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Abstract

In robot-assisted surgery, exploration and manipulation tasks can be achieved through

collaboration among robotic and human agents. Collaboration can potentially in-

clude multiple agents working towards a shared objective – a scenario referred to

as multilateral manipulation. We present a flexible software framework, called the

Multilateral Manipulation Software Framework (MMSF) to expedite development of

various multilateral manipulation strategies. The goal of the MMSF to facilitate

rapid development of human-robot collaborative models in a thread-safe manner.

We demonstrate the effectiveness of implementing the MMSF in three mock surgi-

cal tasks: inclusion segmentation, debridement, and electrocauterization. We built

autonomous agents capable of completing these tasks, and developed human-robot

collaboration models using these autonomous agents. Example human-robot collab-

oration models tested in this work include (1) fully autonomous task execution, (2)

shared control between a human and robotic agent, (3) supervised control where the

operator dictates commands to the robot, (4) traded control between the two agents,

and (5) bilateral teleoperation. For each of our three implemented surgical tasks, we

demonstrate the nature of results achievable through use of the Multilateral Manip-

ulation Software Framework by comparing the performance of different human-robot

collaboration models. For the inclusion segmentation task, we conducted a user study

where we compared the performance of different human-robot collaboration models

against each other. This dissertation also describes implementations that allow the

Multilateral Manipulation Software Framework to be used with Phantom Premium

Haptic Devices, the RAVEN-II Surgical Robot, and the da Vinci Research Kit.
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Chapter 1

Introduction

1.1 Motivation

Human-robot collaboration is becoming increasingly common in applications such as

robotic surgery [1], search and rescue [2], and space [3]. In each of these applications,

an operator sits at a master console and interacts with a robotic device (the master

robot) while a slave robot follows the operator’s motions in real time. As historically

teleoperated tasks become either too demanding for a human user to completely con-

trol, or too repetitive to justify full human attention, there is a need to formalize the

ways in which humans and robotic agents can work together to achieve a shared goal.

However, it is unlikely that a one-size-fits-all combination of a human operator and a

robotic agent input would improve all human-robot collaborative procedures, which

motivates the need for a framework to describe the cooperation between the two

agents and enable a spectrum of collaboration models for a specific task. This disser-

tation presents a tool, the Multilateral Manipulation Software Framework (MMSF),

which is used to structure a collaborative task to facilitate rapid development of

human-robot collaboration models. The MMSF is created and used in this work as a

development tool in the early stages of framing a human-robot collaborative task, to

allow the system designer to better understand which types of collaboration models

result in the best performance. We take an object-oriented approach towards the

MMSF to minimize redundant code and enable rapid development. The success of

1



2 CHAPTER 1. INTRODUCTION

the MMSF presented in this work is dependent on the following, to demonstrate wide

applicability of the MMSF across tasks, robotic platforms, and collaboration models:

• Extending the base structure of the MMSF to several human-robot collaborative

tasks.

• For each task, application of the class structure to realize a variety of different

human-robot collaboration models.

• Implementing the MMSF on a surgical procedure consisting of multiple sub-

tasks, possibly with switching human-robot collaboration models between sub-

tasks.

• Demonstrating the MMSF on several different robotic platforms.

• Ensuring thread-safe communication between processes in the MMSF.

We choose mock surgical tasks to demonstrate the use of the MMSF because the

field of robot-assisted minimally invasive surgery (RMIS) is opportune for exploring

human-robot collaboration. RMIS is becoming increasingly popular in part because

it can provide increased dexterity and control to the surgeon compared to open or

laparoscopic surgery through the use motion scaling, stereoscopic visualization, and

articulated wrists [1]. Established RMIS procedures include radical prostatectomy

[4], pancreatectomy [5], hysterectomy [6], and throidectomy [7]. In these clinical

applications of RMIS, the surgery was teleoperated under complete control of the

human surgeon. Teleoperation has become the industry-standard control scheme for

the majority of clinical surgical robotic platforms, including the da Vinci Surgical

Robot (Intuitive Surgical, Sunnyvale, CA, USA) and the Magellan Robotic System

(Hansen Medical, Mountain View, CA, USA). While advancements in machine learn-

ing, artificial intelligence, and computer vision continue to provide richer quantitative

analysis of the surgical field and robotic control, most commercial medical robots do

not yet automate surgical procedures. In contrast, the academic community has char-

acterized and automated a number of surgical sub-procedures, such as debridement

[8], drilling bone during chochleostomy [9], and surgical knot tying [10, 11]. It is clear
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from advancements in academia and the increasing usage of robotics in the operating

room that more advanced forms of human-robot collaboration are on the horizon –

and we must identify safe, effective methods to leverage the inputs of both a surgeon

and artificial intelligence. The goal of these human-robot collaborative systems is to

combine the advantages of human and artificial agents to increase success in surgical

procedures, which is ultimately defined by better patient outcomes. In this disserta-

tion, we demonstrate the MMSF by extending it towards multiple surgical subtasks,

including inclusion segmentation, debridement, and electrocauterization. We frame

these tasks in the context of the MMSF and demonstrate how this formalization of

our collaborative tasks leads to rapid prototyping of new models of human-robot col-

laboration. We furthermore show examples of experimental results and conclusions

one can draw by comparing different models of human-robot collaboration in these

experimental tasks.

1.2 Background: Human-Robot Collaboration

In our review of prior art in the field of human-robot collaboration models, we use the

taxonomy introduced by Conway et al. [12]. The spectrum of human-robot collabo-

ration models has endpoints of teleoperation and full autonomy. These collaboration

models define the extremes of this spectrum because neither collaboration model com-

bines input from both the human and autonomous agents. All other human-robot

collaboration models in some way combine inputs from both agents, whether via linear

summation (commonly used in shared control), switching inputs (traded control), or

supervised control, where a human agent provides high-level input to be interpreted

and carried out by a robotic agent. For the works cited in our review of prior art,

and in this dissertation, the human agents communicate their intent by interacting

with either a master manipulator in a teleoperation scheme, or by interaction with a

graphic user interface. However, human-robot collaboration can extend beyond these

two constraints dictating the nature of human agent interaction, and an excellent

review of different methodologies of human-robot collaboration beyond the scope of

this work, including collaboration using visual or auditory cues, has been conducted
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by Greena et al. [13].

1.2.1 Teleoperation

In teleoperation, a slave robot mimics the actions of a master robot controlled by an

operator. This collaboration model was used in the previously mentioned works of

[4, 5, 6, 7]. All these works used the da Vinci surgical robot as the robotic platform,

where both master and slave robots were located in the same room. In another

example, Marescaux et al. published a study where clinicians performed the first

transatlantic gallbladder removal [14]. This surgery was conducted through the ZEUS

robot (Computer Motion, Sunnyvale, CA). Teleoperation in the above studies was

conducted unilaterally, such that master manipulator position dictates joint torques

commanded to the robot. In bilateral teleoperation, robot end-effector position errors

between the master and slave robots are transmitted as forces feedback to the master

device. A recent work using bilateral teleoperation control to reduce hand tremor

while providing haptic feedback to the user during robotic surgery is presented by

Beretta et al. [15]. They designed a torque controller with non-linear force feedback

to augment haptic perception to the operator and stabilize operator commands to the

robot. Another similar example of force feedback being used to augment operator was

conducted by De Lorenzo et al. [16]. In their work, force-feedback was used to convey

forces on a needle tip during insertion back to the operator. A similar methodology

was used by Yu et al., but in their case the force-feedback was used to provide cues

of robotic agent intent during bilateral teleoperated control of a mobile robot [17].

1.2.2 Shared Control

In shared control, the motions of the slave robot are governed by a summation of

human and robot agent input. An application of shared control for commanding a

surgical robot is the steady-hand robot, developed by Taylor et al. [18]. Their system

assists in microsurgery manipulation tasks by filtering out natural surgeon tremor and

thereby assisting in surgical tasks which require extreme precision. Another example

of shared control is virtual fixtures; Bowyer et al. provides a detailed survey [19].
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Virtual fixtures are often used in navigation tasks. Both Marayong et al. [20] and

Abbott et al. [21] demonstrated improved performance during path following tasks

with human input augmented by virtual fixtures. Marayong et al. concluded that

results might improve for path following tasks with a dynamic control authority ratio,

instead of a static control authority ratio. Dynamic control authority ratios have

been explored in the works of Oguz et al. [22], Passenberg et al. [23], and Dragan

et al. [24]. All three of these works optimize over an objective function to choose

the ideal control authority. However, each of these works mapped their optimization

result to ideal control authority ratio in different ways. Oguz et al. partitioned

control authority ratios into three states [22], while Passenberg et al. instead chose a

continuous mapping [23]. Dragan et al. had the robotic agent infer the user’s intent

and adjust the control authority ratio depending on the level of confidence in its

prediction [24].

Stefanov et al. changed the control authority based on the identified subtask

within a larger robotic procedure, where each subtask would use a different assistnce

function to determine the degree to which the robot agents assists the human agent

[25]. A recent implementation of shared control is in the work of Shamaei et al.

[26]. They developed an autonomous agent to support a human or robotic agent

conducting a tension-and-cut task. In their control formulation, the human set a

parameter that varies the linear summation of human and robotic agent input for a

single manipulator performing the cutting action, while another manipulator in the

same workspace autonomously tensions a sample.

In the above examples of shared control, the ratio of human to autonomous input

when controlling a slave device, or control authority ratio, was modified to weigh the

inputs of the human and robotic agent. Dimension reduction is a different manifesta-

tion of shared control, in which human control of the robot is made more intuitive by

reducing the dimensionality of the human agent’s control space. Tuna et al. [27] and

Moustris et al. [28] studied the use of shared control in beating heart surgery when

they investigated ways to make the surgery easier by negating the motion effects of

heartbeat. Tuna et al. published multiple adaptive algorithms to predict heart mo-

tion, which can be used in a study like the one conducted by Moustris et al. In their
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work, a surgeon operated on a motion-compensated image of the heart instead of the

live video feed. Surgeon actions on the still image were then transformed back into

operation space by the robotic agent.

In other examples of dimension reduction in shared control, Debus et al. demon-

strated that for a pick-and-place task moving pegs into holes, where a robotic agent

oriented the pegs while the human agent teleoperated the robot’s position, use of

dimension reduction resulted in improved performance [29]. This is similar to the

work done by Kofman et al. where they tasked a human to teleoperatively command

a robot to grasp objects [30]. In close proximity to the desired object, the robot

would autonomously reorient itself to the best grasping position. Work in dimension

reduction continues to be an active field of publication, for example Wang et al. re-

cently used dimension reduction so that a teleoperated system could avoid obstacles;

the human only controls the end effector position while the other joints of the robot

autonomously avoid collision with the surrounding environment [31].

Finally, Crandall et al., when investigating human-robot collaboration in a nav-

igation task, defined a “neglect factor”, which mathematically describes the degree

of operator distraction when controlling multiple robotic agents [32]. They proposed

and implemented a mathematical framework to determine the ideal amount of au-

tonomous control as a function of the neglect factor and task difficulty.

1.2.3 Traded Control

In traded control, the robotic procedure is at times automated and at other times

teleoperated. In the literature, this collaboration strategy has limited exposure, with

both Parasuraman et al. [33] and Kortenkamp et al. [34] developing software archi-

tectures to facilitate the tradeoff between fully teleoperated and autonomous modes.

Parasuraman et al. decomposed a given human-robot collaborative task into several

top-level states comprising of several sub-states. From this decomposition, the au-

thors created criteria that when satisfied warrant transfer of control authority from

the human agent to the robotic agent.

Traded control has been implemented on the da Vinci Surgical Robot by Padoy
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and Hager [35]. They decomposed a suture task into six different subtasks, which

were derived from a series of expert demonstrations. With their human-machine

collaborative approach, they were able to seamlessly transition from teleoperative

to autonomous control of the slave manipulator between subtasks. Subtasks which

required tissue manipulation, such as inserting the needle into the tissue simulant,

were under teleoperative control, while subtasks which did not manipulate the tissue,

such as needle passing from one robotic arm to the other, were under automated

control.

1.2.4 Supervisory Control

In supervisory control, high-level tasks are specified by human input and low-level

tasks are completed under autonomous control. This type of collaboration has been

studied in the swarm robotics community, most notably in the works of Shirkhodaie et

al. [36] and Parasuraman et al. [37]. Shirkholdaie et al. proposed a software frame-

work that used a supervisory model to control several robots as they coordinated

with each other. Parasuraman et al. enacted supervisory control as well; an operator

gave waypoint commands to a swarm of robots while the robots were individually

responsible for obstacle avoidance. Another multi-agent coordination control work

is the research conducted by Chen et al. [38]. In their work, a human agent would

supervise a swarm of UAVs as they navigated a course. Individual UAVs would com-

municate their autonomous intent to the human operator and prompt for supervisory

input when deemed necessary. Chen et al. noted that when automation intent was

communicated, the human agent had increased situational awareness while reducing

cognitive workload. Another recent result by Sieber et al. formulated a mathematical

model used in an experiment where a human operator issued commands to a team of

robots that were cooperatively manipulating a deformable environment [39]. Through

their implementation of shared control, a single human agent was able to accomplish

a task which otherwise would have taken a team of operators to accomplish.



8 CHAPTER 1. INTRODUCTION

1.3 Background: Robot Software Frameworks

There are two prominent open-source software frameworks used widely in the research

and industrial communities. Researchers at Johns Hopkins University, Massachusetts

Institute of Technology, and Carnegie Mellon University developed and continue to

maintain CISST-SAW [40], a component-based software architecture implemented

on a variety of surgical robotic systems. CISST-SAW was developed to simplify

the execution of a robotic surgical suite to a single codebase. CISST-SAW has seen

widespread adoption with the da Vinci Research Kit (dVRK) [41], a robotic hardware

system deployed at over a dozen universities. Willow Garage developed the Robot

Operating System, (ROS) [42]. ROS is a collection of tools, libraries, and conventions

that aim to simplify robotic tasks in a way that is robust and widely applicable across

different robotic systems. ROS is the default coding environment for the PR2 robot

[43], and has a large active community contributing hundreds of toolboxes to advance

the robotics community (see www.ros.org). Both CISST-SAW and ROS specialize

in sensing and actuation, simplifying interfaces among a large variety of robots and

sensors to consistent interfaces that ease the development cycle.

1.4 Contributions

The previous human-robot collaborative works introduced above demonstrate and

test collaboration models mostly in isolation, with only a few examples comparing

two collaboration models. In this previous research, a software framework with the ca-

pability of implementing a variety of collaboration models was not developed or used

likely because researchers focused on the design and testing of individual collabora-

tion models. In contrast, this dissertation facilitates the development and testing of

many collaboration models, for a variety of tasks. This approach is necessary because

the capabilities of modern autonomous agents enables a wider variety of difficult tasks

to be performed with some level of autonomy, resulting in the need to formalize the

development of human-robot collaboration models. With the MMSF, a developer can

test collaboration models not in isolation as is commonly done, but rather against a

www.ros.org
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host of other types of human-robot collaboration models. We present in this work

the first such software framework to our knowledge designed to be used in the devel-

opment stages of a human-robot collaborative task. We furthermore demonstrate the

first instance of switching collaboration models between subtasks within a larger sur-

gical procedure, acknowledging that a one-size-fits-all collaboration model between a

human and autonomous agent may not work across all applications. The Multilateral

Manipulation Software Framework is in part motivated by the successes in ROS and

CISST-SAW, which have been widely accepted in the robotics community in part be-

cause they abstract complex behaviors and sensing into well-specified software classes.

