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Abstract

The current unprecedented rate of digitization of longitudinal health data — continuous

device monitoring data, laboratory measurements, medication orders, treatment reports,

reports of physician assessments — allows visibility into patient health at increasing levels

of detail. A clearer lens into this data could help improve decision making both for individual

physicians on the front lines of care, and for policy makers setting national direction.

However, this type of data is high-dimensional (an infant with no prior clinical history

can have more than 1000 different measurements in the ICU), highly unstructured (the mea-

surements occur irregularly, and different numbers and types of measurements are taken

for different patients) and heterogeneous (from ultrasound assessments to lab tests to con-

tinuous monitor data). Furthermore, the data is often sparse, systematically not present,

and the underlying system is non-stationary. Extracting the full value of the existing data

requires novel approaches.

In this thesis, we develop novel methods to show how longitudinal health data contained

in Electronic Health Records (EHRs) can be harnessed for making novel clinical discoveries.

For this, one requires access to patient outcome data — which patient has which complica-

tions. We present a method for automated extraction of patient outcomes from EHR data;

our method shows how natural languages cues from the physicians notes can be combined

with clinical events that occur during a patient’s length of stay in the hospital to extract

significantly higher quality annotations than previous state-of-the-art systems.

We develop novel methods for exploratory analysis and structure discovery in bedside

monitor data. This data forms the bulk of the data collected on any patient yet, it is not

utilized in any substantive way post collection. We present methods to discover recurring

shape and dynamic signatures in this data. While we primarily focus on clinical time series,

our methods also generalize to other continuous-valued time series data.
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Our analysis of the bedside monitor data led us to a novel use of this data for risk predic-

tion in infants. Using features automatically extracted from physiologic signals collected in

the first 3 hours of life, we develop Physiscore, a tool that predicts infants at risk for major

complications downstream. Physiscore is both fully automated and significantly more ac-

curate than the current standard of care. It can be used for resource optimization within a

NICU, managing infant transport to a higher level of care and parental counseling. Overall,

this thesis illustrates how the use of machine learning for analyzing these large scale digital

patient data repositories can yield new clinical discoveries and potentially useful tools for

improving patient care.
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Chapter 1

Introduction

Our interactions with the health care system are getting digitized at a rapidly accelerated

pace. In the majority case, recordings of this interaction include early presentation of the

symptoms, the sets of diagnostic tests administered and their results, passive monitoring

results, the series of interventions, and detailed reports of health progression by the health

practitioner. In some cases, these recordings can be as detailed as the inclusion of video

data from the physician-patient interaction [Field and Grigsby, 2002].

This high-granularity recording of the actual patient, which can be stored, shared and

retrospectively analyzed creates the digital patient. With machine learning and data analysis

methods, we can analyze the digital patient population to retrospectively make inferences

about our health care system. For example, reasoning with information extracted from

data across multiple visits across a large population can illuminate the evolution of a given

disease and the evolution of an individual’s health status as compared with the population.

Comparing patient health trajectories across individual physicians, physician practices and

even hospitals can provide a way to compare effectiveness across physicians, practices and

hospitals. This can be used to infer intervention protocols that lead to better health trajec-

tories and thereafter, guide clinical practice guidelines or inform national policy decisions.

At the point-of-care, knowing relevant facts from the patient’s clinical history can signif-

icantly improve patient-physician interaction and help avoid medical errors (e.g., missed

drug-drug interactions). A retrospective analysis of the data can potentially identify sub-

populations that respond more effectively to interventions. This data can also lead to the

discovery of new markers for early prediction of disease.

We describe in detail below the different types of data collected in the Electronic Health

1



2 CHAPTER 1. INTRODUCTION

Record (EHR). Information required to answer any of the problems posed above cannot be

simply extracted from the EHR database; most of the required information is not directly

observed and must be inferred from this data. This data is high-dimensional, heterogeneous,

highly unstructured, large-scale and noisy, which makes the task of modeling and inference

from this data challenging. In this thesis, we seek to address the tasks of clinical discovery

and prediction from EHR data via novel probabilistic methods to model the data.

1.1 Electronic Health Record data

Electronic Health Record databases contain patient encounter data recorded to varying

levels of granularity. Increasingly, due to the Meaningful Use legislation [111th United

States Congress, 2009a], hospitals and physicians are capturing increasing amounts of data

at the highest levels of granularity.

Below, we describe an example dataset from Stanford’s Lucile Packard Children’s Hos-

pital (LPCH). The data is collected from infants in their Neonatal Intensive Care Unit

(NICU). See figure 1.1 for an overview of the different types of data.

• Continuous physiologic monitoring data: Bedside monitors are used extensively

in most intensive care units for continuous monitoring of physiologic data. At the

Stanford NICU, heart rate (HR), respiratory rate (RR) and oxygen saturation (OS)

data is captured on all infants starting at the time of admission (see figure 1.1a for

example recordings of HR, RR and OS data). Other signals of mean, systolic and

diastolic blood pressure, ectopic counts (count of abnormal heart beats), and pulse

waveforms are collected at the physician’s discretion. Noise sources such as lead drops,

handling of the infant and feeding can corrupt the data in spurts. Data is missing

when the infant is away for treatment or during transport.

• Laboratory measurements: A wide variety of laboratory tests are performed on

these infants. Several of these measurements (e.g., the complete blood count (CBC))

are started soon after birth and performed repeatedly, often at fixed intervals. Other

measurements are initiated to be recorded repeatedly or recorded once as needed basis.

The EHR contains both time when the test was ordered and the time of the actual

measurement along with the result of the measurement. The nurses typically record

the measurement as its taken. Occassionally, there can be a delay between when the
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Figure 1.1: Electronic health record (EHR) data collected from a neonatal intensive care unit
(NICU): a) continuous physiologic monitoring data, b) laboratory orders and measurements,
c) medications and procedures administered, d) imaging results, e) admission, progress and
discharge summary notes.

measurement was taken and when it was recorded. This delay is not recorded in the

data, producing a source of noise. For the measurements that are often frequently

recorded (e.g., vital signs), if the measurement is very different from what is expected,

sometimes the nurses avoid recording it or modify it to reflect their notion of what

they think is going on. Other sources of noise include the test’s own measurement

error which varies from test to test.

• Medications administered: For every medication, the time, dosage and frequency

of medication is recorded at the time that it is first prescribed. In addition, each time
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the medication is administered, a record of the dosage and time since birth is made.1

Below, we show an example of records for a randomly selected infant.

PatientID — Time since birth — Name — Dosage — Units

530044567—14.00:00:00—Sodium Chloride 0.45%—0.999001—mL

530044567—14.00:00:00—heparin—0.999001—units

530044567—14.00:00:00—IVPARENT—1.000000—mL

530044567—14.01:00:00—fat emulsion, intravenous—0.300000—mL

530044567—14.01:00:00—IVPARENT—0.300000—mL

530044567—14.02:00:00—fat emulsion, intravenous—0.300000—mL

530044567—14.02:00:00—IVPARENT—0.300000—mL

530044567—14.02:00:00—furosemide—0.600000—mg

530044567—14.03:00:00—parenteral nutrition solution—2.000000—mL

530044567—14.03:00:00—IVPARENT—2.000000—mL

530044567—14.03:00:00—Sodium Chloride 0.45%—0.999001—mL

530044567—14.03:00:00—heparin—0.999001—units

530044567—14.03:00:00—IVPARENT—1.000000—mL

• Treatments and Procedures: The time and names of all treatments and proce-

dures prescribed are recorded as events. In addition, the location and whether or not

anesthesia was given is also recorded. The latter two data elements are critical in

reasoning about noise or missing data. Below, we show example events. Time since

birth of 00 : 00 : 00 denotes that the corresponding event took place soon after birth

but recorded to be at birth.

PatientID— Time since birth — ProcedureID — NomenclatureID — Pri-

ority — Anesthsia — Anesthesia minutes — Location — Procedure name

531248861—00:00:00—39157910—1275040—1—None—0—2W—Insertion of

endotracheal tube

531248861—00:00:00—40533850—1276338—3—None—0—2W—Injection or

infusion of other therapeutic or prophylactic substance

531248861—00:00:00—40533853—1258053—5—None—0—2W—Umbilical vein
1The data is deidentified to record time as <day><day> . <hour><hour>:<minute><minute>:<second><second>

and generate random patient IDs.
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catheterization

531248861—00:00:00—40533855—1275188—6—None—0—2W—Gastric gav-

age

531248861—00:00:00—40533857—12280077—7—None—0—2W—Non-invasive

mechanical ventilation

531248861—00:00:00—40533859—1250601—8—None—0—2W—Spinal tap

531248861—4.10:00:00—39157908—1258057—9—Local—0—2W—Venous catheter-

ization, not elsewhere classified

531248861—6.00:00:00—40533861—1276578—10—None—0—2W—Other pho-

totherapy

• Imaging results: X-rays and MRI scans are recorded either as part of routine care

or on a need basis by the physician. The EHR contains the original image data and

the analysis of the image made by the treating physician and/or radiologist.

• Physician Notes: The bulk of the data (in terms of size) are notes by the care

provider. Typically, an admission report detailing symptoms and conditions at the

time of admission is made. Progress notes are recorded at the time of any major

events and on a daily basis. At the time of transfer to a different unit or discharge

from the hospital, a discharge summary is dictated that includes a detailed summary

of most major events during the entire length of stay in the NICU. An infant at the

NICU for a period of a month may be attended to by more than 20 doctors, 40 nurses,

and scores of other care takers. The final discharge summary is often written after

reviewing previous records and from mental recollection. These notes are used as

hand-off tools between caretakers and for the purpose of billing so effort is made to

make these notes comprehensive. We tackle the task of extracting patient outcomes

from these notes and show a detailed example in context later in chapter 2.

1.1.1 Our NICU dataset

For this thesis, we use data from the LPCH NICU as an example EHR dataset from which

we motivate or demonstrate several of the ideas presented in later chapters. Thus, we briefly

describe the specifics of our dataset here.
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Our data collection process was initiated in March 2008 and has been ongoing since.

We have been capturing data from all infants admitted to the NICU after March 2008 and

who are within their first week of birth. For our studies, we only use data from premature

infants with gestational age ≤ 34 weeks and weight ≤ 2000 grams. These infants are more

likely to have problems associated with prematurity. Approximately, 150 infants have met

this criteria per year, resulting in approximately 100Gb of data collected per year.

Stanford collects monitor data via the Philips bedside monitor systems. Data is collected

at a sub-second granularity, but stored for retrospective analysis only at the minute-level

granularity. While storing data at higher granularities was a possibility, the storage costs

are much higher. Therefore, the tradeoff for storing data at the minute-level granularity

was made. This is typical at other institutions.

Our study is covered under the Stanford IRB protocol 8312. Each of our studies, pre-

sented in later chapters, had additional inclusion criteria based on which smaller subsets

of this dataset was used. We describe the population characteristics for each subset in the

chapters when they are used.

1.2 Contributions per chapter

This thesis is a foray into how observational patient data from the EHR can be harnessed

for making novel clinical discoveries. While the data is extremely rich, it is also extremely

challenging and requires developing a deep understanding of the domain and the data

collection process, learning about relevant clinical biases to guide model building, and novel

methods to surmount dimensionality and noise related issues in the data.

In section 1.3 below, I describe some of the common challenges that machine learning

practitioners must face in handling this data. One such challenge is the lack of gold standard

patient outcome data (which infant has which complications); this data is necessary for

measuring performance on most clinically relevant prediction tasks including that of risk

prediction which we tackle later in this thesis. In chapter 2, we describe a method for

extracting patient outcomes from the EHR data. Previous methods have performed this

task primarily from free-text data contained in the discharge summaries. In addition, we

exploit structured data in the EHR to significantly improve performance.

Bedside monitor data is continuously collected on all infants from the time of admission

until discharge and forms the bulk of the data collected on any patient. However, this
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data is not used offline post collection in any substantive way by the care givers. In our

method, its use online is limited to answering simple questions such as whether the heart

rate is too high or the respiratory rate is too low. In chapters 3 and 4, we develop un-

supervised methods for discovering structure and repeating signatures (e.g., dynamics and

shape signatures) from this continuous monitor data, and relating these signature patterns

to diseases. These methods incoporate clinical biases relevant to the data into probabilistic

models. This improves performance significantly compared with previous time series pro-

cessing methods. We evaluate performance both qualitatively, to assess consistency with

known clinical results, and quantitatively.

Our analysis of the bedside monitor data led us to novel use of this data for risk pre-

diction. In chapter 5, we build on this insight to develop and validate a tool, akin to the

electronic Apgar [Casey et al., 2001] (a score universally used to assess an infant’s health

at birth), for early prediction of morbidity in premature infants. Our tool is significantly

more accurate than Apgar and it can be fully automated. We also compare with other

previously developed neonatal monitoring scores that require invasive tests and show that

our method outperforms those using just routinely collected non-invasive data. Overall, our

thesis illustrates how the use of machine learning for analyzing digital patient repository

data can yield new clinical discoveries and potentially useful tools for improving patient

care.

1.3 Challenges in analyzing Electronic Health Record data

There are several challenges that dominate the use of electronic health record (EHR) data.

While addressing these challenges is necessary to successfully tackle any of the above men-

tioned health care questions, these challenges also provide interesting computational prob-

lems.

First, obtaining high-quality data is essential, and its lack can hurt the significance

of the conclusions that can be drawn from the data. While this is often the case in most

domains, this is especially true when working with observational data such as patient health

record data. For example, patient outcomes are typically stored using billing codes called

ICD9 codes. However, these codes are known to have poor granularity and accuracy for

identifying patient outcomes [Campbell and Payne, 1994; Solti et al., 2008]. Furthermore,

since those are coded for billing, often complications that cannot be billed are not noted.
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Or, complications are often assigned codes that help optimize reimbursement. Therefore,

the data as is does not provide accurate outcome information against which performance

can be reliably measured. In another example, at Stanford, the bedside monitoring device

flushes physiologic signal information to a central repository every 6−8 hours or each time a

bed change occurs. Each signal file is appended with identifiable information such as name,

date of birth and medical record number of the infant. The device requires manual entry

of this information by the nurses each time an infant is moved from one bed to another.

On multiple occasions, the infant will have been transferred but his information was not

updated on the monitor. As a result, the record from the infant who was previously on the

same bed would get erroneously attached to the physiologic data from the current occupant

while the current occupant’s data would appear to be missing. At other times, a record of

the move was successfully logged on the new monitor but the infant was not transferred

out of his previous bed. Thus, it would appear as if the infant was on two beds at the same

time. Several of these errors are corrected by inferring the bed status of the infant based on

movement through the system and analyzing the contents of the file to ensure consistency

across file boundaries. However, the use of the data in its original form without realization

of this measurement bias will lead to inaccurate conclusions. Therefore, understanding

these biases in data collection are important in obtaining robust and high quality data.

Second, the data is aggregated from several different modalities. A thousand unique

laboratory tests are done in the neonatal ICU alone. Most of these tests have different

noise characteristics. For example, the neutrophil (a type of white blood cell) measurements

are performed by manually counting the number of cells of each neutrophil type under a

microscope using a clicker. Moreover these cells are described by the technician and it

is a very subjective process. Thus, the observations may include error that is technician

dependent and varies widely between shifts. Similarly while monitoring continuous blood

pressure, measurements may be corrupted by a variety of reasons: when a blood sample

is drawn, the sensor drops, the patient is handled, or the infant in the neighboring crib is

crying [Aleks et al., 2009; Quinn et al., 2009]. While a model-driven approach that models

each sensor modality in detail is useful, modeling all sources of variability and noise may

not always be feasible. Therefore, progress must be made cognizant of this shortcoming.

Third, the data is high-dimensional. A supervised training approach of using labeled

data to select the relevant dimensions in this data is often infeasible; annotated data is scarce

because collecting patient data is expensive and requires input from skilled practitioners or
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specially trained data recorders, such as research nurses. Dimensionality reduction methods

that can extract informative representations from the data can both reduce the need for

labeled data, and yield more meaningful features for prediction tasks. For example, for the

data measured by the monitor continuously, features representing specific shapes (a repeated

drop and a rise in the heart rate) are known to be clinically relevant. The discovery of these

shapes and inclusion of higher-level features such as the frequency of individual shapes

can be more informative than the raw signal data itself. Similarly, a bag of words model

that includes all words from the clinical narratives (progress notes or discharge summaries)

may be less effective than higher-level features that are a result of parsing. Methods for

dimensionality reduction that can incorporate clinical biases to inform the reduction of this

data are imperative.

Another challenge is the lack of metrics. Most problems lack existing baselines and

formal metrics against which they can be easily calibrated. This slows down progress. For

example, in assessing the efficacy of unsupervised discovery techniques, usefulness of the

extracted features must be established against supervised tasks where other simple features

do not suffice. Additionally, when possible, a qualitative validation of consistency with

known previous clinical results provides another means of establishing confidence in the

results.

1.4 Related Work

Data contained in the EHR has been worked on by various communities for more than

a decade. While a comprehensive review is not feasible, work closely related to each of

the different aspects (underlined in the text) of this thesis is discussed below. Individual

chapters discuss additional works related primarily to the data or model described in that

chapter.

The Physionet project [Goldberger et al., 2000], a collaborative effort between MIT, Har-

vard’s Beth Israel Hospital and Boston University created the first publicly available EHR

data repository for adult ICU data. They created a database called MIMIC that contains

comprehensive EHR data from a single ICU visit. However, the identity of a patient is not

tracked across multiple visits; thus, data across multiple visits for any single patient cannot

be tracked. Most adult ICU patient visits last from a few hours to a couple of days so only

short term monitoring of health status is feasible using this data.
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The MIMIC database has spawned a body of work on physiologic signal processing

from high granularity beat-to-beat heart rate data. Detrended Fluctuation Analysis [Peng

et al., 1995], is a method for studying the fractal characteristics of beat-to-beat variability

in the heart rate, measures correlations in the beat-to-beat signal over short- and long-

ranges. Altered correlation patterns have been found in signals from both patients with

amyotrophic lateral schlerosis [Hausdorff et al., 2000], congestive heart failure [Poon and

Merrill, 1997] and infants with intraventricular hemorrhage [Tuzcu et al., 2009]. Syed et.

al. [2009a] have developed a method where beat-to-beat heart rate signals are windowed

and similar windows are found using random projections. A frequency spectrogram of the

resulting windows were found to be predictive of morbidity in patients with acute coronary

syndrome within 90 days of a non-ST-elevation [Syed et al., 2009b]. A large amount of work

has been done in the signal processing community related to electrocardiogram (EKG) data

(see [Moody and Mark, 2001] for examples). Overall, most approaches are not general

purpose and tailored to a specific signal.

Techniques for constructing abstractions or lower-dimensional representations of mul-

tiparameter clinical time series data for the purpose of hypothesis discovery have been

developed extensively. These methods typically manually identify characteristics of inter-

vals that are clinically relevant for individual diseases. Alternately, they extract general

purpose symbols (e.g., decrease, increase or constant) which are further abstracted to form

strings of symbols to represent complex phenomena in the time series. These methods are

work-intensive, and rely on clinical experts and heavy manual knowledge engineering (see

[Stacey and McGregor, 2007] for a survey).

The majority of work on bedside monitoring has focused on generating alarms. Known

clinically-relevant signatures (e.g., is the heart rate at the current time beyond the clinical

norm or is the patient undergoing apnea [Mietus et al., 2000]) are detected in real-time

via online analysis of the continuously streaming measurements. Another line of work has

focused on reducing false alarm rates by modeling false alarm events such as sensor drops

or a blood sample draw [Quinn et al., 2009]. In both cases, the goal is of automation and

not discovery.

Both in the neonatal and adult population, risk prediction tools have been developed for

measuring severity of disease. For example, in adults, the APACHE and APACHE II scores

[Knaus et al., 1985] combine measurements such as temperature, heart rate, blood pressure

and so on to make assessments in the first 24 hours about illness severity for patients in
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the ICU. Neonatal risk prediction scores of CRIB [Network, 1993], SNAP and SNAPPE

[Richardson et al., 2001] combine laboratory measurements and vital signs at 12 hours to

quantify overall health. All of these scores require invasive tests and manual intervention.

Outside the ICU, numerous other works have used clinical data and Bayesian networks for

building expert systems for clinical decision support (e.g., [D. Heckerman and Nathwani,

1992]). More recently, clinical events from the EHR have been combined for predicting

individual conditions (e.g., [Reis et al., 2009; Himes et al., 2009]).

A different community of researchers has focused on using natural language process

for information extraction from free-text data contained in the EHR. A popular approach

here is to use a concept indexing system which seeks to map text to standardized concepts

using terminologies such as those in the Unified Medical Language System (UMLS). The

identified concepts are then used for a variety of extraction tasks [Meystre et al., 2008]. For

example, generating medication lists and patient problem lists, extracting coded data for

decision support systems, or automatic detection of adverse events [Melton and Hripcsak,

2005].

Recent efforts have been made to build large databases that consolidate data across

multiple institutions for clinical discovery especially in relatively infrequent and complicated

diseases [Liao et al., 2010]. Most studies on discovery are based on association rules between

terms discovered in the free-text (e.g., [Goldacre et al., 2009; Crawshaw et al., 2010; Petri

et al., 2010]). These methods cannot be easily extended to incorporate domain knowledge

or various types of clinical biases.

For specific application of medical diagnosis, a large amount of work has been pursued

in the machine learning and informatics community.

Novel flexible methods that can discover structure while modeling both clinical and

measurement biases can lead to potentially new and powerful medical discoveries.
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Chapter 2

Extracting Patient Outcomes

Access to patient outcomes is necessary to leverage EHR data within any machine learn-

ing system. Traditionally, outcomes are manually coded by physicians or trained coders.

More recently, natural language processing based systems have been used to automatically

extract outcomes from clinical free-text data such as the physician’s dictation. Integrating

easy-to-extract structured information such as medication and treatments (available in the

EHR) into current natural language processing based systems can significantly boost cod-

ing performance; in this chapter, we present a system that rigorously attempts to validate

this intuitive idea. Based on recent i2b2 challenge winners, we derive a strong language

model baseline that extracts patient outcomes from discharge summaries. Upon incor-

porating additional clinical cues into this language model, we see a significant boost in

performance to F1 of 88.3 and a corresponding reduction in error of 23.52%. Moreover, to

obtain gold-standard data from the nurses, we used our system to corroborate their anno-

tations iteratively, and we found significant reductions in both coding time required and

the fraction of human errors reduced.

2.1 Introduction

The modern hospital generates large volumes of data, which include discharge summaries,

records of medicines administered, laboratory results and treatments provided. With the

recent ubiquity of electronic medical record (EHR) databases, all of this patient information

is often documented within a single storage system. However, one of the key difficulties in

using this EHR data is that patient outcomes – who has what complications – the most

13



14 CHAPTER 2. EXTRACTING PATIENT OUTCOMES

basic information required to assess performance of any learning algorithm for this data is

not readily available. At present, in most systems, patient outcomes are manually coded by

the physician for billing purposes primarily. As a result, the codes are not comprehensive

[Campbell and Payne, 1994; Solti et al., 2008]; often outcomes that cannot be billed are not

coded. Similarly, outcomes may be up- or down-coded based on reimbursement preferences.

