in 1993 [37], transactional memory provides hardware sup-

port for non-blocking synchronization. Now, 20 years later, transactional memory

has gained limited hardware support in commercial and supercomputing machines

released by both Intel and IBM [67, 22, 38]. Interest in transactional memory in-

creased in the past 10 years as it became clear that multi-core CPUs would become

common. This resulted in many research papers proposing improvements to trans-

actional memory [34, 59, 8, 52, 50, 23, 73, 17], and the proposals made in some of

those have now been implemented, such as speculative lock elision [58]. The essential

idea running through these efforts is to have concurrent tasks optimistically proceed

without stalling others by keeping a private record of their updates to shared program

state. Each concurrent task tracks a read-set and a write-set, or specifically, the set

of shared memory locations it reads from and the set of shared memory locations it

writes to. A given concurrent task is forced to abort if a separate task completes and

its write-set intersects with the read or write set of the task in question. If the inter-

section is in the write-set, then it is termed a write-write conflict. Because each task

reads from the non-isolated currently committed version of shared program state, it

can read inconsistent state. Such a conflict is known as a read-write conflict. If no

conflict is detected, when the task completes, all of its updates are made visible to

all other tasks at a given instant, an operation referred to as atomic commit.

6.1. THE HICAMP ARCHITECTURE 95

6.1.3 Multi-Versioned Memory

By implementing a multi-versioned memory, HICAMP provides an alternate model

for non-blocking synchronization. Distinct from transactional memory, HICAMP pro-

vides each concurrent task with an isolated copy of shared program state, known as a

snapshot. A snapshot is a copy of some portion of shared program state at a given in-

stant in time, typically the time at which a given concurrent task began its execution.

Because of snapshots, no task can read data from logically distinct points in time, that

is, no task can read inconsistent data. Therefore, HICAMP has no read-write con-

flicts, and only write-write conflicts need be detected and correctly managed. Because

read-write conflicts are far more common than write-write conflicts HICAMP allows

more concurrent tasks to complete, thus providing higher program performance.

In HICAMP, as in transactional memory, when a given task completes, it pub-

lishes its updates by atomic commit, but unlike transactional memory, this update is

accomplished by swapping entire memory snapshots by a single compare-and-swap

operation on the root vertex of a hierarchically deduplicated memory region. If, in

the time between snapshot creation and commit, some other task updated a value

in that memory region, a write-write conflict is detected by root vertex comparison.

In addition, HICAMP provides support for merge-updates which can resolve write-

write conflicts according to programmer supplied semantics. The following sections

describe how HICAMP implements a multi-versioned memory using hierarchically

deduplicated memory.

96 CHAPTER 6. HICAMP AND RELATED WORK

Content	 Memory	 Transient	 	
Virtual	 Segment	 Map	

PLID	 =	 0x00000000	 Top	 of	 physical	 memory	

lin
e	

lin
e	

lin
e	

lin
e	

lin
e	

Figure 6.1: HICAMP Architecture Memory Layout

6.1.4 HICAMP Memory Model

HICAMP efficiently implements the abstraction of a multi-versioned memory using

the following primitives:

1. Memory lines: unique and fixed size (64 bytes, e.g.) regions of memory, as

described in Chapter 2.

2. Memory segments: sets of unique memory lines, each set organized as a directed

acyclic graph, or DAG, and accessed by iterator register, as described in Chap-

ter 5. The memory segments contain hierarchically deduplicated program data.

3. Virtual segment map: a list of software visible virtual segment ids, or VSIDs,

and their respective memory segments, each identified by a PLID that refers to

a particular DAG root vertex.

As with deduplicated memory, introduced in Chapter 2, in HICAMP, the CPU cores

do not directly access physical memory locations. In HICAMP, hardware manages

all physical memory locations, and provides the abstraction of memory segments of

unbounded size. To do so, memory is split into three regions, as shown in Fig-

ure 6.1: the content memory, containing deduplicated memory lines, the transient

memory, containing non-deduplicated content and hash-table overflows, and the vir-

tual segment map.

6.1. THE HICAMP ARCHITECTURE 97

VSM
 VSID0 PLIDA
 VSID1 PLIDB
 VSID2 PLIDB

 VSIDn PLIDZ

Root	 Vertex	

Internal	 Vertex	 Internal	 Vertex	

Leaf	 Vertex	 Leaf	 Vertex	 Leaf	 Vertex	

So0ware	 Visible	

PLIDs,	 Lines,	 and	 DAGs:	 Hardware	 Managed	

Figure 6.2: HICAMP Virtual Segment Map (VSM)

The virtual segment map, or VSM, provides the programming interface for soft-

ware. To access memory, software specifies a VSID1 and a linear offset into the seg-

ment. The linear offset effectively selects a particular leaf node in a DAG, as shown in

Chapter 5, Figure 5.1. The virtual segment map, illustrated in Figure 6.2, connects

the software visible VSIDs to root PLIDs, each of which identifies a particular DAG

comprised of unique memory lines.

HICAMP provides isolated snapshot copies by giving a reference to a segment.

Specifically, to create a snapshot, HICAMP reads the PLID associated with a VSID

from the virtual segment map and increments the reference count of the root vertex

(a memory line) that is referred to by that PLID. By logical extension from the fact

that the root vertex also references its children, and therefore its grandchildren, this

effectively maintains a reference to the entirety of the DAG content. The snapshot and

the globally shared program state exist as two separate logical entities, but because

of hierarchical deduplication, they share exactly the same physical memory resources.

Therefore, HICAMP provides a snapshot copy in exactly one operation – reference

count increment – and, at no additional cost to memory capacity. The snapshot is

1It is possible to request a new VSID, or release a VSID.

98 CHAPTER 6. HICAMP AND RELATED WORK

isolated, that is guaranteed to remain immutable and in memory, as long as the root

vertex is referenced.

The iterator register, described in Chapter 5, provides the programming interface

for the HICAMP architecture. It supports simple load and store commands by pro-

viding DAG read and write by data and offset. As its name suggests, it also supports

iteration over the data elements stored in a DAG, both including and skipping zero

valued elements. Finally, it provides the programming interface for atomic segment

update, as described in the next section.