We seek to demonstrate that same abstraction and flexibility in the application area of

human-robot collaboration models. The Multilateral Manipulation Software Frame-

work, and its extensions used throughout this dissertation, is open-source and can be

accessed from http://charm.stanford.edu/Main/Resources.

We show the contribution of the MMSF by extending it to three different mock

surgical tasks and implementing it on three different robotic platforms. For each

surgical task, we must develop an autonomous agent fully capable of completing the

task without human input. For the inclusion segmentation task described in the next

chapter, this agent is a contribution of this dissertation in its own right.

The major contributions of the research described in this dissertation can be

summarized as follows:

• Developed an autonomous agent capable of segmenting stiff inclusions from sur-

rounding soft tissue using data acquired via autonomous palpation. This is the

first instance of a robot exploring and segmenting a stiff inclusion from sur-

rounding soft tissue. This autonomous agent was developed so that it could be

within the human-robot collaboration models implemented in the other contri-

butions.

• Developed the Multilateral Manipulation Software Framework, a flexible soft-

ware framework designed to expedite development of various human-robot col-

laboration models.

• Extended the Multilateral Manipulation Software Framework to three mock

http://charm.stanford.edu/Main/Resources


10 CHAPTER 1. INTRODUCTION

surgical tasks: inclusion segmentation, debridement, and electrocauterization.

This contribution includes development of autonomous agents to perform these

tasks in addition to forming collaboration models that combine inputs from

both the human and robotic agents.

• Implemented the Multilateral Manipulation Software Framework on thee differ-

ent platforms: Phantom Premium devices, the RAVEN-II Surgical Robot, and

the da Vinci Research Kit.

• Demonstrated the performance of various human-robot collaboration models in

an inclusion segmentation task by conducting a user study. Results indicate

a trade-off between robotic agent precision and accuracy compared to human

agent speed.

1.5 Dissertation Overview

This dissertation is composed of five chapters. Chapter 1, this chapter, motivates

the development of the Multilateral Manipulation Software Framework and provides

background on implementations of human-robot collaboration. Chapter 2 develops

and demonstrates a fully autonomous robotic agent capable of segmenting stiff inclu-

sions from surrounding soft tissue. Chapter 3 describes the Multilateral Manipulation

Software Framework in detail, and demonstrates a usage of the framework by com-

bining a human agent with the autonomous agent developed in Chapter 2 to form

five different human-robot collaboration models capable of performing the inclusion

segmentation task. Chapter 4 is divided into four sections. Section 4.1 describes im-

plementation details necessary to configure the MMSF to interface with the da Vinci

Surgical Robot, used for the experiments in Sections 4.2 and 4.4, and the RAVEN-

II surgical Robot, used for the experiment in Section 4.3. Section 4.2 describes a

user study across collaboration models for the inclusion segmentation task where we

compare different collaboration models against each other. Section 4.3 extends the

framework to a debridement task implemented on the RAVEN-II Surgical Robot. We

demonstrate four different collaboration models and present results that demonstrate
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the type of comparisons one can make by using the MMSF in a debridement task.

The Section 4.4 describes the extension of the Multilateral Manipulation Software

Framework to a surgical procedure consisting of two subtasks done in series: stiff

region exploration and electrocauterization along the boundary. We compare results

of different pairings of collaboration models between subtasks in a pilot study. Fi-

nally, Chapter 5 summarizes the results of the research, reviews the contributions of

this dissertation, and posits future directions for continued work into human-robot

collaboration.



Chapter 2

Autonomous Agent for Inclusion

Segmentation

To test human-robot collaboration models implemented by the Multilateral Manip-

ulation Software Framework, we must first develop autonomous agents to serve as

the agent with which the human will collaborate. We are interested in surgical tasks,

and wanted to start our investigation into human-robot collaboration by choosing

a relatively simple task that can benefit from human and robotic agents working

together.

In this chapter we develop an autonomous agent capable of segmenting a stiff

inclusion from surrounding soft tissue. The autonomous agent is capable of tissue ex-

ploration and implements machine learning algorithms to develop a stiffness classifier

used to label autonomously palpated points as part of the stiff inclusion or part of

the surrounding soft tissue. To generate training data for the learning algorithms, we

use Ultrasound Elastography, which generates an inclusion-specific characterization

of tissue mechanics. Once we have identified the embedded hard inclusion in the elas-

tographic image, Gaussian discriminant analysis generated a classifier to threshold

stiffness values acquired from autonomous robotic palpation. This classifier was later

used to classify newly acquired points as either part of the inclusion or surrounding

soft tissue. An expectation-maximization algorithm with underlying Markov random

fields improved this initial classifier over successive iterations to better approximate

12
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the boundary of the inclusion. Results of the autonomous agent demonstrate robust-

ness with respect to inclusion shape, size, and the initial classifier value. The work in

this section is summarized in a paper published in the IEEE Transactions on Robotics

[44].

2.1 Introduction

In open surgery, tactile sensation enables surgeons to perform a wide array of diag-

nostic operations. Such sensation is especially important when profiling cancerous

regions in soft tissue structures such as prostate and breast. Cancerous tissues typi-

cally form lumps that are significantly stiffer than the surrounding tissues [45], and

exhibit different stiffness depending on which organ is diseased [46]. During open

surgery, surgeons can directly contact and palpate the tissue, and thus can use tactile

sensation to localize tumors.

Minimally invasive laparoscopic surgery has become increasingly popular in the

excision of a variety of cancers, including ovarian, colorectal, and prostate cancer

[47, 48, 49]. Tactile cues in this setting are not directly felt by the surgeon, but in-

stead are filtered via the laparoscopic tool to the surgeon’s hand. In current clinical

robot-assisted minimally invasive surgery (RMIS), the surgeon is not in contact with

the environment, either directly or indirectly. In this setting, haptic cues become

almost non-existent, although a number of methods have been reviewed to explore

the range of force-feedback and sensory substitution in RMIS [50].

RMIS is becoming an increasingly popular form of minimally invasive surgery

because it provides increased dexterity and control for the surgeon, in comparison

to manual minimally invasive surgery, while reducing patient trauma in comparison

to open surgery. However, the lack of haptic feedback in RMIS limits surgeons’

capabilities to identify tissue mechanics. A study has demonstrated that RMIS can

increase the likelihood of leaving behind cancerous cells upon extrication of a diseased

region compared to open surgery [51]. A method to convey the shape, location, and

mechanical properties of a suspected tumor would restore some of the information

lost with the use of RMIS.
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To this end, computer vision and machine learning methods can be applied to

classify irregularities in soft tissue. After characterization of the mechanical prop-

erties of the tissue, machine learning methods can provide segmentation estimates

of any hard tumors present. In addition to automatic inclusion segmentation, the

locations of any tumors can be derived in the robot’s coordinate system, which is

important for planning and robotic assistance. In this chapter, we seek to automate

acquisition of tissue mechanics data and develop a tumor segmentation strategy ca-

pable of overcoming the limitations of RMIS and accurately segment hard inclusions

in soft tissue.

2.1.1 Background

Several groups have developed methods that allow detection, and in some cases seg-

mentation, of lumps in soft tissue. Egorov and Sarvazyan developed a device that

uses a pressure-sensitive sensor array to take mechanical images of the breast [52].

Held and operated similar to an ultrasound transducer, the operator maneuvers the

probe across the surface of the breast and a software interface displays stiffness in-

formation and segments the inclusion. Egorov and Sarvazyan validated their design

in a differentiation study between benign and malignant breast tumor samples [53],

where they achieved an average sensitivity of 91.4% and specificity of 86.8%. The

sensitivity and specificity metrics reported in [53] were generated by comparing the

accuracy of labeling an actual tumor as benign or malignant. (In contrast, our results

presented in this chapter use the metrics of specificity and sensitivity, which compare

the areas of a hard inclusion to the surrounding artificial soft tissue.) A minimally

invasive technique for stiffness distribution mapping was developed by Beccani et al.

[54]. They designed a wireless probe that when grasped by a laparoscopic tool can be

used to palpate a tissue sample and create a stiffness map. Their volumetric stiffness

measurements posted an 8% local stiffness error compared to measurements gathered

with an ex vivo sample of porcine liver.

Other groups used robotics to enable the mapping and segmentation of lumps in

soft tissue. Howe et al. used a teleoperation scheme with haptic feedback to convey
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the mechanics of a palpated artificial tissue. Use of their tactile display increased

success of tumor identification and localization by a human user [55]. Trejos et al.

showed that autonomous robotic tumor palpation resulted in increased tumor detec-

tion accuracy and a significant decrease in the maximum force applied compared to

a teleoperated palpation scheme [56]. Ahn and Kim teleoperated a robot that mim-

icked the geometry and motions of a doctor’s hand. A robotic finger swept across

the prostate and used the resultant force profile to assess the likelihood of tumors

[57]. Sangpradit et al. implemented a model-based approach [58]. By comparing

observed discrepancies between a finite element model approximating a wheel-tissue

interaction and force data taken during rolling-contact experimentation, they were

able to identify simulated tumors of diverse shapes and depths. Liu et al. used a

force-sensitive wheeled probe to gather a “rolling mechanical image” and found their

continuous measurement approach to be more sensitive to differences in force profiles

caused by simulated tumors than single-site data acquisition [59]. While any of these

methods may be used to acquire the tissue mechanical properties used in this chapter,

here we use vertical palpation to acquire stiffness data. This builds on the methods

of [60], where the authors used vertical palpation data to map the stiffness profile of

a simulated calcified artery.

Segmenting a hard inclusion using any of the above approaches requires a method

to analyze and interpret a stiffness image. Several research groups have accomplished

this task by applying machine learning methods to identify hard inclusions in several

types of medical images. Zacharaki et al. used support vector machines to identify

the shape and grade of tumors in MRI images [61]. Li et al. explored the use of

machine learning algorithms to identify the boundaries of tumors in CT images [62].

Both these studies required intervention from experts to train the learning algorithms

by either identifying regions of interest [61], or by marking the rough location of the

tumor [62]. In earlier work [63], we approximated the centroid of a suspected tumor

from a stiffness mapping of tissue mechanics generated from palpation data across

the surface of an artificial tissue. We compared the centroid locations generated from

classified points across different machine learning algorithms. Our study showed

promise in identifying the centroid of the suspected tumor. However, to identify the
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boundary of the inclusion, our goal in this study, the classifier would need to be

refined in real-time using acquired data to increase the sensitivity of the classifier and

thereby reduce the number of false negative classifications.

Supervised machine learning algorithms (used in [62, 61, 63]) require an initial

feature and labeling set, called the training set, to train the algorithm’s classifier. In

the case of segmenting a hard inclusion from soft tissue, elastography can provide a

non-invasive method of developing a relative stiffness image of soft tissues. In this

study, we perform elastography analysis on ultrasound images. Ultrasound elastog-

raphy compares radio-frequency ultrasound data captured during compression of the

sample of interest and generates a relative stiffness map of soft tissue [64]. During

a time-varying compression, points within an image can be tracked for their relative

movements and subsequently be assigned a relative stiffness value. Elastography has

been used to characterize tumors in a variety of tissues, including breast [65], liver

[66], and prostate [67]. A classifier developed from an elastographic image can be use-

ful in initially labeling points as part of a hard inclusion or part of the surrounding

soft tissue. However, these classifiers are not robust to noise in the image. Further-

more, using elastography to classify and segment hard inclusions requires registration

with the surgical robot, which is particularly difficult in non-rigid environments such

as soft tissue [68].

2.1.2 Summary of Contributions

This work is the first to segment hard inclusions from tissue by applying machine

learning methods to data acquired via autonomous robotic palpation. Furthermore,

this is the first work that drives autonomous exploration of tissue mechanics in addi-

tion to autonomous segmentation. We present a tumor segmentation algorithm using

machine learning methods to improve a stiffness classifier developed from elastogra-

phy over successive iterations while converging to the boundary of the inclusion. We

demonstrate the proposed algorithm with computer simulations of virtual tissues and

through repeatable experiments with artificial tissues. The ratio of stiffness between



2.2. INCLUSION SEGMENTATION ALGORITHM 17

hard inclusion and soft tissue that we can detect is between 2.0− 3.0, which is moti-

vated from the stiffness ratio consistent with prostate tumors [45]. Results indicate

that the tumor segmentation algorithm presented in this chapter consistently identi-

fies the boundary of the hard inclusion embedded in soft tissue with high sensitivity

and specificity.

This chapter is organized as follows. Section 2.2 introduces the structure and

theory of the tumor segmentation algorithm. Section 2.3 presents simulated results.

In Sections 2.4 and 2.5, two experiments are conducted. In Section 2.4, we test the

ability of the tumor segmentation to repeatedly segment a hard inclusion from its

surrounding soft tissue. In Section 2.5, we test the robustness of the initial classifier

used in the tumor segmentation algorithm. Sensitivity and specificity metrics measure

performance in both these experiments. In Section 2.6, we make concluding remarks

and posit future directions.

2.2 Inclusion Segmentation Algorithm

We present in this section the structure and theory of the inclusion segmentation

algorithm whose flowchart is shown in Figure 2.1. After introducing the design goals

of the algorithm in the first subsection, each of the states in Figure 2.1 are explained

in subsequent subsections.

2.2.1 Design Goals

2.2.1.1 Develop a strategy to label points as part of the inclusion or part

of the surrounding soft tissue

In our labeling strategy, we seek to use not only an individual point’s stiffness for its

classification, but also the stiffnesses around this point. We use conditional random

fields to generate the probability distribution of a point’s possible classifications, in our

case points classified as part of the hard inclusion or part of the surrounding soft tissue.

Conditional random fields are a statistical modeling method that enable machine

learning algorithms to take advantage of interactions between neighboring points,
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Figure 2.1: Inclusion segmentation algorithm flow chart. Each process block contains

the section number describing its execution steps. For example, the “Exploration of

Tissue” process is described in detail in Section 2.2.3.

such that one point’s classification depends on the properties of its neighbors. Li et

al. in [69] applied Markov random fields, an example of conditional random fields, to

segment digital mammograms and achieved a sensitivity of 90% and a specificity of

94%. Conditional random fields have also been used extensively to segment tumors in

the liver [70], brain [71], and prostate [72]. We apply Markov random fields to segment

a stiffness image in this chapter as part of our tumor segmentation algorithm.

2.2.1.2 Develop a classifier that is robust to noise in the training set

Stiffness classifiers developed from elastography are sensitive with respect to noise in

the elastographic image, and only provide a rough estimate of which points are part

of stiff inclusions and which are part of surrounding soft tissue [63]. Parameterizing

a conditional random field algorithm, in our case with the optimal stiffness classifier,

is difficult and is sometimes posed as a machine learning algorithm all to its own. We
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use an expectation-maximization (EM) scheme to apply a conditional random field

machine learning algorithm as well as improve its parameterization. This approach

has been used in works to classify tumors in the breast [73] and brain [74]. Our

approach improves a classifier in an EM algorithm using underlying Markov random

fields to model stiffness data acquired via autonomous palpation data.

