WHAT TO DO TILL THE COMPUTER
SCIENTIST COMES

BY

G. E. FORSYTHE

Reprinted from the AMERICAN MATHEMATICAL MONTHLY
Vol. 75, No. 5, May, 1968




WHAT TO DO TILL THE COMPUTER SCIENTIST COMES*
GEORGE E. FORSYTHE, Computer Science Department, Stanford University

Computer science departments. What is computer science anyway? This is a
favorite topic in computer science department meetings. Just as with definitions
of mathematics, there is less than total agreement and—moreover—you must
know a good deal about the subject before any definition malkes sense. Perhaps
the tersest answer is given by Newell, Perlis, and Simon [8]: just as zoology is
the study of animals, so computer science is the study of computers. They

explain that it includes the hardware, the software, and the useful algorithms
computers perform. I believe they would also include the study of computers
that maght be built, given sufhcient demand and sufficient development in the
technology. In an earlier paper [4], the author defines computer science as the
art and science of representing and processing information. Some persons [10 ]

extend the subject to include a study of the structure of information in nature
(e.g., the genetic code).

Computer scientists work in three distinguishable areas: (1) design of hard-
ware components and especially total systems; (2) design of basic languages
and software broadly useful in applications, including monitors, compilers, tine-
sharing systems, etc.; (3) methodology of problem solving with computers. The
accent here is on the principles of problem solving—those techniques that are
common to solving broad classes of problems, as opposed to the preparation of
individual programs to solve single problems. Because computers are used for
such a diversity of problems (see below), the methods differ widely. Being new,
the subject is not well understood, and considerable energy now goes into experi-
mental solution of individual problems, in order to acquire experience from
which principles are later distilled. But in the long run the solution of problems
in field X on a computer should belong to field X, and computer science should
concentrate on finding and explaining the principles of problem solving.

One example of methodological research in computer science is the design
and operation of “interactive systems,” in which a man and a computer are
appropriately coupled by keyboards and console displays (perhaps within a
time-sharing system) for the solution of scientific problems.

Because of our emphasis on methodology, Professor William Miller likens
the algorithmic and heuristic aspects of problem solving in computer science
to the methodology of problem solving in mathematics so ably discussed by
Professor Pélya in several books [9]. In computer science there is great stress
on the dynamic action of computation, rather than the static presentation of
logical structure. It tends to attract men of action, rather than contemplative
men. Our students want to do something from the first day.

Computer science is at once abstract and pragmatic. The focus on actual

* Expanded version of a presentation to a panel session before the Mathematical Association of
America, Toronto, 30 August 1967. The author is grateful to Professors T. E. Hull, William Miller,
and Allen Newell for various ideas used in the paper.

454




1968] WHAT TO DO TILL THE COMPUTER SCIENTIST COMES 455

computers introduces the pragmatic component: our central questions are
economic ones like the relations among speed, accuracy, and cost of a proposed
computation, and the hardware and software organization required. The (often)
better understood questions of existence and theoretical computability—how-
ever fundamental—remain in the background. On the other hand, the medium
of computer science—information—is an abstract one. The meaning of symbols
and numbers may change from application to application, either in mathematics
or in computer science. Like mathematics, one goal of computer science is to
create a basic structure in terms of inherently defined concepts that is indepen-
dent of any particular application.

Computer science has hardly started on the creation of such a basic structure,
and in our present developmental stage computer scientists are largely concerned
with exploring what computers can and cannot economically do. Let me em-
phasize the variety of fields in which computing has become an important tool.
One of these is applied mathematics, as Professor Lax emphasizes, but this is
merely one. Others include experimental physics, business data processing,
economic planning, library work, the design of almost anything (including com-
puters), education, inventory management, police operations, medicine, air
traffic control, national population inventories, space science, musical perform-
ance, content analyses of documents, and many others. I must emphasize that
the amount of computing done for applied mathematics is an almost invisible
fraction of the total amount of computing today.

There is frequent discussion of whether computer science is part of mathe-
matics—i.e., applied mathematics or “mathematical science.” In a purely in-
tellectual sense such jurisdictional questions are sterile and a waste of time. On
the other hand, they have great importance within the framework of institu-
tionalized science—e.g., the organization of universities and of the granting
arms of foundations and the Federal Government.