6.1.5 Atomic Segment Update

To provide atomic commit of entire memory segments, HICAMP implements atomic

compare-and-swap (CAS) for PLIDs in the virtual segment map (VSM). Logically, if

each vertex in the DAG is unique, so too is the root vertex. Therefore, two “separate”

DAGs, or segments, can be compared for equality by comparing only the memory line

that is their root vertex. By extension, atomic CAS on the VSM is atomic CAS for

an entire memory segment.

As each concurrent task executes, it makes local updates creating a new private

memory segment in addition to its snapshot. Therefore, when the task completes, it

holds a reference to two separate DAGs: the snapshot, and the new DAG represent-

ing its updated version of memory. Using a VSID, the commit, or end-of-transaction,

opcode issues a CAS on the segment root PLID in the VSM. The root PLID in the

VSM is compared to the snapshot root PLID. If they match, then the VSM is updated

with the PLID that refers to the updated version of memory, and the snapshot is dis-

carded. Therefore, using virtual segment map compare-and-swap, HICAMP provides

atomic update to regions of unbounded size in a single memory operation.

If the PLID in the VSM does not match the PLID for the original snapshot, then

the CAS operation fails, and one of two options is invoked: according to behavior

6.1. THE HICAMP ARCHITECTURE 99

specified by the programmer, either the task re-executes using a new snapshot, or a

merge-update is performed. Even if the memory segment CAS fails, there may be no

write-write conflicts at the leaf level. If program semantics allow, HICAMP can merge

the two updated memory segments by CAS on internal DAG vertices – effectively

performing CAS on DAG sub-graphs. Furthermore, if program semantics allow, writes

that conflict at the same offset into the segment can be merged if the correct final

value can be inferred from the snapshot, as in the following: final shared value =

current shared value + updated value − original value. This rule is correct if the two

disparate tasks are applying simple arithmetic increments to shared program state.

6.1.6 Advantages of HICAMP

HICAMP offers several advantages over current architectures and over proposed trans-

actional memory implementations. HICAMP provides a practical implementation of

Herlihy’s theoretical construction of non-blocking synchronization by compare-and-

swap [36]. By logically eliminating read-write conflicts, it allows more transactions

to succeed and therefore provides a performance advantage. It allows long running

read-only transactions to succeed without any additional explicit sequencing. Merge

update allows transactions with apparent write-write conflicts to commit where pro-

gram semantics allow. Many of the proposed implementations for transactional mem-

ory rely on small buffers, typically the L1 cache, to store logically private copies of

shared state. HICAMP semantically avoids this restriction and allows transactions

to access and modify memory regions of unbounded size. It implements fine-grain

hierarchical deduplication which allows maximum sharing between logically isolated

snapshot copies, and maximizes memory resource sharing across separate processes

and virtual machines. Therefore, HICAMP is an attractive option relative to cur-

rent state-of-the-art support for parallel programming and it captures the benefit of

deduplicated memory.

100 CHAPTER 6. HICAMP AND RELATED WORK

6.2 Related Work

Other prior research has addressed increasing memory capacity by compression and

improving sparse matrix-vector multiply performance. This section places this thesis

in the context of these related efforts.

6.2.1 Page Deduplication

It is well known that duplicate values exist in physical memory in “cloud” virtual-

ized systems such as Amazon EC2, or privately managed virtual machine infrastruc-

tures. Waldspurger [66] shows that virtual machine hypervisors can exploit dupli-

cate pages across virtual machines by actively scanning main memory, a technique

known as transparent page sharing. Prior work on HICAMP [24] also shows that

there are almost twice as many fine-grain duplicates as page duplicates in virtual

machine systems.

Relative to transparent page sharing, deduplicated memory is very fine-grain (64

vs. 4096 bytes), operates at a much finer time scale (nanoseconds versus minutes),

and incurs no additional processing overhead [32]. Furthermore, deduplicated memory

decouples sharing granularity from page granularity. Virtualized TLB misses incur

expensive nested page-table walks, therefore, the trend is toward large (2 MB) pages.

Because there are so few 2 MB page duplicates and because of the non-trivial CPU cost

to scan memory, VMware ESX does not enable transparent page sharing with large

pages [32]. Deduplicated memory provides fine-grain sharing regardless of page size.

Based on results from both zest and zsim, and prior work on HICAMP, dedu-

plicated memory outperforms page sharing in terms of memory capacity. This work

calculates page sharing compaction using just the total-to-unique ratio because the

translation overhead of page sharing is inherent to the page table. As shown in Fig-

ures 4.1 and 4.2, for SPEC and PARSEC, there are far more fine-grain duplicates

6.2. RELATED WORK 101

than page duplicates. For the applications running in actual datacenters, Chapter 2

Section 2.6, zest calculates page compaction to be 1.47x. Transparent page sharing

cannot share pages that are being modified by programs, but zest does not know

which pages are being modified, and which are static and read-only. Therefore, dedu-

plicated memory provides a factor of 2x savings, in excess of the highly optimistic

estimated 1.47x page sharing indicated by zest.

6.2.2 Exploiting Zero Values

Dusser and Seznec [27] exploit zero values to provide increased memory capacity.

Results in this work indicate that zeros are not common enough to provide a significant

benefit. On real systems, all memory is always in use either by applications, or by

the operating system for IO buffers and disk cache – while zeros remain common,

logically, they are not useful to either application memory or to the operating system,

and therefore their contribution to the total remains low. Results from zest, shown

in Figure 2.6, indicate that zeros can be as low as 3% of the total while fine-grain

deduplication still provides in excess of 2x compaction.

6.2.3 In Memory Compression

Several efforts have been made to provide increased memory capacity through com-

pression. Circa 2000, IBM went to market with their memory expansion technology

(MXT) [64] which used a sophisticated lossless compression algorithm applied to

1 KB chunks of data. More recently, GPUs have employed in memory compression

to reduce bandwidth for highly compressible texture data [72]. Ekman and Sten-

strom [28] describe a line based memory compression scheme using a set of frequent

patterns and cite decompression latency as an advantage over MXT. And, most re-

cently, Pekhimenko, et al. [55], describe a similar line based memory compression

102 CHAPTER 6. HICAMP AND RELATED WORK

scheme, but instead use base-delta-immediate [56] compression which has single cycle

decompression latency.