2.2.1.3 Develop an efficient tissue exploration procedure

We define an efficient tissue exploration procedure to be one that in detail maps

regions theorized to belong to the hard inclusion and in low resolution maps the sur-

rounding soft tissue. The structure of the inclusion segmentation algorithm, whose

flowchart is shown in Figure 2.1, satisfies our third design goal. This algorithm was

tested in both simulated (Section 2.3) and experimental (Sections 2.4, 2.5) settings.

The algorithm begins with a seeding classifier and an initial gird of points to pal-

pate. Then, the inclusion segmentation algorithm enters an iterative phase, which

includes first mapping tissue mechanics with autonomous robotic palpation (investi-

gating around points theorized to belong to the hard inclusion in additional detail)

and second updating the stiffness classifier through an EM scheme using Markov

random fields. This stiffness classifier is designed to label points as either belong-

ing to the hard inclusion or surrounding soft tissue. If the new stiffness classifier

developed using the EM scheme differs from the stiffness classifier seeded into the

EM scheme, boundary points are identified, and a new grid of points to explore is

calculated around the supposed boundary of the inclusion. However, if the stiffness

classifiers have converged, the algorithm transitions to its final stages. The convex

hull or moving average of the final boundary points are interpolated using Bezier

curves, resulting in a smooth approximation of the boundary of the inclusion.

2.2.2 Initialization

Initialization of the inclusion segmentation algorithm requires two parameters: a clas-

sifier and a grid to palpate. In simulation, the initial classifier used to sort palpated

points as part of the hard inclusion or part of the surrounding soft tissue is an input
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Figure 2.2: Initial grid of points to palpate with the autonomous inclusion segmen-

tation algorithm. The parameters include xmin, xmax, ymin, ymax define the boundary

of our workspace, b the distance between points in the x direction, and c, the distance

between points in the y direction.

variable set beforehand. In experiment, the initial classifier is derived using elastog-

raphy data, described later in Section 2.4.2.1. In both experiment and simulation,

the initial grid is a sparse linear grid over the workspace (See Figure 2.2). The initial

grid of points to explore, G, is defined as follows:

G = {(x, y)|x ∈ [xmin, xmax], y ∈ [ymin, ymax], (2.1)

(x− xmin)%b = 0, (y − ymin)%c = 0}

Where xmin, xmax, ymin, ymax define the boundary of our workspace, b, c are the

distances between points in the x and y directions respectively, and % is the modulus

operator. A general guideline is that b and c should be chosen such that they are

both less than the expected diameter of the hard inclusion, to ensure that during the

autonomous agent’s initial exploration of the tissue, at least one palpated point is

sufficiently stiff to be labeled as part of the hard inclusion. (For simulation of the

inclusion segmentation algorithm presented in Section 2.3, we chose b and c such that

the initial grid was 10×10. For our experiments, shown in Sections 2.4 and 2.5, we
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chose b and c were chosen such that the initial grid was 7×7.)

2.2.3 Exploration of Tissue

In Figure 2.1, tissue mechanics are mapped in the process “Exploration of Tissue”.

As the robot autonomously palpates a tissue, if a mapped point is sufficiently stiff to

be labeled as part of the hard inclusion, exploration and mapping of tissue mechanics

continues in a local neighborhood around the stiff point before returning to the original

exploration grid. If a newly mapped point in this neighborhood around the original

point is also sufficiently stiff to be classified as belonging to the hard inclusion, the

neighborhood around this newly mapped point will be explored. This adaptive-

resolution exploration algorithm is similar to the works of Goldman et al., which

among other contributions uses an adaptive-resolution scheme to map impedances of

a tissue sample [75].

Before a prospective point is palpated, its location is compared to all other points

already palpated and constituting our dataset. If one of these other palpated points

is sufficiently close to our prospective point (less than 5mm in experiment), then

our prospective point is not palpated. This regulation of the minimum distance

between points is to avoid oversampling points in close proximity to each other, which

would drastically increase the calculation time of the expectation-maximization steps

described in the next section.

2.2.4 Expectation-Maximization Steps

Prior work established that machine learning methods can be used to approximate

the centroid locations of hard inclusions in soft tissue [63]. However, the classifier

developed in this prior work was too conservative and had a low sensitivity, resulting

in many points falsely identified as part of the surrounding tissue rather than part

of the hard inclusion. Here, we expand the classifier method used in [63] using an

expectation-maximization scheme with underlying Markov random fields to improve

the classifier over successive iterations. Notation used in this section is introduced in

Table 2.1.
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Table 2.1: Notation

Symbol Description

f Set of labelings for all observations

F Set of all possible labelings for all observations

d True classification of dataset

ε Noise injected into dataset

U(f) Potential energy function

Cj Set of all cliques of size j

Vc Clique potential function for clique c

ωc Weighting constant for clique c

ki Measured stiffness at point i

kt Threshold stiffness

mi Weighting factor for Vc

x(i) Input features (point stiffnesses)

y(i) Target variable (point labelings)

φ Class prior parameter

µ0 Mean for points labeled x(i) = 0

µ1 Mean for points labeled x(i) = 1

Σ Covariance matrix for x(i) labeling probabilities

2.2.4.1 Expectation Step (Markov Random Fields)

Markov random field theory can use spatial information to define probability distri-

butions of data. To use this approach, we assume points in close proximity to each

other are likely to be similarly classified.

We define f ∈ F as the set of the labelings for all observations in the dataset,

while the underlying true classification of the dataset is denoted d. For our case of

inclusion segmentation, f is the classification of the dataset of palpated points, while

the true nature of these points as part of the inclusion or part of the surrounding soft
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tissue is d. The relation between these two distributions is:

fi = di + εi (2.2)

where i represents the ith element (palpated point) of the dataset, and εi represents

noise injected into our measurement of di. We seek to find the maximum a posterior

(MAP) solution, p(f |d), by computing the prior energy, p(f), and the likelihood

energy p(d|f), using the relation in:

p(f |d) ∝ p(d|f)p(f) (2.3)

To pose our problem as a Markov random fields problem, the following two properties

must be satisfied:

Positivity: p(f) > 0 ∀f ∈ F (2.4)

Markovianity: p(fi|fS−{i}) = p(fi|fNi
) (2.5)

where S − {i} is the set difference, fS−{i} denotes the set of labels at the sites in

S − {i}, and

fNi
= {fi′ |i′ ∈ Ni} (2.6)

is the set of labels at the sites neighboring i (see Figure 2.3(a)).

Satisfying the positivity clause is trivial. Markovianity is satisfied as long as the

probability of a labeling of a point is a function of the neighborhood around the point

of interest in addition to its own stiffness information. In the most extreme case,

Markovianity can be satisfied by extending the neighborhood around the point of

interest to include the entire workspace.

Markov random fields have an equivalence property with Gibbs distributions,

which enables calculation of the joint probability of all the point’s possible classi-

fications p(f) [76]. Under this equivalence, p(f) can be written as:

p(f) =
e(− 1

T
U(f))∑

f∈F e
(− 1

T
U(f))

, (2.7)
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Figure 2.3: Illustration of neighborhoods and cliques around point i, pictured in

red. Blue points are other data points in the workspace. (a) All points inside the

yellow circle are in the neighborhood around point i. The labels of these points, fj for

j ∈ [i−2, i+2], are contained in the set fNi
. (b) Cliques containing four points, which

include point i are the vertices of the polygon outlined in black. The vertices of the

green polygon do not constitute a clique of size four which includes point i because

the two points highlighted with a black outline, xi−1 and xi+2, while contained in the

neighborhood centered at point i, are a distance apart greater than the neighborhood

radius. Hence, a neighborhood centered at one of the points highlighed in black would

not contain the other point highlighted in black, which is in violation of the definition

of a clique.

T is the “temperature constant”, which injects energy into the system to avoid

solutions converging to local minima. Throughout this work, 1
T

= 1
n
, where n is the

number of iterations of the current execution of the EM algorithm. U(f) is the energy

function, which is calculated by

U(f) =
∑
c∈C

wcVc(f). (2.8)

Vc(f) is the individual clique potential function for clique c ∈ C. Cliques enforce

Markovianity by using only the information within the clique around a point to in-

fluence its labeling (See Figure 2.3(b)). A clique of size k for point i is defined as
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ci,k = { j | d(i, j) < dk & d(j, j′) < dk, ∀j′ ∈ ci,k} (2.9)

where d(i, j) computes the distances between points i, j and dk is the maximum size

allowed for the clique. The definition of a clique differs from the definition of the

neighborhood around a point; it is necessary that the set of points forming the clique

of a single point of interest are also included in that point’s neighborhood, but the

converse is not true. Equation 2.8 can be expanded to

U(f) = (2.10)

w1

∑
{i}∈C1

V1(fi) + w2

∑
{i,i′}∈C2

V2(fi, fi′) + . . . ,

where wc are weighting factors for each of the normalized clique potential functions

Vc. To achieve a reasonable computation time on the order of tens of milliseconds,

only cliques up to size four were calculated. In this work, w = {1.0, 0.8, 0.4, 0.2}.
These values were chosen to emphasize smaller cliques, and were tuned in simulation

(see Section 2.3).

A potential function is defined for each differently sized clique. In the following

definitions of clique potentials, fi = 1 implies that point i is labeled as part of the

hard inclusion and fi = 0 implies that point i is labeled as part of the surrounding

tissue. kt is the threshold stiffness, or classifier, input as a parameter to the algorithm.

V1(fi) = (2.11)
|ki − kt|, if ki < kt and fi = 1

m1 + |ki − kt|, if ki ≥ kt and fi = 0

0, else
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V2(fi, fi′) = (2.12)
0, if fi = fi′

m2
dmin

d(i,i′)
, if

ki+ki′
2
≥ kt, fi 6= fi′ and fi = 1

dmin

d(i,i′)
, else

where dmin is the minimum distance between any two members of C2, and in the

subsequent equations represents the minimum average distance among all pairings of

members in a clique.

V3(fi, fi′ , fi′′) = (2.13)

0, if fi = fi′ = fi′′

m3
dmin

d(i,i′,i′′)
, if

ki+ki′+ki′′
3

≥ kt, fi = 1 or

ki+ki′+ki′′
3

< kt, fi = 0

dmin

d(i,i′,i′′)
else

V4(fi, fi′ , fi′′ , fi′′′) = (2.14)

0, if fi = fi′ = fi′′ = fi′′′

m4
dmin

d(i,i′,i′′,i′′′)
, if

ki+ki′+ki′′+ki′′′
4

≥ kt, fi = 1 or

ki+ki′+ki′′+ki′′′
4

< kt, fi = 0

dmin

d(i,i′,i′′,i′′′)
else

Equation 2.12 heavily penalizes points labeled as soft tissue despite having a

stiffness is greater than kt, but incurs a smaller penalty for a point being labeled

as part of the hard inclusion while having a stiffness less than kt. For the remaining

clique potential functions, the potential energy depends on combination of the average

stiffness of the points, their average distance from each other, and the current labeling

of the point incurring the potential penalty. The values mi were tuned in simulation
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(Section 2.3); m = {1.2, 1.0, 1.0, 1.0}. Like the weighting variables wi, the difference of

m1 compared to the other members in m is to emphasize smaller cliques by weighting

them with increased energy.

At this point, p(f), first introduced in Equation 2.3, has been fully defined using

the relation in Equation 2.7. Next, we model p(di|fi) with the following random

replacement model:

p(di|fi) =

0.9, if di = fi

0.1, else
(2.15)

The final step of formulating our identification problem in the context of Markov

random fields is to calculate the explicit posterior probability estimates p(f |d) and

choose the most probable classification. We expand p(f |d) using the law of total

probability.

p(fi = 0) = p(fi = 0|di = 0)p(di = 0) + (2.16)

p(fi = 0|di = 1)p(di = 1)

p(fi = 1) = p(fi = 1|di = 0)p(di = 0) +

p(fi = 1|di = 1)p(di = 1)

2.2.4.2 Maximization Step (Gaussian Discriminant Analysis)

Once points are classified using Markov random fields, the maximization step of

the EM algorithm refines the classifier. Results of earlier work [63] suggest that

among three one-dimensional classification algorithms: logistic regression, Gaussian

discriminant analysis (GDA), and support vector machines, GDA resulted in the least-

conservative classifier for elastography data. We reported that the distribution of

stiffnesses between the modalities of elastography and autonomous robotic palpation

differed, and the GDA classifier developed from elastography resulted in a classifier

with higher sensitivity compared to logistic regression or support vector machines.

Thus, in choosing GDA to generate the classifier we are choosing the algorithm best

suited to label points correctly.

Symbols used in GDA include x(i), the input variables or features, in our case the
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stiffnesses observed (indexed by point i), y(i) the output or target variable, in our case

the classification, and θi, the variables parameterizing the space of functions mapping

from the feature space to the target space. The classifier is defined as the value of

the feature x such that x is equally likely to be part of the hard inclusion (y(i) = 1),

or belong to the surrounding soft tissue (y(i) = 0). GDA fits each class of data to

a Gaussian distribution with means µ0 and µ1, covariance matrix Σ, and class prior

parameter φ. The maximum likelihood estimates of these parameters are:

φ =
1

m

m∑
i=1

1{y(i) = 1}

µ0 =

∑m
i=1 1{y(i) = 0}x(i)∑m

i=1 1{y(i) = 0}

µ1 =

∑m
i=1 1{y(i) = 1}x(i)∑m

i=1 1{y(i) = 1}

Σ =
1

m

m∑
i=1

(x(i) − µy(i))(x
(i) − µy(i))

T

Where 1{arg} returns 1 if arg evaluates to be true, and 0 otherwise.

2.2.5 Iteration Procedure

With the new classifier generated from GDA, the program execution will return to the

“Exploration of Tissue” process (Figure 2.1) with the updated classifier and new pal-

pation grid. To generate the new palpation grid we must first calculate the boundary

points of the inclusion (Figure 2.4). The centroid of all points classified as belonging

to the hard inclusion is the starting point for our search. Extending radially outward

from the centroid location, a boundary point is defined as the last point classified as

part of the hard inclusion along a “line of search” before leaving the inclusion. The

collection of boundary points defined in this manner constitute a positive surgical

margin. A negative surgical margin is not possible at this point during the inclu-

sion segmentation algorithm since a dense boundary only exists for points classified

as part of the hard inclusion. The palpation grid used to seed the next iteration of

the inclusion segmentation algorithm is generated from the union of neighborhoods
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Figure 2.4: Illustration of the boundary point finding algorithm. Red points are

classified as part of the hard inclusion, while blue points are classified as part of the

surrounding tissue. The dashed arrow is the direction of search. The solid circles are

the neighborhoods of search for this step of the algorithm, while the dashed circles

are the neighborhoods of search from the previous step, included for reference. (a) All

points in the neighborhood of interest are classified as part of the hard inclusion; the

search continues outward along search line. (b) Points in this neighborhood belong

to both classes, so the search continues. (c) All points are classified as belonging to

soft tissue, thus the area of search moves one step back. (d) The point closest to the

center of the neighborhood of search classified as belonging to the hard inclusion is

identified as the boundary point for this search line, seen here as the green star.

around these calculated boundary points. As the inclusion segmentation algorithm

iterates, an increasing number of points generated as part of the next grid to palpate

fall within the minimum distance allowed between palpated points, to the extent that

in the final iteration of the inclusion segmentation algorithm no new points are ex-

plored and the stiffness classifier converges. At this point, the inclusion segmentation

algorithm proceeds to the exiting procedure.