Automated extraction of patient outcomes from the rich EHR data source can improve

quality of care. A recent article [Gandhi et al., 2011] in the New England Journal of Medicine

emphasizes the importance of completed patient problem lists, its role in avoiding medical

mistakes and a way of deriving comprehensive lists using automated extraction algorithms.

Automated outcome extraction can also serve as infrastructure for clinical trial recruitment,

research, bio-surveillance and billing informatics modules.

Previous works have focused on using state of the art natural language processing (NLP)

techniques for extracting patient outcomes from discharge summaries [Solt et al., 2009;

Pakhomov et al., 2005; Friedman et al., 2004]. Two common pipelines have typically been

used. The first is a rule-based classification system such as that in Solt et al. [2009]. We

build on their system and describe it in more detail subsequently. A second commonly used

approach [Friedman et al., 2004] is one that is less domain specific. Low-level modules such

as a sentence boundary detector, tokenizer and spelling corrector are used to de-noise the

clinical text. Modules trained on a clinical corpus are typically used. Next, higher-level

natural language processing modules such as a parser, named entity recognizer and a part-

of-speech analyzer are used to extract semantic structure from the sentences and recognize

complications as salient phrases in the narratives.

Although these systems perform reasonably well, performance is limited by complex

language structure in the dictated sentences [Meystre et al., 2008]. First, clinical texts

are ungrammatical and composed of short, telegraphic phrases. See examples in the dis-

charge summary shown. Second, clinical narratives are rife with shorthand (abbreviations,

acronyms, and local dialectal shorthand phrases). These shorthand lexical units are often

overloaded (i.e., the same set of letters has multiple renderings); Liu et al. estimate that

acronyms are overloaded about 33% of the time and are often highly ambiguous even in

context [2001]. Third, misspellings abound in clinical texts, especially in notes without rich-

text or spelling support. Finally, the presence of special characters and noise introduced

due to transcription make word tokenization difficult. These problems occur in addition to

the common problems in extracting semantics from complex natural language sentences.
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Example discharge summary1

ADMISSION DIAGNOSES:<cr>1. A 31-6/7-week male infant, twin B.<cr>2.

Prematurity.<cr>3. Possible sepsis.<cr><cr>DISCHARGE DIAGNOSES:<cr>1.

A day of life number 34, ex-31-6/7-week male infant, now

36-5/7-weeks<cr>postconceptual age.<cr>2. Mild indirect hyperbilirubinemia.

<cr>3. Resolved mild apnea of prematurity.<cr>4. Mild physiologicanemia.

<cr>5. Immature retinae.<cr><cr>IDENTIFICATION: XXXX XXXX XXXX is

a day of life number 34, ex-31-6/7-week<cr>male infant who was admitted

secondary to prematurity and possible sepsis. His<cr>hospital course has

been fairly unremarkable. He was advanced to full feeds. He<cr>has tole-

rated this well and has bouts of intermittent mild, indirect<cr>hyper-

bilirubinemia. He is now being discharged home with follow-up with

Dr. XXX<cr>XXXX at the Palo Alto Medical Foundation.<cr><cr>BIRTH HISTORY:

XXXX XXXX XXXX is a 1,640 gram product of a<cr>monochorionic-

diamniotic concordant twin gestation pregnancy. He was born at<cr>Lucile

Salter Packard Children’s Hospital at 31-6/7-week gestation to a<cr>30-

year-old, gravida 2, para 1-0-0-1 mother who received good prenatal care.

<cr>Prenatal laboratories were as follows: Blood type B positive, antibody

screen<cr>negative, hepatitis B surface antigen negative, rubella immune,

RPR negative,<cr>gonorrhea and Chlamydia negative, HIV negative, and group

B strep negative on<cr>XX/XX/XX. The mother had an initial Glucola screen

that was increased at one<cr>hour, but the three-hour Glucola test was

normal.<cr><cr>The pregnancy was otherwise uncomplicated until XX/XX/XX,

when the mother awoke<cr>in a large pool of fluid at about 7:00 in the

morning. This was rupture of<cr>membranes for twin A. She was not

experiencing contractions or vaginal bleeding at<cr>that time.

Fetal movement was still notable. She was not having any dysuria

or<cr>unusual vaginal discharge. She presented to the hospital that day and

was admitted<cr>and treated for premature rupture of membranes. She was

started on ampicillin and<cr>erythema on XX/XX/XX. A urine culture was che-

cked and was negative. She was<cr>also given two doses of betamethasone on

XX/XX/XX8, and XX/XX/XX. Pediatrics was<cr>called to the delivery of these

twin infants. Twin A was delivered first in vertex<cr>vaginal delivery.

Twin B was delivered second with rupture of membranes occurring<cr>only a few
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minutes prior to delivery. He was delivered via breech extraction at<cr>1828

hours on XX/XX/XX. He was initially floppy and without cry or

respiratory<cr>effort.

He was handed to the pediatrics team and was taken to the radiant

warmer.<cr>He was warmed, dried, stimulated and suctioned, but remained

floppy and without<cr>respiratory effort. His heart rate, however, was

adequate. He was given masked<cr>CPAP for a couple of seconds and was then

found to cry. The CPAP was removed and<cr>he was continued with stimulation.

His cry and respiratory effort continued to<cr>improve, as did his tone

and grimace. Apgar scores were 3 at one minute and 9 at<cr>five minutes.

He was then admitted to the Neonatal Intensive Care Unit for<cr>prematurity

and suspected sepsis.<cr><cr>HOSPITAL COURSE BY SYSTEM:<cr>1. FLUIDS,

ELECTROLYTES AND NUTRITION: The birth weight is 1,640 grams with a<cr>cur-

rent weight of 2,561 grams. The infant was initially n.p.o. with IV fluids

at<cr>80 mL/kg per day.

Total parenteral nutrition was started on day of life number<cr>one, which

was discontinued on day of life number six with advancement to full<cr>fee-

ds. His fluids were slowly increased to a total of 170 mL/kg per day by

the<cr>first week of life. Maternal breast milk was initiated on day of life

number two<cr>with a slow advance as available. He was advanced to full

feeds by day of life<cr>number seven. He was changed to half strength human

milk fortifier on XX/XX/XX,<cr>changed to ad lib feeds on XX/XX/XX, and

changed to Enfacare 22 calories per<cr>ounce with maternal breast milk on

XX/XX/XX. He is currently on Enfacare 22<cr>calories per ounce with maternal

breast

milk nippling 75 to 100 mL every three to<cr>four hours. He is voiding and

stooling appropriately.<cr><cr>His alkaline phosphatase peaked at 481 on

XX/XX/XX. His last alkaline<cr>phosphatase level was 285 on XX/XX/XX.

He has had normal electrolytes throughout<cr>his hospitalization.<cr><cr>2.

CARDIOVASCULAR AND RESPIRATORY: The infant has been on room air

since<cr>admission. He did have evidence of mild apnea of prematurity.

However, he never<cr>required caffeine. He did originally have occasional,

intermittent bradycardiac<cr>events with sleep, which were mild. His last

bradycardia with sleep was on<cr>XX/XX/XX, for which he required very gentle
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stimulation and was only a few<cr>seconds. The last time he had bradycardia

with feeding was on XX/XX/XX, which<cr>self-resolved. At this point, he has

had no further episodes and is safe for<cr>discharge.<cr><cr>3.

HEMATOLOGIC: His admission hematocrit is 44.9\% with a recent hematocrit

of<cr>32.7\%. He has not required any blood transfusions throughout his

hospitalization.<cr><cr> He does have evidence of indirect hyperbilirubinemia

with an initial peak bilirubin<cr>level early on of 9.7 on XX/XX/XX. He has

been on and off phototherapy<cr>throughout his life with the phototherapy

last being discontinued on XX/XX/XX.<cr>He has had a slow, rebound

hyperbilirubinemia since that time with a bilirubin<cr>level of 9.6 on

XX/XX/XX, and a bilirubin level of 10.6 on XX/XX/XX. His liver

function tests have remained normal. He did have a G6PD<cr>sent on XX/XX/XX,

which was normal, showing no evidence of deficiency.<cr><cr>4. INFECTIOUS

DISEASE: He was started on antibiotics immediately after delivery<cr>of

ampicillin and gentamicin for concern for infection. He had normal

C-reactive<cr>proteins and his blood and cerebral spinal fluid cultures had

remained negative.<cr>Therefore, his antibiotics were discontinued after 48

hours. He has since had no<cr>signs or symptoms of infection.<cr><cr>5.

NEUROLOGICAL: A head ultrasound was done on XX/XX/XX, which was normal.

He<cr>passed his ALGO hearing screen on XX/XX/XX.<cr><cr>6. OPHTHALMOLOGY:

He had a retinopathy of prematurity examination number one<cr>done, secondary

to pale red reflexes. This was done on XX/XX/XX, which showed<cr>immaturity

of his retinae, zone III and a follow-up indicated at about ten days<cr>with

Dr. XXX.<cr><cr>7. LABORATORY DATA:<cr>1. Hematocrit 32.7\% on XX/XX/XX.<cr>2.

Total bilirubin level of 10.5 on XX/XX/XX.<cr>3. Newborn screen drawn on

XX/XX/XX, was normal.<cr><cr>DIET: Ad lib maternal breast milk with Enfacare

22 calorie per ounce formula.<cr><cr>MEDICATIONS:<cr>1. Poly-Vi-Sol 1 mL p.o.

daily.<cr>2. Fer-In-Sol 0.4 mL p.o. daily.<cr><cr>IMMUNIZATIONS:<cr>1.

Hepatitis B vaccine given on XX/XX/XX.<cr>2. Synagis number one give on

XX/XX/XX.<cr><cr>FOLLOW-UP CARE:<cr>1. Dr. XXX on Tuesday, XX/XX/XX.<cr>2.

Follow-up with Dr. XXX for retinopathy of prematurity in ten

days.<cr><cr>SPECIAL TESTING:<cr>1. Passed ALGO hearing screen on

XX/XX/XX.<cr>2. Will need repeat eye examination in ten days.<cr><cr><cr>

<cr><cr>D: XX/XX/XX 10:43 A<cr>T: XX/XX/XX 3:10 P<cr>I: XX/XX/XX 3:50 P<cr>

<cr>DOC \#: 286761 DICT JOB \#: 001290294<cr><cr>
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While a majority of the current work is focusing on building increasingly sophisticated

language models, we take a complementary approach to this problem by incorporating

simple cues extracted from structured EHR data when available. For example, treatments

and medications are prescribed by clinicians specifically to manage patient complications;

thus, presence or absence of relevant treatments can provide independent indicators to

disambiguate cases where current NLP approaches fail. Similarly, clinical events such as a

test being ordered or use of an equipment as a measurement device (e.g., ventilator) can

also provide markers for specific complications. Thus, our proposed system combines a

state-of-the-art extraction system with structured clinical event cues.

2.2 Automated Outcome Extraction

The task of automated outcome extraction entails identifying any complications that oc-

cur during the episode of care. In our case, our goal is to identify, for each infant, any

complications that occurred during their entire length of time in the hospital.

For this purpose, we constructed a data set to evaluate our system. Two expert neona-

tologists formulated a list of all major complications observed in the NICU (Table 2.1). The

data was annotated for these and any additional unlisted complications and subsequently

reviewed by a team of three nurses and a physician. Overall, records of 275 premature in-

fants born or transferred within the first week of life to the Stanford Lucile Packard Children

Hospital’s Neonatal Intensive Care Unit (NICU) after March 2008 and discharged before

October 2009 were reviewed. We extracted discharge summaries, as well as laboratory re-

ports of urine (188 reports) and blood cultures (590), radiology reports of ECHO (387) and

head ultrasounds (534), medication events, and clinical events such as ventilator settings

and tube placements. There were 628 unique complication-patient pairs marked as positive

and 4872 complication-patient pairs marked as negative.

2.3 Methods

Recent work has shown the success of rule-based models in the domain of information

extraction from clinical texts, in particular those employing hand-crafted string matching

patterns to identify relevant lexical items and shallow semantic features [Solt et al., 2009;

Goldstein et al., 2007]. While these models are not optimal on account of their inability
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Complication M E C R
Respiratory Distress Syn (RDS) X X
Sepsis X
Patent Ductus Arteriosus (PDA) X X
Bronchopulmonary Dyslapsia (BPD) X X
Intraventricular Hemorrhage (IVH) X
Died
Pneumothorax (PNE)
Adrenal Insufficiency (ADR) X
Coagnegative Stahylococcus (BCS) X X
Necrotizing Enterocolitis (NEC) X X
Bacterimia (BAC) X X
Arrhythmia (ARR) X
Hydrocephalus (HYD) X
Pulmonary Hemorrhage (PUL)
Urinary Tract Infection (UTI) X
Adrenal Renal Failure (ARF) X
Pneumonia (PNA)
Pulmonary Hypertension (PPHN)
Seizure (SEI) X
Chronic Renal Failure (CRF) X

Table 2.1: List of complication-specific clinical features used. Complications are listed in
order of decreasing frequency in our data set. Features are extracted from medications
(M), clinical events (E), culture reports (C) and radiology reports (R). Overall, 33 clinical
features are extracted.

to generalize, they usually have better performance than models which use general NLP

strategies [Uzuner, 2009].

In constructing the language model component of our system, we built it based on the

context-aware approach employed by the i2b2 Obesity Challenge winners, Solt et al. [2009].

To accurately evaulate the incremental contribution of incorporating structured information

from the EHR, we replicate their model in our domain and use it as our language model

baseline. Their approach aims to identify and categorize typical linguistic contexts in which

patient disease outcomes are mentioned. The types of contexts which suggest a positive,

negative, or uncertain result are fairly consistent within the domain of medical records,

making it possible to engineer regular expressions that capture and categorize a majority

of these mentions correctly. We describe below in detail the four basic types of language
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based features that comprise our baseline language model.

2.3.1 Language Features

Disease Mentions: In addition to complication / disease names, this category includes

patterns to capture abbreviations (e.g., UTI and NEC ), alternate spellings (e.g., haemor-

rhage and hemorrhage), complication subclasses (e.g., germinal matrix hemorrhage and in-

tracranial hemorrhage for IVH), and synonyms (e.g., cardiac arrest for arrhythmia.) Expert

opinion was sought in increasing feature coverage. Querying the Unified Medical Language

System (UMLS), a comprehensive ontology of biomedical concepts would be another way

to derive terms that can improve cocerage. The deterministic model using just this set of

rules maps most closely to the baseline binary classifier in Solt et al. [2009].

Negations: We use a Negex inspired strategy to identify both sentential and noun-

phrase negations that indicate a negative result pertaining to one of the above disease

name mentions. General patterns such as no|never MENTION and (no|without) evidence

of MENTION are used across all disease types, but disease specific negation patterns are

also allowed where appropriate, e.g., r/o SEPSIS (rule out sepsis).

Uncertainty modifiers: Uncertain contexts are identified by patterns of similar con-

struction to the negation patterns but include templates such as (possible|suspected) MEN-

TION and history of MENTION. It is important for the system to identify regions of

uncertainty in order to avoid overvaluing many disease name mentions. Disease specific un-

certainty patterns may also be used to recognize information that is most likely unrelated

to patient outcome, e.g., family death or pregnancy related UTI.

Correlated Words and phrases: This final category of language features came from

reviewing with experts words that showed high correlation with the outcome label. Similar

to the process of automatically extracting symptoms, medications, and related procedures

from the description of ICD-9 codes, we reviewed our data with medical professionals and

arrived at pattern matches for names and abbreviations of relevant antibiotics, treatments

(antibiotics discontinued for sepsis ruled out), symptoms (PAC for arrhythmia) and tests

(head ultrasound).

A total of 285 language features were extracted. We experimented with several ways

of combining these language features in our baseline model; we delay this discussion to the

results section.
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2.3.2 Clinical features

Structured information in the patient EHR can be extracted from sources other than the

discharge summary, including records from diagnostic tests, medication and treatments ad-

ministered. We refer to such features as clinical features. These features were developed

with guidance from a neonatologist in two half hour sessions. For each complication, we

listed various treatment options, medications provided, diagnostic tests used or other clini-

cal events that are synonymous with the complication. Table 2.1 lists the various classes of

clinical features that were used for each complication. Our overarching principle in imple-

menting clinical features was simplicity of extraction. While more fine-tuned models can

be built to improve sensitivity/specificity of features extracted from these different sources,

our experiments show that even these relatively simple features are enough to significantly

improve performance of the overall system. Our system includes a total of 33 clinical fea-

tures.

Medications (M): The EHR stores the medication name, dosage, along with the time

at which the medication was administered as structured events. Rules of the form (medica-

tion name(s), minimum length of prescription) were obtained from the neonatologist for all

relevant complications. Such a rule is activated if a medication in the rule is administered

to the infant for at least the minimum time. For example, for sepsis we have (vancomycin &

cefotaxime, 4 days) as one of the rules. Each of these rules is modeled as a binary feature.

Clinical Events (E): For various clinical events associated with complications, we

obtained rules of the form (event name, minimum event duration, threshold event value).

Events include therapies (for example, infants with respiratory distress syndrome are often

on oxygen therapy represented as (oxygen therapy, 1 day, N/A)) as well as lab measurement

(for example, extended increase in creatinine measurements is indicative of a renal malfunc-

tion in infants represented as (creatinine, 2 days, 1.5)). Each of these rules is modeled as

a binary feature.

Culture Reports (C): Culture status is relevant to various complications. A vast

majority of the cultures have a section that summarizes the result of the culture, where “No

growth” is mentioned unless any bacterial growth is observed. We note that the presence

of growth may be a result of a contaminant, which is further discussed in the unstructured

text section of the report. For our current study, we do not make this correction. The result

of each report is encoded as a binary response. The count over all reports for any given

patient is modeled as a multinomial feature.
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Radiology Reports (R): Our approach is based on prior work that placed second

in a recent CMC challenge [Goldstein et al., 2007]. For each type of report, we extract

sections in decreasing order of relevance until a non-empty section is available. The section

is parsed for indications of the complication or symptom mentioned in a positive, negated

or uncertain context using the language rules described earlier. The counts for each type

of report over all reports for any given patient are included in the model as a feature.

2.3.3 Learning Technique

For outcome label prediction, we use a penalized logistic regression model that combines

all features. While a broad set of classifiers can be deployed, penalized logistic regression

is known to perform well in the low data regime [Zhu and Hastie, 2004]. The weights for

this model are learned using maximum likelihood regularized with ridge regression, which

trades off fit to data with model complexity, as measured by the sum of the learned weights.

That is, we optimize the training objective:

arg max~w

D∑
d=1

∑
i=1:N

[−yd
i ~wT (~fi~s

d) + ln(1 + exp(~wT (~fi~s
d)))] +

1
2σ2

||~w||2

where N is the number of training examples and d indexes each of the complications. ~fi are

the feature counts, ~sd selects the features relevant to each disease. So, ~sd
j = 0 if the feature

is extracted as being relevant to disease d and 1 otherwise. yi ∈ {0, 1} is the label of the

ith example, ~w is the weight vector, and σ controls the magnitude of the ridge penalty.

Similar to [Crammer et al., 2007], we develop transfer features that represent patterns

that repeat across multiple complications and allow us to generalize from one label to

another without having seen mentions of that feature in the training data. For example,

without sepsis and without pneumonia both suggest the mention of the disease in a negated

context. With a transfer feature without (disease name), a negative weight learned from

sepsis is applied in the context of pneumonia. Other examples of transfer features include

(disease name) ruled out, concern for (disease name). Of particular interest is the feature

PosMention (infrequent disease name) which encodes sharing only amongst infrequently

occurring complications. Complications like sepsis that are rampant in the population are

discussed in almost every discharge summary and are ruled out using tests. Infrequent
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complications are only discussed when the patients show complication-specific symptoms

and thus, their mention alone is strongly correlated with having the complication. Each

feature is encoded by a set of regular expressions that capture varying mentions in the

data. The transfer features we used are listed in table 2.2. Weight sharing was similarly

introduced for clinical features that were common to multiple complications (e.g., a positive

blood culture is a diagnostic test used for both BAC and BCS).

Weight sharing can be implemented easily. We modify our learning objective as follows:

arg max~w

D∑
d=1

∑
i=1:N

[−yd
i ~wT (~hi~s

d) + ln(1 + exp(~wT (~hi~s
d)))] +

1
2σ2

||~wl||2 +
1

2σ2
||~wg||2

where ~w = [wl, wg] and ~hi = [fi; fi]. The new feature vector ~hi is formed by concatenating

the matched features twice. ~sd selects indices in ~hi for features relevant for the disease.

For example, “rule out sepsis” is a feature relevant to sepsis but not relevant to any other

complication. Thus, the element corresponding to the “rule out sepsis” feature in ~sd is 0

in all diseases except sepsis. wl are complication-specific feature weights. wg are weights

for features that are shared between complications. Thus, the prediction for each data

instance contains a contribution from the disease specific weights and the global weights.

The inclusion of both transfer and disease specific features with a ridge penalty allows the

model to learn specificity when there are large number of examples and generality for rare

outcomes.

Concern for (disease name)
Possible | Suspected (disease name)
(disase name) ruled out
(disease name) resolved
Without | Not (disease name)
No | Never | None (disease name)
Negative for (disease name)
Significant (disease name)
History of (disease name)
Normal (disease name)
PosMention(infrequent disease name)

Table 2.2: Language transfer features.
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2.4 Experiments and Results

We form a strong language model baseline by replicating for our domain, Solt et al. [2009],

previous I2B2 challenge winners. We improve the baseline by learning weights for the rules

in their model through weight sharing. We compare performance of the Integrated EHR

model to the best baseline achieved using only language features.

2.4.1 Statistical Methods

We compute precision, recall, and F1 for each condition, and then compute overall precision,

recall, and F1 using micro-averaging. Let tp, fp, tn, fn be the number of true positives,

false positives, true negatives, and false negatives respectively. Then,

Precision :=
tp

tp + fp
Recall :=

tp
tp + fn

F1 := 2
precision.recall

precision + recall

All results reported are based on average test performance over 100 trials of randomized

70/30 train/test split. Significance values are computed using the bootstrap method on the

100 trials.

2.4.2 Baseline Language Model

Our aim in developing the language model (LM) was to maximize its performance, so as to

best evaluate the incremental contribution obtained from the clinical features. Thus, the

LM development was done on the entire dataset using random 70/30 train/test splits. The

cross-validation parameter σ was set to 0.8 to optimize test performance of the LM in the

hold-out set, and not subsequently adjusted for the inclusion of the clinical features.