Deduplication is actually simpler and higher performance than compression. For

both compression and deduplication, allocation occurs on write, and therefore does

not stall the CPU. Both introduce an extra level of indirection. Compression schemes

(as distinct from deduplication) also require decompression – this adds additional la-

tency, no matter how efficient. Additionally, compression schemes must reallocate

and copy if a block grows or shrinks. MXT reallocation is handled in hardware based

on its free list and sector translation table, similar to the translation array described

in this work. On the other hand, the line based compression schemes [28, 55] are not

transparent to the operating system. Both of these methods store their translation

metadata in the page table which requires operating system modification and intro-

duces the complicated issue of TLB consistency. As a result, these methods incur a

costly operating system trap when blocks grow beyond their compressed boundaries.

Both line compression schemes also introduce the problem of fragmentation, namely

regions of unused memory that are too small to be useful. To handle fragmentation,

they quantize the compressed page sizes. Again, requiring extensive operating system

modification, they require that the operating system maintain a pool of free pages

for each of the compressed sizes. Although this guarantees contiguous memory use

within each pool, the challenge of one particular pool running out of free pages is

not addressed. In contrast, with deduplicated memory, every write is the same, it is

transparent to the operating system, and there is no fragmentation.

MXT [64] reports compression between 2x and 3x: similar to results from zest. On

the other hand, to achieve high compression, MXT uses large 1 KB memory blocks

which risks significant over-fetch for many applications. Ekman and Stenstrom [28]

report 1.4x increase in capacity and Pekhimenko, et al. [55], report 1.7x increase in ca-

pacity. Although in-memory texture compression is used by some current GPUs [72],

6.2. RELATED WORK 103

it is difficult to compare to because the underlying data is fundamentally different. It

is well known that compression faces a fundamental tradeoff between block size and

compression ratio. Comparing the results from MXT [64], which compresses 1 KB

blocks, to the line based methods [28, 55], illustrates this tradeoff. The line based

compression methods were motivated by the fact that large blocks, such as 1 KB as

used by MXT, cost too much in terms of over-fetch, but they do not provide nearly

the same capacity increase as fine-grain (i.e. line based) deduplication.

6.2.4 Sparse Matrix-Vector Multiply

The literature on optimizing sparse matrix-vector multiply (SpMV) is vast: a testa-

ment to its importance as a scientific and high performance computing subroutine.

Historically, it was difficult to achieve peak performance due to the very tight inner

loop of SpMV coupled with the indirect and random access pattern into the source

vector. This motivated research into methods for adding extra work into the inner

loop and regularizing data access patterns. Both can be achieved by finding dense

matrix sub-blocks or through domain specific knowledge that allows a highly cus-

tomized SpMV kernel to be invoked. Because the bandwidth limitation has long

been recognized, research has also focused on methods for reducing memory traffic.

Thus, most research into optimizing SpMV can be categorized as either reducing

memory traffic, adding work to the inner loop, regularizing data access patterns, or

some combination of these.

Autotuning

Vuduc and Williams [65, 71], et al., describe OSKI, a framework for autotuning block

compressed sparse row SpMV kernels. Using a CSR index structure to point to dense

submatrices (or blocks), the block compressed sparse row (BCSR) format captures all

104 CHAPTER 6. HICAMP AND RELATED WORK

three SpMV optimization methods: more work per loop iteration, regularized data

access, and reduced data transfer. Because the blocks are fixed size and dense, they

exhibit regular data access patterns and allow for optimal loop unrolling. Further,

matrices with high block fill ratios require less storage because of reduced index

data overhead.

Regularized Data Access

With the advent of programmable GPUs, researchers have also attempted to uti-

lize the high GPU to video-memory bandwidth to improve SpMV performance. Bell

and Garland [13] describe methods to approach maximum sustainable bandwidth

for SpMV on GPU through several techniques directed at regularizing data access.

Because power constraints now force GPUs to include large on-die caches, the

regular control flow of the HCOO format makes it an interesting candidate

for GPU implementation.

Reduced Data Transfer

In the reduced bandwidth compressed sparse block format, Buluç, et al. [19], use bit-

masked register blocks, similar to the NZD pattern matrices (Chapter 5, Section 5.2.5)

to reduce the storage requirements of the compressed sparse block format [20]. Kour-

tis, et al. [41, 42], use delta-encoding of index values and non-zero value deduplication

to reduce data transfer. In the compressed sparse extended method [43], Kourtis uses

offline analysis to customize the delta encoding scheme to the specific matrix which

results in a custom SpMV kernel on a per matrix basis. Willcock and Lumsdaine [70]

propose delta-coded sparse rows, similar to the work of Kourtis. In the row pattern

compressed sparse row format, Willcock and Lumsdaine [70] exploit patterns in each

matrix row. Finally, Belgin, et al. [12], exploit distinct sub-matrix patterns.

6.2. RELATED WORK 105

Recursive Formats

Recursive matrix layouts, similar to QTS (Chapter 5 Section 5.2.2), have inspired

recent papers [15, 49]. In the recursive sparse blocks format, Martone, et al. [49],

use a quad-tree with Z-Morton ordering to store sparse sub-matrices that are sized to

balance parallel work partitions. Recognizing that the path through the tree structure

implies an offset, to save storage and data transfer, Martone, et al., use smaller 16 bit

indices in their leaf elements.

Concurrent Symmetric SpMV

Several recent papers have also explored techniques for enabling concurrent symmetric

SpMV. Buluç, et al. [19], permute a sparse blocked matrix so that most non-null blocks

are close to the diagonal. Blocks that are one and two positions off diagonal are then

assigned to separate rounds, coordinated to avoid write-write conflicts. Blocks further

off diagonal, hopefully few in number, require atomic updates to the destination

vector. Krotkiewski and Dabrowski [45], also permute the matrix to cluster non-

zeros on the diagonal and use local result buffers to allow separate workers to proceed

without conflict. Afterwards, the result is accumulated and the method attempts to

overlap communication and computation across rounds. Such methods illustrate the

challenge of concurrent symmetric SpMV. They provide the benefit of parallelism,

but require pre and post-processing steps, and still require explicit synchronization.