I 'am told that the preponderant opinion among administrators in Washing-
ton is that computer science is part of applied mathematics. I believe the major-
ity of university computer scientists would say it is not; cf. [8]. I would have to
ask you how mathematicians feel about the matter. COSRIMS (Committee on
the Support of Research in the Mathematical Sciences, appointed by the Na-
tional Academy of Science—National Research Council) has taken the position
that computer science is a mathematical science, but many of the discussions
emphasize differences between mathematics and computer science.

In spite of the infancy of our subject, there are approximately 40 computer
science departments in the United States and Canada today. There is no longer
any doubt that computer science will have a separate university organization
for several coming decades. I believe that the creation of these separate depart-
ments is a correct university response to the computer revolution, for I do not
think computers would be well studied in an environment dominated by either
mathematicians or engineers. However, finding suitable faculty members is very
difficult today.




456 WHAT TO DO TILL THE COMPUTER SCIENTIST COMES [May

What are these computer science departments doing? Answer: Roughly the
same things that mathematics departments are doing: education, research, and
service. We teach computer science to three types of students: to our majors
at the B.S., M.S., and Ph.D. levels, to technical students who need computing
as a tool, and to any students who wish to become acquainted with computing
as an important ingredient of our civilization. We do research in our several
specialties: e.g., numerical analysis, programming languages and systems,
heuristic methods of problem solving, graphical data representation and process-
ing, time-sharing systems, logical design, business data processing, etc. We per-
form an unusually large amount of community service in helping our colleagues
with their computing problems, both individually and by advising or managing
the university computation center.

At Stanford University our graduate students are distributed among roughly
three major areas of computer science: numerical mathematics (about 10 per-
cent), programming languages and systems (about 50 percent), and artificial
intelligence (about 40 percent). I have to emphasize that my own research field
—_numerical mathematics—is drawing only about 10 percent of our students.
This is because the other two areas have problems that seem more exciting,
important, and solvable at this particular stage of computer science. Moreover,
they require less prior education, permitting the student to start original re-
search at a younger stage. Thus in the past fifteen years many numerical
analysts have progressed from being queer people in mathematics departments
to being queer people in computer science departments!

Computer science is rich in designs of programming systems and languages,
full of techniques for meeting this and that difficulty, and heavily beset with
colleagues who request help. We are poor in theorems and general theories; our
deep intellectual questions are shared with logic, economics, applied physics,
and mathematics. On the other hand, the totality of techniques and ideas built
into many of our moderate-sized computing systems (say an Algol compiler or a
large eigenvalue routine) is quite impressive, for a computer is extremely good at
dealing with very complex situations. i

Most of known computer science must be considered as design technique,
not theory. This doesn’t bother us, as we all know that a period of developing
technique necessarily precedes periods of consolidating theory, whether the
subject be physics, mathematics, biology or computer science. As long as com-
puters continue changing drastically every three or four years, there is scarcely
a chance to sit down and contemplate the creation of a theory. In this respect
our subject is reminiscent of early engineering, and also of mathematical anal-
ysis in the time after Newton. I wish to emphasize my belief that this is a
passing stage of computer science.

The most valuable acquisitions in a scientific or technical education are the
general-purpose mental tools which remain serviceable for a lifetime. I rate
natural language and mathematics as the most important of these tools, and
computer science as a third. The mathematics you teach reaches its effective




1968] WHAT TO DO TILL THE COMPUTER SCIENTIST COMES 457

application largely through digital computing, and hence you and your students
need to know some computer science. The learning of mathematics and com-
puter science together has pedagogical advantages, for the basic concepts of each
reinforce the learning of the other (e.g., the concepts of function in mathematics
and procedure in Algol 60).

I have emphasized certain differences between computer science and mathe-
matics, particularly because I feel this audience may not be aware of them.
However, in another sense computer science and mathematics are remarkably
similar. The computer industry is overwhelmed by the pains of growing so large
so fast. In 1967 there are over 40,000 computers in the United States. Many
thousands of programmers are constantly at work, producing software and
descriptions thereof. These people work under extreme pressure of time, and
many have had little supervised practice in the twin arts of programming for
computers and expounding for human beings. Many compromises are made in
the hurried effort to make reasonably available to users programs that work
reasonably well (if not perfectly).