2.2.6 Exiting Procedure

If classifiers developed from successive iterations of the EM algorithm converge, we

exit the iterative process and transition to the final states in the inclusion segmenta-

tion algorithm. When the classifier has converged, all neighborhoods of points around

the boundary of the inclusion have been explored, thus we have increased resolution
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of the boundary consisting of points representative of the hard inclusion and the sur-

rounding soft tissue. The first points classified as part of the surrounding tissue just

beyond the boundary of the inclusion define a negative surgical margin. The convex

hull or moving average of these points was used to provide additional smoothing. To

provide a continuous boundary for the inclusion, boundary points were interpolated

between using third-order Bezier splines.

2.3 Simulation of the Inclusion Segmentation Al-

gorithm

To tune the parameters of the inclusion segmentation algorithm, such as m and w,

results were simulated in MATLAB. We also tested the robustness of the inclusion

segmentation algorithm subject to a wide variety of hard inclusion shapes, sizes,

and stiffnesses. This section presents simulated results for a variety of programmed

simulated tissues as well as shows several iterations of the inclusion segmentation

algorithm for a single simulated tissue.

2.3.1 Setup

Simulated artificial tissues contained inclusions of various sizes, shapes, stiffnesses,

and placement in the workspace. Each (x, y) coordinate pair of the 500×500 pixel

simulated tissue image indexes the stiffness of the tissue at that point. The differences

in stiffnesses between points representing the hard inclusion and points representing

the surrounding tissue was designed to be consistent with observed prostate tumor

data from [45]. Once the different stiffness level sets were simulated, a circular filter

was applied to smooth the data.

2.3.2 Simulation Results

We demonstrate the evolution of the inclusion segmentation algorithm for one simu-

lated tissue across several iterations in Section 2.3.2.1. We present simulated inclusion
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Figure 2.5: Simulated inclusion segmentation results across several iterations. Points

in blue are classified as belonging to the soft tissue. Points in red are classified as

belonging to the hard inclusion after being thresholded against the stiffness classifier.

Points in magenta were not classified as part of the hard inclusion based solely on

their stiffness alone, but were classified as part of the hard inclusion after taking into

account the stiffnesses of their cliques. Points in black are the boundary points. The

green outline is the actual location of the inclusion. (a) Simulated results after the

first iteration of the algorithm. (b) Simulated results after the second iteration of

the algorithm. (c) Simulated results after the third iteration of the algorithm. (d)

Simulated results after the seventh and final iteration of the algorithm. The black

line illustrates the approximated boundary of the inclusion.

segmentation results across four differently sized and positioned inclusions in Section

2.3.2.2.

2.3.2.1 Simulation Across Several Iterations

Several iterations of the inclusion segmentation algorithm for a rectangular inclusion

are shown in Figure 2.5, whose underlying stiffness is pictured in Figure 2.6(a). The

red points in Figure 2.5 were classified as belonging to the hard inclusion based solely

on their individual stiffness, while blue points were not sufficiently stiff and were

instead classified as belonging to the surrounding soft tissue. The points in magenta

were not sufficiently stiff classified as part of the hard inclusion without taking into

account the stiffness of their cliques. In the first iteration, (Figure 2.5(a)), relatively

few neighborhoods around points classified as part of the hard inclusion are explored

compared to subsequent iterations. This is because the classifier seeded into this
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iteration of the algorithm was conservative, resulting in very few points (and their

neighborhoods) explored with increased resolution. The initial classifier (set to 4.5

times the stiffness of the surrounding soft tissue) would classify all dark-red areas

visualized in Figure 2.6(a) as part of the hard inclusion. Before the second iteration

of the inclusion segmentation algorithm the classier was improved to a value 2.8

times the stiffness of the surrounding soft tissue. Following the first iteration, the

updated classifier relabeled some points as part of the hard inclusion; a majority of

which were on the boundary. In Figure 2.6(a) the relabeled points were those in the

orange region. Neighborhoods around the boundary points were explored in higher

resolution during the next iteration of the EM algorithm. The right-most sub-plot

of Figure 2.5 shows the boundary points ensuring a negative surgical margin. The

inclusion segmentation algorithm for the rectangular inclusion took six iterations in

total, with a final classifier value of 2.6 times the surrounding soft tissue stiffness. Of

the points explored after the first iteration of the inclusion segmentation algorithm,

72% of those points were explored in the second iteration and 18% of those points

were explored as part of securing a negative margin in our boundary identification.

2.3.2.2 Simulation Results Across Varied Samples

Segmentation boundaries for four different simulated tissues are shown in Figure 2.6.

The stiffest part of the simulated inclusions are shown in red, while the surrounding

soft tissue has stiffness visualized in blue. Figure 2.6(a) is the final result from the

sequence in Figure 2.5. Some of the shapes were non-convex, so a moving-average

filter among triads of consecutive points along the boundary was used to smooth the

final set of boundary points to generate as close a fit to the boundary of the inclusion

as possible.

Figures 2.6(b) and 2.6(c) show the algorithm’s performance in identifying non-

convex shapes. In Figure 2.6(b), the boundary of the inclusion is identified correctly,

while in Figure 2.6(c) the boundary interpolation does not completely enclose the

stiff region. In this case, the boundary point algorithm finds only the first transition

of point labelings of hard inclusion to soft tissue. In 2.6(c), there are multiple such

transitions, but only the first transition identifies a boundary point.
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Figure 2.6: Simulated inclusion segmentation results for four environments. The

black line represents the estimated boundary of the inclusion (a) The rectangular

inclusion from Figure 2.5. (b) A kidney-bean shaped inclusion. (c) A modified kidney-

bean inclusion. (d) An ellipsoid inclusion with simulated erroneous measurements.

The simulation is robust with respect to these measurements.

Figure 2.6(d) shows the results for an artificial tissue with simulated data cor-

ruption in three regions. Tissue mechanical properties not accounted for in a simple

approximation, like the linear spring model we use in this work, can result in er-

roneous stiffness measurements. Thus, the proposed algorithm must demonstrate

robustness with respect to corrupted data points. Three tissue regions simulated cor-

rupted stiffness measurements, where the measured stiffness is falsely stiffer than its

actual stiffness. The corrupted regions are identified as part of the hard inclusion,

however the centroid calculation of all points identified as part of the hard inclusion

lies within the boundary of the hard inclusion, so the correct boundary points are

identified.

2.4 Experiment 1: Accuracy

In the previous section we demonstrated the performance of the inclusion segmen-

tation algorithm in simulation. Replicating these results in experiment requires a

classifier to initialize the EM sub-algorithm, as opposed to the hard-coded value used

in simulation. In experiment, we gathered elastography data from an artificial tis-

sue. Elastography provides a non-invasive, inclusion-specific characterization of the

tissue mechanics. From the multiple gray-scale images generated from elastography,

we selected the image with the greatest contrast between the hard inclusion and
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surrounding soft tissue and outlined the inclusion. This classification formed the

training set from which GDA developed a classifier that sorted new data points as

part of the hard inclusion or part of the surrounding soft tissue. Next, the classifier

was mapped from sorting elastography data to sorting absolute stiffness data. This

mapping was derived using full datasets of elastography and palpation data from a

training-set tissue. The mapped classifier was then used to threshold data acquired

via autonomous robotic palpation on a testing-set tissue. From force-position data

acquired during a single palpation from the robot, the stiffness of the tissue at that

point was approximated. The robot explored neighborhoods around points classified

as part of the hard inclusion with higher resolution than the resolution prescribed

by the initial palpation grid input into the inclusion segmentation algorithm. After

completing the algorithm in Figure 2.1, the palpated points, their stiffnesses, and the

boundary points were output to a MATLAB script which interpolated the boundary

points and reported sensitivity and specificity metrics.

2.4.1 Artificial Tissue

Two artificial tissues were created to simulate the mechanics of a hard inclusion in

soft tissue for experimentation: the training-set tissue and testing-set tissue. We used

artificial tissues because they are low-cost and durable, with long shelf-life ideal for

prolonged testing. Additionally, artificial hard inclusions can be made precisely to

control for size, shape, and relative stiffness compared to the surrounding soft tissue.

A variety of artificial tissue materials exist, including gelatin, silicone, and plastisol.

For this experiment, the artificial tissue was created with gelatin, as gelatin samples

are sufficiently firm to withstand palpation tests while being visible with elastography.

Gelatin also has a sufficient degree of optical transparency, useful for validation of

this method. Artificial tissues made from gelatin are not inherently echogenic, so fine

fiber supplement grains were added as the speckle material for use with elastography.

Both artificial tissue bases were created with a 10.2 g/250 ml ratio of gelatin powder

to water, while hard inclusions were created using a ratio of 28.8 g/250 ml of gelatin

powder to water. One pre-made, cubic hard inclusion with a side length of size 25
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mm was positioned into the center each artificial tissue base, 4 mm below the surface

of the tissue during the curing process of the softer tissue. The side length of 25 mm

was inspired by the work of Perez et al. [77]. In their study, they found that across

93 different tumor samples of stage 1 adenocarcinoma of the lung, the median tumor

size was 25 mm.

2.4.2 Generation of Classifier

The initial classifier used to seed the EM algorithm was developed from elastography.

After gathering elastography data and autonomous robotic palpation data from the

training-set artificial tissue, a mapping from our previous work converted the stiffness

values between the two modalities, as commercial elastography does not generate

absolute stiffness values [63]. This transformation was then applied to map a classifier

developed from elastography to a value appropriate to sort stiffness values taken

during autonomous robotic palpation of the test-set artificial tissue.

2.4.2.1 Elastography Data Acquisition

Elastography data was acquired using the elastography feature of a SonixMDP ul-

trasound machine (Ultrasonix Medical, Richmond, BC, Canada). Elastography com-

pares radio-frequency pulse echoes during compressions in order to measure relative

stiffness. For this study, the compressions were performed manually with the ultra-

sound transducer at a frequency of approximately 0.5 Hz. The ultrasound image

was generated by placing the transducer on the top of the artificial tissue (see Fig-

ure 2.7(a)). Elastographic images store relative stiffness values for each pixel as an

8-bit datum. Although elastography data acquisition in general generates a video of

several seconds, only one frame is necessary to supply the training set. We selected

the frame with the largest contrast between the inclusion and the surrounding tissue.

The setup used to gather the elastographic images is shown in Figure 2.7(a).
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(a) (b)

Figure 2.7: (a) Elastography setup with artificial tissue. The ultrasound transducer

is positioned to image the artificial tissue from the top. (b) Elastographic image, with

the hard inclusion outlined in red. This outline was obtained by visual inspection of

the image and manual selection of the corners of the inclusion. From this user-created

classification, Gaussian discriminant analysis was applied to develop a classifier that

would sort new data points into one of the two classes. The classifier was then mapped

from sorting elastography data to sorting absolute stiffness data, and provided the

initializing classifier for the EM algorithm.

2.4.2.2 Robotic Palpation

A Phantom Premium 1.5 commercial haptic device (Geomagic, Morrisville, MC,

USA) served as the robotic platform for autonomous palpation of the artificial tissue

(Figure 2.8). Third-order polynomial trajectories of the robot end-effector were input

to a proportional-derivative controller. The maximum force exerted by the robot on

the tissue was limited to 1.8 N in order to prevent motor overheating in the Phantom

Premium. Once the maximum force was reached, the path planner used to provide

reference points for robot travel was updated to the next point in the grid pattern.

The artificial tissue was palpated in a linearly spaced grid across the surface of the

tissue.
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Figure 2.8: A Phantom Premium 1.5 positioned to autonomously palpate artificial

tissue with embedded hard inclusions.

2.4.2.3 Stiffness Approximation

A Nano-17 force-torque sensor with a spherical ball (ATI Industrial Automation,

Apex, NC, USA) attached to end point of the Phantom Premium acquired force

data. A spherical ball was used to provide as much of a symmetric force profile in

the plane orthogonal to the axis of palpation as possible. The raw force-displacement

profile exhibits hysteresis, which is expected from a soft-tissue interaction. A linear

spring model approximated the tissue mechanics using only the data from the down-

ward stroke. Force-displacement data used to approximate stiffness was thresholded

between 1.2 N and 1.8 N of force for autonomous palpation; teleoperated palpation

did not have the upper threshold. The upper threshold limited stress on the tissue,

while the lower threshold isolated a reliable linear response in the force profile during

a palpation. Sample force-displacement curves, which show nearly linear dynamics in

this force range, are seen in Figure 2.9.
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Figure 2.9: Example force-displacement curve generated from the downward stroke

of a palpation. The blue line is the acquired data, and the red line is the least-squares

approximation of the acquired data.

2.4.2.4 Mapping the Classifier to Sort Palpation Data

We presented the mapping from a classifier generated from elastography data to

one that can be applied to autonomous palpation data in an earlier work [63]. The

elastography data from the training-set tissue was scaled linearly to match the values

observed from the autonomous robotic palpation data for the same sample tissue,

with a relative stiffness of 0 mapping to the least-stiff palpated point, and a relative

stiffness of 255 mapping to the most stiff palpated point. Since the elastography data

maps relative stiffness between points linearly, a linear mapping between intensity

values and absolute stiffnesses was appropriate.

2.4.2.5 Identifying the Inclusion in the Elastographic Image and Gener-

ating the Elastography Classifier

The mapping from relative to absolute stiffnesses established from the training-set

tissue developed a classifier specific to the test-set tissue. We manually segmented the

inclusion imaged from elastography of the test-set tissue by selecting the corners of the
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Figure 2.10: Training the GDA classifier. The blue bars are trained as not belonging

to the inclusion, while the red bars are trained as being part of the inclusion. The

dashed line represents the learned classifier. For the test-set tissue, all points to the

right of the classifier would be labeled as part of the hard inclusion, while all points

to the left of the classifier would be labeled as the surrounding soft tissue.

inclusion in the image to train the machine learning algorithm (Figure 2.7(b)). The

stiffness data (greyscale values) contained within the outline of the identified inclusion

were labeled as part of the inclusion while all other stiffness data were labeled as part

of the surrounding soft tissue. From this labeling, GDA developed the initial classifier.

Figure 2.10 shows the classifier developed from the data in Figure 2.7(b) using GDA.

This classifier was then mapped to an absolute stiffness value using the mapping

developed from the training-set tissue.

2.4.3 Evaluation Metrics

A series of metrics measured the effectiveness of the algorithm by comparing the

predicted location of the hard inclusion to the actual location of the hard inclusion.