Tangwongsan, et al. [15], also provide lock and synchronization free concurrent

symmetric SpMV using a hierarchical storage format similar to QTS. For symmetric

matrices, their method achieves an average of 1.8x less memory traffic, but does not

inherently exploit symmetry in non-symmetric matrices.

106 CHAPTER 6. HICAMP AND RELATED WORK

Method
Best Best Index Value Data Kernel

Compaction Speedup Compaction Compaction Reuse Code
DCSR [70] 1.4x 1.5x Yes No No Generic
PBR [12] 1.5x 1.5x Yes No Via Code1 Per Matrix

RPCSR [70] 1.5x 1.5x Yes Yes Via Code1 Per Matrix
CSR-DU [41, 42] 1.3x 1.8x Yes No No Generic

CSX [43] 1.9x Yes No Via Code1 Per Matrix
RSB [49] 2.0x Yes No No Generic

CSR-VI [41, 42] 2.4x 2.5x Yes Yes Yes Generic
RBCSB [19] 3.5x Yes No No Generic

DAG (this work) 5700x 3.7x Yes Yes Yes Generic
(1) Matrix structure embedded in custom generated code

Table 6.1: Comparison of Non-Symmetric SpMV Compaction Techniques

SpMV Related Work Comparison

Table 6.1 compares the techniques using explicit compaction and shows the best-

case speedup for each method. Data in Table 6.1 are based on a comparison to

multi-threaded CSR when available, and otherwise the best proxy available in the

respective paper.

6.3 Summary

This thesis extends prior work on the HICAMP architecture [24]. Using a multi-

version memory, HICAMP improves on the programming semantics offered by tra-

ditional transactional memory systems by providing isolated and consistent read.

Therefore, HICAMP eliminates read-write conflicts and improves parallel program

performance. While HICAMP provides improved architectural support for parallel

programs, this work focuses on providing memory capacity and compatibility with

existing hardware and software.

Past efforts at increasing memory capacity have focused on either software man-

aged page deduplication or hardware optimized memory compression. Results in this

work indicate that fine-grain sharing outperforms page sharing in terms of capacity,

6.3. SUMMARY 107

even though the page sharing estimate is optimistic. In-memory compression incurs

extra read latency for decompression that cannot be hidden by optimizations such as

translation caching in the direct translation buffer. Further, prior efforts at memory

compression did not achieve a factor of 2x capacity increase, except for IBM MXT

which used large 1 KB allocations. Finally, the trend toward virtualization sug-

gests deduplication should be used, in any case, regardless of whether compression is

applied afterward.

Prior work on SpMV has used various kinds of compression and deduplication.

This work shows that hierarchical deduplication provides compaction far in

excess of previous results, and also a best case speedup in excess of previous re-

sults. The extra CPU instructions required for DAG traversal are eliminated when

using the iterator register in the HICAMP architecture. Therefore, HICAMP en-

ables even higher speedup than demonstrated in this work, and also enables sparsity

oblivious algorithms.

Relative to prior work, fine-grain deduplication provides higher capacity and hard-

ware based deduplication provides higher performance. Deduplication, itself, is global

relative to compression, which is local. In summary, many prior research efforts have

been improved upon in this thesis, while acknowledging this debt, the results in this

thesis indicate that hardware based fine-grain in-memory deduplication is preferable.

Chapter 7

Conclusion

In conclusion, deduplicated memory provides significant additional memory capac-

ity at low cost. Alternate approaches to expanding memory capacity, such as page

sharing or memory compression, have higher costs and less benefit. Emerging non-

volatile storage technologies show promise at delivering “storage-class memory,” but

none of these are viable at present and their increased latency necessitates large

DRAM caches. For over one decade, virtual machine hypervisors have used software

to suppress duplicate pages, but no one had previously investigated deduplication in

non-virtualized systems. Results from the zest memory content analysis indicate that

many fine-grain duplicates exist in large-scale high-memory non-virtual workloads. In

these workloads, on average, the total number of values stored in memory is three

times higher than the number of unique entries.

Deduplicated memory is feasible and requires very few changes to existing CPU

hardware and operating systems. It is implemented by modifying the CPU memory

controller to automatically read from and insert to an in-memory hash table. These

modifications, and the deduplicated memory layout, described in Chapter 2, incur

some overhead in terms of storage and memory access latency. The translation, used

to memorize the relationship between bus address and unique content, costs 1/16th

108

109

the apparent size of memory. Including the cost of translation, deduplication increases

effective memory capacity by over 2x across a broad range of applications.

Deduplicated memory requires several memory operations for each logical memory

read or write – this raises the concern of reduced performance due to read latency and

bandwidth. Simulated performance results, for deduplicated memory without further

optimization, indicate that the performance impact is typically very small. This is

because the CPU cache is effective at hiding memory access latency and because

bandwidth use is usually not a performance bottleneck.

Even if the performance impact of memory deduplication is low, prima facie, it

provides only the same performance, in the best case. Deeper integration into the

CPU caches further mitigates this impact, and in certain cases improves performance.

The direct translation buffer (DTB) and deduplicated cache (DDC), described in

Chapter 3, reduce read latency and bandwidth use. Performance results, in Chap-

ter 4, indicate that with the DTB and DDC with lazy deduplication, performance

improves in certain cases, and memory bandwidth use is, on average, reduced. Both

effects, reduced bandwidth, and increased performance, are fundamentally a result

of increased effective cache capacity. Therefore, deduplicated memory increases per-

formance when the size of memory, or cache, is effectively increased and application

performance is sensitive to memory or cache size.