Seen from this hurly-burly of production, we academic mathematicians and
computer scientists look much alike. We both insist on high standards of rigor
and exposition (in mathematicians’ language), or performance and documenta-
tion (in computer science terminology), and place a higher premium on quality
than on promptness. As the computer era matures, we may find ourselves more
and more thrown together in defense of this intellectual attitude. For the typical
industrial programmer has little sympathy for it. He knows that the computer
is often powerful enough to overcome the slipshod way it is understood and
used. As an academic type, I can hardly admit it, but I have seen enough com-
puting to believe it. Despite some grave deficiencies in users’ understanding of
the operation of hardware and software, the fact is that most large programs
yield results that are satisfactory to the user—results that satisfy him as well
or better than the analyses he used to get from mathematicians!

We academic types must surely defend our premise that critical analyses
and proofs are worthwhile in this age of wholesale number-crunching.

What can you do now? And now follow my answers to the question of the
title.

First, you can get a little acquainted with computing. This involves two
steps:

Step A: Learn to program some automatic digital computer in some lan-
guage—e.g., Fortran Algol, PL/1—and actually use the computer enough to
find out some of the fascination and frustrations of the computerman’s world.

Step B: Read some books from the list at the end of this paper. Since com-
puter science is not yet very deep and mathematicians are very smart people,
this should not be onerous.

Second, you can study how computing intersects mathematics. Applied
mathematics is no longer the same subject, now that you have a magnificent




458 WHAT TO DO TILL THE COMPUTER SCIENTIST COMES [May

experimental tool at hand. Moreover, there are several undergraduate courses
that owe their large enrollments largely to their wide applications in technology
and science: e.g., linear algebra, and ordinary differential equations. I think
both of these courses should be substantially influenced by computers.

In a linear algebra course, along with concepts like rank, determinant, eigen-
values, linear systems, and so on, ought to go some constructive computational
methods suitable for automatic computers. There is plenty of literature now,
and I think some of it should be worked into courses in linear algebra. If not,
then an instructor should loudly confess that he is ignoring these topics, and
furnish some reading lists for his students.

The same goes for ordinary differential equations. Here the situation is
slightly different, in that textbooks in this field usually do say something about
numerical methods. The trouble is that it usually dates from before the days of
computers. It should be expunged and replaced with at least an equivalent
amount of orientation in today’s useful numerical methods for computers. See
[7] for Professor Hull's suggestions.

I think also that the calculus courses should be influenced by an awareness
of computing, but I do not expect this to be a very large fraction of the courses.
See [6] for some ideas.

The alternative to weaving computational material into various mathemat-
ics courses is to teach computational mathematics in separate courses, in either
the department of mathematics or the computer science department. This
alternative is the accepted method at present, but many have felt it should be
only a temporary expedient. If computational mathematics is taught in the
computer science department, what effective mechanism can there be to reunite
the theoretical and the computational aspects of mathematics?

There is a good deal of interest nowadays in computer-aided instruction.
I don’t expect this to have a very large application to university mathematics
teaching. However, I should like to call your attention to the usefulness of a
computer-controlled cathode-ray-tube display and “light pen” in giving vivid
graphical representations of sophisticated concepts. In one of these, developed
by Professor William McKeeman and Mr. William Rousseau at Stanford Uni-
versity, the scope shows both the complex z plane and the plane of f(z), for any
simple elementary function f typed at the console. When the light pen traces any
curve in the z-plane, a dot of light traces the curve f(z). Many of the elementary
theorems of analytic function theory receive an impressive illustration in this
way. Professor Marvin Minsky has used similar displays in dealing with non-
linear ordinary differential equations.

At a more fundamental level, the emergence of computer science has added
one more applier of mathematics. Along with operations research, economics,
and other more recently mathematized subjects, computer science is relatively
more interested in discrete mathematics (e.g., combinatorics, logic, graph and
flow theory, automata theory, probability, number theory, etc.; see [1]), than




1968] WHAT TO DO TILL THE COMPUTER SCIENTIST COMES 459

in continuum mathematics (e.g., calculus, differential equations, complex vari-
ables, etc.). Hence the mathematics department (in my view) should devote
much thought to organizing its curriculum suitably from the standpoint of con-
sumers of discrete mathematics. I feel that currently common curricula are
inherited from the days when continuum mathematics was more in demand
(from physics, mechanical engineering, etc.).

Third, you can help the computer scientist find his way to your campus, and
make him feel welcome. Above all, please don’t judge him as a mathematician,
for he isn’t one and isn’t supposed to be one—his values are different. The dif-
ference in values between mathematics and numerical analysis is the subject of
a provocative paper [5].

