
Mobile Address Tagging for OpenStreetMap
Joel Nelson, Steven Bell, David DeBaun

Department of Electrical Engineering, Stanford University

Objective Image Processing Algorithm

OSM Integration

Sample Results

References

Application Process Flow

H. Chen, S. S. Tsai, G. Schroth, D. M. Chen, R. Grzeszczuk, and B. Girod, “Robust text 

detection in natural images with edge-enhanced Maximally Stable Extremal Regions,”

in Image Processing (ICIP), 2011 18th IEEE International Conference on, 2011, pp. 

2609–2612. 

E. Kim, S. Lee, and J. Kim, “Scene Text Extraction Using Focus of Mobile Camera,”

2009 10th International Conference on Document Analysis and Recognition, pp. 166–

170, 2009. 

S. P. Chowdhury, S. Dhar, A. K. Das, B. Chanda, and K. McMenemy, “Robust Ex-

traction of Text from Camera Images,” 2009 10th International Conference on Docu-

ment Analysis and Recognition, vol. 15, no. 18, pp. 1280–1284, 2009.

• Develop an Android smartphone application that can tag 

features in OpenStreetMap (OSM) using the phone’s 

camera and built-in sensors.

• OpenStreetMap is a crowd-sourced mapping project, 

analogous to Wikipedia for cartography

• While many features such as roads and buildings can be 

readily drawn from aerial and satellite imagery, a 

complete map requires that these objects be tagged with 

their names, addresses and other data

• This has traditionally been a tedious process requiring 

field notes and hours entering tags on a computer, but a 

mobile device has the potential to radically accelerate 

this process

Insert 

screenshot 

#1

Insert 

screenshot 

#2

Camera View

• Application enters camera 

mode and user takes 

picture(s) of sign with text to 

be extracted

• Allows user to retake picture 

if the result is undesirable 

Map View

•Application displays OSM content for 

user’s immediate location, using the 

GPS

•Buildings that have not yet been 

tagged are highlighted in red

•User clicks untagged building to tag 

new data

Processing Text Form

• Application processes 

the image by performing 

text detection and 

running the OCR engine 

to parse the text

OSM Data Form

• Application shows

the data extracted from the 

captured image to be 

populated in a new tag on 

OSM

• Gives user opportunity to 

confirm correctness of the 

parsed data

K-means 

Clustering

Threshold in 

HSV space

Apply Filtering 

Criteria, 

Identify Initial 

Existing 

Component

Perform 

Binarization Using 

Locally Adaptive 

Color Thresholding

Extract 

MSERs
Blob Filtering

Criteria: aspect ratio, 

solidity, holes

Grayscale

Image

Grouping of Blobs 

By Proximity
Filter Groups

Eliminate isolated blobs 

Draw Bounding 

Box for “Focus”

Region

Color 

“Focus”

Region

Tesseract OCR 

Engine

Select Correct 

Binary Image

Criteria: aspect ratio, 

compactness

3 Seed 

Colors
3 Masks

Criteria: number of 

components, height, 

compactness, distance 

between components

• To display untagged 

buildings in a simple and 

fluid way, we created a 

custom map using OSM 

data  which displays 

untagged buildings in red.

• These tiles are hosted by 

a remote server and 

transmitted to the 

application over HTTP.

• When the user selects a building, the application 

downloads the known data for the building such as the 

city and zip code.  This information is merged with the 

data gleaned from the image.

• When the user confirms the address, it is sent  to the 

global OSM server using an XML-based API.

Extracted MSERS

Input image

Detected Text

The input image as captured by 

the phone’s camera.  

The Tesseract output is a jumble 

of symbols and characters.

Dark MSERs extracted from the 

image.  Our solution runs two 

separate passes, working with 

both light and MSERS.

The detected text regions are 

boxed.  Note that the window 

panes were selected as candidate 

text objects, but rejected because 

all of the objects have high 

solidity. Tesseract can now 

process the selected regions 

correctly.