Figure 2.11 provides a graphical explanation of these metrics. The intersection be-

tween the predicted and actual hard inclusion locations is correctly predicted to be

part of the hard inclusion. All other predicted hard inclusion area is identified falsely

as part of the hard inclusion. Likewise, all remaining area of the registered inclusion

not intersecting the predicted location of the hard inclusion is identified falsely as

part of the surrounding soft tissue. All other area in the workspace not predicted as
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Figure 2.11: A graphical explanation of the evaluation metrics used in this study.

The blue boundary is the estimated outline of the inclusion while the orange line

encapsulates the actual outline of the inclusion. This figure is derived from data

presented in Section 2.4.4.

part of the hard inclusion or registered as such are classified correctly as part of the

surrounding tissue. Sensitivity and specificity summarize these four non-intersecting

quadrants. Sensitivity measures the proportion of true positives which are correctly

identified as such while specificity measures the proportion of true negatives which are

correctly identified. A perfect prediction algorithm would have sensitivity of 1.0 and

specificity of 1.0. Classification methods with sensitivity and specificity values greater

than 0.8 have been generally accepted by the academic community as a success and

used as benchmark performance against other classification algorithms [78, 79].

2.4.4 Results

The inclusion segmentation approximations are shown in Figure 2.12. All sets were

initialized with the same initial classifier value and initial palpation grid. The metrics

analyzing the results are included in Figure 2.12. In all three trials, the sensitivity

and specificity were above 0.92. Among all three trials, the maximum ratio of stiffness

of palpated points between hard inclusion and soft tissue was 2.3.
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Figure 2.12: Experimental results for three trials. The red line interpolates through

the boundary points in black and forms the derived boundary of the inclusion. The

black box represents the actual location of the inclusion. Sensitivity and specificity

metrics are included for each trail.

2.5 Experiment 2: Robustness with Respect to

Initial Classifier Value

We conducted an experiment to test the robustness of the inclusion segmentation

algorithm with respect to the initial classifier value. Since no two elastography images

generate the same classifier due to noise in the image, our results from the previous

experiment would be compromised if we could not also demonstrate the inclusion

segmentation algorithm’s robustness with respect to its initial classifier value.

2.5.1 Artificial Tissue

For this experiment, an artificial tissue was created using PVC plastisol (M-F Man-

ufacturing, Fort Worth, Texas). Artificial tissues made from PVC plastisol are more

durable than those created from gelatin, which is necessary as this sample was sub-

ject to extensive experimentation. The artificial tissue base was created with a 1.75:1

ratio of liquid plastic to softener; while the hard inclusion was created using solely

liquid plastic. As before, the hard inclusion was a 25 mm square cube and embedded

4 mm below the surface of the tissue.
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Table 2.2: Sensitivity and Specificity for Robustness Testing Across Decreasing Seed-

ing Classifier Values

kinit(N/mm) Sensitivity Specificity

1.05 0.972 0.922

1.00 0.945 0.879

0.95 0.925 0.906

0.90 0.884 0.938

0.85 0.927 0.887

0.80 0.875 0.915

0.75 0.976 0.948

0.70 0.976 0.902

0.65 0.946 0.924

0.60 0.942 0.933

2.5.2 Procedure

Ten trials were performed varying the initial classifier value from 0.6 N/mm to

1.05 N/mm in increments of 0.05 N/mm. Below this range the robot would ex-

plore the entire tissue with fine resolution, losing the efficiency purported with the

algorithm. No points had a measured stiffness greater than 1.10 N/mm. The stiffness

difference between the hard inclusion and surrounding soft tissue in this test is on

the lower end of observed difference in stiffness between prostate tumors and their

surrounding tissue [45].

2.5.3 Results and Discussion

The sensitivity and specificity metrics subject to various initial starting stiffness

classifier values are shown in Table 2.2. Note that for all initial classifier values,

the specificity and sensitivity of the algorithm is at or above 0.875. This suggests

that the algorithm is robust with respect to the seeding classifier value input to the

expectation-maximization sub-algorithm. Among all trials, the maximum ratio of
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stiffness of palpated points between hard inclusion and soft tissue was 2.4.

While we have demonstrated the robustness of the autonomous inclusion seg-

mentation algorithm with respect to the initializing classifier, there is variance in

the sensitivities and specificities for the segmented region among the initial classifier

values. The autonomous inclusion segmentation algorithm is not deterministic, and

differing values for initializing classifiers will yield a different number and distribu-

tion of points palpated, as neighborhoods explored during the inclusion segmentation

algorithm, and in particular during the first iteration, are correlated with the initial

classifier value.

The maximum force exerted on the tissue during autonomous palpation, nearly

1.8 N, is less than half of the maximum force exerted by Trejos et al. with their

autonomous agent [56]. In their work the autonomous agent palpated with approxi-

mately 4 N of force, and furthermore did not segment the boundary autonomously.

Trejos et al. did conduct trials where they limited the force of their palpations to

2 N, which resulted in reportedly poor success rate caused by image artifacts in their

generated contour map. Lastly, their definition of success was achieved when the

human-identified boundary of the inclusion overlapped with the actual location of

the hard inclusion, and did not include sensitivity and specificity analysis like we do

in this work. The other significant work in autonomous robotic palpation and segmen-

tation mentioned in the background is the work of Sangpradit et al. [58]. While their

method showed success in identifying embedded circular inclusions, our developed

autonomous inclusion segmentation algorithm does not need a priori knowledge of

the shape of the inclusion, evidenced in simulation in this chapter, and in experiment

as shown later in Section 4.4.

The maximum resolution of the inclusion segmentation algorithm is limited by

multiple factors. The precision of the robot to palpate a commanded point and the size

of the palpation end effector are obvious factors, however a more subtle limitation is

the Markov random fields algorithm. As the resolution of points increases, depending

on the radius used to form a clique, an increasingly large search needs to be conducted

to use Markov random fields. This search in the worst case is O(nm) for n palpated

points and investigating cliques up to size m. In this work, only cliques up to size four
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were used to limit computational complexity. Our resolution factor in this work, 5mm,

was chosen to limit the autonomous inclusion segmentation algorithms’s execution

time to less than 10 minutes, as reported in Section 4.2, which is within an order of

magnitude from the amount of time it would take a human operator to perform the

same task under bilateral teleoperation.

2.6 Conclusions

In this chapter, supervised machine learning methods successively classified stiffness

data acquired via autonomous robotic palpation and segmented the boundary of a

hard inclusion embedded in soft tissue. Elastography data provided an initial classi-

fier to an expectation-maximization sub-algorithm with underlying Markov random

fields. Initial data provided a mapping from a classifier derived from elastography

data to one suitable for stiffness discrimination from autonomous palpation data.

The results show that the boundary of the inclusion can be segmented from the sur-

rounding soft tissue with high sensitivity and specificity. Furthermore, the inclusion

segmentation algorithm is robust with respect to the initial classifier value seeded into

the expectation-maximization sub-algorithm.

We have demonstrated the ability of the algorithm to differentiate a ratio of stiff-

ness commonly seen in prostate tumors [45]. We theorize that the algorithm will

continue to perform in instances where the stiffness ratio between surrounding tissue

and inclusion is greater, like for tumors of the breast, where the stiffness ratio can be

well over 8 [52].

We seek to expand this work by exploring ways to combine this autonomous

agent with a human agent. To help expedite the development and testing of different

human-robot collaboration models in an inclusion segmentation task, we use the

Multilateral Manipulation Software Framework developed in the next chapter.



Chapter 3

The Multilateral Manipulation

Software Framework

In this chapter we present a flexible software framework to expedite development of

various multilateral manipulation strategies. We demonstrate the effectiveness of an

implementation of the framework in a palpation task. Five different collaboration

models were tested in which the goal of the multilateral manipulation system is to

segment a stiff inclusion from its surrounding soft tissue: three of these collaboration

models used machine learning methods for segmentation, and two required human

operator segmentation. The collaboration models tested were: (1) fully autonomous

exploration of the tissue developed in the previous chapter, (2) shared control be-

tween a human and robotic agent, (3) supervised control where the operator dictates

commands to the robot, (4) traded control between the two agents, and (5) bilateral

teleoperation. Results indicate tradeoffs in sensitivity, maximum force applied, safety

implications, and duration of experiment among the five models.

This chapter is organized as follows. Section 3.1 introduces the software frame-

work at a high level, and presents an extension of this framework for an example

surgical task. Section 3.3 presents the experimental setup used to evaluate five ex-

emplar different collaboration models including the metrics gathered to compare the

collaboration models to each other. In Section 3.4, we present and discuss the results

across the five different collaboration models. We also discuss how well the software

45
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framework suited our needs to rapidly prototype and implement new collaboration

models. Finally in Section 3.5, we make concluding remarks.

3.1 Software Framework

We present in this section an overview of our multilateral manipulation software

framework. A preliminary version of this work appears in [80]. The design goal

of this software framework is to facilitate rapid prototyping of collaboration models,

each with a varying degree of autonomy. This is accomplished in an objected-oriented

sense by a set of base classes which generalize human-robot collaborative tasks. These

base classes are then extended into procedure-specific child classes which are further

extended to encode implemented collaboration models. The design choices in the

base classes and subsequent extensions seek to leverage as much of the same code as

possible across collaboration models, to ease prototyping and development. Addition-

ally, we require the Multilateral Manipulation Software Framework to use thread-safe

communication, which avoids problems such as deadlock and allows synchronization

among threads. This is the first instance to our knowledge of a software framework de-

veloped and tested to specifically enable a wide variety of human-robot collaboration

models. The design of this framework was heavily influenced by ROS [42] and CISST

[40], which are software frameworks used for sensing and actuation in tasks involving

robotic systems. Indeed, what ROS and CISST contribute to actuation and sensing,

we seek in this work to contribute to the design and implementation of human-robot

collaboration models. The object-oriented design of the MMSF is heavily influenced

by Cheriton [81], which presents a detailed methodology of object-oriented design in

modeling and simulation.

3.1.1 Base Class Structure

Figure 3.1 and Figure 3.2 illustrate a subset of the class structure, and the extensions

necessary for the framework to execute an inclusion segmentation task. Robotic tasks

are implemented by extending six base classes: Robot, Graphical Display, File I/O,
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Figure 3.1: Unified Modeling Language (UML) diagram of the Robot (blue), Robot

Hardware (RH, pictured pink), Robot Action (RA, pictured purple), and Operator

(green) classes of the MMSF implementation for the inclusion segmentation task.

The diagram also includes a selection of the extensions of the classes for the in-

clusion segmentation task used to implement the collaboration models described in

Section 3.2. The notifiee subclass is described in Section 3.1.2.

Operator, Procedure, and Robot Action, to make them task specific. The seventh base

class, the Manager class, in instantiated once every time the framework is imple-

mented, and not extended to each robotic task. We now introduce each base class in

turn and discusses their intent, content, and any necessary dependencies.

Robot Action: A Robot Action is the fundamental command unit issued by the

Operator to a Robot. The most basic commands extended from this class, for ex-

ample, are Move Robot Action and Hold Position Robot Action. Other Robot Action

extensions are Initialize Robot Action and Turn Off Robot Action. Parameters of

a Robot Action vary widely depending on the specific extension; they may include
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information like a desired position. Robot Actions can consist of series of basic Robot

Actions, for example a series of Move Robot Actions .

Robot : All robotic agents in a collaborative model derive from the abstract Robot

class. A Robot interfaces to the Operator by implementing commanded Robot Ac-

tions. This class may be extended to include acquisition and processing of information

from attached sensors, as well as handle commands unique to the surgical task im-

plemented. Figure 3.1 shows that the Inclusion Segmentation Robot defines methods

for the basic Robot Actions while the Palpation Robot includes methods to handle

palpation actions which are specific to our surgical task (described in Section 3.2).

Additional extensions may enable the robot to be used as a human-input device. A

Robot at no time creates Robot Actions to be implemented by itself.

Each Robot has a reference to an instance of Robot Hardware, which is used as the

hardware-specific interface from the robotic platform to the MMSF. In this work, we

structure our Robot Hardware class to interface with Phantom Premium haptic devices

(Geomagic, Morrisville, NC, USA). In work presented later in this dissertation the

Robot Hardware class was structured to take commands from the the Robot class and

implement them on the RAVEN surgical robot and da Vinci Reserach Kit (Chapter 4).

Procedure: The Procedure class is an auxiliary class and is a member variable of

the Operator. The singleton instance of the Procedure is responsible for keeping a

list of all the Robot Actions to be completed. Data collected during execution of the

Robot Actions is also stored in the Procedure.

Operator : Workflow of the procedure is facilitated by the Operator class. The

Operator pops a Robot Action from the Procedure stack and routes the command

to the appropriate Robot instances. Once the Robot Action completes, the Operator

interprets the data collected in the Procedure, and creates new Robot Actions as

necessary. All task-specific machine-learning techniques presented later in this work

are coded into this class.

File I/O : This auxillary class performs data transfer to/from files.

Graphical Display : This class visually displays all information suitable for the

user. Additionally, the graphical display can be extended to become a human input
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Figure 3.2: UML diagram of the Procedure (yellow) and Graphical Display (orange)

classes, with extensions to realize the collaboration models for the inclusion segmen-

tation task tested in Section 3.3. RA is an abbreviation for the Robot Action class.

device.

Manager : This class provides references through pointers of all base classes in the

framework for query by other base classes. The Manager class is also responsible for

instantiating the full set of classes necessary to conduct the surgical tasks assigned.

3.1.2 Inter-class Communication

Inter-class communication is facilitated through a notifier/notifiee interface [81]. For

an example of inter-class communication, refer to Figure 3.3. Each notifying class

has a subclass notifiee. To illustrate the notifier/notifiee interface we will consider

the Robot::statusIs(status:RobotStatus) method, which is called each time the Robot

changes its state to indicate whether or not it is executing an action. The Robot::notifiee

subclass has an onRobotStatusIs(void) virtual method which is called every time the

Robot::statusIs(status:RobotStatus) method updates the Robot::status attribute.

This virtual method is overwritten by a child class of the Robot::notifiee, the Opera-

torReactor::notifiee. The OperatorReactor::notifiee accesses the updated



50 CHAPTER 3. THE MMSF

robotAttributeIs(value:AttributeType)

theOperatorReactor:Robot:NotifieetheRobot:RobottheOperator:Operator

value:AttributeType

onAttributeIs(void)

getAttribute(void)

attributeIs(value:AttributeType)

robotCommandNew(action:RA)

Figure 3.3: Sequence diagram showing the flow of information during the execution

of a Robot Action command sent from the Operator (green) to a Robot (blue). During

the execution of the Robot Action, an attribute of the Robot is changed, for exam-

ple the Robot::status attribute may be set to COMMAND COMPLETED. This

instigates a new sequence of actions, whose sub-process is colored grey. The changed

attribute executes the OnAttributeIs() virtual method of the theRobotNotifier (pink).

An instance of a Robot::Notifier. theOperatorReactor, an extension of the theRobotNo-

tifier of which OnAttributeIs() has been defined, notifies the Operator of the attribute

change. This is an example of the call-down, notify-up paradigm, where the Operator

class called down the Robot Action to be implemented and the Robot class notified

the Operator when the action was completed.
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attribute value (the RobotStatus), and updates its own robotStatus attribute. This

interface is thread-safe, and formalizes communication between classes and processes

to allow easy scalability.