When the computer scientist does arrive on campus, be prepared for a rather
large impact. He is tied to a rampant field of rapidly growing interest to students
and scholars everywhere. He will need many colleagues and new buildings. He
may take some of the heat off mathematics faculties by providing a partial
substitute for mathematics as a research tool. This vast energy may have some
undesirable side effects on your sense of importance and even your budget.

Fourth, if you are really enthusiastic, I recommend tackling some research
problems of a mathematical nature that would help computer science (and your
own publication list). There are serious and important mathematical questions
at almost every turn, and most computer scientists aren’t very good at mathe-
matics. I will leave to Professor Lax the important area of experimental mathe-
matics. One area of computer science with a probable payoff is the automation of
algebra and analysis. So far, most actual computing consists of automated
arithmetic. A Fortran program, for example, asks a computer to carry out addi-
tion, subtraction, multiplication and division of (simulated) real or complex
numbers, in a sequence which is dynamically determined by the course of the
computation. There is little else. It is clear that computers are capable of
automated algebra, and there have been experimental systems for this since
about 1961. They are still primitive. Some of the roadblocks to further develop-
ment occur at surprising places. One is the question of simplification (e.g., of
rational polynomial expressions in # variables). What do we mean by simplifica-
tion? How shall we do it? See Brown [2] for one indication of the depth of the
problem.

Proposed by Dr. R. W. Hamming, but still largely in the future, is the partial
automation of analysis. Faced with an initial-value problem for an ordinary
differential equation, for example, a computer should be able to put the problem
into some sort of normal form (using automated algebra, of course). Then the
computer should inspect the normal form to see whether it is a recognized
standard equation. If it is, then a solution formula should be obtained from a
table, and then transformed (by automated algebra) back into the variables
originally presented. Of course, the user may want a table of values. The com-
puter then must decide whether to use the solution formula (if one exists), or to




460 WHAT TO DO TILL THE COMPUTER SCIENTIST COMES [May

compute a numerical solution. In the latter case, a numerical integration for-
mula must be automatically selected (or devised), and then used (by automatic
arithmetic) to produce a table of answers and error bounds (more automated
analysis). There are many unsolved problems in this program, and mathemati-
cians are uniquely qualified to define the problems and start their solution.

Most computation to date has been serial in nature, with only one computa-
tion or decision being made at a time within the central processor. Soon to arrive
will be parallel computers, in which from two to perhaps several hundred opera-
tions can be formed simultaneously. The general pattern of serial computation
has been well understood since the work of Babbage, Aiken, von Neumann, and
others. There are good research problems in analyzing parallel computation and
identifying the important features. See [3] for a recent contribution.

There are good research problems in the theoretical aspects of the design of
algorithms. Initiated by Post, Turing, and others, there is an important theory
that tells us that some functions are computable on a “Turing machine,” and
some are not. (Turing machines differ in theoretical capability from existing
computers only in having infinite storage capacity.) This theory has been ex-
tended to state that some problems can be solved on a Turing machine with a
suitable algorithm, but for some problems no such algorithm can exist.

It is essential to know that a problem is solvable, but this is only the begin-
ning. What is needed next is information about how much computer storage is
required for the program and data, and how long the algorithm will run. In
other words, we need theoretical information on the complexity of solvability.
There are some results by Kolmogorov and others on the complexity of a com-
putable function, but much more research is needed.

Other research problems lie in areas further removed from mathematics.
One such area is computer graphics—the uses of computers for dealing directly
with information in the form of structures. (Examples: representing graphs of
mathematical trees, design of networks, recognition of three-dimensional block
structures from photographs, automatic reading of bubble chamber pictures.)
In this area there are problems of representing information, both visually and
inside a computer store, and of processing the information. Most algorithms
are being created by persons with only a modest knowledge of mathematics,
and it seems likely that an interested mathematician could both help solve
some computing problems and find worth-while mathematical problems.

In summary, here are my four answers to the question of the title:

(1) Learn a little about computer science.

(2) Consider how mathematics curricula should be affected by computer
science.

(3) Help the computer scientist find his way, but expect a big blast after he
gets there.

(4) Think of computer science as a possible source of mathematical research
problems.