We experimented with several approaches for combining the language features to de-

rive a strong baseline (see Table 2.3). Similar to past winners [Goldstein et al., 2007], we

experimented with pre-fixed weighting schemes. A hand-tuned model was derived as fol-

lows: for a given patient-complication pair, all sentences from the discharge summary that

matched language features for that complication were extracted. Each sentence was allowed

at most one vote; a “Yes” vote was assigned if only disease mentions without negations or

uncertainty matched the sentence or a “No” vote if any negated mentions of the disease

matched. To combine all votes, a model that counted “No” votes twice as much as “Yes”

votes gave the best results. DLM, deterministic language model, shows the performance of
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this fixed weighting scheme model. LLM, learned language model, shows performance of

the model with weights learned assuming the bag of all matched features using the learning

technique described earlier. We also show contributions of component feature classes to the

baseline by adding them incrementally. We use the LLM (all features), with F1 of 84.7, as

the baseline for comparison with the EHR model.

Model Feature Set Prec. Recall F1
DLM All features 73.5 86.1 79.4

LLM

Disease Mentions 88.7 72.8 79.9
+ Negations 90.7 78.2 83.9
+ Uncertain 90.8 77.8 83.7
+ Correlated 90.6 79.5 84.7

Table 2.3: Baseline: language model performance.

2.4.3 Integrated EHR Model

The EHR model contains all language features as well as the clinical features. Unlike the

language model, the clinical features did not have an iterative feature development phase

and were determined apriori using expert medical knowledge. The model weights were

trained using the standard bag of words assumption2 with weight sharing for the transfer

features as detailed earlier. In Table 2.4, we report test performance of the EHR model

against our best language model. Overall, the EHR model with average F1 score of 88.3

performs significantly (p-value = 0.007) better than the language model. Additionally, the

complications for which the EHR model does not outperform are those for which there

were no clinical features included. From Table 2.1, note that for each complication, clinical

features were extracted from only one or two sources.

2.4.4 Error Analysis

A post-hoc analysis of the results was done to understand the performance of our augmented

model. We identify three distinct sources of error: (1) medical ambiguities, (2) feature

error, i.e., failure of a language or clinical feature match on a specific instance, and (3) data

2All features are considered to be independent and the order in which the features appear are not taken
into account. This assumption is commonly made in document processing.
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Language Model EHR Model
Comp Pr. Re. F1 Pr. Re. F1
Respiratory Distress Syndome (RDS) 96.2 93.8 95.0 96.8 94.5 95.6
Sepsis (SEPSIS) 82.3 69.8 75.5 92.5 79.5 85.5
Patent Ductus Arteriosus (PDA) 92.4 85.6 88.9 94.7 87.0 90.7
Bronchopulmonary Dysplasia (BPD) 90.5 73.3 81.0 92.9 82.2 87.2
Intraventricular Haemorrhage (IVH) 92.9 79.0 85.4 96.2 78.5 86.5
DIED 95.0 93.9 94.5 94.7 93.7 94.2
Pneumothorax (PNE) 100.0 85.9 92.4 100.0 84.1 91.4
Adrenal Insufficiency (ADR) 90.4 56.8 69.8 91.4 64.2 75.4
Coagnegative Staphylococcus (BCS) 93.6 88.6 91.0 99.7 87.5 93.2
Necrotizing Enterocolitis (NEC) 76.5 59.5 66.9 74.6 61.5 67.4
Bacterimia (BAC) 69.6 11.3 19.5 100.0 68.6 81.3
Arrhythmia (ARR) 98.5 50.2 66.5 98.1 61.0 75.2
Hydrocephalus (HYD) 88.3 79.7 83.8 88.8 91.2 90.0
Pulmonary Hemorrhage (PUL) 100.0 99.5 99.8 100.0 90.5 95.0
Urinary Tract Infection (UTI) 59.0 58.5 58.7 55.7 57.0 56.3
Acute Renal Failure (ARF) 67.7 28.2 39.8 71.2 33.3 45.4
Pneumonia (PNA) 100.0 2.0 4.0 100.0 2.7 5.3
Pulmonary Hypertension (PPHN) 58.3 59.6 58.9 58.6 60.3 59.4
Seizure (SEI) 54.8 43.8 48.6 60.9 48.6 54.1
ALL 90.6 79.5 84.7 93.5 83.6 88.3

Table 2.4: Performance comparison between the language model and the EHR model. For
visual clarity, the winning model, chosen based on F1, is underlined for each complication.
For the outcome labels of death, penumonia, pneumothorax, pulmonary hemorrhage, and
pulmonary hypertension, no clinical features were available.

extraction.

A significant source of error within the dataset is inherent ambiguity in the process of

medical diagnosis. Beyond cases that are simply complex to code, there are patients for

which even medical experts disagree about the underlying diagnosis. In example 1 below, we

show sentences in the discharge summary related to sepsis. The infant was treated for sepsis

and given a 7-day antibiotic course (corresponding text segment in the example has been

emphasized by us for clarity) yet no positive blood culture was present. The annotators

disagreed on the status of sepsis for this infant. Similarly, in example 2, the infant received

respiratory support through CPAP, albeit for not too long. Annotators disagreed on the

status of respiratory distress syndrome for the infant. The highest achievable F1 score in
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our data with these examples included as errors is 96.3.

Example 1. Disagreement about status of Sepsis

Presumed sepsis.6

The infant was started on TPN and Intralipid on day of life number 1

He also had some initial hypokalemia; however, this resolved with potassium

infusion and an increase of potassium in his TPN

INFECTIOUS DISEASES: He had an initial 7-day course of antibiotics for his

delivery

Example 2. Disagreement about status of RDS

Apgars were 7 at 1 minutes (-1 tone, -1 respiratory, -1 color) and 8 at 5 minutes

(-1 tone, -1 respiratory)

CARDIOVASCULAR/RESPIRATORY: Initially, the patient required CPAP at

5;however, upon arrival to the NICU was rapidly weaned to room air

Feature errors in the language model (LM) can arise when context patterns fail to match

because a lexical cue is separated from the disease mention by too much intervening text,

but this turned out to be a relatively rare occurrence in our dataset. There were just four

instances of error where syntactic parsing could have identified a modifier that was missed

by regular expressions. A second type of language error, which occurs mainly with our most

frequent complications, SEPSIS and RDS, are spans that contain atypical contexts and/or

require inference. In the sentence, “The workup was entirely negative and antibiotics were

discontinued in approximately four days”, there is no explicit mention of the complication,

yet we can infer the patient most likely underwent a workup for sepsis. The addition of

our ‘Correlated Words’ rule set helps mitigate these errors. In this case, for example, the

rule antibiotics discontinued after X hrs/days correctly matched. In the full model, there

were five errors of this type for RDS, one for SEPSIS, and one for PDA. The final type

of feature error in the LM model is the most common, with at least ten instances in our

complete dataset. It results when multiple mentions of a disease occur in conflicting contexts

throughout the document or even within a single sentence. Temporal event resolution might

improve performance in such cases.



28 CHAPTER 2. EXTRACTING PATIENT OUTCOMES

Feature errors can also arise in clinical features, although less frequently due to the sim-

plicity of their extraction. Such errors do occur mainly because combinations not covered by

our feature set were administered. For example, cefotaxime or vancomycin are administered

for at least four days when a patient has sepsis. However, some patients were switched from

one to the other midway through their course, a feature not covered by our initial set.

A final source of error was due to errors in the data extraction software or due to

incomplete records. For more than 10 patients, subsets of their clinical records such as

ultrasound reports, culture reports or clinical events were missing in our extracted dataset.

In example 3 below, the medication regime for the infant was non-traditional (midway

through his prescription, his medications were changed). The only evidence for a UTI was

the presence of a positive urine culture which was missing from his records.

Example 3. Missing data about urine culture

Status post rule out postnatal sepsis.4

Due to complications of the pregnancy, the momwas treated with Lovenox, low-

dose aspirin, and vancomycin for positive group Bstrep status due to penicillin

allergy

He was therefore transferred to the NeonatalIntensive Care Unit once again to

rule out sepsis

He was initially treated onvancomycin and cefotaxime, however, when cultures

of his urine came back positivefor E coli, this was switched to cefotaxime

The patient’s initial rule out sepsis following birth was negative

Intravenous antibiotics werediscontinued on 11/14, and the patient started on

prophylactic Keflex

Furthermore, for textual reports, occasionally missing word boundaries resulted in fea-

ture match errors. Overall, an improved clinical feature set with more coverage and better

extraction software should bring performance much closer to the achievable F1-ceiling.

2.4.5 Improving human annotation

For experiments in the subsequent chapters of this thesis, we required gold standard labels

for each patient in our included patient cohort. We found that using our system, we

were able to significantly reduce human error and speed annotation by a human. We
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compared annotations obtained from our system with annotations from the nurses. Our

system also extracted evidence it was using to arrive at each annotation. When there were

inconsistencies in the annotation, we presented both the records along with our label and

the evidence contributing to that label. We found that our system was able to correct labels

on approximately half of the records presented in the first iteration and a quarter in the

next iteration. In example 3 above, the presence of a positive urine culture was overlooked

by the annotator and accounted for once our model highlighted that evidence. Many of

the remaining inconsistencies were due to ambiguities inherent in deducing the patient

outcome in which case we accepted the majority annotation from the human annotators as

the gold-standard. Additionally, we found that human errors were often a result of ignoring

information contained in the EHR. As can be seen in the example discharge summary,

these summaries are cumbersome to read. For many patients in the NICU, once admission

notes, progress notes, discharge summary and other records are aggregated, their record

can extend to well over 50 pages and therefore, it is easy to overlook critical information

pertaining to a disease.

2.5 Discussion and Conclusion

We presented a system that rigorously validates an intuitive idea: integrating easy-to-

extract structured information such as medications, treatments and laboratory results into

current NLP-based information extraction systems can significantly boost coding accuracy.

With the recent ubiquity of EHR systems, this data is broadly available in many contexts

[Li et al., 2008]. We believe this study opens several exciting avenues for future work.

There are several limitations to the clinical features used in our work. We make the

assumption that all features contribute independently. When available, richer features that

encode dependencies between multiple features can also help improve precision. For exam-

ple, vancomycin and cefotaxime are given for all infection related complications, including

bacterimia (BAC) and necrotizing enterocolitis (NEC). This results in positive feature con-

tribution towards BAC even when the medication was administered for NEC. If the infant

is on NPO status concurrent with medication administration, then likely the infant was

given the medication for NEC and not BAC. Similarly, the medication hydrocortisone can

be given for many reasons; however, if it is administered soon after a cortisol stimulation
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test, then it is most likely given for adrenal insufficiency (ADR). Modeling such dependen-

cies can improve feature specificities. Exploiting dependencies between the related tasks of

predicting individual disease outcomes might improve performance; the application of con-

ditional random fields (CRFs) [Lafferty et al., 2001] towards this end would be an interesting

extension to the current formulation.

Our current implementation is limited by the need to obtain expert opinion similar to

other rule-based systems. While rule-based systems have been very successful in recent

challenges [Uzuner, 2009], they are more cumbersome to scale due to the information ac-

quisition bottleneck. Moreover, there may be valuable rules that did not occur to the expert

in the development cycle. To remedy this, one can extract rules from known ontologies such

as existing medication indication dictionaries [Burton et al., 2008] or UMLS. Combined

with techniques such as boosting [Friedman et al., 1998], candidate rules can be constructed

automatically. Such feature induction can also be integrated into an interactive system that

uses experts to evaluate proposed rules for medical plausibility.

Our system mitigates shortcomings of current NLP techniques by encoding additional in-

dependent sources of information that provide reinforcement where entirely language based

systems err. This has the additional benefit of building a more comprehensive case for

each patient providing the health experts with a transparent system where the evidence

supporting each decision can be verified holistically.



Chapter 3

Discovering Dynamic Signatures in

Physiologic data

The task of discovering novel medical knowledge from complex, large scale and high-

dimensional patient data, collected during care episodes, is central to innovation in medicine.

This chapter, and the next addresses the task of discovery in the context of physiologic data

from the bedside monitors.

In this chapter, we propose a method for exploratory data analysis and feature construc-

tion in continuous-valued physiologic time series. While our primary motivation comes from

clinical data, our methods are applicable to other time series domain. Our method focuses

on revealing shared patterns in corpora where individual time series differ greatly in their

composition.

3.1 Introduction

Time series data is ubiquitous. The task of knowledge discovery from such data is impor-

tant in many scientific disciplines including patient tracking, activity modeling, speech and

ecology. For example, in our domain of seeking to understand disease pathogenesis from

physiologic measurements (e.g., heart rate signal shown in figure 3.1), several interesting

questions arise. Are there any repeating patterns or signatures in this data? How many

such signatures exist and what their characteristics might be? Furthermore, are there collec-

tions of signatures that co-occur and are indicative of the underlying (disease) state? Such

questions arise in other domains as well including surveillance and wild-life monitoring. In

31



32 CHAPTER 3. DISCOVERING DYNAMIC SIGNATURES IN PHYSIOLOGIC DATA

Heart rate (residual) signal

Figure 3.1: Heart signal (mean removed) from three infants in their first few hours of life.

such domains where the outcome of interest (e.g., health status) is difficult to measure di-

rectly and surrogate measurements are made instead (e.g., physiological variables), latent

(hidden) variable models are a natural choice for knowledge discovery. Different diseases

might be associated with multiple latent states that each generate data with distinct physi-

ologic characteristics. Structure discovered with such a model can help reveal how diseases

manifest, uncover novel disease associations, and highlight relationships between diseases.

In many temporal domains, individual series show significant variability and an a priori

breakdown of data into distinct sets is unclear. In clinical data, for example, two patients

are rarely alike; they may suffer from different sets of diseases and to varying extents.

Traditional generative models for time series data, such as switching Kalman filters [Bar-

Shalom and Fortmann, 1987] or mixtures of such models [Fine et al., 1x998], assume the

data to be generated from a discrete set of classes, each specifying the generation of a

homogeneous population of i.i.d. time series. To see the shortcoming of such an approach,

in our example, the patient state over time transitions over a large set of latent states

(coughing, wheezing, sleeping and so on). Generation of all series from a single transition

matrix over the set of latent states assumes that all series express these latent states in

the same proportion (on expectation). But, in reality, different patients express these

states in radically different proportions, depending on their combination of diseases and

other physiological factors. While mixture models (inducing a distribution over different

dynamic models) can generate additional variability, the set of possible combinations can

grow combinatorially large. And, thus, a pre-imposed partition of the space of patients into

a fixed number of classes limits our ability to model instance-specific variability.

Hierarchical Bayesian modeling [Kass and Steffey, 1989; Gelman et al., 1995] has been

proposed as a general framework for modeling variability between individual “units”. As an

example of this framework, in the domain of natural language processing, Latent Dirichlet
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Time

Figure 3.2: Example of three time series with shared signatures. Segments of each distinct
color are generated by the same function, and thereby are instances of the same signature
or word. Signatures here correspond to autoregressive functions. The choice of function
used at any given time depends on the latent topic at that time. While the three series
differ greatly in their composition, they contain shared structure to varying extents.

Allocation (LDA) [Blei et al., 2003] has found success as a representation for uncovering

the underlying structure of document corpora. Each document is associated with its own

distribution over latent variables called topics, each of which is shared across the population

and defines a distribution over words. Analogously, in our application1, an individual patient

maintains its own distribution over both latent (disease) topics and transitions between

them. Each topic defines a distribution over temporal signatures (physiologic symptoms)

observed in the time series and these behaviors play the role of words. However, unlike

text data, in continuous-valued time series data, the notion of a word is non-obvious. A

word could be specified as a segmented window of the data itself, but this allows for little

compression, as most continuous-valued time series segments, unlike discrete text segments,

do not repeat exactly. Our proposed model uses a more flexible representation of a word

that specifies a parametric function to generate the temporal dynamics for the duration of

that word. For example, in figure 3.2, autoregressive functions are used for generating the

temporal dynamics. Each distinct color can be likened to a word and therefore, there are
1Our model is a more general instance of Hierarchical Bayes than LDA which models only discrete data.

The analogy to LDA is made primarily to provide the readers a familiar overview of our model.
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five “words” in this corpora. Moreover, the duration of the word also does not need to be

fixed in advance, and as shown may vary from one occurrence to another. Hence, our model

also postulates word boundaries.

In our approach, words are selected from an infinite dimensional latent space that cor-

responds to the possible real-valued instantiations to the parameters of the functions that

generate the data. Naive sampling in this infinite-dimensional space given the data will

result in no sharing of words across topics [Teh et al., 2006]. For knowledge discovery

tasks, sharing of words across topics is particularly desirable, as it allows us to uncover

relationships between different latent states. For example, one can infer which diseases are

physiologically similar based on the extent to which they share words. To enable sharing, we

utilize hierarchical Dirichlet processes (HDPs) [Teh et al., 2006], designed to allow sharing

of mixture components within a multi-level hierarchy. Thus, our model discovers words and

topics shared across the population while simultaneously modeling series-specific dynamics.

The chapter is structured as follows: we first give background on the existing building

blocks of Dirichlet Processes and HDPs used in our model. We then describe the time series

topic model (TSTM), a flexible hierarchical latent variable model for knowledge discovery

in time series data, especially useful for domains when between series variability is signifi-

cant. Next, we describe related work in models for processing continuous time-series data.

Following this, we provide a block Gibbs sampler for TSTM. We present results on our

target application of analyzing physiological time series data. We demonstrate usefulness of

the model in constructing features within a supervised learning task. We also qualitatively

evaluate the model output and derive new clinical insights that led to the development of

a state-of-the-art personalized risk stratification score for morbidity in infants described in

Chapter 5.

3.2 Background

Below, we briefly define Dirichlet Process and the Hierarchical Dirichlet Process. Though

several texts have described these distributions in great detail before, for the sake of being

comprehensive, we describe key properties here that give intuition about their use as priors

on mixture models. The text for the following subsections is adapted from Fox et al. [2007].
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3.2.1 Dirichlet Processes

The Dirichlet Process (DP) is commonly used as a prior on the parameters of a mixture

model with a random number of components. A DP is a distribution on probability mea-

sures on a measurable space Θ. This stochastic process is uniquely defined by a base

measure H on Θ and a concentration parameter γ. Consider a random probability measure

Go ∼ DP (γ, H). The DP is formally defined by the property that for any finite partition

{A1, · · · , AK} of Θ,

(G0(A1), · · · , G0(AK)) | γ, H ∼ Dir(γH(A1), · · · , γH(AK))

That is, the measure of a random probability distribution Go ∼ DP (γ, H) on every finite

partition of Θ follows a finite-dimensional Dirichlet distribution [Ferguson, 1973]. A more

constructive definition of the DP was given by Sethuraman [1994]. He shows that G0 ∼
DP(γ, H), a sample drawn from the DP prior, is a discrete distribution because, with

probability one:

G0 = Σ∞
k=1βkδθk

(3.1)

where θk ∼ H. The sampling of βk follows a stick-breaking construction defined as:

βk = β′k

k−1∏
l=1

(1− β′l) β′k ∼ Beta(1, γ) (3.2)

Essentially, we have divided a unit stick into lengths given by the weights βk. βk is a random

proportion β′k of the remaining stick after the previous (k − 1) weights have been defined.

Generally, this construction is denoted by β ∼ GEM(γ).

To give intuition for how the DP is used as a prior on the parameters of a mixture

model with a random number of components, consider draws from H to be the description

of candidate cluster centers. The weights βk define the mixing proportions. γ controls the

relative proportion of the mixing weights, and thus determines the model complexity in

terms of the expected number of components with significant probability mass.

To see why the DP as a prior induces clustering, we visit another property of the DP,

introduced by Blackwell and MacQueen [1973]. Consider a set of observations {yi} sampled

from G0. Consider zi to be the variables that select for each data observation yi the unique
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value θk that the observation is sampled from i.e. yi ∼ f(θzi). Let K be the number of

unique θk values that have data observations y1, · · · , yN associated with them.

p(zN+1 = z|z1, · · · , zN , γ) =
γ

N + γ
I(z = K + 1) +

1
N + γ

K∑
k=1

N∑
i=1

I(zi = k)I(z = k)

In other words, zN+1 samples its value based on how frequently these values have been used

by previously sampled data observations and is more likely to sample a frequently sampled

value. Thus, we see that the DP has a reinforcement property that leads to a clustering of

the data. This property is essential in deriving finite and compact models.

Finally, we can also obtain the DP mixture model as the limit of a sequence of finite

mixture models. It can be shown under mild conditions that if the data were generated by

a finite mixture, then the DP posterior is guaranteed to converge (in distribution) to that

finite set of mixture parameters [Ishwaran and Zarepour, 2002a]. Let us assume that there

L components in a mixture model and we place a finite-dimensional Dirichlet prior on these

mixture weights:

β|γ ∼ Dir(γ/L, · · · , γ/L) (3.3)

Let GL
0 =

∑L
k=1 βkδθk

. Then, it can be shown [Ishwaran and Zarepour, 2000; 2002b] that

for every measurable function f integrable with respect to the measure H, this finite distri-

bution GL
o converges weakly to a countably infinite distribution G0 distribution according

to a Dirichlet process. Similar to Fox et al., [2007], we use this truncation property in the

development of our block Gibbs sampler.

3.2.2 Hierarchical Dirichlet Processes

There are many scenarios where groups of data are thought to be produced by related,

yet distinct, generative processes. For example, in our target application of physiologic

monitoring, different diseases and syndromes likely share physiologic traits, yet data for

any single disease should be grouped and described by a similar but different model from

that of another disease. Similarly, in document modeling, news articles may share topics in

common. Yet, documents published in, say, the New York Times should be grouped and

described by a similar but different model from that of the Wall Street Journal. Similarly,

in surveillance, different activity trajectories may contain activities in common. Yet, data
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collected at different times of the day should be modeled as different but similar groups.

The Hierarchical Dirichlet Process [Teh et al., 2006] extends the DP to enable sharing in

such scenarios by taking a hierarchical Bayesian approach: a global Dirichlet process prior

DP (η, G0) is placed on Θ and group-specific distributions are drawn from a the global prior

Gj ∼ DP (η, G0), where the base measure Go acts as an “average” distribution across all

groups. When the base measure G0 ∼ DP (γ, H) itself is distributed according to a Dirich-

let process, the discrete atoms θk are shared both within and between groups. If the base

measure G0 were instead fixed and absolutely continuous with respect to Lebesgue mea-

sure, there would be zero probability of the group-specific distributions having overlapping

support.

More formally, draws Gd ∼ DP(η, Go) from an HDP can be described as

G0 = Σ∞
k=1βkδθk

βk ∼ GEM(γ), θk ∼ H (3.4)

Gd = Σ∞
k=1Σ

∞
t=1β̂jtδθjt

I(θjt = θk) β̂jt ∼ GEM(η), θjt ∼ G0 (3.5)

Essentially, since Gd samples its values θjt from a discrete distribution, any given atom

θk from the base distribution can be sampled more than once. The corresponding weight

for that atom θk in Gd is computed by aggregating the sampled weights β̂jt for all atoms

θjt = θk.