3.1.3 Threading

Each Robot instance is assigned its own thread, with a typical execution rate of

1kHz, a frequency sufficient for haptic feedback. The Graphical Display is assigned

an individual thread running sufficiently fast to render graphics, while main execution

thread is reserved for the Operator. Synchronization among threads occurs through

the notifier-notifiee structure introduced above.

3.2 Collaboration Models for Inclusion Segmenta-

tion Task

We demonstrate the MMSF introduced in the previous section by extending its base

classes to support the task of inclusion segmentation in soft tissue. In this section

we introduce five different collaboration models that can segment a stiff inclusion

from its surrounding soft tissue. These collaboration models, pictured graphically

in Figure 3.4, vary in how they combine the robotic and human agents’ intents. A

collaboration model for the inclusion segmentation task includes a method to map

tissue mechanics and a method to segment the boundary of the inclusion.

Each of the described collaboration models instantiates at least one extension of

each base class mentioned in Section 3.1. Table 3.1 lists the specific classes instanti-

ated for each collaboration model.

Recall that the Operator class will query its Procedure member variable for each

Robot Action. For the inclusion segmentation task three new Robot Actions are cre-

ated: Palpate Point Autonomously Robot Action, Palpate Point Teleoperatively Robot

Action, and Palpate Tissue Teleoperatively Robot Action. The Palpate Point Au-

tonomously Robot Action consists a series of three Move Robot Actions: the first

sub-action is to position the robot at the desired palpation location but just above
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the tissue, while the remaining two sub-actions are the downward and upward strokes

of palpation. For the Palpate Point Autonomously Robot Action, the downward stroke

of the palpation command is force-controlled, to limit stress on the environment. The

Palpate Point Teleoperatively Robot Action implements a bilateral teleoperation con-

troller where the position and velocity are exchanged between the master and slave

robots. However, only the palpating axis is teleoperated; the other axes are controlled

by the robotic agent to fix the location of the point palpated. In the Palpate Point

Teleoperatively Robot Action action, the Robot class is responsible for partitioning the

force-displacement data into ranges that represent a single palpation, from which a

stiffness can be approximated. This is in contrast to its autonomous counterpart that

by design encodes the downward and upward strokes of the palpation and thereby

knows how to partition the force-displacement data. The Palpate Tissue Teleopera-

tively command is similar to the Palpate Point Teleoperatively Robot Action, except

that the human operator is in control of all degrees of freedom, and can palpate in

any desired location.

Once the Inclusion Segmentation Robot has indicated that the palpation has com-

pleted, the Inclusion Segmentation Operator will examine the new palpation data.

Depending on the new data acquired and the collaboration model, the Inclusion Seg-

mentation Operator may create new Robot Actions in response.

We now describe each of the collaboration models prototyped.

3.2.1 Bilateral Teleoperation

In bilateral teleoperation, a master and slave robot are connected with a bilateral

proportional-derivative controller. The human operator is free to explore an artificial

tissue via palpation by the Bilateral Teleoperation Inclusion Segmentation Operator

issuing a Palpate Tissue Robot Action command to both master and slave robots.

Once the human operator is confident in their ability to define the boundary of the

inclusion, the human operator will indicate the boundary of the inclusion through the

Human-Interface Inclusion Segmentation Graphical Display.
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Figure 3.4: Collaboration models tested. Five different collaboration models are

shown along with their information exchange between the master and slave robots.
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3.2.2 Supervised Control

Supervised control uses the same class instantiation set as bilateral teleoperation

with the exception that its operator is the Supervisory Bilateral Teleoperation Inclu-

sion Segmentation Operator, an extension from the Bilateral Teleoperation Inclusion

Segmentation Operator. This operator differs from its parent by extending the statu-

sIs(status:OperatorStatus) method such that the slave robot follows palpation com-

mands indicated by the Human-Interface Inclusion Segmentation Robot. A palpation

command is created when the human operator performs a palpation motion with the

master robot (in free space). Once the user finishes the palpation motion, the loca-

tion of the palpation parameterizes a Palpate Point Autonomously Robot Action sent

to the slave robot. Like the bilateral teleoperation collaboration model, the bound-

ary of the inclusion is identified by the user through the Human-Interface Inclusion

Segmentation Graphical Display.

3.2.3 Fully Autonomous

The fully autonomous inclusion segmentation model was developed in the previous

chapter and is briefly summarized here. The fully autonomous collaboration model,

encoded in the Autonomous Inclusion Segmentation Operator, segments the hard in-

clusion from surrounding soft tissue by using an autonomous palpation algorithm that

develops a classifier used to sort points based on their stiffness as part of the hard

inclusion or part of the surrounding soft tissue. The initial stiffness classifier value

is improved during successive iterations using an expectation-maximization (EM) al-

gorithm. Improving the stiffness classifier using data acquired from palpation can

map the classifier from its initial value to one specialized for the tissue sample as

hand. The E-step of the EM algorithm is facilitated by a Markov random fields algo-

rithm. Markov random fields classify a point using the information from the point’s

neighborhood in addition to the information stored in the point. This classification

strategy makes intuitive sense for an inclusion segmentation task as we would expect

the neighborhood around a point to have the same labeling as the point of interest.



56 CHAPTER 3. THE MMSF

Once all the points are relabeled the M-step of the algorithm, using Gaussian dis-

criminant analysis, generates an updated stiffness classifier for the next iteration of

the palpation algorithm.

Dense resolution around points theorized to belong to the hard inclusion as well as

the supposed boundary of the inclusion is facilitated in two ways. First, if a palpated

point is classified as part of the hard inclusion against the one-dimensional stiffness

classifier, the neighborhood around this point is then palpated by the Autonomous In-

clusion Segmentation Operator creating new Palpate Point Autonomously commands

and sending these commands to the Palpation Inclusion Segmentation Robot. Sec-

ond, between iterations of the EM algorithm the next set of points to be mapped

is formed as the union of neighborhoods around points on the supposed boundary

of the inclusion. After each iteration of the EM algorithm, the neighborhood radius

gets progressively smaller, ensuring a higher resolution of the inclusion boundary.

The algorithm exits once the classifier has converged and the neighborhoods around

the boundary points of the inclusion have been explored. At this point, the final

boundary of the inclusion is output.

The fully autonomous collaboration model instantiation set in Table 3.1 contains

an instance of the Autonomous Inclusion Segmentation Procedure, which includes

Palpate Point Autonomously actions, created by the Autonomous Incluison Segmen-

tation Operator, to generate the initial grid of points explored as the first part of the

inclusion segmentation algorithm.

3.2.4 Shared Control

Shared control is a human-robot collaboration model in which we use the operator

from Section 3.2.3 in conjunction with bilateral teleoperation. In this collaboration

model, we sought to use the methodology of the fully autonomous palpation algorithm

but give the human agent control over tissue interaction. The human agent controls

the palpating degree of freedom during the downward stroke until the force threshold

is reached, at which point the robotic agent controls the upward stroke of palpation.

In addition the robotic agent decides where to palpate. In this sense, the human agent
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is solely responsible for imparting forces on the tissue through palpation, adding a

measure of safety with a human in the loop. The tissue exploration procedure is the

same as in Section 3.2.3, and the autonomous agent is responsible for identifying the

outline of the inclusion. The Shared Control Inclusion Segmentation Procedure dif-

fers from the Autonomous Inclusion Segmentation Procedure by replacing all Palpate

Point Autonomously Robot Actions with Palpate Point Teleoperatively Robot Actions.

The Teleoperated Palpation Inclusion Segmentation Robot class is extended from its

parent class to handle this type of Robot Action.

3.2.5 Traded Control

In traded control, the control authority alternates between the human operator under

bilateral teleoperation at the beginning of the procedure, and the robotic agent under

full autonomy for the remainder of the procedure. The motivation for this collabora-

tion model is to take advantage of the human operator’s ability to quickly recognize

the difference in stiffness between the hard inclusion and surrounding soft tissue, as

well as provide the initializing classifier for the fully autonomous machine learning

methods. Once the human operator palpates enough points in the bilateral teleoper-

ation setup to confidently seed an initial classifier, the machine learning algorithms

developed in Section 3.2.3 guide the remainder of the tissue mapping and classifica-

tion. This collaboration strategy was designed to provide the same performance as

the fully autonomous collaboration model, but rely on the human operator to seed

the algorithm.

To instantiate this collaboration model, the Traded Human-Autonomous Inclusion

Segmentation Operator is extended from the Autonomous Inclusion Segmentation

Operator. The extended Operator uses the inclusion segmentation algorithm from

Section 3.2.3, but includes additional methods so the user can initialize the classifier

used in the segmentation algorithm using the method described above.
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Figure 3.5: Experimental setup. A human operator (left) sends commands to the

slave robot (right) that is positioned to palpate an artificial tissue with an embedded

stiff inclusion. A graphical display shows the collected data (see Section 3.3.3).

3.3 Experiment

The five collaboration models, all derived from the MMSF introduced in Section 3.1,

were tested with the exemplar task of segmenting a hard inclusion from surrounding

soft tissue. One robot was used as a human input device, while another was posi-

tioned to palpate the artificial tissue. As tissue mechanics were mapped from force-

displacement data, the palpated points and their stiffnesses were displayed graphically.

The experiment concludes with identification of the boundary by the human or robotic

agent. Evaluation metrics are generated by a comparison between the estimated loca-

tion of the inclusion and the actual location. Other metrics included maximum force

exerted on the tissue, as well as the number of palpations and experiment duration.

3.3.1 Artificial Tissue

An artificial tissue was created to simulate the mechanics of a hard inclusion in

soft tissue for experimentation. The artificial tissue was constructed from silicone

(Smooth-On, Inc. Easton, PN, USA). We chose silicone instead of plastisol (which
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was used in Chapter 2) because silicone tissues take less time and effort to con-

struct compared to plastisol tissues. A gelatin-based artificial tissue would also be

insufficient due to the extensive testing the artificial tissue underwent. A pre-made,

cylindrical hard inclusion with a diameter of 25 mm was made from pure silicone.

After the hard inclusion cured, the artificial tissue base was poured using one part

silicon-thinner to three parts silicone. During the curing process of the softer tissue,

the hard inclusion was positioned into the center of the artificial tissue base, 4 mm

below the surface.

3.3.2 Robotic Palpation

Two Phantom Premium 1.5A haptic devices were employed as the master and slave

devices (Figure 3.5). The human operator grasped the end effector of the master robot

while the slave device was positioned to palpate the artificial tissue. For autonomous

motions, third-order polynomial desired trajectories of the robot end-effector were

input to a proportional-derivative controller. These trajectories were generated at

the onset of a new Move Robot Action, interpolating between the current location

and the location parameterizing the Move Robot Action.

All collaboration models require an estimate of the stiffness of a palpated point.

To acquire a stiffness estimate, a Nano-17 force-torque sensor (ATI Industrial Au-

tomation, Apex, NC, USA) attached to end point of the slave robot acquired force

data while position measurements were taken from the Phantom Premium. A linear

spring model approximated the tissue mechanics using only the data from the down-

ward stroke. Force-displacement data used to approximate a stiffness was thresholded

between 1.2 N and 1.8 N of force, where the force-displacement relationship was nearly

linear [44].

3.3.3 Graphical User Interface

A graphical user interface was created to serve two purposes: (1) provide a means for a

human operator to see and interpret the stiffness data acquired during palpation and

(2) provide a means by which a human operator can select data points previously
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Figure 3.6: A graphical explanation of the evaluation metrics used in the study. The

blue boundary is the estimated outline of the inclusion, and the orange boundary is

the actual outline of the inclusion.

acquired, either for inclusion boundary segmentation, or to initialize the stiffness

classifier, as is required by the traded control collaboration model (Section 3.2.5).

3.3.4 Evaluation Metrics

Several metrics measured the effectiveness of the algorithm by comparing the pre-

dicted and actual locations of the hard inclusion. Figure 3.6 provides a graphical

explanation of these metrics. The intersection between the predicted and actual hard

inclusion locations is correctly predicted to be part of the hard inclusion (true posi-

tive). All other area predicted as the hard inclusion is falsely identified (false positive).

Likewise, all remaining area of the registered inclusion not intersecting the predicted

location of the hard inclusion is falsely identified as part of the surrounding soft tissue

(false negative). All other area in the workspace not predicted as part of the hard

inclusion or registered as such are classified correctly as part of the surrounding tis-

sue (true negative). Sensitivity and specificity summarize these four non-intersecting

quadrants. Sensitivity measures the proportion of true positives which are correctly

identified as such while specificity measures the proportion of true negatives which

are correctly identified. A perfect prediction algorithm would have sensitivity of 1.0

and specificity of 1.0. For inclusion segmentation, a sensitivity close to 1.0 is more
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important than a specificity close to 1.0; to ensure that no potentially cancerous tis-

sue is left behind. The autonomous palpation algorithm developed in [44] used in

full robot autonomy, shared control, and traded control was developed to maintain a

minimum sensitivity of nearly 1.0, even at the sacrifice of some specificity.

Other metrics tabulated include the total number of palpations, the maximum

force applied on the tissue by the slave robot, and the duration of the experiment.

The experiment duration is defined as the time from when the slave robot receives

its first command to when the boundary of the inclusion is identified.

3.3.5 Protocol

Each collaboration model was tested once. Every tested collaboration model used

a different human operator naive to the properties of the hard inclusion, to avoid

learning factors in the experiment. The shape and location of the hard inclusion were

constant for all testing.

3.4 Results and Discussion

3.4.1 Software Framework

In Table 3.1 we showed the class instantiation set unique to each collaboration model.

With the differences between these instantiated classes shown in Figures 3.1 and 3.2

and described in Section 3.1, we can see how a wide variety of different behaviors,

evident in different forms of human-robot collaboration models, share much of the

same code. We have shown in Section 3.2 that differences between collaboration

models typically manifest in the Operator issuing different Robot Actions to Robots

extended to interpret those commands. Indeed, some collaboration models only differ

in their class instantiation set by one or two classes, putting the developer in a position

to leverage as much code as possible between very different collaboration models.

We have shown in Figure 3.3 and Section 3.1.2 how the notifier/notifiee interface

standardizes inter-class communication to facilitate rapid prototyping.
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Figure 3.7: Experimental results showing the palpations, estimated and actual bound-

ary of the inclusion for the five collaboration models. The black line interpolates

through the boundary points in black and forms the derived boundary of the inclu-

sion. The red line represents the actual location of the inclusion.The circles represent

the stiffnesses of the points palpated, with red being most stiff and blue being the

least stiff.