Without the DDC, bandwidth use does increase – raising the concern of increased

dynamic power use. Current and emerging DRAM memory technology has very high

static power use relative to dynamic power. In this context, deduplicated memory

saves power because fewer memory devices are needed and the static power savings

outweigh the dynamic power cost. Therefore, the extra bandwidth use pays for itself

both in terms of capacity and power. Because the DDC reduces bandwidth, on

average, both static and dynamic power are reduced – including the DDC, memory

power savings improve from 40% to 48%.

110 CHAPTER 7. CONCLUSION

Current technology trends make the case for deduplicated memory even more ur-

gent. Emerging application domains, such as server virtualization, big-data analytics,

and in-memory key value stores all demand machines with large memories. The un-

derlying data in such applications contains many duplicates, as demonstrated by the

results from zest. Furthermore, it is becoming difficult to continue scaling DRAM

memory because of the capacitor aspect ratio. The increased cost of advanced tech-

nology nodes has caused some memory manufacturers to leave the business and it

is unlikely that investors will take the risk of starting a new company to enter that

market. Together, these trends indicate that both hardware and software engineers

will face increasing pressure to use memory efficiently. Because deduplicated memory

provides this increased efficiency at a reasonable cost, the industry may be compelled

to use such technology in future CPU designs.

In this context, it makes sense to explore additional benefits of deduplicated mem-

ory that can be enabled after its integration. For deduplicated memory, as described

in Chapter 2, compaction is bounded by the cost of translation. Hierarchical dedu-

plication, described in Chapter 5, provides compounded benefit, but incurs the cost

of additional indirection. Although deduplicated memory appears most applicable

to large-scale web services, hierarchical deduplication offers the possibility of sparsity

oblivious algorithms in the context of high-performance and scientific computing. For

certain sparse matrices, hierarchical deduplication provides very high compaction, but

importantly, sparsity oblivious storage is efficient relative to compact sparse formats

on current machines. Unfortunately, the sparsity oblivious formats require many ad-

ditional CPU opcodes to traverse the graph based data structure. This overhead is

significantly reduced when using the iterator register, described by HICAMP [24]. If

a basic deduplicated memory is integrated into future CPUs, then the iterator regis-

ter is a possible extension that enables both hierarchical deduplication and efficient

manipulation of sparse graph based data structures.

111

Memory capacity is not the only problem that can be addressed by deduplication.

As described in Chapter 6, power limits have driven the emergence of multi-core

CPUs. Unfortunately, the current mutual-exclusion based programming interface to

these parallel machines is severely lacking. The HICAMP architecture improves on

emerging update-in-place transactional memories by providing thread isolation and

by eliminating all read-write conflicts. The HICAMP programming model is both

elegant and efficient, but its barriers to adoption are very high. It requires new

hardware, such as iterator registers, and it requires significant changes to the ISA.

On the other hand, because deduplicated memory is an integral part of HICAMP

and is also valuable on its own merits, it could be the first step toward enabling such

snapshot isolated memories. Therefore deduplicated memory is not only a compelling

extension to current CPU architectures, it also enables further improvements that

would be otherwise difficult to adopt.

Bibliography

[1] “The Cisco UCS with NetApp Storage for SAP HANA Solution Delivers Real-

Time Decisions All Day, Every Day,” http://www.cisco.com/en/US/solutions/

collateral/ns340/ns517/ns224/ns944/sap hana scale out netapp solution.pdf.

[2] “Calculating Memory System Power for DDR3,” Micron, Technical Note TN-41-

01, 2007.

[3] “Big Gains Forecast in Quarterly DRAM ASP,” http://www.icinsights.com/

data/articles/documents/570.pdf, July 2013.

[4] “Commodity DRAM Price Surges, Record Profits for Suppliers in 2Q13,” http:

//www.dramexchange.com/WeeklyResearch/Post/2/3481.html, August 2013.

[5] “OS X Mavericks: Core Technologies Overview,” https://www.apple.com/

media/us/osx/2013/docs/OSX Mavericks Core Technology Overview.pdf, Ap-

ple, White Paper, October 2013.

[6] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar, “Tarazu:

Optimizing MapReduce on Heterogeneous Clusters,” in Proceedings of the 17th

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’12), London, UK, March 2012, pp. 61–74.

112

http://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns224/ns944/sap_hana_scale_out_netapp_solution.pdf
http://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns224/ns944/sap_hana_scale_out_netapp_solution.pdf
http://www.icinsights.com/data/articles/documents/570.pdf
http://www.icinsights.com/data/articles/documents/570.pdf
http://www.dramexchange.com/WeeklyResearch/Post/2/3481.html
http://www.dramexchange.com/WeeklyResearch/Post/2/3481.html
https://www.apple.com/media/us/osx/2013/docs/OSX_Mavericks_Core_Technology_Overview.pdf
https://www.apple.com/media/us/osx/2013/docs/OSX_Mavericks_Core_Technology_Overview.pdf

BIBLIOGRAPHY 113

[7] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities,” in Proceedings of the Spring Joint Computer

Conference (AFIPS ’67), Atlantic City, NJ, April 1967, pp. 483–485.

[8] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie, “Unbounded

Transactional Memory,” in Proceedings of the 11th International Symposium

on High-Performance Computer Architecture (HPCA ’05), San Francisco, CA,

February 2005, pp. 316–327.

[9] S. Baek, J. Choi, D. Lee, and S. H. Noh, “Energy-Efficient and High-Performance

Software Architecture for Storage Class Memory,” ACM Transactions on Em-

bedded Computing Systems (TECS), vol. 12, no. 3, pp. 81:1–81:22, March 2013.

[10] L. Barroso and U. Hölzle, “The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines,” Synthesis Lectures on Computer

Architecture, vol. 4, no. 1, pp. 1–108, July 2009.

[11] A. Bechtolsheim, “Technologies for Data-Intensive Computing,” presented at the

13th International Workshop on High Performance Transaction Systems (HPTS

’09), Pacific Grove, CA, October 2009.

[12] M. Belgin, G. Back, and C. J. Ribbens, “Pattern-Based Sparse Matrix Rep-

resentation for Memory-Efficient SMVM Kernels,” in Proceedings of the 23rd

International Conference on Supercomputing (ICS ’09), Yorktown Heights, NY,

June 2009, pp. 100–109.