As with the DP, the HDP mixture model has an interpretation as the limit of a finite

mixture model. Placing a finite Dirichlet prior on the global distribution induces a finite

Dirichlet prior on the group-specific distribution and as L → ∞, this model converges in

distribution to the HDP mixture model [Teh et al., 2006]:

β|γ ∼ Dir(γ/L, · · · , γ/L) (3.6)

φj |η, β ∼ Dir(ηβ1, · · · , ηβL) (3.7)

Our block Gibbs sampler for performing inference in the TSTM exploits this truncation

property.
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Figure 3.3: Graphical representation of the Time Series Topic Model (TSTM).

3.3 Time Series Topic Model

Time Series Topic Model (TSTM) is a 4-level hierarchical Bayesian model. It makes the

assumption that there is an underlying fixed set of topics that is common to the heteroge-

neous collection of time series in the corpus. A topic is a distribution over the vocabulary

of all words present in the corpus. An individual time series is generated by first choosing

a series-specific transition matrix over the topics. To sample each “word”: sample a topic,

and then sample a word from that topics’ distribution over words.

As discussed above, unlike discrete sequence data (e.g., text), in time series data the
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Symbol Description
D Number of topics.

φ1:D Topics 1 through D.
φd The dth topic.
πg Global topic transition matrix.
πn Series specific topic transition matrix.

fk(.; θk) parametric functions that generate the data; k indexes these functions. Also,
refered to as the kth word.

yt Data observed at time t.
I(E) Indicator function where E is the event.
1 : D Abbreviation for 1 through D.

Table 3.1: Notation.

features to be extracted are often not structurally obvious (see figure 3.1). Pre-segmenting

the sequence data into “words” does not offer sufficient flexibility to learn from the data,

especially in the realm of exploration for knowledge discovery. Thus, TSTM discovers words

from an infinite-dimensional parametric function space while simultaneously learning topics

and series-specific evolution parameters.

We describe below each of the TSTM components. We begin by giving a brief overview

of the random variables in the model and then describe the generation process (in a bottom-

up fashion). We define notation that is commonly used in this chapter in table 3.1.

3.3.1 Overview of the model variables

Random variable yt denotes the observation at a given time t (see figure 3.3 for the graphical

model). zt is a latent variable that indexes the “word” used to generate the data observed

at that time. dt ∈ {1, · · · , D} tracks the latent topic at any given time. Binary variables

ot control the word length. The word at a given time t, zt is generated from the topic

distribution φdt . Each series has a series specific topic transition matrix πn from which dt is

sampled at each time t. The matrices πn are sampled from a global topic transition matrix

πg.
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3.3.2 Generative Process

Data generation model: Let F = {f(. : θ) : θ ∈ Θ} be the set of all possible data

generating functions and fk = f(. : θk) be the fuction indexed by k. We assume that

the continuous-valued data yt at time t is generated using a function fk These functions

take as inputs ~xt, values dependent on current and previous time slices, and generate the

output as yt = f(~xt; θk), denoted as fk. fk, an expressive characterization of the time

series dynamics, can be thought of as the kth word in the time-series corpus vocabulary.

The parameterization of fk depends on the choice of the observation model. Below, we

describe the Vector Autoregressive Process (VAR) observation model. VARs have been

used extensively for temporal modeling in numerous domains, including medical time series

of fMRI, EEG and physiologic data [Williams et al., 2005a]. We use this observation model

for our target application and refer to functions discovered by applying TSTM to physiologic

data as dynamic signatures.

Depending on the data, other observation models (such as the mixture model emissions

utilized in [Fox et al., 2007]) can be used instead within TSTM.

In an order p autoregressive process, given a function fk with parameters {Ak, V k},
observed data yt is assumed to be generated as:

~yt = AkXT
t + ~vt vt ∼ N (0, V k)

and ~yt ∈ Rm for an m-dimensional series. The inputs, Xt = [~yt−1, . . . , ~yt−p]. Parameters

Ak ∈ Rm×p, and V k is an m×m positive-semidefinite covariance matrix. The kth word then

corresponds to a specific instantiation of the function parameters {Ak, V k}. For TSTM, we

want the words to persist for more than one time step. Thus, for each word, we have an

additional parameter ωk that specifies the mean length of the word as 1/ωk. We describe how

ωk is used in data generation, below. For any fk ∈ F , we denote the function parameters

more generally by ~θk ∈ Θ.

Dynamics of words and topics: Given the words (F), topics (φ1:D, D is the maxi-

mum number of topics) and series-specific transition matrices (πn), the series generation is

straightforward. For each time slice t ∈ 1, · · · , T ,

1. generate the current latent topic state given the topic at previous time-step, dt ∼
Mult(πdt−1

n ),
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2. generate the switching variables ot, which determine whether a new word is selected. A

new word is always generated (ot = 0) if the latent state has changed from the previous

time step; otherwise, ot is selected from a Bernoulli distribution whose parameter

determines the word length. Thus, ot ∼ I(dt = dt−1)Bernoulli(ωzt−1), where I is the

indicator function.

3. the identity of the word to be applied is generated; if ot = 1, we have zt = zt−1,

otherwise zt ∼ Mult(φdt).

4. the observation given the temporal function index zt is generated as yt ∼ f(xt; θzt).

The series specific topic transition distribution πn is generated from the global topic

transition distribution πg. To generate πn, each row i is generated from Dir(αlπ
i
g), where

πi
g is the ith row of the global topic transition distribution. Hyperparameter αl controls

the degree of sharing across series in our belief about the prevalence of latent topic states.

A large αl assigns a stronger prior and allows less variability across series. Given hyper-

parameters αg and κ, πi
g ∼ Dir(αg + κδi). κ controls the degree of self-transitions for the

individual topics.

Word and Topic descriptions: To uncover the finite data generating parametric func-

tion set F where these functions are shared across latent topics φd, we use the hierarchical

Dirichlet process (HDP) [Teh et al., 2006]. Thus,

φd ∼ DP (η, β), β ∼ GEM(γ), θk ∼ H (3.8)

First, we define the base distribution H. Similar to [Fox et al., 2009], we use a matrix-

normal inverse-Wishart prior on the parameters {Ak, V k} of the autoregressive process and

a symmetric Beta prior on ωk as our base measures H. φd and β are easily generated using

the truncation property, described in detail as part of the inference algorithm in section 3.5.

While we do not use the stick-breaking representation in our derivation of the inference

algorithm, it is instructive to see how the HDP induces shared words between topics in the

TSTM. Draws from H yield candidate words or data generating functions denoted by atoms

δθk
in Eq. 3.4. By associating each data sample yt (time points in the series) through the

latent variables zt with a specific data generation function, the posterior distribution yields

a probability distribution on different partitions of the data. The mixing proportion (the

weights for each θk in Eq. 3.4) in the posterior distribution is obtained from aggregating
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corresponding weights from the prior and the assigned data samples.

Since measures Gd in Eq. 3.5 are sampled from DP(η, G0) with a discrete measure as its

base measure, the resulting topic distributions φd have a non-zero probability of regenerating

the same data generating functions θk, thereby sharing functions between related topics.

3.4 Related Work

An enormous body of work has been devoted to the task of modeling time series data.

Probabilistic generative models, the category to which our work belongs, typically utilize

a variant of a switching dynamical system [Bar-Shalom and Fortmann, 1987; Fine et al.,

1x998], where one or more discrete state variables determine the momentary system dy-

namics, which can be either linear or in a richer parametric class. The autoregressive

hidden Markov model (AR-HMM) is one such example. Observations at any given time

are generated via an autoregressive process. A hidden Markov model selects the choice

of autoregressive process used at that time. However, these methods, as discussed above,

typically utilize a single model (as is the case in an AR-HMM) for all the time series in the

data set, or at most define a mixture over such models, using a limited set of classes. These

methods are therefore unable to capture significant individual variations in the dynamics

of the trajectories for different patients, required in our data.

Recent work by Fox and colleagues [Fox et al., 2009; 2007; 2008] uses nonparametric

Bayesian models for capturing the generation of continuous-valued time series. Works [Fox

et al., 2007; 2008] have utilized hierarchical Dirichlet process priors for inferring the number

of features in hidden Markov models and switching linear dynamical systems but, akin to

our discussion of [Bar-Shalom and Fortmann, 1987] above, these models do not explicitly

represent variability across exemplar series. Conceptually, the present work is most closely

related to BP-AR-HMMs [Fox et al., 2009], which captures variability between series by

sampling subsets of words (AR processes) specific to individual series. However, unlike

TSTM, BP-AR-HMM does not have a mechanism for modeling the high-level topics that

hierarchically capture structure in the collection of words. We show example results from

the BP-AR-HMM in the results section to further elucidate the benefits of the generation

mechanism of TSTM over BP-AR-HMM. Temporal extensions of LDA [Wang et al., 2008;

Wang and McCallum, 2006] model evolution of topic compositions over time in text data

but not continuous-valued temporal data.
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A very different approach to analyzing time series data is to attempt to extract features

from the trajectory without necessarily constructing a generative model. For example, one

standard procedure is to re-encode the time series using a Fourier or wavelet basis, and

then look for large coefficients in this representation. However, the resulting coefficients do

not capture signals that are meaningful in the space of the original signal, and are therefore

hard to interpret. Features can also be constructed using alternative methods that produce

more interpretable output, such as the work on sparse bases [Lee et al., 2009]. However, this

class of methods, as well as others [Mueen et al., 2009], require that we first select a window

length for identifying common features, whereas no such natural granularity exists in many

applications. Moreover, none of these methods aims to discover higher level structure where

words are associated with different “topics” to different extents.

3.5 Approximate Inference

Several approximate inference algorithms have been developed for mixture modeling using

the HDP; see [Teh et al., 2006; Fox et al., 2007; Kurihara et al., 2007] for a discussion

and comparison. We use a block-Gibbs sampler that relies on the degree L weak limit

approximation presented in [Ishwaran and Zarepour, 2002b]. This sampler has the advan-

tage of being simple, computationally efficient and shows faster mixing than most alternate

sampling schemes [Fox et al., 2007]. The block-Gibbs sampler for TSTM proceeds by al-

ternating between sampling of the state variables {dt, zt}, the model parameters, and the

series specific transition matrices.

We detail the update steps of our block-Gibbs inference algorithm below. To briefly

describe new notation used below, n indexes individual series. We drop the index n when

explicit that the variable refers to a single series. We drop sub-indices when all instances of

a variable are used (e.g., z1:N,1:Tn is written as z for short).

Sampling latent topic descriptions β, φd: The DP can also be viewed as the

infinite limit of the order L mixture model [Ishwaran and Zarepour, 2002b; Teh et al., 2006]:

β|γ ∼ Dir(γ/L, · · · , γ/L)

φd ∼ Dir(ηβ) θk ∼ H
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We can approximate the limit by choosing L to be larger than the expected number of

words in the data set. The prior distribution over each topic-specific word distribution is

then:

φd|β, η ∼ Dir(ηβ1, · · · , ηβL)

Within an iteration of the sampler, let md,l be the counts for the number of times zn,t

sampled the lth word2 for the dth disease topic; that is, let

md,l =
∑

n=1:N

∑
t=1:Tn

I(zn,t = l)I(dn,t = d)I(on,t = 0)

and

m.,l =
∑

d=1:D

md,l

The posterior distribution for the global and individual topic parameters is:

β|z, d, γ ∼ Dir(γ/L + m.,1, · · · , γ/L + m.,L)

φd′ |z, d, η, β ∼ Dir(ηβ1 + md′,1, · · · , ηβL + md′,L)

Sampling word parameters ωl and θl: Loosely, the mean word length of the lth

word is 1/ωl. A symmetric Beta prior with hyperparameter ρ, conjugate to the Bernoulli

distribution, is used as a prior over word lengths. The sufficient statistics needed for the

posterior distribution of ωl are the counts:

c̄l,i =
∑

n=1:N

∑
t=1:Tn

I(dn,t = dn,t−1)I(zn,t−1 = l)I(on,t = i)

where i ∈ {0, 1}, representing the number of time steps, across all sequences, in which the

topic remained the same, the word was initially l, and the word either changed (on,t = 1)

or not (on,t = 0). Thus, ωl|c̄l,., ρ ∼ Beta(ρ/2 + c̄l,1, ρ/2 + c̄l,0).

2Within this approximation, words are ordered such that all words that are observed in the corpus are
assigned indices less than L. Thus, l indexes the lth observed word, which can correspond to different
parameter instantiations over different iterations.
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For sampling the AR generating function parameters, note that, conditioned on the

mode assignments z, the observations y1:T,1:N can be partitioned into sets corresponding to

each unique l ∈ L. This gives rise to L independent linear regression problems of the form

Y l = AlX l + El where Y l is the target variable, with observations generated from mode l,

stacked column-wise. X l is a matrix with the corresponding r lagged observations and El is

the corresponding noise matrix. The parameters Al and V l are sampled from the posterior

given conjugate priors of the Matrix-Normal Inverse-Wishart, similar to [Fox et al., 2009].

Sampling global and series-specific transition matrices, πg and πn: Since the

number of topic states D is known, and we use conjugate priors of Dirichlet distribution

for each row of the transition matrix, the posterior update simply involves summing up

counts from the prior and the data. The relevant count vectors are computed as ci
n,k =∑Tn

t=1 I(dn,t−1 = i)I(dn,t = k) and ci
k =

∑N
n=1 ci

n,k which aggregates over each series.
~ci = {ci

1, · · · , ci
D} and i indexes a row of the transition matrix:

πi
g|d, αg, κ ∼ Dir(αg + κδi + ~ci)

πi
n|πg, d, αl ∼ Dir(αlπ

i
g + ci

n,1:D)

Sampling state variables: If all model parameters (topic and word descriptions)

are specified, then one can exploit the structure of the dependency graph to compute the

posterior over the state variables using a single forward-backward pass. This is the key

motivation behind using block Gibbs. The joint posterior can be computed recursively.

Forward sampling is used to sample the variables in each time slice given the samples from

the previous time slice as P (z1:T , d1:T |y1:T , ~π) =
∏

t P (zt, dt|zt−1, dt−1, y1:T , ~π). Top-down

sampling is used within a given time slice.

Let ~π represent the vector of all model parameter values {π1:N , ω1:L, θl:L, φ1:D} instanti-

ated in the previous Gibbs iteration. Since state variables for individual time series n can be

sampled independently from the posterior, we drop this index and represent ~st = {dt, zt, ot}
as the state variables in time slice t for any given series. When obvious, we drop mention

of the relevant model parameter to the right of the conditioning bar.
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The joint posterior is:

P (z1:T , d1:T |y1:T , ~π) =
∏

t

P (zt, dt|zt−1, dt−1, y1:T , ~π)

To use forward sampling to sample variables in each time slice given samples for the previous

time slice, we compute P (~st|~st−1, y1:T , ~π). This can derived recursively as:

P (zt, dt|zt−1, dt−1, y1:T , ~π) =
P (zt, dt|zt−1, dt−1, ~π)g(yt:T |zt, dt, ~π)∑

zt,dt
P (zt, dt|zt−1, dt−1, ~π)g(yt:T |zt, dt, ~π)

(3.9)

The first term in the numerator is:

P (zt, dt|zt−1, dt−1, ~π) = P (dt|dt−1, π
dt−1
n )(P (ot = 1|ωzt−1 , zt−1)I(zt−1 = zt) +

P (ot = 0|ωzt−1 , zt−1)P (zt|dt))I(dt=dt−1)P (zt|dt)(1−I(dt=dt−1))

The second term in Eq. 3.9 can be computed recursively using message passing starting at

t = T where g(yt+1:T |zt+1, dt+1, ~π) = 1 and moving backward

g(yt:T |zt, dt, ~π) = f(yt|zt)
∑

zt+1,dt+1

P (zt+1, dt+1|zt, dt, ~π)g(yt+1:T |zt+1, dt+1~π)

Once posteriors are computed, within a time step t, top-down sampling is used as:

dt|dt−1, zt−1, y1:T , ~π ∼
∑

zt
P (dt, zt|dt−1, zt−1, y1:T , ~π)

Variable ot is only sampled when dt = dt−1. Furthermore, zt is sampled only when ot = 0

or dt is different from dt−1, otherwise zt = zt−1.

ot|zt−1, y1:T , ~π ∼ P (ot|zt−1, ωzt−1)
∑
zt

P (zt|ot, ~π)P (yt:T |zt, dt, ~π) dt = dt−1

zt|dt, ot = 0, y1:T , ~π ∼ P (zt|dt)P (yt:T |zt, dt, ~π)
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3.6 Experiments and Results

We demonstrate the utility of TSTM on physiologic heart rate (HR) and respiratory rate

(RR) signals collected from 145 premature infants from our Stanford NICU dataset. Due

to prematurity, these infants are extremely vulnerable, and complications during their stay

in the NICU can adversely affect long term development. Our broader aim is to identify

markers associated with and predictive of downstream health status.

Clinicians and alert systems implemented on ICU monitors utilize coarse information

such as signal means (e.g., is the HR > 160 beats per minute) and discard the remaining

signal. We use TSTM to infer whether there is information contained in the signal dynamics.

Transient events can manifest in the HR or the RR signal independently (e.g., bradycardia is

observed in the HR signal while apnea is primarily observed in the RR signal). Thus, for our

experiments below, we run TSTM on each signal independently; simultaneous processing

of both signals is also easily possible with TSTM using the vector autoregressive process

observation model as described in section 3.3.2.

Roadmap: We first evaluate the goodness of fit of TSTM on each physiologic signal.

We also evaluate the utility of TSTM for feature construction on a supervised learning

task of grade assignment. We then perform a qualitative analysis of the learned words,

topics and inferred infant-specific distributions for clinical relevance. Finally, we show an

experimental comparison between TSTM and BP-AR-HMM.

3.6.1 Experimental Setup

For all our experiments, we preprocess the physiologic signals to remove a 40 minute moving

average window; this allows us to capture characteristics only related to the dynamics of the

signal (resulting HR signal shown in figure 3.1). For TSTM, we fix the number of topics,

D = 4. Although this choice is flexible, for our dataset, we chose this based on clinical bias.

We identify four clinically meaningful topics: Lung for primarily lung related complications;

Head for head related (neurological) complications; Multi as the catch-all class for severe

complications that often affect multiple organ systems; and Healthy. We set the truncation

level L to 15. We experimented with different settings of the hyperparameters for TSTM.

Of particular interest is the choice of κ and ρ which control word and topic length and can,
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as a result, force the words to be longer or shorter.3For the reported experiments, αl, γ

and η were each set to 10, κ = 25 and ρ = 20. Similar to [Fox et al., 2009], we specify the

priors on the observation model parameters A and Σ as a Matrix Normal Inverse-Wishart

of N (0, 10 ∗ Ip) and IW (S0, 3); S0 is set to 0.75 times the empirical covariance of the first

difference observations and p is the order of the autoregressive process. For all experiments

with an AR observation model, we use this prior.

3.6.2 Quantitative Evaluation

Goodness-of-Fit

To evaluate the benefit of explicitly modeling heterogeneity between the time series, we com-

pare the goodness-of-fit of TSTM with a switching-AR model on held out test data. Specif-

ically, we compare with auto-regressive hidden Markov models (AR-HMM). AR-HMMs are

HMMs where the observation model used are autoregressive processes [Poritz, 2009]. AR-

HMMs, like other switching Markov models we discussed previously, assume that the data

is generated i.i.d. from a single class model. Thus, an improved goodness-of-fit with TSTM

will illustrate the benefit of modeling series-specific variability.

For the choice of the observation model, we experiment with both first (AR(1)-HMM)

and second order (AR(2)-HMM) autoregressive processes. In figure 3.4, we illustrate the

protocol for this experiment. As shown in figure 3.4a, to generate the test set on which we

evaluate the fit, for each series, we hold out a sample of 4-hour blocks comprising 20% of

the series. We keep the remaining as training data.

To evaluate the test log-likelihood, we average over three separate Gibbs chain for each

model (see figure 3.4b). First, we run each chain for 2000 iterations on the training data.

Chains for both models appear to mix by the 2000th iteration. Each chain is initialized

by sampling model parameters (words, topics and topic-transition matrices for TSTM, and

words and transition matrix for AR-HMM) from the prior. The training is done in an

unsupervised way; the number of topics is initialized as D = 4 but no supervision is given

regarding which infant contains which topics.

3We tested a few other settings of these hyperparameters. We qualitatively evaluated the word histograms
(e.g., shown in figure 3.7a) derived from the series segmentations for whether the infants clustered based on
their illness severity i.e. whether healthy infants have similar word profiles and profiles that are different
from the unhealthy infants. This separation held consistently for our settings suggesting that with regard
to discovery, the results are not sensitive to the specific choice of parameters. Since our primary goal is
discovery, we ran all our experiments with only one setting of these hyperparameters.
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Figure 3.4: Experimental protocol for the evaluation of goodness-of-fit, a) the procedure
for splitting each series into the train and test set, b) the pipeline for evaluating goodness
of fit on the data.

We choose the model parameters sampled at the 2000th iteration as the model for

which we evaluate the goodness-of-fit.4 Each AR-HMM chain was initialized to have the

same number of AR features as that inferred by the corresponding TSTM chain at the

2000th iteration. Test log-likelihood is computed with the forward-backward algorithm on

the test sequences with model parameters fixed from the 2000th iteration of each Gibbs

chain on the training data. Test log-likelihoods, averaged over 3 chains, for TSTM with an

AR(1) observation model and an AR(1)-HMM are -1.425e+5 and -2.512e+5 respectively

4The 2000th iteration for each chain was chosen arbitrarily. Alternately, one may also choose more than
one iteration and average over the iterations. This would require running inference on the test data with
the model at each of these different iterations.
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Model comparison on heart rate data
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Figure 3.5: Test log-likelihood from three separate Gibbs chains for the AR(1)-HMM,
AR(2)-HMM, and TSTM with an AR(1) observation model evaluated on a) the heart rate
data (top), b) the respiratory rate data (bottom).

for the HR signal, and -1.787e+5 and -2.706e+5 for the RR signal. These results are also

shown in figure 3.5a and figure 3.5b respectively. The significant gains in test log-likelihood

using TSTM suggest that explicitly modeling heterogeneity between series is beneficial and

that the topics and words generalize well to held-out data. In figure 3.5, we also see that the

AR(2) observation model, albeit a more complex model than AR(1), does not benefit test

log-likelihood. Thus, for all experiments that follow, we use an AR(1) observation model.
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Feature Derivation

Deriving features is a common task one needs to tackle when using high-dimensional data

(such as the physiologic signals) for supervised machine learning problems. We evaluate the

usefulness of features obtained from the physiologic signals for the task of grade assignment.

Grades G1:N , representing an infant’s health, are assigned to each infant based on his final

outcome, as identified retrospectively by a clinician. Grade 0 is assigned to infants with no

complications; grade 1 to isolated minor complications frequently associated with prema-

turity; grade 2 to multiple minor complications; and grades 3 − 5 to major complications

from low to severe grades. Features derived from any given model are used for predicting

an infant’s disease grade by combining these features with a rank support vector machine

[Joachims, 2006]. The rank score for a ranking H is:

rankscoreH = ΣN
n=1Σ

N
m=1I(H(n) > H(m))(Gn −Gm)

We compute features from TSTM as follows. We run three Gibbs chains with TSTM

(using unsupervised training as described in the goodness-of-fit experiment above) on the

full data set. The features for each infant are derived as the frequency of each topic at the

2000th iteration of a Gibbs chain normalized by the length of the data sequence.