The call-down, notify-up structure was effective in being able to handle our sur-

gical task and experimental setup. In Section 3.1.2, we introduced our manifestation

of the call-down, notify-up structure when the Operator called down a Robot Action

to the Robot. After data acquisition, the Robot notified the Operator of the new data

(see Figure 3.3). In a future design, if we wanted to repeat this task with a different

slave robot, the Inclusion Segmentation Operator would not have to be recoded to

interface with the new device. Furthermore, the Robot used in the procedure need

not change. Instead, a different Robot Hardware class would be written to interface

between the MMSF and the particular hardware setup.
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3.4.2 Inclusion Segmentation

Figure 3.7 shows the experimental results for each collaboration model, including the

data points collected via palpation, the estimated boundary of the inclusion, and the

actual boundary of the inclusion. Table 3.2 shows the metrics gathered from testing

each collaboration model. For each collaboration model, sensitivity and specificity

metrics were collected from the estimated boundary of the inclusion. In addition,

maximum force applied, the number of palpations, and the experiment duration were

recorded.

The results in Table 3.2 shows that collaboration models which used force-thresholding

result in lower maximum force than collaboration models whose downward palpation

motions were under human control. Supervised control, full robot autonomy, and

shared control have roughly the same maximum force: approximately 1.8 N. How-

ever, among these three collaboration models, shared control has a slightly larger

maximum force exerted on the tissue. This is because the downward stroke of the

palpation for this collaboration model is controlled by the human operator, so when

the force threshold was reached, the end effector of the robot had a larger velocity

than if the downward stroke were under fully autonomous control. For the remaining

collaboration models, recall that in the first phase of traded control, the robot was

controlled through bilateral teleoperation. We would expect each bilateral teleoper-

ation user to exert a different maximum force on the tissue. In this experiment, the

user who tested the traded control model happed to exert a larger maximum force on

the tissue compared to the user who tested bilateral teleoperation.

In both bilateral teleoperation and supervised control, the number of palpations as

well as the experiment duration were less than the other collaboration models. How-

ever, for these same collaboration models, either the sensitivity or the specificity were

worse compared to models that used the fully autonomous exploration and bound-

ary identification methods. In the case of bilateral teleoperation, the user identified

a boundary that was entirely included in the actual boundary of the inclusion. In

the supervised control case, the user selected a boundary far in excess of the actual

boundary, resulting in a low specificity.

The results in Table 3.2 are not conclusive in terms of evaluating the merits
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of different collaboration models, rather they demonstrate the implementation of

the MMSF and motivate the design of future user studies. In Section 4.2.1.1, we

perform a multi-user study that involves more complicated shapes to segment and is

implemented on a da Vinci Surgical System. The experimental results here are an

illustration of the MMSF presented in this chapter, to show the nature of data that

can be acquired quickly by formalizing our task with the MMSF.

3.5 Conclusions

In this work we introduced a software framework capable of supporting a variety of

human-robot collaboration models with differing amounts of autonomous control. We

implemented an inclusion segmentation task by properly extending the base classes

forming the software framework, and programmed five different collaboration mod-

els. Results in an inclusion segmentation experiment indicated tradeoffs in sensitivity,

specificity, duration, and safety implications for this task. The framework was demon-

strated to be easily extensible, and have a well defined inter-class communication

protocol capable of supporting rapid development while being thread-safe.

The work presented in this chapter shows promise that the Multilateral Manipu-

lation Software Framework can successfully be used to develop human-robot collab-

oration models for surgical tasks. In the next chapter we extend and test the MMSF

in a number of ways. First, we conduct a user study where the performance of differ-

ent human-robot collaboration models are compared against each other. We perform

this study so we can quantify the value of blending human and robotic agent input.

Second, we extend the MMSF to other surgical tasks and robotic systems, to test its

flexibility.
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Chapter 4

Implementations and Extensions of

the Multilateral Manipulation

Software Framework

This chapter presents implementation and extensions of the Multilateral Manipulation

Software Framework introduced in the previous chapter. In Section 4.1, we describe

implementation details to use the MMSF to control two different surgical robots: the

da Vinci Research Kit (dVRK) [41] and the RAVEN-II surgical robot (hereafter ab-

breviated as RAVEN)[82] (Applied Dexterity, Seattle, WA). In Section 4.2, we present

and draw conclusions from a user study conducted to test four human-collaboration

models from the inclusion segmentation task against each other. This work was im-

plemented on the da Vinci Research Kit. In Section 4.3, we extend the MMSF to

an entirely new surgical task: a debridement task conducted by the RAVEN. In Sec-

tion 4.4, we extend the MMSF again to an electrocautery task performed with the

dVRK, and use the MMSF described in Chapter 3 to conduct a pilot study where

different pairings of collaboration models between stiff region exploration and elec-

trocautery along the boundary exhibit different performances. Each of the sections in

this chapter extends or validates the contributions from Chapter 3 by demonstrating

the MMSF in a wider context.

66
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4.1 Implementation of the MMSF on Surgical

Robots

In this section we describe how to implement the MMSF on the dVRK and the

RAVEN). The dVRK was used as the robotic platform in Sections 4.2 and 4.4, while

the RAVEN-II Surgical Robot was used in Section 4.3. Both of these robotic systems

require more complex software interfaces with the MMSF than previously developed

for the Phantom Premium devices used in Chapter 3.

4.1.1 Implementation of the MMSF on the da Vinci Reserach

Kit

In this subsection we describe the steps necessary to implement the MMSF to the

dVRK (see Figure 4.1). The dVRK interfaces with the CISST-SAW framework,

developed primarily at Johns Hopkins University [41]. The CISST-SAW software

framework is a component-based architecture, which enables well-specified integration

of robot hardware and stereovision with control and actuation. A master computer,

running CISST-SAW, provides a single access point which can be used to prototype

tasks for the dVRK. The MMSF is not designed to be run as a module of CISST-SAW;

such a specification would detract from its applicability to systems not operating

on the CISST-SAW framework, like the RAVEN robot we use in Section 4.3. For

this chapter, we needed to build a communication link between the MMSF and the

dVRK which allows us to implement a variety of human-robot collaboration models

in a stable fashion. To implement the MMSF to the dVRK we used two different

computers, one executing sensing and control of the dVRK, and another computer

running the MMSF. Communication between the two platforms was implemented

with TCP/IP sockets on both computers which were connected via an Ethernet cable.

To facilitate effective communication, two new processes were created on the dVRK

side, one for Ethernet communication (running at 100Hz), and another process which

interprets any received Ethernet packages and responds as commanded. The MMSF

implemented an additional process running the Robot Hardware class extended to
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Figure 4.1: The da Vinci Research Kit. (a) Master console with master manipulators

and stereovision hood. (b) Patient-side manipulator arms outfitted with large needle

drivers.

support the dVRK. This process would execute sufficiently fast to receive all Ethernet

packets from the dVRK. The Ethernet packet sent from the dVRK to the MMSF for

this study is illustrated in Table 4.1. In addition to general state information, data

specific to the stiff region segmentation subtask implemented in Sections 4.2 and 4.4

(in particular, the stiffness and location of palpated points) are also included.

The communication protocol between the computers running the dVRK and

MMSF represents a significant design choice. The communication latency between

the dVRK and MMSF is not stable enough with our given hardware setup to send

out force/torque data as was used in Chapter 3. In response to this problem, the

unit of information sent from the MMSF to the dVRK was abstracted to the Robot

Action, which is stable despite latency (Table 4.2). The dVRK, when issued a new

command, would interpret and implement the command. In this sense, the processing

reserved for the Robot class in our previous work is now implemented on the dVRK.
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Table 4.1: Data Packet from dVRK to MMSF

Symbol Description

PacketNumber Ethernet packet number

Complete Boolean value indicating completion of issued Robot Action

Stiffness Calculated stiffness of most recently palpated point

P Location of most recently palpated point

MSML Position and rotation of the left master-side manipulator

MSMR Position and rotation of the right master-side manipulator

PSML Position and rotation of the left patient-side manipulator

PSMR Position and rotation of the right patient-side manipulator

PSMLDesired Transform of MSML into slave robot workspace

PSMRDesired Transform of MSMR into slave robot workspace

GripperL State of left master-side gripper DOF

GripperR State of right master-side gripper DOF

F Force/torque data from the attached sensor

When a command in completed, the dVRK would set the appropriate flag in its out-

going Ethernet packet (Table 4.1), and the MMSF would progress through its state

machine.

4.1.2 Implementation of the MMSF on the RAVEN-II

The slave robot used in Section 4.3 is the RAVEN robot initially developed at Wash-

ington University and University of California, Santa Cruz (see Figure 4.2). The

RAVEN robot is an open-architecture surgical platform designed for the academic

community to share findings and perform collaborative research. It is similar in

function to the da Vinci robot, with two 7-degree-of-freedom arms (pose, position,

and grasp). The RAVEN interfaces directly with da Vinci surgical tools but is only

calibrated for one specific type of tool: the large needle driver.
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Table 4.2: Data Packet from MMSF to dVRK

Symbol Description

PacketNumber Ethernet packet number

RobotArm Enumerated value indicating the left or right robot arm

RobotID Enumerated value indicating master or slave robot

ActionID Enumerated value indicating commanded Robot Action

P Vector indicating desired position of Robot Action

Like the dVRK, the RAVEN robot has a computer dedicated to running the sur-

gical robot hardware. However, the default setup provided by Applied Dexterity

includes a second computer, connected to two Geomagic Touch haptic devices (Geo-

magic, Morrisville, NC, USA). In the standard setup provided by Applied Dexterity,

the human input device laptop, connected to the Geomagic Touch devices, senses

positions, poses, and gripper angles. This state information is sent via a UDP socket

to the computer running the RAVEN hardware, where it is interpreted and provides

reference signals used to control the RAVEN arms. State information is not sent

from the RAVEN computer to the computer connected to the Geomagic Touch de-

vices, although bidirectional communication is a desired feature considered for future

RAVEN software releases. Joint control for the RAVEN is performed locally on the

computer running the RAVEN, resulting in closed-loop control locally with respect

to the RAVEN and open-loop control with respect to the computer connected to the

human input devices.

The standard configuration of the RAVEN provided by Applied Dexterity provides

a simple access point for the MMSF: the computer connected to the Geomagic Touch

devices. The MMSF executes on the same computer as the one connected to the hu-

man input devices, and reads state information. This state information is augmented

according to the implemented collaboration model, and Robot Actions are formed as

before in Chapter 3. However, instead of a proportional-derivative controller guiding

the slave robot along third-order polynomial trajectories as in Section 3.3.2, the tra-

jectory reference locations, used as inputs to the controller, are sent to the RAVEN
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Figure 4.2: The RAVEN-II Surgical Robot. Two Geomatic Touch haptic devices

(bottom) are used as the human input devices.

robot directly using the UDP socket, where local controllers on the computer con-

nected to the RAVEN robot follow the trajectory. Since the MMSF is augmenting

state information in an otherwise functional information pipeline between the human

input device computer and the RAVEN hardware computer, the implementation de-

tails for the MMSF with the RAVEN need not be as involved as the details required

to use the MMSF with the dVRK.

4.2 Human-Subject Study of Human-Robot Col-

laboration Models for an Inclusion Segmenta-

tion Task

In this section, we verify the Multilateral Manipulation Software Framework devel-

oped in the previous chapter by conducting a user study where we quantify how
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variations in human-robot collaboration models affect task performance. In the in-

clusion segmentation experiment, twelve participants explored an artificial tissue and

identified the inclusion boundary under the collaboration models of (1) teleoperation,

(2) supervised control, (3) traded control, and (4) full autonomy. In the boundary

identification experiment, we isolate the performance of human and robotic agents in

the boundary identification sub-task; participants and a robotic agent independently

identified the boundary of four virtually palpated tissues. Results from the inclu-

sion segmentation experiment indicate that human agents complete the task faster;

teleoperation had the fastest task times. Results of both experiments indicate that

the robotic agent identifies boundaries with higher sensitivity and less variance than

human agents. This suggests that task accuracy increases when a robotic agent seg-

ments the boundary, while including a human agent can decrease the overall task

time.

This study was performed in collaboration with Kirsten E. Kaplan, as reported

in Kaplan et al. [83]. Kaplan’s contributions included design of the graphical display

rendered to the human subjects, the enhanced and extended boundary identification

algorithm, design of tool fixtures, design of the experimental protocol, conduction

of the human subject study, and analysis of the results. My contributions to this

work include extending the Multilateral Manipulation Software Framework to support

the dVRK (described in Section 4.1), experiment design, and software development

necessary to conduct the user study. The conclusions drawn from this section are

included as part of this dissertation since they go beyond the pilot study conducted

as part of the previous chapter and rigorously compares different collaboration models

against each other.

4.2.1 Implementation of the Inclusion Segmentation Task

In this study, our implementation of the inclusion segmentation task can be divided

into two main sub-tasks: tissue exploration, in which an artificial tissue is palpated re-

peatedly to locate a stiff inclusion, and boundary identification, in which information

gathered from these palpations is used to identify the boundary of the stiff inclusion.
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Figure 4.3: Human-robot collaboration models tested on an inclusion segmentation

task. For each collaboration model, the figure indicates which agent, human or robot,

is responsible for completing specific aspects of the task. The numbers 1 and 2 in

Traded Control indicate the order in which the two agents have control; the human

agent selects and palpates points until ready to identify a single point in the stiff

inclusion, at which point the robotic agent gains control and completes the task.

The tissue-exploration sub-task is implemented differently for each of our collabora-

tion models. The boundary identification sub-task is binary, with either the human or

robotic agent responsible for identification, and is executed after completion of the tis-

sue exploration sub-task. The following subsections describe the implementation and

motivation of our human-robot collaboration models and our improved autonomous

boundary identification algorithm. The human-robot collaboration model section fo-

cuses on implementation of the tissue exploration sub-task, though it also indicates

which agent is responsible for boundary identification in each collaboration model.

4.2.1.1 Human-Robot Collaboration Models

Each collaboration model assigns different degrees of shared control between the hu-

man and robotic agents in order to assess how overall task performance varies. In

this work, we use collaboration models developed in the previous chapter. In order

of increasing robot independence, they are: (1) teleoperation, (2) supervised control,

(3) traded control, and (4) full autonomy (Figure 4.3). To review these collaboration

models in the context of this study, we briefly summarize them below. More detail

can be found in Chapter 3.
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Teleoperation In teleoperation, the human controls the master robot manipulators

and these movements are mimicked by the slave robot. The human operator is free

to explore the workspace and palpate the tissue at will. The human palpates enough

points to feel confident in their ability to identify the boundary and then selects the

boundary from amongst the palpated points. This collaboration model represents the

control case, where a human commands all aspects of the experimental task.

Supervised Control Supervised control consists of the human issuing high-level

commands and the robot performing repetitive, lower-level operations. The human

moves the master manipulators to the location they desire to palpate and closes the

gripper on the end of the master manipulator. The slave robot then proceeds to

palpate the tissue at the commanded location. Robotic palpation consists of a down-

ward movement which transitions to the upward stroke when the force of palpation

exceeds 1.8 N. The human agent determines when enough points have been palpated,

then selects the inclusion boundary. This collaboration model was included to inves-

tigate task performance when a human is responsible for the exploratory aspects of

the procedure–choosing where to palpate in order to completely locate the boundary

as well as segmenting this boundary–while the robot performs those aspects that are

repetitive and benefit from repeatability and precision in applied force.