1968] WHAT TO DO TILL THE COMPUTER SCIENTIST COMES

Some books to read

Here are some suggested book readings in computer science:

F. L. Alt (editor), Advances in Computers, annual serial volume, of which the eighth v
issued in 1967, Academic Press. (These contain interesting survey articles on a wide variety of
topics in computer science.)

Anonymous, Information, Freeman, 1966. (Originated as the September 1066 issue of the
Scientific American.)

Jeremy Bernstein, The Analytical Engine: Computers, Past, Present, and Future, Random
House, 1964. (A good book to start with; it originally appeared in the New Vorker.)

Edward A. Feigenbaum and Julian Feldman (editors), Computers and Thought, McGraw-Hill,
1963. (These articles are devoted to the topic of “artificial intelligence”: to what extent can com-
puters accomplish tasks heretofore performed by human minds?)

L. Fox (editor), Advances in Programming and Non-Numerical Computation, Pergamon, 1966.
(Series of articles explaining programming and nonnumerical computation to the uninitiated
mathematician. The main nonnumerical applications dealt with here are theorem-proving, game-
playing, and information retrieval.)

T. E. Hull, Introduction to Computing, Prentice-Hall, 1966. (A first course in Fortran and its
use in computing, both arithmetic and symbolic, by a mathematician and numerical analyst. It has
a good annotated bibliography that can serve to expand the present list.)

Kenneth E. Iverson, 4 Programming Language, Wiley, 1962. (The author has created a nota-
tion useful for describing the logical design of automatic computers and for programming compu-
ters. In other works the author makes it clear that he would like his notation to replace mathemati-
cal notation, which he finds full of inconsistencies.)

Marvin Minsky, Computation: Finite arnd Infinite Machines, Prentice-Hall, 1967. (An ad-
vanced undergraduate textbeok on automata, computahility, and so on. Actual automatic comput-
ers are never far out of the author's mind.)

B. Randell and L. J. Russell, Aigol 60 I'm plementation, Academic Press, 1960. (This book de-
scribes a program that translates a program written in Algol 60 into the machine-language program
of an actual computer. Such programs are called “compilers,” and are by far the most frequent
programs run by computers.)

Saul Rosen (editor), Programming Systems and Languages, McGraw-Hill, 1967. (One of the
most sophisticated of the emerging parts of computer science is the theory of programming lan-
guages. [t extends from abstract theories of written linguistics over to the psychological questions
of what languages human beings can most effectively use.)

Peter Wegner (editor), Introduction to Systems Programming, Academic Press, 1964. (By a
system the author means any program that controls the course of programs through a computer,
programs that translate from one language to another, etc. Such systems are the “intelligence” that
turns a bare pile of electronic componentry into an effective “living” computing machine.)

J. H. Wilkinsen, The Algebraic Eigenvalue Problem, Clarendon Press, 1965. (This is devoted to
computing the eigenvalues and eigenvectors of a finite square matrix, by a man who has personally
tested and analyzed most known methods. You will be surprised at how little space is wasted in the
662 pages.)

References

1. Edwin F. Beckenbach (editor), Applied Combinatorial Analysis, Wiley, New York, 1964.

2. W.S. Brown, Rational exponential expressions and a conjecture concerning = and e, manu-
script, Bell Telephone Laboratories, 1967.
3. A. B Carroll and R. T. Wetherald, Application of parallel processing to numerical weat her
prediction, J. Assoc. Comput. Mach., 14 (1967) 591-614.

4. George E. Forsvthe, A university’s educational program in computer science, Comm. Assoc.
Comput. Mach., 10 (1967) 3-11.

5. R. W. Hamming, Numerical analysis vs. mathematics, Science, 148 (23 April 1965) 473-475.




462 WHAT TO DO TILL THE COMPUTER SCIENTIST COMES [May
6. R.W

W. Hamming, Calculus and the Computer Revolution, CUPM, P.O. Box 1024, Berkeley,
California 94701, 1966.

7. T. E. Hull, The Numerical Integration of Ordinary Differential Equations, CUPM; P.O:
Box 1024, Berkeley, California 94701, 1966.

8. Allen Newell, Alan J. Perlis, and Herbert A. Simon, What is computer science? Science,
157 (22 Sept. 1967) 1373-4.

9. George Pélya, How To Solve It, 2nd ed. Anchor Book A93, Doubleday, New York. (Several
other books.)

10. University of Chicago, Graduate Programs in the Divisions, Announcements 1966-67, pp.
175-177, describing their Committee on Information Sciences.