To report ranking test accuracy, for the set of 145 infants, we generate 20 random folds

with 50 − 50 train/test split and average performance over all folds. For each fold, the

accuracy is computed as a percentage of the maximum achievable score for that test split.

The SVM tradeoff parameter C for each model was set using cross-validation with features

generated from the first Gibbs chain on 3 randomly sampled folds. Due to small sample

size, we do not experiment with the choice of kernel and use the default choice of a linear

kernel for all our experiments.

For comparison with other feature extraction methods from time series data, existing

approaches can be divided into two broad classes: techniques in the frequency-domain

and the time-domain [Shumway, 1988; Keogh et al., 2000]. Frequency analysis using the

discrete fourier transform is one of the most commonly used techniques for time series data

analysis [Keogh et al., 2000]. The frequencies of the resulting FFT coefficients span 1/v for

v ∈ {1, · · · , T}, which results in a large feature set. Traditionally, the large feature set size

is not a concern in the presence of enough data. However, in our application, as is in most

clinical applications, labeled data is often scarce. We experiment with using the raw features
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within the rank SVM. Based on preliminary data analysis, we also compute transformed

features by summing coefficients corresponding to time periods in increments of 4 minutes.

This non-linear binning of features dramatically improves performance for HR data from

near random to 63.5%. In the time domain, we compare with features derived from the

AR(1)-HMM model; for this, we run three Gibbs chains on the full dataset (as described

above). Features for each infant series are computed as the normalized proportion of words

at the 2000th iteration of a Gibbs chain. Performance is reported as the average over all

three chains. To get an assessment of the information contained in the dynamics compared

to the signal mean (a simple measure usually used in standard care), we also grade infants

based on deviation of their signal mean from the normal mean (normal specified as 125

beats/min for HR and 55 breaths/min for RR). We call this approach the clinical norm.

In table 1, we report results for all four methods. TSTM features yield higher perfor-

mance for both the heart rate and respiratory rate signals compared to those derived from

FFTs, AR-HMMs or the clinical norm (although statistical significance is not reached for

difference between AR-HMM and TSTM performance). This suggests that the inferred

topic proportions provide a useful feature representation scheme that can be employed

within supervised objectives as an alternative or in addition to these existing methods.

Model Heart Rate Resp. Rate
TSTM 74.45% 75.48%
FFTs 63.5% 67.69%
AR-HMMs 71.29% 72.68%
Clinical norm 61.37% 68.93%

Table 3.2: Evaluating features from unsupervised training of TSTM.

Comparison to BP-AR-HMM

In figure 3.6a, we show an example run of the BP-AR-HMM model on the heart rate signal

for a randomly selected set of 30 infants. For comparison, inference using TSTM on data

from the same infants is shown in figure 3.7a. For the BP-AR-HMM run, we used a prior of

Gamma(1, 1) on α, the hyperparamter that controls the number of new features generated

and Gamma(100, 1) on κ, the self-transition parameter. The gamma proposals used σ2
γ = 1

and σ2
κ = 200. We refer the reader to [Fox et al., 2009] for the definitions of these parameters.
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Figure 3.6: a) & c) Inferred word distributions from the heart rate signal for 30 infants dur-
ing their first four days at the NICU with the BP-AR-HMM for two different initializations
(initialization setting described in the text); distinct colors correspond to distinct words,
b)& d) Corresponding data log-likelihood of the Gibbs chain for the first 5000 iterations.

For the observation model parameter priors, we use the same specification as that for the

TSTM and AR-HMM experiments. At initialization, each series was segmented into five

contiguous blocks, with feature labels unique to that sequence. BP-AR-HMM is sampling

in the space of binary matrices; as a result, the birth-death sampler in [Fox et al., 2009]

takes much longer to mix compared to our block-Gibbs sampler. Due to the computational

requirements of BP-AR-HMM, each chain is run on only the first four days of data; one

such run takes approximately 34 hours. In the figure 3.6a, we show results from the 5000th

iteration of a Gibbs chain. Each unique color corresponds to a distinct AR-feature (word)

and the bar graph displays the distribution of words for each series.
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In comparing the inferred word distributions from the BP-AR-HMM (figure 3.6a) with

that from TSTM (figure 3.7a), we see that the inferred word distributions from the BP-

AR-HMM are not as clearly amenable to clinical interpretation. Specifically, most series

have features that are not shared with other series. To investigate whether the frag-

mentation was due to lack of mixing, in figure 3.6b, we plot the data log-likelhood as

log
∏

i

∑
Zi P (Y i, Zi|πi, ~θ); the chain appears to have mixed by the 5000th iteration. To en-

courage more sharing across the time series with the BP-AR-HMM, we ran several different

Gibbs chains with different variants of the hyperparameters but the results were visually

similar or even more fragmented. We show another example run in figure 3.6c where we use

the prior for κ as Gamma(200, 1) and at initialization, segment each series into only two

blocks instead of five.5

This behavior is not entirely surprising, since the notion of individual series variation in

BP-AR-HMM is quite different from that in TSTM: TSTM encourages sharing by having

all series utilize the same set of topics, but to different extents; by contrast, BP-AR-HMMs

uses the Beta prior for generation of series which posits that each series samples some

features that are shared and others that are explicitly series-specific. The abundance of

unique features makes comparison between series based on these features difficult.

In order to perform a quantitative comparison with the BP-AR-HMM features, since

we only have a small set of 30 samples and therefore, grading does not make sense, we

train an SVM classifier using leave-one-out cross-validation, to distinguish Healthy vs Not

healthy, using the labels shown at the bottom of figure 3.7a. For the BP-AR-HMM, we

compute frequencies of words extracted from the final iteration of the Gibbs chain shown in

figure 3.6a as features. For TSTM, we run a Gibbs chain on the data for 30 infants without

any supervision. The topic proportions at the 2000th iteration are used as features within

the SVM. The inferred 4-topic proportions from TSTM yields an accuracy of 80% for HR

and 60% for RR data. In contrast, BP-AR-HMM word proportions used as features yields

a lower performance of 70% and 53%. Thus, the fragmentation of the data across multiple

individual features hurts BP-AR-HMM’s performance.

5The colors in these figures are generated randomly for each run so the colors are not comparable between
figure 3.6a and figure 3.6c.
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3.6.3 Qualitative Evaluation

We now analyze the words and topics inferred from TSTM in more detail. We focus on the

model inferred from the heart rate signal.

Partially-supervised training: We experiment with the partially-supervised training

regime of labeled LDA [Ramage et al., 2009], which has the advantage of biasing the topics

into categories that are coherent and more easily interpreted. During training, we constrain

infant-specific transition matrices to not have topics corresponding to complications that

they did not show symptoms for. This type of negative evidence imposes minimal bias,

particularly relevant in clinical tasks, because of the uncertainty associated with the diag-

nosis of the onset and severity of the complication. For each infant in a randomly chosen

subset of 30 infants, we assign a vector λn of length D, where we have a 0 at index i when

this infant is known not to have complications related to the ith category. All infants are

marked to allow having the healthy topic, representing the assumption that there may be

some fraction of their time in the NICU during which they have recovered and are healthy.

Each row of the infant-specific transition matrix is generated as:

πi
n ∼ Dir

(
αl

πi
g ⊗ λn

< πi
g, λn >

)
λn(i) = 1 (3.10)

where ⊗ denotes the element-wise vector product. Under this regime, we run a Gibbs

chain (G1) for the 30 infants. Next, we fix the words and topic distributions φ1:D to that

of the 2000th Gibbs iteration (as discussed in previous experiments) and run inference on

our entire set of 145 infants. Here, no supervision is given; that is, both πg and πn are

initialized from the prior and are left unconstrained during the inference process (using

block Gibbs). We run a Gibbs chain to 400 iterations. Given the words and topics, the

block-Gibbs sampler appears to mix within 200 iterations.

Qualitative analysis: In figure 3.7a, we show 30 randomly selected infants from this

test set at the 400th iteration from chain 1. These infants are not the same as the infants

used in the training set. In panel 3(a), we plot the word distribution for days 1,2 (top) and

days 7,8 (bottom). Infants with no complications are shown as red squares at the bottom

of this panel. In panel 3(b), we plot the degree to which a word is associated with each of

the four topics.

First, we examine the inferred topic posteriors to track the clinical evolution of three
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sample infants 2, 16 and 23 chosen to be illustrative of different trajectories of the word

distributions over time. In figure 3.7c, the bold line shows the smoothed posterior over the

infant being healthy over time. To compute this posterior, for each of the three infants

we run 30 test Gibbs chains with words and topics fixed from the final iteration of G1

(described above). For each infant, at time t within its sequence, we compute ht as the

proportion of times latent state dt = Healthy from the final iteration of all 30 chains. We

smooth ht using an 8 hour window around t. Thus, a posterior value of 1 at t implies the

infant only expressed words associated with the Healthy topic within an 8 hour window of

t.

Infant 2 (I2) was born with a heart defect (small VSD). I2’s heart condition was treated

on day 4. On day 7, her state started to resolve significantly, and on day 8 her ventilator

settings were minimal and she was taken off the drug. Her empirical evolution closely tracks

her medical history; in particular, her state continually improves after day 4. Infant 16 was

a healthier preemie with few complications of prematurity and was discharged on day 4.

Infant 23, on the other hand, got progressively sicker and eventually died on day 4. The

figure shows that their inferred posterior prediction closely tracks their medical history as

well.

Next, we analyze the words and word histograms. Loosely interpreting, words with AR

parameter a > 1 represent heart rate accelerations (e.g., word 8 shown in gray), words

where a is positive and close to 0 represent periods with significantly lower dynamic range

(e.g., word 2 shown in purple) and words with large V represent higher dynamic range

or high entropy. The word frequencies vary greatly across infants. Respiratory distress

(RDS), a common complication of prematurity, usually resolves within the first few days

as the infant stabilizes and is transitioned to room air. This is reflected by the decrease in

relative proportion of word 2, only associated with the Lung topic (as seen in figure 3.7b).

Exceptions to this are infants 3 and 30, both of whom have chronic lung problems. Over-

all, the inferred word histograms highlights separability between healthy and other infants

based on the word mixing proportions, suggesting different dynamics profiles for these two

populations. Words 3, 9 and 10, associated primarily with the healthy topic, occur more

frequently in infants with no complications. These three words also have the highest V k

values suggesting entropy as a signature for health in neonates. Thus, we developed a new

risk stratification score [Saria et al., 2010], that predicts based on data from the first three

hours of life, infants at risk for major complications. We describe this score in detail in
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Chapter 5.

3.7 Discussion and Future work

The primary contribution of this chapter is a new class of models for time-series data that

emphasizes the modeling of instance specific variability while discovering population level

characteristics. Unlike BP-AR-HMM, its closest counterpart, TSTM has a mechanism for

modeling high-level topics that hierarchically capture structure in collections of words. For

a knowledge discovery task, modeling higher-level structure has several advantages. First,

it can help discover novel semantic structure in the data such as the degree to which two

topics (e.g., diseases) share common words (e.g., physiologic traits). It also gives the used

finer control over the types of features extracted from the data; for example, by using TSTM

within a partially supervised setting, emphasis can be placed on discovering features that

identify specific disease pairs.

We demonstrate the use of TSTM in a novel and useful application of modeling het-

erogeneous patient populations over time. We believe that TSTM provides a significant

departure from current practices and a flexible tool for exploratory time series data analy-

sis in novel domains. Furthermore, learned topic or word distributions can serve as features

within supervised tasks. We demonstrated the utility of TSTMs on medical time series,

but the framework is broadly applicable to other time-series applications such as financial

or human-activity data [Liao et al., 2007].

Several extensions of TSTM could yield additional domain insight. In particular, mod-

eling individual topic distributions as evolving over time (analogous to [Wang et al., 2008])

should highlight how the characteristics of the expressed temporal signatures vary as dis-

eases evolve over longer periods of time. Modeling the data as the composition of repeating

signatures expressed at varying temporal granularity (seconds versus minutes versus hours)

would highlight the granularity at which diseases alter measured physiology. We leave

these next steps for future work. In the next chapter, we extend the notion of words from

dynamics related signtures to richer shape related signatures.
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Figure 3.7: (a) Inferred word distributions for the heart rate data for 30 infants during
their stay at the NICU. At the bottom of the word panel, infants marked with red squares
have no complications, (b) distribution over disease topic given words for the population,
(c) posterior over latent state, Healthy, (d) examples of inferred features extracted from the
data.



Chapter 4

Discovering Shape Signatures in

Physiologic data

In addition to dynamics signatures, continuous time series data may often comprise or

contain repeated motifs — patterns that have similar shape, and yet exhibit nontrivial

variability. Identifying these motifs, even in the presence of variation, is an important

subtask in both unsupervised knowledge discovery and constructing useful features for dis-

criminative tasks. This chapter addresses this task using a probabilistic framework that

models generation of data as switching between a random walk state and states that gen-

erate motifs. A motif is generated from a continuous shape template that can undergo

non-linear transformations such as temporal warping and additive noise. We propose an

unsupervised algorithm that simultaneously discovers both the set of canonical shape tem-

plates and a template-specific model of variability manifested in the data. Experimental

results on both physiologic signals from infants, as well as two other challenging real-world

domains, demonstrate that our model is able to recover templates in data where repeated

instances show large variability. The recovered templates provide higher classification ac-

curacy and coverage when compared to those from alternatives such as random projection

based methods and simpler generative models that do not model variability. In analyzing

physiological signals from infants in the ICU, we discover both known signatures as well as

novel physiomarkers.

59
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4.1 Introduction

Continuous-valued time series data in several domains (e.g., pose tracking, finance, patient

monitoring) often contain motifs — segments with similar structure that repeat within

and across different series. For example, in physiologic signals, recognizable shapes such

as bradycardia and apnea are known to precede severe complications such as infection. In

trajectories of people at an airport, we might see repeated motifs in a person checking in at

the ticket counter, stopping to buy food, etc. In pose tracking, we might see characteristic

patterns such as bending down, sitting, kicking, etc. Discovering these repeated segments

can provide primitives that are useful for domain understanding and as higher-level, mean-

ingful features that can be used to segment time series or discriminate among time series

data from different groups.

In many domains, different instances of the same motif can be structurally similar but

vary greatly in terms of pointwise distance [Höppner, 2002]. For example, the temporal

position profile of the body in a front kick can vary greatly, depending on how quickly the

leg is raised, the extent to which it is raised and then how quickly it is brought back to

position. Yet, these profiles are structurally similar, and different from that of a round-

house kick. Bradycardia and apnea are also known to manifest significant variation in both

amplitude and temporal duration. Our goal is to deal with the unsupervised discovery of

these deformable motifs in continuous time series data.

Much work has been done on the problem of motif detection in continuous time series

data. One very popular and successful approach is the work of Keogh and colleagues

(e.g., [Mueen et al., 2009]), in which a motif is defined via a pair of windows of the same

length that are closely matched in terms of Euclidean distance. Such pairs are identified

via a sliding window approach followed by random projections to identify highly similar

pairs that have not been previously identified. However, this method is not geared towards

finding motifs that can exhibit significant deformation. Another line of work tries to find

regions of high density in the space of all subsequences via clustering; see Oates [2002];

Denton [2005] and more recently Minnen et al. [2007]. These works define a motif as a

vector of means and variances over the length of the window, a representation that also is

not geared to capturing deformable motifs. Of these methods, only the work of Minnen et

al. [2007] addresses deformation, using dynamic time warping to measure warped distance.

However, motifs often exhibit structured transformations, where the warp changes gradually
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over time. As we show in our results, encoding this bias greatly improves performance. The

work of Listgarten et al. [2005]; Kim et al. [2006] focuses on developing a probabilistic model

for aligning sequences that exhibit variability. However, these methods rely on having a

segmentation of the time series into corresponding motifs. This assumption allows them to

impose relatively few constraints on the model, rendering them highly under-constrained in

our unsupervised setting.

Here, we propose a method, which we call CSTM (Continuous Shape Template Model),

that is specifically targeted to the task of unsupervised discovery of deformable motifs in

continuous time series data. CSTM seeks to explain the entire data in terms of repeated,

warped motifs interspersed with non-repeating segments. In particular, we define a hidden,

segmental Markov model in which each state either generates a motif or samples from a

non-repeating random walk (NRW). The individual motifs are represented by smooth con-

tinuous functions that are subject to non-linear warp and scale transformations. Our warp

model is inspired by Listgarten et al. [2005], but utilizes a significantly more constrained

version, more suited to our task. We learn both the motifs and their allowed warps in an

unsupervised way from unsegmented time series data. We demonstrate the applicability of

CSTM to three distinct real-world domains and show that it achieves considerably better

performance than previous methods, which were not tailored to this task.

4.2 Generative Model

The CSTM model assumes that the observed time series is generated by switching between

a state that generates non-repeating segments and states that generate repeating (struc-

turally similar) segments or motifs. Motifs are generated as samples from a shape template

that can undergo non-linear transformations such as shrinkage, amplification or local shifts.

The transformations applied at each observed time t for a sequence are tracked via latent

states, the distribution over which is inferred. Simultaneously, the canonical shape tem-

plate and the likelihood of possible transformations for each template are learned from the

data. The random-walk state generates trajectory data without long-term memory. Thus,

these segments lack repetitive structural patterns. Below, we describe more formally the

components of the CSTM generative model. In Table 4.1, we summarize the notation used

for each component of the model and other notation used frequently through the rest of the

chapter.
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Symbol Description
yt Observation at time t
κt Index of the template used at time t
ρt Position within the template at time t
ωt Temporal warp applied at time t
φt Scale tranformation applied at time t
νt Additive noise at time t
zt Vector {ρt, φt, νt} of transformations at time t

sk kth template, length of template is Lk

πk
ω Warp transition matrix for kth template

πk
φ Scale transition matrix for kth template

T Transition matrix for transitions between templa-
tes and NRW

σ The variance parameter for the NRW state
σ̇ The variance parameter for all shape template states
λ Controls proportion of data explained by NRW vs. the shape template states

I(E) Indicator function where E is the event

Table 4.1: Notation for the generative process of CSTM and other frequently used notation
in this chapter.

4.2.1 Canonical Shape Templates (CST)

Our main goal with the CSTM is to uncover the prototypical ’shape templates’ that reflect

the shapes of repeated occurrences in our time series Y . Even though the observed series

Y is measured at discrete times, CSTM models the underlying shape over the continuous

range of the length of the template.

Each shape template, indexed by k, is represented as a continuous function sk(l) where

l ∈ (0, Lk] and Lk is the length of the kth template. Although the choice of function

class for sk is flexible, a parameterization that encodes the property of motifs expected

to be present in given data will yield better results. In many domains, motifs appear

as smooth functions. A possible representation might be an L2-regularized Markovian

model i.e. a chain where the difference between neighboring values receives a squared

penalty. However, this representation penalizes smooth functions with a trendline (non-

zero gradient) more than those that are flat, a bias not always justified. A promising
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Figure 4.1: a) The template S shows the canonical shape for the pen-tip velocity along
the x-dimension and a piecewise Bézier fit to the signal. The generation of two different
transformed versions of the template are shown; for simplicity, we assume only a temporal
warp is used and ω tracks the warp at each time, b) The resulting character ‘w’ generated
by integrating velocities along both the x and y dimension.

alternative is piecewise Bézier splines [Gallier, 1999]. Shape templates of varying complexity

are intuitively represented by using fewer or more pieces. For our purpose, it suffices

to present the mathematics for the case of piecewise third order Bézier curves over two

dimensions, where the first dimension is the time t and the second diemsnion is the signal

value.

A third order Bézier curve is parameterized by four points pi ∈ R2 for i ∈ 0, · · · , 3.

Control points p0 and p3 are the start and end of each curve piece in the template and
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shared between adjacent pieces (see figure 4.1). The intermediate control points p1 and p2

control the tangent directions of the curve at the start and end, as well as the interpolation

shape. Between end points, τ ∈ [0, 1] controls the position on the curve, and each piece of

the curve is interpolated as

f(τ) =
3∑

i=0

(
3

i

)
(1− τ)3−iτ ipi (4.1)

For higher-dimensional signals in Rn, pi ∈ Rn+1. We use this representation in all our

experiments with real-world data. Also, even though only C0 continuity is imposed here, it

is possible to impose arbitrary continuity within this framework of piecewise Bézier curves

if such additional bias is relevant.

4.2.2 CST Deformation Model

In most natural domains, every instantiation of a repeated pattern will not be exactly the

same. Consider the case of written letters in figure 4.1b: the w’s have similar structure as

they are both easily interpreted as the same symbol, but the handwriting differs leading to

noticeable differences between the two instances.

These differences can be changes in scale (e.g., the second half of the second instance of

w is smaller than the rest of the character), changes in speed (e.g., one person can do the

jumping jack faster than the other leading to a temporally squeezed pose profile), or random

insertions (e.g., a heart rate monitor may given an erroneous reading for a second due to

some interference). Loosely speaking, it is differences such as these that are unrelated to

the overall structure that the transformation model seeks to capture.

Motifs are generated by non-uniform sampling and scaling of sk. Temporal warp can

be introduced by moving slowly or quickly through sk. The allowable temporal warps

are specified as an ordered set {w1, . . . , wn} of time increments that determines the rate

at which we advance through sk. A template-specific warp transition matrix πk
ω specifies

the probability of transitions between warp states. To generate a series y1, · · · , yT , let

ωt ∈ {w1, . . . , wn} be the random variable tracking the warp and ρt be the position within

the template sk at time t. Then, yt+1 would be generated from the value sk(ρt+1) where

ρt+1 = ρt + ωt+1 and ωt+1 ∼ πk
ω(ωt). (For all our experiments, the allowable warps are

{1, 2, 3}δt where δt is the sampling rate; this posits that the longest sequence from sk is
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at most three times the shortest sequence sampled from it.) In figure 4.1a, we show an

illustration of the temporal warp to generate two different instances from the same symbol.

We might also want to model scale deformations. Analogously, the set of allowable

scaling coefficients are maintained as the set {c1, . . . , cn}. Let φt+1 ∈ {c1, . . . , cn} be the

sampled scale value at time t + 1, sampled from the scale transition matrix πk
φ. Thus,

the observation yt+1 would be generated around the value φt+1s
k(ρt+1), a scaled version

of the value of the motif at ρt+1, where φt+1 ∼ πk
φ(φt). Finally, an additive noise value

νt+1 ∼ N (0, σ̇) models small shifts. The parameter σ̇ is shared across all templates.

In summary, we use zt = {ρt, φt, νt} to represent the values of all transformations at

time t and putting together all three possible deformations, we have:

yt+1 = νt+1 + φt+1s
k(ρt+1)

In many natural domains, motion models are often smooth due to inertia. For example,

while kicking, as the person gets tired, he may decrease the pace at which he raises his leg.