[13] N. Bell and M. Garland, “Implementing Sparse Matrix-Vector Multiplication

on Throughput-Oriented Processors,” in Proceedings of the 2009 ACM/IEEE

conference on Supercomputing (SC ’09), Portland, OR, November 2009, pp. 18:1–

18:11.

114 BIBLIOGRAPHY

[14] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “The Keccak Reference,”

http://keccak.noekeon.org/, January 2011.

[15] G. Blelloch, I. Koutis, G. Miller, and K. Tangwongsan, “Hierarchical Diagonal

Blocking and Precision Reduction Applied to Combinatorial Multigrid,” in Pro-

ceedings of the 2010 ACM/IEEE conference on Supercomputing (SC ’10), New

Orleans, LA, November 2010, pp. 1–12.

[16] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri, “Low Depth Cache-Oblivious

Algorithms,” in Proceedings of the 22nd ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA ’10), Thira, Greece, June 2010, pp. 189–

199.

[17] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A. Wood, “TokenTM:

Efficient Execution of Large Transactions with Hardware Transactional Mem-

ory,” in Proceedings of the 35th Annual International Symposium on Computer

Architecture (ISCA ’08), Beijing, China, June 2008, pp. 127–138.

[18] W. Buchholz, “File Organization and Addressing,” IBM Systems Journal, vol. 2,

no. 2, pp. 86–111, June 1963.

[19] A. Buluç, S. Williams, L. Oliker, and J. Demmel, “Reduced-Bandwidth Mul-

tithreaded Algorithms for Sparse Matrix-Vector Multiplication,” in Proceedings

of the 25th IEEE International Parallel and Distributed Processing Symposium

(IPDPS ’11), Anchorage, AK, May 2011, pp. 721–733.

[20] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson, “Parallel

Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Com-

pressed Sparse Blocks,” in Proceedings of the 21st ACM Symposium on Par-

allelism in Algorithms and Architectures (SPAA ’09), Calgary, AB, Canada,

August 2009, pp. 233–244.

http://keccak.noekeon.org/

BIBLIOGRAPHY 115

[21] A. Buluç and J. R. Gilbert, “Parallel Sparse Matrix-Matrix Multiplication and

Indexing: Implementation and Experiments,” SIAM Journal on Scientific Com-

puting, vol. 34, no. 4, pp. C170–C191, 2012.

[22] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le, “Robust

Architectural Support for Transactional Memory in the Power Architecture,” in

Proceedings of the 40th Annual International Symposium on Computer Architec-

ture (ISCA ’13), Tel-Aviv, Israel, June 2013, pp. 225–236.

[23] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk Disambiguation of Specula-

tive Threads in Multiprocessors,” in Proceedings of the 33rd Annual International

Symposium on Computer Architecture (ISCA ’06), Boston, MA, June 2006, pp.

227–238.

[24] D. R. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P. Stevenson, and O. Az-

izi, “HICAMP: Architectural Support for Efficient Concurrency-Safe Shared

Structured Data Access,” in Proceedings of the 17th International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’12), London, UK, March 2012, pp. 287–300.

[25] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, “CPU DB:

Recording Microprocessor History,” Communications of the ACM, vol. 55, no. 4,

pp. 55–63, April 2012.

[26] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,”

ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, pp. 1:1–

1:25, November 2011.

[27] J. Dusser and A. Seznec, “Decoupled Zero-Compressed Memory,” in Proceed-

ings of the 6th International Conference on High Performance and Embedded

116 BIBLIOGRAPHY

Architectures and Compilers (HiPEAC ’11), Heraklion, Greece, January 2011,

pp. 77–86.

[28] M. Ekman and P. Stenstrom, “A Robust Main-Memory Compression Scheme,”

in Proceedings of the 32nd Annual International Symposium on Computer Ar-

chitecture (ISCA ’05), Madison, WI, June 2005, pp. 74–85.

[29] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker, and I. Sto-

ica, “Shark: Fast Data Analysis Using Coarse-grained Distributed Memory,” in

Proceedings of the 2012 ACM SIGMOD International Conference on Manage-

ment of Data (SIGMOD/PODS ’12), Scottsdale, AZ, May 2012, pp. 689–692.

[30] M. G. Ertosun, “Novel Capacitorless Single Transistor Dram Technologies,”

Ph.D. dissertation, Stanford University, May 2010.

[31] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kay-

nak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the Clouds: a Study

of Emerging Scale-Out Workloads on Modern Hardware,” in Proceedings of the

17th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS ’12), London, UK, March 2012, pp.

37–48.

[32] F. Guo, “Understanding Memory Resource Management in VMware

vSphere 5.0,” http://www.vmware.com/files/pdf/mem mgmt perf vsphere5.

pdf, VMware, Technical White Paper, 2011.

[33] F. G. Gustavson, “Two Fast Algorithms for Sparse Matrices: Multiplication

and Permuted Transposition,” ACM Transactions on Mathematical Software

(TOMS), vol. 4, no. 3, pp. 250–269, September 1978.

http://www.vmware.com/files/pdf/mem_mgmt_perf_vsphere5.pdf
http://www.vmware.com/files/pdf/mem_mgmt_perf_vsphere5.pdf

BIBLIOGRAPHY 117

[34] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,

M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun, “Transactional Mem-

ory Coherence and Consistency,” in Proceedings of the 31st Annual International

Symposium On Computer Architecture (ISCA ’04), München, Germany,

June 2004, pp. 102–113.

[35] A. Heinecke and M. Bader, “Parallel Matrix Multiplication Based on Space-

Filling Curves on Shared Memory Multicore Platforms,” in Proceedings of the

2008 Workshop on Memory Access on Future Processors: A Solved Problem?

(CF ’08), Ischia, Italy, May 2008, pp. 385–392.

[36] M. Herlihy, “A Methodology for Implementing Highly Concurrent Data Struc-

tures,” in Proceedings of the 2nd ACM Symposium on Principles and Practice of

Parallel Programming (PPoPP ’90), Seattle, WA, March 1990, pp. 197–206.