But, the decrease in his pace is likely to be smooth rather than transitioning between a very

fast and very slow pace from one time step to another. One simple way to capture this bias

is by constraining the scale and warp transition matrices to be band diagonal. Specifically,

φω(w,w′) = 0 if |w −w′| > b where 2b + 1 is the size of the band. (We set b = 1 for all our

experiments.) Experimentally, we observe that in the absence of such a prior, the model is

able to align random walk sequences to motif sequences by switching arbitrarily between

transformation states, leading to noisy templates and poor performance. We also allow the

warp and scale transition matrices to be template specific assuming that different shapes

show different types and amounts of variations.

4.2.3 Non-repeating Random Walk (NRW)

We use the NRW model to capture data not generated from the templates (see also Den-

ton [2005]). If this data has different noise characteristics, our task becomes simpler as the

noise characteristics can help disambiguate between motif-generated segments and NRW

segments. The generation of smooth series can be modeled using an autoregressive process.

We use an AR(1) process for our experiments where yt = N (yt−1, σ). We refer to the NRW

model as the 0th template.
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4.2.4 Template Transitions

Transitions between generating NRW data and motifs from the CSTs are modeled via a

transition matrix, T of size (K +1)× (K +1) where the number of CSTs is K. The random

variable κt tracks the template at t for an observed series. Transitions out of a template is

not allowed until the end of the template is reached. Thus,

P (κt = κt−1|ρt−1 + ωt < Lκt−1) = 1

P (κt 6= κt−1|ρt−1 + ωt < Lκt−1) = 0

Otherwise, κt ∼ T (κt−1) as the current position has moved past the length of the template.

For T , we fix the self-transition parameter for the NRW state as λ, a pre-specified input.

Different settings of 0 < λ < 1 allows control over the proportion of data assigned to motifs

versus NRW. As λ increases, more of the data is explained by the NRW state and as a

result, the recovered templates have lower variance.1

4.2.5 Summary of CSTM generative process

Below, we summarize the generative process at each time t:

κt ∼ T (κt−1, ρt−1) (4.2)

ωt ∼ πκt
ω (ωt−1) (4.3)

ρt =

{
min(ρt−1 + ωt, L

κt), if κt = κt−1 (4.4)

1, if κt 6= κt−1 (4.5)

φt ∼ πκt
φ (φt) (4.6)

νt ∼ N (0, σ̇) (4.7)

yt = νt + φts
κt(ρt) (4.8)

1Learning λ while simultaneously learning the remaining parameters leads to degenerate results where
all points end up in the NRW state with learned λ = 1.
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4.3 Learning the model

For learning the model, our goal is to find the canonical shape templates, their template-

specific transformation models, the NRW model, the template transition matrix and the

latent states (κ1:T , z1:T ) for the observed series from the data. This can be done by opti-

mizing the log-likelihood with respect to each of these variables. However, the proposed

log-likelihood function does not have a closed form solution and is non-convex.

We use hard Expectation Maximization (EM), a block coordinate ascent algorithm,

which approximately optimizes the joint likelihood of the data and the latent variables. We

opted for hard assignments in the E-step as it is considerably computationally faster when

coupled with pruning.

Let Θ be an arbitrary model and PΘ(y1:T , κ1:T , z1:T ) denote the corresponding joint

likelihood. Then, hard EM approximately solves the optimization problem:

Θ∗ = argmax
Θ

max
κ1:T ,z1:T

PΘ(y1:T , κ1:T , z1:T )

Until convergence, it performs

• E-step: the maximum likelihood assignment to all latent variables given a model

specification

κ1:T , z1:T := argmax
κ1:T ,z1:T

PΘ(y1:T , κ1:T , z1:T )

• M-step: the maximum likelihood assignment to all model parameters given an assign-

ment to the latest variables

Θ := argmax
Θ

PΘ(y1:T , κ1:T , z1:T )

This block coordinate procedure guarantees convergence to a local optimum. Below, we

describe each step of the learning algorithm in more detail.

4.3.1 E-step

The E-step relies on known algorithms in a relatively straightforward manner. Given the

series y1:T and the model parameters Θ from the previous M-step iteration, in the E-step, we
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compute assignments to the latent variables {κ1:T , z1:T } using approximate Viterbi decoding

[Viterbi, 1967].

The approximation done in our Viterbi is to maintain only the high-probability template,

warp and template-position hypotheses for each time point as this reduces the state space

we must examine at the subsequent time point. At each time, we prune to maintain only the

top B highest probability states. This approach of pruning and its variant of pruning with

forward lookups has been used extensively in the speech processing community [Jelinek,

1997]. More specifically, we prune in the forward step as:

P (κt, zt|y1:t,Θ) ∝ P (yt|κt, zt)P (κt, zt|κt−1, zt−1)P̂ (κt−1, zt−1|y1:t−1,Θ)

P̂ (κt, zt|y1:t,Θ) = P (κt, zt|y1:t,Θ). ∗ ~s

.∗ denotes element wise product. The vector ~s is of length P (κt, zt|y1:t,Θ). It contains as

its elements 1 at indices where the corresponding state configuration κt, zt is one of the top

B highest probability states and 0 otherwise.

Exact inference in our model is feasible. If T is the length of the series, W and D are

dimensions of the warp and scale transformation matrices respectively and K is the number

of templates, then the length of the belief state at any given time is W ∗ D ∗ K and the

forward computation at each time t costs O(W 2 ∗D2 ∗K2). Thus, the total cost of exact

inference is O(T ∗ W 2 ∗ D2 ∗ K2). While exact inference is feasible, pruning significantly

reduces the runtime of our algorithm. A few early tests indicated that pruning did not

impact the final assignment as low probability states were seldom used in the final Viterbi

assignments.2 For our experiments, we maintain K × 20 states.

4.3.2 M-step

In the M-step, given the data y1:T and the latent trace {κ1:T , z1:T }, the model parameters

are optimized by taking the gradient of the penalized complete data log-likelihood with

respect to each parameter. Below, we discuss the penalty for each component and the

corresponding update equations.

2Although no theoretical guarantees exist for these pruning schemes, in practice they have been used
extensively in the speech recognition community and shown to perform well.
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Updating the transformation model, πω and πφ

A Dirichlet prior, conjugate to the multinomial distribution, is used for each row of the

transition matrices as penalty Pω and Pφ. In both cases, the prior matrix is constrained to

be band-diagonal. As a result, the posterior matrices are also band-diagonal. The update

is the straightforward MAP estimate for multinomials with a Dirichlet prior. If ηi,j are the

pseudo-counts from the prior, then the update for the posterior is:

πk
ω(i, j) ∝ ηi,j +

T∑
t=1

I(κt = k)I(ωt−1 = i)I(ωt = j)

πk
φ’s are updated similarly.

For all our experiments, we set a weak prior favoring shorter warps: Dir(7, 3, 0), Dir(4, 5, 1)

and Dir(0, 7, 3) for each of the rows of πω and πφ given our setting of allowable warps. As

always, the effect of the prior decreases with larger amounts of data. In our experiments,

we found the recovered templates to be insensitive to the setting for a reasonable range.3

Updating the template transition matrix T

The template transition matrix T is updated similar to the CST transformation matrices.

A single hyperparameter η̇ is used to control the strength of the prior. We set η̇ = n/(K2L),

where n is the total amount of observed data, L is the anticipated template length used in

the initializations, and K is the pre-set number of templates. This is equivalent to assuming

that the prior has the same strength as the data and is distributed uniformly across all shape

templates. To update the transitions out of the NRW state,

T0,k = (1− λ)
η̇ +

∑T
t=2 I(κt−1 = 0)I(κt = k)

η̇K +
∑T

t=2 I(κt−1 = 0)
∑K

k′=1 I(κt = k′)

Transitions are only allowed at the end of each template. Thus, to update transitions

between shape templates,

Tk,k′ ∝ η̇ +
T∑

t=2

I(κt−1 = k)I(κt = k′)I(ρt−1 = Lk)

3If the motifs exhibit large unstructured warp, the prior over the rows of the warp matrices can be
initialized as a symmetric Dirichlet distribution. However, as seen in our experiments, we posit that in
natural domains, having a structured prior improves recovery.
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Fitting Shape Templates

Given the scaled and aligned segments of all observed time series assigned to any given

shape template sk, the smooth piecewise function can be fitted independently for each

shape template. Thus, collecting terms from the log-likelihood relevant for fitting each

template, we get:

Lk = −Psk −
T∑

t=1

I(κt = k)
(yt − φts

k(ρt))2

σ̇2
(4.9)

where Psk is a regularization for the kth shape template. A natural regularization for

controlling model complexity is the BIC penalty [Schwarz, 1978] specified as 0.5 log(N)νk,

where νk is the number of Bézier pieces used and N is the number of samples assigned to

the template.4

Piecewise Bézier curve fitting to chains has been studied extensively. We briefly review

how we fit these curves to our data. Lk is not differentiable and non-convex; a series of

hill-climbing moves are typically used to get to an optimum. We employ a variant which

has been commercially deployed for large and diverse image collections [Diebel, 2008].

First we describe how to fit each curve-piece given the knots. Let the knots of the

piecewise curve be {q0 = 0, q2, · · · , qνk
= Lk}. We can re-write Lk for any shape template

k in terms of the indpendent contribution from piece as:

Lk = −0.5 log(N)νk −
νk−1∑
i=0

qi+1∑
p=qi

T∑
t=1

I(κt, k)I(ρt, p)
(yt − φts

k(p))2

σ̇2
(4.10)

Given the knots [qi, qi+1], control points for a piece are estimated (independently from

other pieces) using least squares regression with the data in that interval. Let M be the

number of data samples specific to that interval, ym their values and ρm their position

within the template. Construct the data matrix Y ∈ RM×2 with each row as [ym ρm]. Let

τm be ρm interpolated between [0, 1]. Let Φ and Ψ be matrices for which the mth row is

constructed as follows:

Φm =
[
(1− τm)3 3τm(1− τm)2 3τ2

m(1− τm) τ3
m

]
,

4A modified BIC penalty of γ(0.5 log(N)νk) can be used if further tuning is desired. Higher values of γ
lead to smoother curves.



4.3. LEARNING THE MODEL 71

Ψm = φmΦm

where φm is the inferred scale for the mth data sample. Then p, the matrix of control

points, is computed as:

p = inv(ΨT Ψ− εI)ΨT~r, p ∈ R4×2, Ψ ∈ RM×4

~r = Y −ΨpT
o , ~r ∈ RM×2

ε ∈ R+ is applied to make the matrix inversion non-singular. The control points that are

shared with neighboring pieces are fixed and initialized as such in po.

To optimize the placement of control point in Lk, the algorithm defines break, swap

and merge moves and applies them iteratively until no gain can be made in the objective

value. A break move splits an interval [t1, t2] into two equal length intervals. This move is

accepted if the gain in likelihood is greater than 0.5 log(N), the penalty from adding a piece.

A swap move adjusts the boundary between adjacent curve pieces. It swaps a subinterval

containing the boundary point out of its current curve and into the adjacent curve. The

swap move is accepted if the gain in likelihood isbpositive. The merge move merges two

curve pieces into a single piece. This move is accepted if the loss in likelihood is less than

log(N).

Updating σ and σ̇

Given the assignments of the data to the NRW and the template states, and the fitted

template functions, the variances σ and σ̇ are computed easily.

σ =

√∑T
t=2 I(κt = 0)(yt − yt−1)2∑T

t=2 I(κt = 0)

σ̇ =

√∑T
t=1 I(κt 6= 0)(yt − φtsκt(ρt))2∑T

t=1 I(κt 6= 0)
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4.3.3 Escaping local maxima

EM is known to get stuck in local maxima, having too many clusters in one part of the

space and too few in another [Ueda et al., 1998]. Split and merge steps can help escape

these configurations by: a) splitting clusters that have high variance due to the assignment

of a mixture of series, and b) merging similar clusters. At each such step, for each existing

template k, 2-means clustering is run on the aligned segmentations. Let k1 and k2 be

the indices representing the two new clusters created from splitting the kth cluster. Then,

the split score Lsplit
k for each cluster is Lk1 + Lk2 - Lk where Li defines the observation

likelihood of the data in cluster i. The merge score for two template clusters Lmerge
k′k′′ is

computed by defining the likelihood score based on the center of the new cluster (indexed

by k′k′′) inferred from all time series assigned to both clusters k′ and k′′ being merged.

Thus, Lmerge
k′k′′ = Lk′k′′ − Lk′ − Lk′′ . A split-merge step with candidate clusters (k, k′, k′′)

is accepted if Lsplit
k + Lmerge

k′k′′ > 0.5 Note that the merge and split steps can also be used

independently to reduce or increase the number of CSTs in the model by trading it off

against an appropriate penalty. In our implementation, we use the merge and split steps

together to preserve the CST count and primarily use these steps as a way of escaping local

maxima.

4.3.4 Model Initialization

A known problem with EM is its susceptibility to local-maxima and dependence on a good

initialization [Koller and Friedman, 2009]. One approach to initializing the model is a

window-length based approach. Prior works have used variants of this approach [Minnen et

al., 2007]. Given a pre-specified window length, using a sliding window, the signal can be

windowed. Clusters extracted using k-means on these windowed signals can be used as an

initialization for CSTM.

The choice of window length is not always obvious, especially in domains where motifs

show considerable warp. An alternative approach is to describe the desired motifs in terms

of their structural complexity — the number of distinct extrema points (peaks and dips)

in the motif. For example, the signals in figure 4.7b, figure 4.9a and figure 4.9b have 4,

5In order to avoid curve fitting exhaustively to all candidate pairs for the merge move, we propose
plausible pairs based on the distance between their template means (sk), and then evaluate the benefit of
the merge-split step using the correct objective. Candidate pairs with the smallest distance between their
template means are considered first.
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8 and 6 extrema points. Such an extrema profile is desirable because it provides a warp

invariant signature of the motif. Simple k-means clustering based on these peak profiles

yields initializations where clusters have segments with similar shapes yet varying lengths.

We call this approach peak-based initialization. We describe this method in more detail

below.

Peak-based initialization

We first characterize a segment s in the continuous time series by the set of its extremal

points [Fink and Gandhi, 2010] — their heights fs
1 , · · · , f s

M and positions ts1, . . . , t
s
M .6 We

can find segments of the desired structure using a simple sliding window approach, in

which we extract segments s that contain the given number of extremal points (we only

consider windows in which the boundary points are extremal points). We now define δs
m =

fs
m − fs

m−1 (taking fs
0 = 0), that is, the height difference between two consecutive peaks.

The peak profile δs
1, . . . , δs

M is a warp invariant signature for the window: two windows

that have the same structure but undergo only temporal warp have the same peak profile.

Multidimensional signals are handled by concatenating the peak profile of each dimension.

We now define the distance between two segments with the same number of peaks as the

weighted sum of the L2 distance of their peak profile and the L2 distance of the times at

which the peaks occur:

d(s, s′) =
M∑

m=1

‖δs
m − δs′

m‖2 + η

M∑
m=1

‖tsm − ts
′

m‖2 (4.11)

The parameter η controls the extent to which temporal warp is considered in the similarity

metric (for example, η = 0 defines an entirely warp-invariant distance); we use η = 1. Using

the metric d, we cluster segments (using e.g., k-means) and select the top K most compact

clusters as an initialization for CSTM. Compactness is evaluated as the distance between

all segments in the cluster to a single segment in the cluster, minimized over the choice of

this segment.

6Noisy peaks below a threshold variation are removed by the extremal point detection algorithm of Fink
and Gandhi [2010].
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1. Subsample data.
2. Initialize clusters for CSTM.

// Peak-based initialization or,
// Window-length based initialization

3. Repeat until maximum number of iterations is reached or change in
likelihood is less than a tolerance,
a. E-step using Viterbi,

// Optional optimization: Prune to keep highest probability
// states at each time step during the forward step.

b. M-step to estimate model parameters,
c. Every few iterations, call split and merge to escape local maxima.

// Optional optimization: Consider candidate pairs based
// on distances between template means as a fast heuristic.

Table 4.2: Summary of the learning algorithm for CSTM

4.3.5 Preprocessing

The complexity of our algorithm depends linearly on the length of the series. Subsampling at

the Nyquist frequency [Nyquist, 1928] lowers the sampling rate without loss of information

in the data.7 We did not build an automated procedure for identifying the Nyquist rate,

but instead examined the Fourier coefficients of the series to select a threshold frequency

greater than which the coefficients had little power. For the NICU dataset used here, the

subsampling provided a more than a 10X speedup.

4.3.6 Summary of learning algorithm

We briefly summarize in table 4.2 the steps of the learning algorithm for CSTM.

4.4 Experiments and Results

We now evaluate the performance of CSTM for uncovering repeated shapes and compare

it to other motif discovery methods. We evaluated CSTM on four different datasets. We

compare on both classification accuracy and coverage, comparing to the widely-used pipeline

that uses random-projection based methods of Mueen et al. [2009]; Chiu et al. [2003]. We

also compare against variants of our model to elucidate the importance of novel bias our

7Intuitively, the Nyquist frequency is the highest frequency at which there is still information in the
signal.
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model imposes over prior work. We give a brief overview of our experimental setup before

describing our results.

4.4.1 Baseline Methods

There are two different approaches that have been used for solving the temporal motif

discovery problem.

We refer to the baselines based on the first approach as GreedyRPM and GreedyRPC.

These are motivated by random-projection based pipelines widely used in prior work. For

GreedyRPM, first the series is windowed using a sliding window approach. A random pro-

jection based algorithm [Mueen et al., 2009] repeatedly finds the closest matched pair of

windows from the set of all candidate windows as a motif. To avoid finding similar motifs at

consecutive iterations, we remove candidate windows within distance d times the distances

between the closest pair at every iteration. Unlike the CSTM, which optimizes a global ob-

jective to discover the most frequent motifs, this pipeline greedily discovers the most closely

matched pairs as motifs one at a time. Thus, we refer to this method as GreedyRPMd (for

Greedy Random-Projection method using the motif discovery procedure of Mueen et al.

[2009] and d specifies the degree of variability allowed within a cluster, larger d leading to

larger variability). For GreedyRPC, the procedure in Mueen et al. [2009] is replaced with

the procedure in Chiu et al. [2003]. The latter selects a motif at each iteration not merely

based on closeness, but based on its frequency in the data. Clusters with a large number

of assigned windows are selected first and a subsequence in the cluster within distance d of

of the highest number of other subsequences in that cluster is selected as the motif. For

both methods, to extract matches to existing motifs on a test sequence, at each point, we

compute the distance to all motifs at all shifts and label the point with the closest matched

motif.

A second series of approaches optimizes the model likelihood, albeit with different mod-

eling biases. To understand the contribution to the performance for each of our model

biases, we define variants of the CSTM where we use alternative biases that have been

previously used. Minnen et al. [2007] and others have used dynamic time warping for

computing similarity between warped subsequences; we define the variant CSTM-DTW

where dynamic time warping is used instead of the structured warp matrices within CSTM.

Each row of the warp matrix is fixed to be the uniform distribution.

A different variant CSTM-NW allows no warps. This is done by setting the warp
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matrix to be of size W = 1. We also define the variant CSTM-MC which represents

the motif as a simple template encoded as a mean vector (one for each point), as done in

majority of prior works [Oates, 2002; Minnen et al., 2007; Denton, 2005] instead of enforcing

the smoothness bias on the motifs.

The goal of the peak-based initialization procedure is to provide an alternative to

window-length methods in domains where the length of the motif is less obvious. There-

fore, to evaluate the competitiveness we report results using this initialization procedure as

CSTM-PB.

4.4.2 Metric

To evaluate the quality of the recovered templates, we use classification accuracy as our

primary metric. We treat the discovered motifs as the feature basis and their relative

proportions within a segment as the feature vector for that segment. Thus, for each true

motif class (e.g., a character or action) a mean feature vector is computed from the training

set. On the test set, each true motif is assigned a label based on distance between its feature

vector and the mean feature vector for each class. Classification performance on the test set

are reported. This way of measuring accuracy is less sensitive to the number of templates

used.8

4.4.3 Datasets

We use four datasets for validation of our model. Although our primary motivation for

this work arose from clinical data, it is difficult to establish ground truth in clinical data.

As discussed in chapter 1, labeling these datasets requires valuable clinician time, which

makes the expense of labeling this data prohibitive. Moreover, tasks of discovery rather

than recognition are more valuable in this domain as the definition of ground truth is not

always well-established. We select two other real-world multivariate datasets where the

motifs are labeled upfront.

The Character data is a collection of x and y-pen tip velocities generated by writing

8To the reader who is curious about why the regime used for measuring phoneme or word segmentation
performance in the speech literature could not be used directly, classification is used as the metric of choice
there. However, typically labeled segments are available to train a classification model and therefore, features
are extracted from pre-segmented ground truth data. In our setting, we wish to evaluate the quality of
segmentation generated on the training set. Thus, we construct the classification model on the segmentations
extracted from the CSTM model in an unsupervised manner.
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characters on a tablet [Keogh and Folias, 2002]. We concatenated the individual series to

form a set of labeled unsegmented data for motif discovery.9

The Kinect Exercise data was created using Microsoft KinectTM by tracking a subject

doing leg-exercises. The data features six leg exercises such as front kick, rotation, and knee

high, interspersed with other miscellaneous activity as the subject relaxes. There are six to

fifteen repetitions of each activity; these repeated instances do not appear all at once. The

dataset was collected in two different settings. We extract the three dimensional coordinates

of the ankle. Different exercises appear as motifs in this three-dimensional stream.

A third Simulated dataset of seven hand-drawn curves was used to evaluate how model

performance degrades under different amounts of NRW segments. In figure 4.2, we show

the hand-drawn curves. With these templates and a random intialization of our model,

we generated four different datasets where the proportions of non-repeating segments were

10%, 25%, 50% and 80%.

The final dataset we use is a clinical dataset from University of Edinburgh. The

dataset has heart rate data collected from 15 infants in the Neonatal Intensive Care Unit

(NICU ) [Williams et al., 2005b]. The data for each infant was collected every second for 24

hours, on nine channels: heart rate, systolic and diastolic blood pressures, TcPO2, TcPCO2,

O2 saturation, core temperature and incubator temperature and humidity. Our goal here

is to discover temporal events that are indicative of health status of the neonate. We chose

this dataset because it has been labeled by a neonatologist; only one clinical event called

bradycardia is marked. Other labels included events such as “incubator open” or “tempera-

ture probe disconnection” which, although useful for reducing false alarms, are not relevant

to our goal of linking events to health status so we ignore these events. The dataset was

labeled by the neonatologist with the intent to demonstrate many variations of any given

event in the data, as opposed to comprehensively labeling every instance of that event.

Moreover, there may be repeating events in the data not known to the neonatologist and

hence, not marked. Therefore, this dataset, unlike the previous three, is partially labeled.

For this reason, we focus on measuring specificity and sensitivity of recovering the known

labelled events of bradycardia as well as uncovering any novel shapes.

9The dataset also has pen-tip pressures. The pen-tip pressure has obvious structure which is that the
pressure goes to zero at the end of each characrer. This makes the segmentation problem easy for a model
based method like CSTM so we do not include the pressure channel in our dataset.
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(a) (b)

Figure 4.2: Hand-drawn curves from the simulated dataset. a) Example sequences generated
from each of the motifs, b) Examples sequences aligned to their canonical shape template.
The bottom right subplot in (a) shows that sequences from the NRW state do not have the
same repeating structure as those from the CSTs do. The bottom right suplot from (b)
shows the data once aligned to the NRW state. Each segment is of unit length once aligned.

4.4.4 Results

Our method, similar to prior work, requires an input of the template length and the number

of templates K. When characterizing the motif length is unintuitive, peak based initializa-

tion can be used to define the initial templates based on complexity of the desired motifs.

In addition, our method requires a setting of the NRW self-transition parameter: λ controls

the tightness of the recovered templates and can be incrementally increased (or decreased)

to tune to desiderata.

The intuition for how λ must be set can be derived by considering relevant terms in the

likelihood. A data point yt is assigned to a template versus the NRW state based on whether

the likelihood of assignment to the former is larger than the latter. More specifically,
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Figure 4.3: Comparison of the CSTM with an initialization using the peak-based method,
and initializations from GreedyRPM and GreedyRPC with different settings for d on the
character dataset. In the figure, GreedyRPM and GreedyRPC have been abbreviated as
Md and Cd respectively.
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Say πω is Uniform(1/W, ..1/W ) where W is the width of the warp matrix. Then,
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σ̇



80 CHAPTER 4. DISCOVERING SHAPE SIGNATURES IN PHYSIOLOGIC DATA

In all our experiments, we set λ = 0.5, a value which respects this constraint. For the choice

of configurations for the various transformation models, CSTM only exploits the temporal

warp and local shift transformations in the experiments below. Our data showed little

amplitude variation so we did not experiment with the amplitude transformation model.

Three different warp levels were allowed i.e. W = 3.

Character Data. On the character dataset, for different settings of the parameters,

number of clusters and the distance d, we computed classification accuracies for GreedyRPM

and GreedyRPC. The window length is easy to infer for this data even without knowledge

of the actual labels; we set it to be 15 (in the subsampled version). We experiment with

different initializations for CSTM: using the motifs derived by the methods of GreedyRPM

and GreedyRPC, and those derived using the peak-based initialization. Figure 4.3 shows

the classification accuracies for these different initializations. The performance of a random

classifier for this dataset is 4.8%. Our method consistently dominates GreedyRPM and

GreedyRPC by a large amount and yields average and best case performance of 68.75%

and 76.25% over all initializations. Our method is also relatively insensitive to the choice of

initialization. Our best performance is achieved by initializing with the peak-based method

(CSTM+PB) which requires no knowledge of the length of the template. Moreover,

for those parameter settings where GreedyRPM does relatively well, our model achieves

significant gain by fitting warped versions of a motif to the same template. In contrast,

GreedyRPM and GreedyRPC must expend additional templates for each warped version

of a pattern, fragmenting the true data clusters and filling some templates with redundant

information, thereby preventing other character patterns from being learned. Increasing the

distance parameter for GreedyRPM can capture more warped characters within the same

template; however, many characters in this dataset are remarkably similar and performance

suffers from their misclassification as d increases.

In the next batch of experiments, we focused on a single initialization. Since GreedyRPM

performed better than GreedyRPC, and is relatively more stable, we consider the GreedyRPM10

initialization, and compare CSTM against its variants with no warp, with uniform warp,

and without a template prior. In figure 4.4a, we see that performance degrades in all cases.

A qualitative examination of the results showed that, while the no-warp version fails to

align warped motifs, the DTW model aligns too freely resulting in convergence to poor

optimum. This becomes evident when the confusion matrices for two models are compared

(as shown in figure 4.5). We see that the CSTM-DTW has many more off-diagonal terms
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Figure 4.4: Accuracy on Character (top) and Kinect (bottom) for CSTM and its variants.
Two different initializations for CSTM are compared: GreedyRPM10 and peak-based.

that are positive reflecting confusion between the corresponding characters are confused

by CSTM-DTW; in comparison, CSTM (with a structured warp matrix) has far fewer off-

diagonal terms. Where CSTM misses, we see that it fails in intuitive ways, with many of

the misclassifications occurring between similar looking letters, or letters that have similar

parts; for example, we see that h is confused with m and n, p with r and w with v.

Kinect Data. Next, we tested the performance of our method on the Kinect Exercise

dataset. To evaluate GreedyRPM on this dataset, we tested GreedyRPM with parameter

settings taken from the cross product of template lengths of 5, 10, 15, or 20, distance

thresholds of 2, 5, 10, 25, or 50, and a number of templates of 5, 10, 15, or 20. A mean

accuracy of 20% was achieved over these 80 different parameter settings; accuracies over 50%

were achieved only on 7 of the 80, and the best accuracy was 62%. Using GreedyRPM10

as an initialization (with 10 clusters and window length 10, as above), we evaluate CSTM

and its variants. CSTM achieves performance of over 86%, compared to the 32% achieved

by GreedyRPM10 directly. CSTM with a peak-based initialization (using either 5 or 7

peaks) produced very similar results, showing again the relative robustness of CSTMs to
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Figure 4.5: Confusion matrix showing performance of CSTM (left) and CSTM-DTW (right)
on the character data.

initialization. Comparing to different variants of CSTM, we see that the lack of bias in

the template representation in this dataset lowers performance dramatically to 56.25%. We

note that the templates here are relatively short, so, unlike the character data, the drop in

performance due to unstructured warp is relatively smaller.

Synthetic Data. To evaluate how our model performs as the proportion of non-

repeating segments increases, we evaluate the different variants of CSTM and GreedyRPM10

on simulated data of hand-drawn curves. CSTM performance is 78% even at the 80% ran-

dom walk level, and performs considerably better than GreedyRPM10, whose performance

is around 50% (see figure 4.6). Although the performance gap between CSTM and its less-

structured variants is largest at the lower NRW levels, CSTM’s performance (74.5%−90%)

remains consistently higher than these other models (62%− 72%).

NICU Data. For the NICU data, in figure 4.7a and figure 4.7b, we show example

clusters containing bradycardia signals generated by GreedyRPM and CSTM respectively.

The former is able to capture highly variable versions of bradycardia while those in the

latter are fairly homogeneous. In figure 4.7c, we show aligned versions of the signals in

figure 4.7b; once aligned, its more visually evident that the CSTM cluster sequences are

true bradycardia subseqeunces.

In figure 4.8, we show the ROC curve for identifying bradycardia using each of the
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Figure 4.7: a) An example bradycardia cluster extracted by GreedyRPM, b) an example
bradycardia cluster recovered by CSTM, c) the bradycardia cluster shown with sequences
aligned to the shape template. Note that the bradycardia sequences extracted by CSTM
are more heterogeneous in appearance than those captured by GreedyRPM. Thus, CSTM
is able to better capture the variability in the cluster.

models. True positive and false positive measures10 are computed as each new cluster is

added up to a total of 20 clusters. For each ROC computation, clusters are added in order

10True positive and false positive are measured per data point.
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of their individual f1 scores.11 We perform a single run with peak based clustering using

3 − 7 peaks and multiple runs for GreedyRPM with different settings for the parameter

d (see figure 4.8). The ROC curve from CSTM dominates those from GreedyRPM with

significantly higher true positive rates at lower false positive rates. In figure 4.9a and

figure 4.9b, we show examples of novel clusters not previously known (and potentially

clinically significant).12

4.5 Discussion and Conclusion

In this chapter, we have presented a new model for unsupervised discovery of deformable

motifs in continuous time series data. Our probabilistic model seeks to explain the entire

series and identify repeating and non-repeating segments. This approach allows us to model

and learn important representational biases regarding the nature of deformable motifs. We

demonstrate the importance of these design choices on multiple real-world domains, and

show that our approach performs consistently better compared to prior works.

Our work can be extended in several ways. Our warp-invariant signatures can be used

for a forward lookup within beam pruning to significantly speed up inference when K, the

number of templates is large. Our current implementation requires fixing the number of

clusters. However, our approach can easily be adapted to incremental data exploration,

where additional templates can be introduced at a given iteration with split and merge

to refine existing templates or discover new templates. A Bayesian nonparametric prior is

another approach (e.g., [Richardson and Green, 1997]) that could be used to systematically

control the number of classes based on model complexity. A different extension could

build a hierarchy of motifs, where larger motifs are comprised of multiple occurrences of

smaller motifs, thereby possibly providing an understanding of the data at different time

scales. More broadly, this work can serve as a basis for building non-parametric priors over

deformable multivariate curves.

11Under this metric, large pure clusters increase performance on AUC more than smaller pure clusters,
which is desirable. Moreover, as expected, pure bradycardia clusters increase AUC more than clusters with
a large number of false positives.

12When these clusters were shown to a neonatologist expert at Stanford, she remarked that the cluster in
figure 4.9b is a significant event and a respiratory intervention followed by chest compressions should have
occurred.
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Figure 4.8: ROC curve for recovering bradycardia sequences from the data using CSTM
and GreedyRPM with various parameter settings for both models.



86 CHAPTER 4. DISCOVERING SHAPE SIGNATURES IN PHYSIOLOGIC DATA

a.

0 20 40 60 80 100 120
90

100

110

120

130

140

150

160

170

180

Time (seconds)

H
ea

rt
 r

at
e

Student Version of MATLAB

b.

0 10 20 30 40 50 60 70
0

50

100

150

200

250

Time (seconds)

H
ea

rt
 r

at
e

Student Version of MATLAB

Figure 4.9: Two examples of novel clinical events, a) mutliple varying level’s of bradycardia
like episodes (bradycardia in a preemie is defined as HR < 80 for longer than 10 seconds)
within a short span of 120 seconds, b) fast and large oscillations in heart rate.



Chapter 5

Clinical Application to Risk

Stratification

Using cues for infant health extracted from the physiologic signals, we aimed to develop a

modern tool akin to an electronic Apgar assessment that reflects a newborns physiological

status and is predictive of future illness severity. Physiological data are routinely recorded

in intensive care, but their use for rapid assessment of illness severity or long-term morbidity

prediction has been limited. In this chapter, we describe the development of a physiological

assessment score for preterm newborns based on standard signals recorded noninvasively on

admission to a neonatal intensive care unit. We were able to accurately and reliably esti-

mate the probability of an individual preterm infants risk of severe morbidity on the basis

of noninvasive measurements alone. This prediction algorithm was developed with electron-

ically captured physiological time series data from the first 3 hours of life in preterm infants

(34 weeks gestation, birth weight ≤ 2000 g). Extraction and integration of the data with

state-of-the-art machine learning methods produced a probability score for illness severity,

the PhysiScore. We validated PhysiScore on 138 infants with the leave-one-out method to

prospectively identify infants at risk of short- and long-term morbidity. PhysiScore provided

higher accuracy prediction of overall morbidity (86% sensitive at 96% specificity) than other

neonatal scoring systems, including the standard Apgar score. PhysiScore was particularly

accurate at identifying infants with high morbidity in specific complications (infection: 90%

at 100%; cardiopulmonary: 96% at 100%). Physiological parameters, particularly short-

term variability in respiratory and heart rates, contributed more to morbidity prediction

than invasive laboratory studies. Our flexible methodology of individual risk prediction

87
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based on automated, rapid, noninvasive measurements can be easily applied to a range of

prediction tasks to improve patient care and resource allocation.

5.1 Introduction

Early, accurate prediction of a neonate’s morbidity risk is of significant clinical value because

it allows for customized medical management. The standard Apgar score has been used

for more than 50 years to assess neonatal well-being and the need for further medical

management. Based on quantitative and qualitative characteristics of appearance, pulse,

grimace, activity and respiration, the Apgar is computed as a score between 1 and 10,

10 signifying the infant is in good health. A low score is indicative of poor health and

his need for medical attention. We aimed to develop a modern tool akin to an electronic

Apgar assessment that is fully non-invasive, reflects a newborns physiological status and

is predictive of future illness severity. Such an improvement in neonatal risk stratification

may better inform decisions regarding aggressive use of intensive care, need for transport to

tertiary centers, and resource allocation, thus potentially reducing the estimated $26 billion

per year in U.S. health care costs resulting from preterm birth [Behrman and Butler, 2007].

Previously, various risk factors have been associated with assessing neonatal health.

Gestational age and birth weight are highly predictive of death or disability [Robertson et

al., 1992] but do not estimate individual illness severity or morbidity risk [Tyson et al.,

2008]. These perinatal risk factors, in addition to laboratory measurements, have been

incorporated into currently used algorithms for mortality risk assessment of preterm infants

[Richardson et al., 1993; 2001; Network, 1993]. These algorithms, however, predict mortality

rather than morbidity [Tyson et al., 2008]. They also rely on invasive testing and require

extraction of data from multiple sources to make a risk assessment.

Although it has been recognized that changes in heart rate characteristics [Schulte-

Frohlinde et al., 2002] or variability [Tsuji et al., 1994] can suggest impending illness and

death in a range of clinical scenarios, from sepsis [Griffin et al., 2005a; 2005b] in intensive

care patients to fetal intolerance of labor [Williams and Galerneau, 2003a], the predictive

accuracy of a single parameter is limited. Intensive care providers observe multiple physio-

logical signals in real time to assess health, but certain informative patterns may be subtle.

To achieve improved accuracy and speed of individual morbidity prediction for preterm

neonates, we developed a new probability score (PhysiScore) based on physiological data
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obtained noninvasively after birth along with gestational age and birth weight. We evalu-

ated PhysiScores use for predicting overall morbidity and mortality, specific risk for infants

with infection or cardiovascular and pulmonary complications, and a combination of com-

plications associated with poor long-term neurodevelopment and compared its performance

to standard scoring systems in a preterm neonatal cohort.

5.2 Risk Stratification

The goal of risk stratification is to quantify an infant’s overall risk for major complications

and identify which infants will require intensive clinical attention. For this purpose, patients

in our study are classified into two groups – high morbidity (HM) or low morbidity (LM) –

on the basis of their illnesses.

The HM group was defined as any patient with major complications associated with

short- or long term morbidity. These are patients that typically need more intensive support

in the NICU. More specifically, short-term morbidity complications included culture-positive

sepsis, pulmonary hemorrhage, pulmonary hypertension, and acute hemodynamic instabil-

ity. Long-term morbidity was defined by moderate or severe bronchopulmonary dysplasia

(BPD), retinopathy of prematurity (ROP) stage 2 or greater, intraventricular hemorrhage

(IVH) grade 3 or 4, and necrotizing enterocolitis (NEC) on the basis of the strong asso-

ciation of these complications with adverse neurodevelopmental outcome. Death was also

included in the long-term morbidity group. Most infants in the HM category had short-

and long-term complications affecting multiple organ systems.

Infants with none or only common problems of prematurity such as mild respiratory

distress syndrome (RDS) and patent ductus arteriosus (PDA) without major complications

were classified as LM.

5.3 Methods

Now, we describe each of the building blocks used for arriving at our non-invasive risk

stratification score. We built a framework that (i) processes physiological parameters us-

ing nonlinear models, (ii) uses regularization to do automatic feature selection, and (iii)

combines relevant features using multivariate logistic regression to produce the predictive

score.
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5.3.1 Feature construction

Our choice of input sources to be considered were derived based on three different sources

of motivation. First, an early iteration of the TSTM on a small subset of patients (n=12)

yielded insight that simple markers (such as those in discussed in Chapter 3) computed from

physiologic signals are indicative of downstream morbitidy. Second, based on laboratory

measurements that had been incorporated in previous risk stratification studies [Richardson

et al., 2001; Network, 1993], we extracted measurements of white blood cell count, band

neutrophils, hematocrit, platelet count, and initial blood gasmeasurement of PaO2 (partial

pressure of oxygen, arterial), PaCO2 (partial pressure of carbon dioxide, arterial), and

pH(if available at < 3 hours of age). Third, based on a priori clinical knowledge, features

of birth-weight, gestational age and signal means are extracted.

5.3.2 Physiologic signal processing

Time series heart rate, respiratory rate, and oxygen saturation data are collected from all

CR monitors. The data for this study was recorded at the minute granularity. Heart and

respiratory rate signals are processed to compute a base and residual signal. The base signal

represents a smoothed, long-term trend; it is computed with a moving average window of 10

minutes. The residual signal is obtained by taking the difference between the original signal

and the base signal; it characterizes short-term variability most likely linked to sympathetic

function (see Figure 5.1 for an illustration).

Physiological signals recorded in the first 3 hours of life. This time period was selected

for analysis because it is less likely to be confounded by medical interventions and provides

prediction early enough in the infant’s life to be useful for planning therapeutic strategy.

For heart and respiratory rates, we compute the base signal mean, base signal variance, and

residual signal variance. The variance features were motivated by analysis from Chapter 3

on our preliminary set of 12 patients. For the oxygen saturation, we compute the mean and

the ratio of hypoxia (oxygen saturation < 85%) to normoxia.
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Figure 5.1: Processing signal subcomponents. Differing heart rate variability in two
neonates matched for gestational age (29 weeks) and weight (1.15 ± 0.5 kg). Original
and base signals are used to compute the residual signal. Differences in variability can be
appreciated between the neonate predicted to have HM (right) versus LM (left) by PhysiS-
core.

5.3.3 Combining risk factors into a score

Individual risk factors are aggregated using a logistic regression model as

P(HM|v1, v2, · · · , vn) = (1 + exp(b− w0c−
n∑

i=1

wif(vi)))−1 (5.1)

where n is the number of risk factors and c = log P(HM)/P(LM) is the a priori log odds

ratio of the classes high morbidity (HM) and low morbidity (LM). The ith characteristic,

vi (e.g., physiological parameter or weight) is used to derive a numerical risk feature f(vi)

via nonlinear Bayesian modeling (which we discuss in detail in section 5.3.5).
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The score parameters b and ~w are learned from the training data for use in prospective

risk prediction. The parameter wi represents the weight of the contribution of the ith

characteristic to the computed probability score, with higher weight characteristics having

a greater effect.

5.3.4 Learning the score parameters

To learn the score parameters b and ~w where there are a total of m features, we maximize

the log likelihood of the data in the training set with a ridge penalty as

argmax
w,b

Σn
j=1 log P (HM|vj

1, · · · , vj
m)− λΣm

i=0w
2
i (5.2)

The ridge penalty reduces spurious data dependence and prevents overfitting by con-

trolling model parsimony [Hastie et al., 2001; Zhu and Hastie, 2004]. The hyperparameter

λ controls the complexity of the selected model.

5.3.5 Nonlinear models of risk factors

To implement Eq. 5.1, we must determine how to integrate the various risk factors —

continuous and discrete — including the physiological measurements, into our risk model.

Several approaches exist in the literature. One common approach is to define a normal

range for a measurement and use a binary indicator whenever the measurement is outside

that range. Although this approach can most easily be implemented in a clinical setting, it

provides only coarse-grained distinctions derived from extreme values. Another approach is

to predetermine a particular representation of the continuous valued measurement, usually

either the feature itself, or a quadratic or logarithmic transformation, as selected by an

expert [Whitlock et al., 2009; Schnabel et al., 2009].

We use a different approach based on a Bayesian modeling paradigm [Ross, 2004]. This

approach captures the nonlinear relationships between the risk factor and the outcome and

takes into account that the overall behavior of a factor can vary greatly between sickness

categories. For each risk factor vi, we separately learn a parametric model of the distribution

of observed values in the training set P (vi|C) for each class of patient C (HM and LM). The

parametric model is selected and learned with maximum-likelihood estimation (Figure 5.2)

from the set of long-tailed probability distributions of exponential, Weibull, lognormal,

normal, and gamma. Specifically, for each parametric class, we fit the maximum likelihood
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parameters and then select the parametric class that provides the best (highest likelihood)

fit to the data. The log odds ratio of the risk imposed by each factor is incorporated into

the model as denoted by f(vi) in Eq. 5.1.
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Figure 5.2: Distribution of residual heart rate variability (HRvarS) in all infants. Learned
parametric distributions overlaid on the data distributions for HRvarS displayed for the
HM versus LM categorization.

An important advantage of our approach is that explicit missing data assumptions can

be incorporated. When standard laboratory results (for example, complete blood count)

are not recorded, we assume that they are missing at random and not correlated with

outcome. Their contribution if missing is 0 and log P (vi|HM)/P (vi|LM) otherwise. Blood

gas measurements, however, are likely obtained only for profoundly ill patients and hence are

not missing at random. Thus, for each measurement type i, we define mi = 1 if measurement

vi is missing and mi = 0 otherwise. We now learn the distribution P (mi|C) (the chance

that the measurement i is missing for each patient category C) and P (vi|C,mi = 0) (the

distribution of the observed measurements) as described above. The factor contribution for

measurement i is computed as
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f(vi) =


log

P (vi|HM,mi = 0)
P (vi|LM,mi = 0

+ log
P (mi = 0|HM)
P (mi = 0|LM)

, if mi = 0 (5.3)

log
P (mi = 1|HM)
P (mi = 1|LM)

, if mi = 1 (5.4)

This formulation allows us to account both for the observed measurement, if present,

and for the likelihood that a particular measurement might be taken for patients in different

categories.

This approach has additional advantages. Putting all factors in a probabilistic frame-

work provides a comparable representation for different risk factors, allowing them to be

placed within a single, integrated model. Using a parametric representation of each contin-

uous measurement alleviates issues arising from data scarcity. Uncovering the dependence

between the risk factor and the illness category automatically reduces data requirement

by eliminating the need for cross-validation to select the appropriate form. Unlike most

previous methods, we used different parametric representations for patients in different

categories, better capturing disease-induced changes in patient physiology. Finally, we ob-

tained an interpretable visual summary of the likelihood of low patient morbidity over the

range of values for each factor (shown in Figure 5.5B).

5.3.6 PhysiScore: Probabilistic score for illness severity

PhysiScore is a probability score that ranges from 0 to 1, with higher scores indicating higher

morbidity. PhysiScore is calculated by integrating the following 10 patient characteristics

into Eq. 5.1: mean heart rate, base and residual variability; mean respiratory rate, base

and residual variability; mean oxygen saturation and cumulative hypoxia time; gestational

age and birth weight. Each of these patient characteristics is modeled as described above

and carries a specific learned weight, as denoted by w in Eq. 5.1.