[37] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural Support

for Lock-Free Data Structures,” in Proceedings of the 20th Annual International

Symposium on Computer Architecture (ISCA ’93), San Diego, CA, May 1993,

pp. 289–300.

[38] M. Herlihy and N. Shavit, “Transactional Memory: Beyond the First Two

Decades,” SIGACT News, vol. 43, no. 4, pp. 101–103, December 2012.

[39] L. Jiang, Y. Zhang, B. R. Childers, and J. Yang, “FPB: Fine-Grained Power

Budgeting to Improve Write Throughput of Multi-level Cell Phase Change Mem-

ory,” in Proceedings of the 45th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO ’12), Vancouver, BC, Canada, December 2012, pp.

1–12.

118 BIBLIOGRAPHY

[40] K. Kim, “Future Silicon Technology,” in Proceedings of the 42nd European Solid-

State Device Research Conference (ESSDERC ’12), Bordeaux, France, Septem-

ber 2012, pp. 1–6.

[41] K. Kourtis, G. Goumas, and N. Koziris, “Improving the Performance of Multi-

threaded Sparse Matrix-Vector Multiplication Using Index and Value Compres-

sion,” in Proceedings of the 37th International Conference on Parallel Processing

(ICPP ’08), Portland, OR, September 2008, pp. 511–519.

[42] ——, “Optimizing Sparse Matrix-Vector Multiplication Using Index and Value

Compression,” in Proceedings of the 5th Conference on Computing Frontiers (CF

’08), May 2008, pp. 87–96.

[43] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “CSX: An Extended

Compression Format for SpMV on Shared Memory Systems,” in Proceedings of

the 16th ACM Symposium on Principles and Practice of Parallel Programming

(PPoPP ’11), San Antonio, TX, February 2011, pp. 247–256.

[44] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server Engineering Insights for

Large-Scale Online Services,” IEEE Micro, vol. 30, no. 4, pp. 8–19, July/August

2010.

[45] M. Krotkiewski and M. Dabrowski, “Parallel Symmetric Sparse Matrix-Vector

Product on Scalar Multi-Core CPUs,” Parallel Computing, vol. 36, no. 4, pp.

181–198, April 2010.

[46] E. A. Lee, “The Problem with Threads,” Computer, vol. 39, no. 5, pp. 33–42,

May 2006.

[47] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.

Wenisch, “Disaggregated Memory for Expansion and Sharing in Blade Servers,”

BIBLIOGRAPHY 119

in Proceedings of the 36th Annual International Symposium on Computer Archi-

tecture (ISCA ’09), Austin, TX, June 2009, pp. 267–278.

[48] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools

with Dynamic Instrumentation,” in Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’05),

Chicago, IL, June 2005, pp. 190–200.

[49] M. Martone, S. Filippone, P. Gepner, M. Paprzycki, and S. Tucci, “Use of Hybrid

Recursive CSR/COO Data Structures in Sparse Matrix-Vector Multiplication,”

in Proceedings of the International Multiconference on Computer Science and

Information Technology (IMCSIT ’10), Wisla, Poland, October 2010, pp. 327–

335.

[50] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,

C. Kozyrakis, and K. Olukotun, “An Effective Hybrid Transactional Memory

System with Strong Isolation Guarantees,” in Proceedings of the 34th Annual

International Symposium on Computer Architecture (ISCA ’07), San Diego, CA,

June 2007, pp. 69–80.

[51] G. Moore, “Cramming More Components onto Integrated Circuits,” Electronics

Magazine, vol. 38, no. 8, April 1965.

[52] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood, “LogTM: Log-Based

Transactional Memory,” in Proceedings of the 12th International Symposium on

High-Performance Computer Architecture (HPCA ’06), Austin, TX, February

2006, pp. 254–265.

[53] J. Mukundan, H. Hunter, K.-h. Kim, J. Stuecheli, and J. F. Mart́ınez, “Un-

derstanding and Mitigating Refresh Overheads in High-Density DDR4 DRAM

120 BIBLIOGRAPHY

Systems,” in Proceedings of the 40th Annual International Symposium on Com-

puter Architecture (ISCA ’13), Tel-Aviv, Israel, June 2013, pp. 48–59.

[54] A. Pal, A. Nainani, S. Gupta, and K. Saraswat, “Performance Improvement of

One-Transistor DRAM by Band Engineering,” IEEE Electron Device Letters,

vol. 33, no. 1, pp. 29–31, January 2012.

[55] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons, M. A.

Kozuch, and T. C. Mowry, “Linearly Compressed Pages: A Low-Complexity,

Low-Latency Main Memory Compression Framework,” to appear in Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO ’13), Davis, CA, USA, December 2013.

[56] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and

T. C. Mowry, “Base-Delta-Immediate Compression: Practical Data Compression

for On-chip Caches,” in Proceedings of the 21st International Conference on

Parallel Architectures and Compilation Techniques (PACT ’12), Minneapolis,

MN, September 2012, pp. 377–388.

[57] M. Rajashekhar, “Caching at Twitter and Moving Towards a Persistent, In-

Memory Key-Value Store,” http://cloud.berkeley.edu/data/twittercache.pdf.

[58] R. Rajwar and J. R. Goodman, “Speculative Lock Elision: Enabling Highly Con-

current Multithreaded Execution,” in Proceedings of the 34th annual ACM/IEEE

International Symposium on Microarchitecture (MICRO ’01), Austin, TX, De-

cember 2001, pp. 294–305.

[59] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing Transactional Memory,” in Pro-

ceedings of the 32nd Annual International Symposium on Computer Architecture

(ISCA ’05), Madison, WI, June 2005, pp. 494–505.

http://cloud.berkeley.edu/data/twittercache.pdf

BIBLIOGRAPHY 121

[60] F. Rastgar and T. Rossi, “Tackling the Challenges of Transition to DDR4,” EE

Times Asia, February 2013.

[61] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitectural

Simulation of Thousand-Core Systems,” in Proceedings of the 40th Annual In-

ternational Symposium on Computer Architecture (ISCA ’13), Tel-Aviv, Israel,

June 2013, pp. 475–486.