5.4 Experiments and Results

We now evaluate the performance of PhysiScore. A gold-standard dataset with annotations

validated by expert neonatologists was curated. We compare performance of PhysiScore

with other state-of-the-art risk stratification scores. We give a brief overview of our exper-

imental setup before describing our results.
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5.4.1 Outcome annotation

Electronic medical records, imaging studies, and laboratory values were reviewed by pedi-

atric nurses. In addition, annotations were verified in detail by an expert neonatologist. A

second neonatologist was consulted when any ambiguities arose. All significant illnesses dur-

ing the hospitalization were recorded. Morbidities were identified with previously described

criteria: BPD [Ehrenkranz et al., 2005], ROP [for the Classification of Retinopathy of Pre-

maturity, 2005], NEC [Kliegman and Walsh, 1987], and IVH [Papile et al., 1978]. For IVH

and ROP, the highest unilateral grade or stage was recorded, respectively. Acute hemody-

namic instability was also noted: hypotension (defined as a mean arterial blood pressure

less than gestational age or poor perfusion) requiring ≤ 3 days of pressor support or adrenal

insufficiency requiring hydrocortisone.

5.4.2 Study population

For this study, we used data from the inborn infants admitted to the NICU of Lucile Packard

Children’s Hospital from March 2008 to March 2009 who were eligible for enrollment. A

total of 145 preterm infants met inclusion criteria: gestational age ≤ 34 completed weeks,

birth weight ≤ 2000 g, and availability of cardiorespiratory (CR) monitor data within the

first 3 hours of birth. Seven infants found to have major malformations were subsequently

excluded.

Thus, to develop our prediction tool, we studied a total of 138 preterm neonates that

were 34 weeks gestational age or less and < 2000 g in weight without major congenital

malformations and with baseline characteristics and morbidities as shown in Table 5.1.

Mean birth weight was 1367 g at an estimated mean gestational age of 29.8 weeks, placing

these infants at significant risk of both short- and long-term complications.

Thirty-five neonates had HM complications. Of these, 32 had long term morbidities

(moderate or severe BPD, ROP stage 2 or greater, grade 3 or 4 IVH, and/or NEC). Four

neonates died after the first 24 hours of life. There were 103 preterm neonates with only

common problems of prematurity (RDS and/or PDA) and so were considered LM. Five

infants with a <2-day history of mechanical ventilation for RDS, but no other early com-

plications, were transferred before ROP evaluation and marked as LM. Table 5.1 describes

our infant population in detail.
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5.4.3 Statistical methods

Sensitivity, specificity, AUC, and significance values [DeLong et al., 1988] were computed

for all comparisons. We used the leave-one-out method for all evaluations. With this

method, predictive accuracy was evaluated for each patient separately. For each patient, we

learned the model parameters with the data from all other patients as the training set and

evaluated predictive accuracy on the held-out patient. This technique was repeated for each

subject, as though each subject’s clinical data was prospectively obtained. This method

of performance evaluation is computationally intensive but is a well-established statistical

method for measuring performance when the sample set size is limited [Rangayyan, 2005].

5.4.4 Results

Plotting the receiver operating characteristic (ROC) curve (Figure 5.3A) and associated

area under the curve (AUC) values (Table 5.2) shows that PhysiScore exhibits good dis-

criminative ability for prediction of morbidity and mortality risk and compares it to other

risk assessment tools. Specifically, PhysiScore was compared to the Apgar score, long

used as an indicator for the base physiological state of the newborn [Casey et al., 2001],

as well as to extensively validated neonatal scoring systems that require invasive labora-

tory measurements (Score for Neonatal Acute Physiology-II (SNAP-II) [Richardson et al.,

2001], SNAP Perinatal Extension-II (SNAPPE-II) [Richardson et al., 2001], and Clinical

Risk Index for Babies (CRIB) [Network, 1993]). For making predictions with the Apgar

score, we constructed a model as in Eq. 5.1 using the 1- and 5-min Apgar scores as the

only two inputs; this combined model outperformed either of the two Apgar scores when

used in isolation. PhysiScore (AUC 0.9197) performed well across the entire range of the

ROC curve and significantly better (P < 0.003) [DeLong et al., 1988] than all four of the

other comparison scores (Table 2). PhysiScore’s largest performance gain occurred in the

high-sensitivity/specificity region of the ROC curve (see region highlighted in Figure 5.3A

(inset)). Setting a user-defined threshold based on desired sensitivity and specificity al-

lows optimization for individual settings. For example, in our neonatal intensive care unit

(NICU), a threshold of 0.5 achieves a sensitivity of 86% at a specificity of 95% for HM,

as seen in Figure 5.3A (inset). Alternately, the use of a lower threshold would improve

sensitivity at the expense of specificity.

We added the values obtained from laboratory tests to determine the magnitude of their
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contribution to risk prediction beyond the PhysiScore alone (Figure 5.3B), incorporating

parameters included in standard risk prediction scores (for example, SNAPPE-II): white

blood cell count, band neutrophils, hematocrit, platelet count, and initial blood gasmea-

surement of PaO2 (partial pressure of oxygen, arterial), PaCO2 (partial pressure of carbon

dioxide, arterial), and pH(if available at < 3 hours of age). No additional discriminatory

power was achieved, suggesting that laboratory information is largely redundant with the

patient’s physiological characteristics.

To further assess the performance of PhysiScore, we analyzed prediction performance

for infants in major morbidity categories. Specifically, we extracted two categories: infec-

tion (NEC, culture-positive sepsis, urinary tract infection, and pneumonia) (Figure 5.3C)

and cardiopulmonary complications (BPD, hemodynamic instability, pulmonary hyperten-

sion, and pulmonary hemorrhage) (Figure 5.3D). Plotting data from the infants in the HM

category who had a specific complication against data from all infants in the LM category

yields ROC curves for discriminative ability for HM infants in these independent morbidity

categories (Figure 5.3 C and D). Comparison to SNAPPE-II (the best-performing standard

score) is also shown; AUCs were calculated for all scoring methods (Table 2) in these specif-

ically defined sets. At a threshold of 0.5, PhysiScore achieves near-perfect performance

(infection: 90% sensitivity at 100% specificity; cardiopulmonary: 96% at 100%).

Morbidity is most difficult to predict in patients with isolated IVH, for which all scores

exhibit decreased sensitivity. The PhysiScore AUC for any IVH was 0.8092, whereas SNAP-

II, SNAPPE-II, and CRIB had AUCs of 0.6761, 0.6924, and 0.7508, respectively. PhysiScore

did not identify three infants who had severe IVH (grade 3 or 4) in the absence of any

other HM complications. However, most infants who developed IVH can be found on the

left side of the ROC, suggesting that PhysiScore offers high sensitivity without significant

compromise in specificity (see Figure 5.4).

5.4.5 Importance of physiological features

Ablation analysis (comparison of model performance when different subsets of risk factors

are included) was used to examine the contribution of score subcomponents in predicting

HM versus LM. As expected, gestation and birth weight alone achieved reasonable predictive

performance (AUC 0.8517). However, these two characteristics are not sufficient for individ-

ual risk prediction [Tyson et al., 2008]. Notably, physiological parameters alone were more

predictive than laboratory values alone (AUC, 0.8540 versus 0.7710, respectively). Adding
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Figure 5.3: (A) ROC curves demonstrating PhysiScores performance in predicting high
morbidity as it relates to conventional scoring systems. (B) PhysiScores performance with
laboratory studies. (C) Predictions for infants with infection-related complications. (D)
Predictions for infants with major cardiopulmonary complications.

physiological parameters to gestation and birth weight (that is, PhysiScore) increased the

AUC to 0.9129, a significantly (P < 0.01) [DeLong et al., 1988] better prediction than ges-

tation and birth weight alone. Addition of laboratory values and physiologic characteristics

did not significantly increase the AUC (0.9197), again suggesting that these parameters are

redundant with the laboratory data in morbidity prediction.
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Figure 5.4: ROC curve demonstrating the limited sensitivity of PhysiScore in predicting
morbidity for infants with IVH. Each circle represents the IVH grade of a preterm neonate
overlaid on the respective score.

Examination of the learned weights (wi in Eq. 5.1) of individual physiological param-

eters incorporated into PhysiScore (Figure 5.5A) demonstrated that short-term heart and

respiratory rate variability made a significant contribution to the value of the PhysiScore,

but long-term variability did not. Thus, short-term variability patterns (often difficult to

see by eye, but easily calculated by PhysiScore) carried significant physiological information

that long-term variability patterns did not.

Only three categories of commonly obtained physiological measurements were required

for PhysiScore: heart rate, respiratory rate, and oxygen saturation. From these measures,

using Bayesian modeling, we obtained individual curves that convey the probability of HM

associated with individually calculated physiological parameters (Figure 5.5B).

As expected, a respiratory rate between 35 and 75 breaths per minute had a greater

probability of being associated with health, whereas higher or lower rates carried a greater
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probability of morbidity. A decreased short-term heart rate variability also indicated in-

creased risk, consistent with previous findings linking this parameter to sepsis [Williams

and Galerneau, 2003a].

This visual analysis of the nonlinear relationships seen in Figure 5.5B also suggests

unexpected associations. Short-term respiratory rate variability, not commonly used as a

physiological marker, was associated with increased morbidity risk. Unlike residual heart

rate variability, its effect was nonmonotonic. Risk curves describing oxygen saturation

suggest, respectively, that risk increases significantly with mean saturations less than 92%

and prolonged time spent (> 5% total time) at oxygen saturations below 85%. Oxygenation

is routinely manipulated by physician intervention, suggesting that intervention failure (for

example, the inability to keep saturations in a specific range) that allows desaturations

lasting for > 5% of total time is associated with higher morbidity risk, a threshold that can

now be prospectively assessed in clinical trials.

5.5 Discussion

We have developed a risk stratification method that predicts morbidity for individual

preterm neonates by integrating multiple continuous physiological signals from the first

3 hours of life. This score is analogous to the Apgar score [Casey et al., 2001], in that only

physiological observations are used to derive morbidity and mortality predictions. However,

the use of time series data combined with automated score calculation yields significantly

more information about illness severity than is provided by the Apgar score.

5.5.1 Discriminative capacity

Past efforts have resulted in several illness severity scores that use laboratory studies and

other perinatal data to achieve improved discriminative ability over the Apgar score alone.

For all of the available neonatal illness scores, much of the discriminative ability comes from

gestational age and birth weight. Nevertheless, it is well-recognized that age- and weight-

matched neonates may have significantly different morbidity profiles [Tyson et al., 2008].

The CRIB score uses logistic regression to define six factors and their relative weights in

predicting mortality: birth weight, gestational age, congenital malformation, maximum base

deficit in the first 12 hours, plus minimum and maximum FiO2 (fraction of inspired oxygen)

in the first 12 hours [Network, 1993]. SNAP-II and SNAPPE-II were both derived from
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Figure 5.5: The significance of different physiological parameters in predicting high morbid-
ity. (A) The learned weight (wi in Eq. 5.1) for each physiological parameter incorporated
in PhysiScore; error bars indicate variation in the weight over the different folds of the
cross-validation. (B) The nonlinear function associating the parameter with the risk of high
versus low morbidity.

SNAP. SNAP uses 34 factors identified by experts as important in the first 24 hours of life

(specific laboratory data, minimum and maximum vital sign values, and other clinical signs).

The resulting score correlated well with birth weight, mortality, length of stay, nursing

acuity, and physician estimates of mortality, but was complex to calculate [Richardson et

al., 1993]. Logistic regression performed on the 34 factors in SNAP identified six variables

most predictive of mortality that were recorded in the first 12 hours of life (lowest mean
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blood pressure, lowest core body temperature, lowest serum pH, multiple seizures, urine

output, and FiO2/PaO2 ratio); these were retained in SNAP-II. SNAPPE-II is calculated

with the same data as SNAP-II, along with the 5-min Apgar score, small for gestational

age status, and birth weight. The additional variables present in SNAPPE-II were found

to be independent risk factors for mortality [Richardson et al., 2001]. None of these scores,

however, discriminate morbidity risk as well as PhysiScore, which integrates a small set of

continuous physiological measures calculated directly from standard vital sign monitors.

An intriguing aspect of our findings is that PhysiScore provides high-accuracy predic-

tions about morbidity risk from limited initial data (only 3 hours), even when such outcomes

manifest days or weeks later (for example, BPD or NEC). Thus, it suggests that Physiscore

may be reflecting an infant’s predisposition to sickness. Furthermore, infants weaker at birth

are most likely to develop major complications. PhysiScore gives positive weight to loss of

short-term heart rate variability, much in the way that fetal heart rate monitoring uses loss

of short-term heart rate variability to predict fetal distress and guide delivery management

[Williams and Galerneau, 2003b]. PhysiScore additionally identifies short-term respiratory

variability as having high predictive value, suggesting that further exploration of this factor

in other settings might be warranted. Although the precise source of variability loss – ei-

ther pre- or postnatally – is unknown, autonomic dysregulation likely plays a role.Whether

short-term variability loss causes morbidity or is simply a marker of illness is not clear at

this point.

Unlike fetal heart rate monitoring or heart rate spectral analysis [Tuzcu et al., 2009], our

approach uses multiple physiological parameters to improve accuracy and provide long-term

predictions that extend beyond acute risk. Unlike biomarkers, such predictions are made

with data that are already being collected in NICUs. Patient oxygenation, heart rate, and

respiratory rate can be automatically processed to compute a score, and a predetermined

sensitivity/specificity threshold can be used to make morbidity predictions to guide clinical

actions, thereby removing the need for end-user expertise. When integrated into a bedside

monitor, the algorithm would indicate the statistical likelihood that an individual patient

is at high risk of major morbidities, allowing real-time use of the PhysiScore calculation.

This method of deployment would effectively provide an automated electronic Apgar score,

with significantly higher predictive accuracy regarding neonatal morbidity.

The PhysiScore’s ability to assess physiologic disturbances before it can be confounded

by medical intervention makes it highly descriptive of initial patient acuity; thus, it is
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well suited as a tool for quality assessment between NICUs. Identification of a patient’s

future risk of developing HM complications may be useful for decision-making in primary

nurseries to make more informed decisions regarding aggressive use of intensive care, need

for transport to higher levels of care, and resource allocation. Such economic, social, and

medical advantages should be evaluated in a large-scale clinical trial.

5.5.2 Technical considerations

Although we have a relatively small sample size, analysis methods appropriate to small

sample sizes [Rangayyan, 2005] were used, and ROC curves were made only for morbidities

seen in > 10% of our population. Our model, with its automatic factor modeling and

selection, requires essentially no parameter tuning, which greatly helps to prevent overfitting

in small samples.

In addition, our sample is from a single tertiary care center and was limited to patients

born in our institution to ensure that continuous physiological data were available for the

first hours of life. Validation in other settings will be required.

Detection of IVH remains elusive in the field of neonatal medicine. Previous work re-

ported that fractal analysis of the original newborn heartbeat may be an early indicator

of IVH [Tuzcu et al., 2009], but yielded no better sensitivity than PhysiScore. This study

included 10 newborn very low birth weight infants with intraventricular hemorrhage (5

grade IV, 4 grade III, and 1 grade II) and 14 control infants without intraventricular hem-

orrhage. Performance of 70% sensitivity and 79% specificity was achieved in their study

as compared to 80% sensitivity and 76% specificity for Physiscore. It is possible that the

underlying pathophysiology of IVH is variable [McCrea and Ment, 2008], particularly in

infants in whom severe IVH is the only morbidity. Although IVH is usually associated with

cardiopulmonary instability, recent literature suggests that there may be genetic predisposi-

tion to isolated IVH, potentially limiting the role of antecedent physiological signals before

large hemorrhages [Vannemreddy et al., 2010]. Thus, it is possible that the small number

of infants with isolated IVH that were not identified as high risk by PhysiScore represent a

distinct subpopulation.

5.5.3 Advanced computational techniques in modern medical settings

The use of computer-based techniques to integrate and interpret patterns in patient data

to automate morbidity prediction has the potential to improve medical care. The current
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U.S. governmental mandate to improve electronic health record use and gain economic

benefit from using digital data [111th United States Congress, 2009b] facilitates the use

of computer based tools. Flexible Bayesian modeling with almost no tunable parameters

allows our approach to be applicable to a range of different prediction tasks, allowing use

of the highly informative but underused data obtained daily for thousands of acutely ill

patients.
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Subjects (N) 138
Birth weight (g) 1367 ± 440
Gestational age (weeks) 29.8 ± 3
Gender, female 68
Apgar score at 5 min 7 ± 3
SGA (≤5th percentile) 7
Multiple gestation
Total 46
Twins 20
Triplets 6
Respiratory distress syndrome 112
Pneumothorax 10
Bronchopulmonary dysplasia

Total 29
NOS* 2
Mild 12
Moderate 5
Severe 10

Pulmonary hemorrhage 2
Pulmonary hypertension 3
Acute hemodynamic instability 11
Retinopathy of prematurity (ROP)

Total 25
Stage I 9
Stage II 12
Stage III 4

Intraventricular hemorrhage (IVH)
Total 34
Grade 1 19
Grade 2 7
Grade 3 3
Grade 4 5

Posthemorrhagic hydrocephalus 6
Culture-positive sepsis 11
Necrotizing enterocolitis

Total 8
Stage 1 2
Stage 2 4
Stage 3 2
Expired 4

Table 5.1: Baseline and disease characteristics of the study cohort. (SGA, small for gesta-
tional age; NOS, not otherwise specified.)
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Apgar SNAP-II SNAPPE-II CRIB PhysiScore
Predicting high morbidity 0.6978 0.8298 0.8795 0.8509 0.9151
Infection 0.7412 0.8428 0.9087 0.8956 0.9733
Cardiopulmonary 0.7198 0.8592 0.9336 0.9139 0.9828

Table 5.2: Performance summary with AUCs.



Chapter 6

Conclusion

Developing a deeper understanding of human health and disease is one of the most funda-

mental and fascinating problem we face. With widespread digitization of complete patient

encounters and its availability through the electronic health record, we now have access

to comprehensive and highly granular data regarding the movement of patients — their

symptoms, interventions, outcomes — through the health care system. By modeling these

data well, we can better infer health trajectories of both individuals and populations. This

would enable us to stage early interventions or optimize over the many available treatment

options. For example, subtle early disease signatures in the data such as the ones presented

earlier in this thesis can indicate that a patient should be sent to a higher level of care; pre-

dicting severity and relapses can help avoid expensive re-hospitalizations; and discovering

sub-populations that evolve differently can lead to effective treatment differentiation. In

addition, models that highlight which missing measurements would be most informative in

uncovering the progression of health status could provide active decision support to doctors.

These are only a few examples of the myriad opportunities that computational tools built

on EHR data can enable.

Contrasted with data collected from a randomized control trial where the data collection

process is hypothesis driven i.e., only a limited set of indicators are collected on a predefined

patient population required to validate a specific hypothesis, EHR data has the advantage

of being more comprehensive. On the other hand, as discussed previously, this data is much

more challenging. It is confounded by observed and unobserved interventions, is high-

dimensional, highly unstructured, heterogeneous, noisy and is often missing systematically.

Furthermore, high-quality ground truth data is scarce both because obtaining it requires

107
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expensive annotator time and that the notion of ground truth is not always well understood.

Thus, extracting the full value of the existing data requires novel approaches.

This thesis is a foray into how observational patient data from the EHR can be harnessed

for making novel clinical discoveries. For this, one requires access to patient outcome data

— which patient has which complications. We present a method for automated extraction

of patient outcomes from EHR data; our method shows how natural languages cues from

the physicians notes can be combined with clinical events that occur during a patient’s

length of stay in the hospital to extract high quality annotations. In addition, we develop

novel methods for exploratory analysis and structure discovery in bedside monitor data.

This data forms the bulk of the data collected on any patient yet, it is not utilized in any

substantive way post collection. We present methods to extract clinically motivated shape

and dynamic signatures. Our analysis led us to a novel use of this data for risk prediction

in infants. Using features automatically extracted from physiologic signals collected in

the first 3 hours of life, we developed Physiscore, a tool that predicts infants at risk for

major complications downstream. Physiscore is both fully automated and significantly

more accurate than the current standard of care. It can be used for resource optimization

within a NICU, managing infant transport to a higher level of care and parental counseling.

Overall, this thesis illustrates how the use of machine learning for analyzing these large scale

digital patient data repositories can yield new clinical discoveries and potentially useful tools

for improving patient care.

There are numerous ways in which one can continue to pursue this fruitful direction of

research. Physiscore presented only a snapshot view of an infant’s health status at 3 hours of

life; continuously estimating an infant’s health trajectory can yield real-time opportunities

for customizing intervention. Furthermore, refining these predictions to make inferences at

the level of individual diseases and a disease’s progression can provide physicians with more

easily actionable information. Extending these to other patient populations requiring long

term support (e.g., adults with chronic complications) offers another tremendous opportu-

nities for care optimization, both due to the gravity of these problems (e.g., almost 1 in 5

adults have a chronic condition) and the amount of data being collected on these patients

due to their repeated exposure to the health system.

Comparative effectiveness is another growing area of national importance. A recent

article [Sutherland et al., 2009] in the New England Journal of Medicine showed that only

about 30% of the regional variation in spending is attributable to variations in individual
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health and socioeconomic status. The remaining expenditures result from inefficiencies in

the health care system — discretionary decisions by physicians that are influenced by the

local availability of hospital beds, imaging centers and other resources, as well as by a

payment system that rewards growth and higher utilization. Analysis of health trajectories

with respect to various interventions can be used to inform clinical practice guidelines.

Methods that model variations in populations and resources can be used to tune guidelines

to individual regions. Moreover, deploying these guidelines via clinical decision support

tools can help reduce variability in care.

Modeling data to infer health trajectories from any of these populations will require

coping with numerous issues simultaneously. Non-stationarity is commonplace: e.g., biliru-

bin levels and heart rates in infants change as they mature, and disease progression im-

pacts many measurements. The timescales on which even a single signal evolves can differ

greatly; from the slow, circadian rhythm, to the rapid effects of bradycardia visible in the

heart rate. Discovering these varying paces requires learning multi-resolution models. The

observed measurements are taken in various formscontinuous sensor outputs, lab results,

and qualitative narratives from nurses and doctors. To integrate these diverse sources, we

need hybrid probabilistic models that scale to large data. The high-dimensionality of the

data requires intelligent methods of transfer learning (to leverage data across related tasks)

and close attention to parsimony. And importantly, we need flexible ways of encoding bias

from clinicians, who already understand the data better than anyone. We will increasingly

have access to measurements at multiple levels of granularity, from the genetic level all

the way up to physiologic signals and behavioral observations. While we cannot hope to

model this deep stack at once, we can build rich models of subsystems, and incrementally

grow and combine them to reach new insights about our physiology and better cues for the

above-mentioned clinical tasks.

Large EMR repositories can also be used for validating our models retrospectively; this

will speed up both the rate at which we are able to conduct new trials and their chance

of success. For this, we must develop methods [Rosenbaum and Rubin, 1983] that can

account for confounding factors ubiquitous in observation data. Conversely, by learning

models of interventions and their effects on the physiologic subsystems, we may even be

able to theoretically posit how clinical trials would progress with a varied combination of

interventions, and prioritize trials based on outcome and cost.

We are at a very exciting time – the accelerating adoption of EHRs is creating vast
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quantities of unexplored longitudinal health data. I believe the ability to effectively harness

this data will revolutionize the quality of our healthcare system through early diagnoses

and better-optimized care.
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