[62] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A

Dynamic Data Race Detector for Multithreaded Programs,” ACM Transactions

on Computer Systems (TOCS), vol. 15, no. 4, pp. 391–411, November 1997.

[63] J. Sylve, A. Case, L. Marziale, and G. G. Richard, “Acquisition and Analysis of

Volatile Memory from Android Devices,” Digital Investigation, vol. 8, no. 3-4,

pp. 175–184, February 2012.

[64] R. Tremaine, P. Franaszek, J. Robinson, C. Schulz, T. Smith, M. Wazlowski, and

P. Bland, “Ibm memory expansion technology (mxt),” IBM Journal of Research

and Development, vol. 45, no. 2, pp. 271–285, March 2001.

[65] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A Library of Automatically

Tuned Sparse Matrix Kernels,” in Proceedings of Scientific Discovery Through

Advanced Computing (SciDAC ’05), San Francisco, CA, June 2005, pp. 521–530.

[66] C. Waldspurger, “Memory Resource Management in VMware ESX Server,” ACM

SIGOPS Operating Systems Review, vol. 36, no. Special Issue, pp. 181–194, 2002.

122 BIBLIOGRAPHY

[67] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera,

and M. Michael, “Evaluation of Blue Gene/Q Hardware Support for Transac-

tional Memories,” in Proceedings of the 21st International Conference on Par-

allel Architectures and Compilation Techniques (PACT ’12), Minneapolis, MN,

September 2012, pp. 127–136.

[68] R. C. Whaley and J. J. Dongarra, “Automatically Tuned Linear Algebra Soft-

ware,” in Proceedings of the 1998 ACM/IEEE Conference on Supercomputing

(SC ’98), Orlando, FL, November 1998, pp. 1–27.

[69] A. Wiggins and J. Langston, “Enhancing the Scalability of Mem-

cached,” http://download-software.intel.com/sites/default/files/m/0/b/6/1/d/

45675-memcached 05172012.pdf.

[70] J. Willcock and A. Lumsdaine, “Accelerating Sparse Matrix Computations via

Data Compression,” in Proceedings of the 20th International Conference on Su-

percomputing (ICS ’06), Cairns, Queensland, Australia, June 2006, pp. 307–316.

[71] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, “Optimiza-

tion of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms,”

in Proceedings of the 2007 ACM/IEEE conference on Supercomputing (SC ’07),

Reno, NV, November 2007, pp. 38:1–38:12.

[72] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU Architec-

ture,” IEEE Micro, vol. 31, no. 2, pp. 50–59, March/April 2011.

[73] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M.

Swift, and D. A. Wood, “LogTM-SE: Decoupling Hardware Transactional Mem-

ory from Caches,” in Proceedings of the 13th International Symposium on High

Performance Computer Architecture (HPCA ’07), Phoenix, AZ, February 2007,

pp. 261–272.

http://download-software.intel.com/sites/default/files/m/0/b/6/1/d/45675-memcached_05172012.pdf
http://download-software.intel.com/sites/default/files/m/0/b/6/1/d/45675-memcached_05172012.pdf

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Cost of Memory
	1.2 Efficient Use of Memory
	1.3 Duplicates in Actual Workloads
	1.4 Deduplicated Memory: Performance and Power
	1.5 Deduplicated Sparse Matrices
	1.6 HICAMP Architecture
	1.7 Summary

	2 Deduplicated Memory
	2.1 Deduplicated Memory Organization
	2.2 Processor Reads and Writes
	2.3 Content Lookup
	2.4 Hash Bucket Overflows
	2.5 Deduplication and Overhead
	2.6 Duplicates In Real Workloads
	2.7 Operating System Support
	2.8 Summary

	3 Performance Optimizations
	3.1 Direct Translation Buffer
	3.2 Deduplicated Cache
	3.2.1 Coherency
	3.2.2 Physical Resources
	3.2.3 Content Lookup
	3.2.4 In-Cache Allocation
	3.2.5 Zombie Suppression
	3.2.6 Prefetching
	3.2.7 Multi-Bank Implementation

	3.3 Summary

	4 Performance and Power
	4.1 Evaluation Methodology
	4.1.1 Simulated Machine Configurations
	4.1.2 Performance Model
	4.1.3 Performance Metrics
	4.1.4 Simulated Workloads

	4.2 Performance
	4.2.1 Synthetic
	4.2.2 Standard CPU Benchmarks
	4.2.3 Datacenter Workloads
	4.2.4 DDC Performance

	4.3 Power Savings
	4.4 Summary

	5 Sparse Matrix-Vector Multiply
	5.1 Hierarchical Deduplication
	5.2 Deduplicated Sparse Matrix Storage
	5.2.1 Row Major Array
	5.2.2 Quad-Tree Symmetric
	5.2.3 Hierarchical Compressed Sparse Row
	5.2.4 Hierarchical Coordinate Format
	5.2.5 Non-Zeros Dense Format

	5.3 Sparse Matrix Compaction
	5.3.1 Compaction Results
	5.3.2 Storage Bounds

	5.4 Deduplicated Sparse Matrix-Vector Multiply
	5.4.1 SpMV Evaluation Methodology
	5.4.2 SpMV Results

	5.5 Iterator Register Hardware
	5.6 Iterator Register SpMV
	5.7 Sparsity Oblivious Algorithms
	5.7.1 Sparse Vector Add
	5.7.2 General Matrix-Matrix Multiply
	5.7.3 Sparsity and Cache ObliviousTree-Recursive Matrix-Matrix Multiply

	5.8 Summary

	6 HICAMP and Related Work
	6.1 The HICAMP Architecture
	6.1.1 The Need for Parallel Machines
	6.1.2 Transactional Memory
	6.1.3 Multi-Versioned Memory
	6.1.4 HICAMP Memory Model
	6.1.5 Atomic Segment Update
	6.1.6 Advantages of HICAMP

	6.2 Related Work
	6.2.1 Page Deduplication
	6.2.2 Exploiting Zero Values
	6.2.3 In Memory Compression
	6.2.4 Sparse Matrix-Vector Multiply

	6.3 Summary

	7 Conclusion
	Bibliography