Traded Control In traded control, the procedure switches from teleoperation to

full autonomy when indicated by the human. For this study, the human is responsible

for palpating the tissue roughly 10 to 20 times and selecting one of these points as

located in the stiff inclusion. This data is used to create an initial classifier for the

machine learning algorithm, described in the following section, which provides input

for the robotic agent to complete the palpation sub-task autonomously. The robotic

agent is responsible for identifying the boundary in this collaboration model. This

collaboration model was included to provide the human user with the task of initially

locating the tumorous tissue within the larger workspace. The robot then takes the

initial definition of inclusion from the human and performs additional palpations to

fully locate and identify its boundary.



4.2. HUMAN-SUBJECT STUDY FOR INCLUSION SEGMENTATION TASK 75

Full Autonomy The fully autonomous collaboration model used here is described

in detail in Chapter 2. Briefly, an autonomous palpation algorithm is responsible

for selecting palpation locations. It begins palpating a linearly-spaced grid of points

on the surface of the tissue using a provided stiffness classifier to label points based

on stiffness as either part of the stiff inclusion or part of the surrounding tissue. In

Chapter 2 we demonstrated that the initializing classifier can come from elastography

and that the results from autonomous exploration and segmentation are robust with

respect to initial value. For the present study we set the initializing classifier to

0.4 N/mm. The classifier improves as the algorithm iterates with the potential for

some points to be relabeled, allowing points previously considered too soft to be in the

inclusion to be reclassified as stiff and vice-versa. Additional points in the vicinity of

the inclusion boundary are palpated to increase resolution along the boundary. The

approach used to identify the boundary once the algorithm has completed is described

in detail in Section 4.2.1.2.

4.2.1.2 Boundary Identification Algorithm

For autonomous boundary identification, our algorithm begins by labeling all the pal-

pated points as soft or stiff based on the final stiffness classifier from the autonomous

palpation algorithm and selecting the stiff point with the largest x-value. This point

becomes the start point for the search for the inclusion boundary. Each iteration of

the initial search is performed by defining a search circle with a radius of 5 mm. All

points within the bounds of the search circle are considered neighboring points, and

are classified as stiff inclusion or soft tissue points. The circle is considered to be on

the boundary if both inclusion and soft tissue points are located in its bounds. The

search extends to the right from this point by translating the search circle until the

boundary is located; the first boundary point is defined as the soft tissue point closest

to the start point, similar to the approach used in Chapter 2.

Once the algorithm identifies an initial boundary point, each successive iteration

of the boundary search proceeds by moving the search circle along the vector from the

previous boundary point to the current one (Figure 4.4(a)). For the initial iteration,

when only one boundary point has been identified, movement of the search proceeds
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Figure 4.4: Illustration of boundary identification algorithm. Red and blue circles

represent palpated points classified as stiff inclusion and soft tissue, respectively. (a)

Initial step of search for each new boundary point moves a search circle (solid circle)

along the vector from previous to current boundary point (solid line). Search is

considered to be on the boundary if circle contains both soft and stiff points. (b) If

the search circle from (a) was entirely outside the inclusion (dashed circle), the search

(solid circle) is shifted to the left along a line perpendicular to the initial search line

(solid line). If this circle is located on the boundary, the soft tissue point closest to

the inclusion is selected as the next boundary point.

in the positive y-direction. This initial direction ensures that the search will move

around the inclusion counterclockwise. If the circle is not located on the boundary,

the algorithm determines if it is outside or inside the inclusion. In the former case

the search circle will move to the left, as the counterclockwise directionality ensures

that this will be the direction of the boundary (Figure 4.4(b)). If this circle is also

outside the inclusion, the algorithm will proceed in a counterclockwise square search

pattern around the last identified boundary point until the search circle is either on

the boundary or in the inclusion. These events are reversed if the initial circle is inside

the inclusion, with movement to the right and clockwise. The boundary searching

algorithm concludes when the first boundary point returns within the bounds of the
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search circle. A cubic spline interpolation is used to connect the boundary points and

define the final inclusion boundary.

4.2.2 Experiments

Our study consists of two experiments. The first experiment is the inclusion seg-

mentation experiment, in which participants perform the full inclusion segmentation

task. Using a da Vinci Research Kit and a provided graphical interface, partici-

pants explored an artificial tissue by physically palpating it with the robot and then

identified the boundary of a stiff inclusion located in the tissue (Figure 4.5). This ex-

periment was performed under the four different human-robot collaboration models

described in Section 4.2.1.1. Following completion of the first experiment, partici-

pants performed the second experiment, the boundary identification experiment. In

this experiment, participants performed the sub-task of boundary identification for

virtual tissues by selecting boundaries based on a series of points, palpated by our

autonomous algorithm, that matched the type of data they collected in the inclusion

segmentation experiment.

4.2.2.1 Participants

This study was conducted with twelve right-handed participants (6 males and 6 fe-

males, ages 24 to 35) who gave their informed consent to partake in the study. Seven

of the participants had little to no previous experience with human-machine inter-

face devices; the others had previously developed or used teleoperated and/or haptic

devices. The experimental protocol was approved by the Stanford University Institu-

tional Review Board.

4.2.2.2 Artificial and Virtual Tissues

Artificial tissues were created for the inclusion segmentation experiment. Each tissue

consisted of a stiff inclusion surrounded by softer material. This approach mimics the

mechanics of a stiff mass in soft tissue, with benefits over real tissue of extended shelf

life and durability, lower cost, and the ability to design shapes and stiffnesses
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Figure 4.5: Experimental setup of inclusion segmentation experiment. (a) In collab-

oration models involving a human, the participant sits at the master console of a

da Vinci Research Kit (dVRK) and controls the right master manipulator (circle).

Inset is a portion of the user interface participants see during the tissue exploration

sub-task; points on the image represent palpation locations, with color indicative of

stiffness. (b) The dVRK patient-side surgical robot arm, with an attached force sen-

sor, is controlled by a combination of the dVRK master manipulator in (a) and an

autonomous robotic agent. Force-displacement data was collected using a force sensor

attached to the slave arm. A stereoscopic camera system images the workspace. The

video feed from the camera setup is provided to participants alongside the display

shown in the inset in (a).
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to desired specifications. Four artificial tissues were created, each with a differently

shaped inclusion. Inclusions were made from pure silicone of Shore Hardness 00-30

(Smooth-On, Inc. Easton, PN, USA). The four shapes were roughly an oval, crescent,

star, and heart, with maximum cross-sectional lengths ranging from 5 to 7 cm. Each

inclusion was placed in a square container and surrounded by a soft tissue base made

of three parts silicone with a Shore Hardnesss of 00-10 to one part silicone thinner.

Additional soft base mixture was added so that the top surface of the inclusion was

at a depth of 2 mm.

Virtual tissue models of a stiff inclusion embedded in soft tissue were created

for the boundary identification experiment in MATLAB by defining and smoothing

sets of stiffnesses in a two-dimensional array. Inclusion shapes for the virtual tissues

were distinct from the stiff inclusions used for artificial tissues. Palpated points were

generated for the virtual tissues by running the palpation algorithm described in

Section 4.2.1.1 until completion.

4.2.2.3 Surgical Robotic Platform

Inclusion segmentation experiments were performed using a da Vinci Research Kit.

Participants sat at the master console and manipulated the right master arm to

maneuver a slave arm in the tissue workspace (Figure 4.5). A Nano-17 force-torque

sensor (ATI Industrial Automation, Apex, NC, USA) attached to the slave arm was

used to determine the force applied to the tissue perpendicular to the tissue surface.

Force data combined with slave arm position data approximated the tissue stiffness

for each palpated point using a linear spring model (Chapter 2).

During teleoperation, the position of the master manipulator of the dVRK pro-

vides the desired position for the slave arm. The desired position is the reference for

a proportional-derivative (PD) controller that commands a force on the slave arm.

The master manipulator was not used to command slave arm orientation. In au-

tonomous control, the desired slave position was determined by the robotic agent and

sent through the same PD controller to command slave position. In the teleoperation

and traded collaboration models when the human physically palpated the artificial

tissue, force feedback was provided to the user in the z-direction by scaling the force
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from the force sensor by a factor of 0.7 on the slave arm and transforming the force

to the master manipulator frame.

4.2.2.4 Graphical User Interface

Participants were provided with a graphical user interface for each experiment. The

interface for the exploration phase of the inclusion segmentation experiment included

a stereoscopic display of the workspace from two Flea3 cameras (Point Grey, Rich-

mond, BC, Canada) as well as a static overhead image of the tissue with overlaid

points (Figure 4.5). The static image indicated the location and stiffness of each

point palpated to participants, as well as their current location in the workspace

relative to the palpated points. The mapping of points from the workspace to the

overhead image was based on scaling obtained from an initial registration of the slave

robot coordinates in each corner of the artificial tissue. For the boundary identifica-

tion aspect of both experiments, the interface consisted of a display of colored circles

that represented palpated points. This displayed the same information as the static

display in the exploration phase of the inclusion segmentation task. The relative

stiffness of each circle was displayed on a color scale from blue (soft) to red (stiff).

4.2.2.5 Experimental Procedure

Each participant performed five trials in the inclusion segmentation experiment and

four trials in the boundary identification experiment. The inclusion segmentation

experiment was completed before participants performed the boundary identification

experiment. Prior to the start of the experiments, participants were informed about

the nature of the task and the surgical relevance of selecting a inclusion boundary for

removal of a tumor.

Inclusion Segmentation Experiment Prior to training, participants watched a

live demonstration on how to control the dVRK master manipulator for exploring

and palpating the tissue. Participants then trained by performing the teleoperation

and supervised control collaboration models on a training tissue with a circular stiff

inclusion. Training rounds were conducted in the same manner as experimental trials
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and familiarized participants with how the colored dots correlated to stiffness as

well as which actions were required for the different collaboration models. Following

completion of the two practice rounds, participants completed three experimental

trials of palpating an artificial tissue to locate and then identify the boundary of a

stiff inclusion. All participants received each collaboration model and inclusion shape

once. The order in which participants received collaboration models and the pairing of

inclusion shape with collaboration model were random. Across all participants, each

inclusion shape was paired with each collaboration model three times. Participants

were not present for execution of the fully autonomous collaboration model.

Participants were instructed to palpate the tissue to locate the stiff inclusion, and

to identify the boundary of this inclusion. Force data from the force sensor attached

to the slave arm was used to provide force feedback to the user. This was done

to help the user apply the desired amount of force, as too little force prevents an

adequate stiffness measurement and too much force can cause tissue trauma. For

each collaboration model, participants were instructed which aspects of the task they

were responsible for completing. Participants verbally communicated when they were

satisfied with the palpation data acquired for each round. Participants then proceeded

to a computer monitor to select the boundary from amongst the palpated points or,

in the case of traded control, to select a point representing the stiff inclusion.

Boundary Identification Experiment After completing the inclusion segmenta-

tion experiment, participants performed the boundary identification experiment using

a computer monitor and mouse. Four different sets of points sampled from the vir-

tual tissues by the autonomous palpation algorithm were displayed one at a time to

the user. Participants were instructed to select points to define the boundary of the

stiff inclusion in the same manner as the first experiment. The order in which users

received the four virtual tissues was random.
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4.2.2.6 Metrics and Data Analysis

For each trial of the inclusion segmentation experiment we recorded the procedure

time, force exerted on the tissue, number of palpated points, and the chosen bound-

ary points. Participants also answered a post-experiment survey, indicating which

collaboration model out of the ones with human input they preferred and how they

decided when they were finished exploring the tissue. For the boundary identification

experiment, we recorded the chosen boundary points.

The accuracy of the identified boundary was assessed using the specificity and

sensitivity metrics defined in Chapter 2. Specificity measures the proportion of the

area of the stiff inclusion correctly identified as stiff (true positive). Sensitivity mea-

sures the proportion of the area of the soft tissue correctly identified as soft (true

negative). Both metrics range from 0.0 to 1.0, where a value of 1.0 for both sensi-

tivity and specificity indicates a perfect boundary identification. A higher sensitivity

is more important than a high specificity, as a high sensitivity indicates that more

of the stiff inclusion was correctly identified. Clinically, a high sensitivity results in

fewer tumorous cells remaining behind. Thus the autonomous boundary identifica-

tion algorithm is designed to achieve a high specificity at the expense of a reduced

sensitivity.

Due to the non-normality of our data, all metrics were analyzed using either

Wilcoxen rank sum tests or Kruskal-Wallace with Dunn post-hoc tests, depending on

the number of groups present. Variances were compared with the Brown-Forsythe test

since the distribution was neither normal nor symmetric. Human boundary identifi-

cation was tested against inclusion shape for the boundary identification experiment

using a Wilcoxon signed rank test.

4.2.3 Results and Discussion

4.2.3.1 Inclusion Segmentation Experiment

Figure 4.6 shows the results of the inclusion segmentation experiment. The duration

of the procedure was significantly shorter under teleoperation compared to all other
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Figure 4.6: Inclusion segmentation experiment metrics under all collaboration mod-

els. (a) time of procedure, (b) average maximum force exerted on the tissue during

palpation, and (c) sensitivity (dark grey) and specificity (white) of estimated inclu-

sion boundary. (While the values of sensitivity and specificity cannot be greater than

1.0, the error bars representing ±1 standard deviation are provided for visualization

purposes even though they extend past the limit of one.)

collaboration models (Figure 4.6(a)). Supervised control was also faster than au-

tonomous control (p = 0.083). Faster task times for complete human control relative

to autonomous control are consistent with the literature [8]. The force exerted on the

tissue varied between collaboration models, where the force for each trial was defined

by taking the average across all palpations of the maximum force of each palpation

(Figure 4.6(b)). Comparing the force exerted on the tissue between teleoperation,

with the human directly responsible for performing the palpation, and supervised

control, with the robot performing the palpation motion, we show that supervised

control imparts less force (p = 0.0009). Trejos et al. [56] found a similar decrease in
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force applied to the tissue for robotic versus human palpations. Supervised control

also had significantly less variance in the applied force (p = 3.47× 10−7). The results

suggest that collaboration models which include both human and robotic agents can

compromise between the extremes of teleoperation and autonomy. Shared control col-

laboration models can be significantly faster than that of autonomous control while

limiting the large, variable forces present in teleoperation.

As shown in Figure 4.6(c), collaboration models with autonomous identification

had a higher sensitivity and a lower specificity than collaboration models in which the

human was responsible for selecting the boundary (p = 0.053 and p = 0.022 for sensi-

tivity and specificity, respectively). Teleoperation and supervised control resulted in

fewer palpated points compared to autonomous control. Figure 4.7 shows selected tri-

als of boundaries identified for both experiments and across all collaboration models.

Note the relative size and location of estimated boundaries to the true boundaries in

Figure 4.7(a). Significantly less variance in sensitivity was also seen for collaboration

models relying on autonomous boundary identification compared to human boundary

identification (p = 2.49 × 10−9). As a high sensitivity is of key importance in this

task, traded and autonomous control offer the best performance in this regard.

Only one subject had similar sensitivities and specificities compared to the fully

autonomous collaboration model across all three trials. However, other subjects

demonstrated repeatedly poor sensitivities, with two subjects demonstrating sensi-

tivities of less than 0.65 across their combined teleoperation and supervised control

collaboration model trials. Subjects who self-identified as having extensive experi-

ence in robotics (greater than one year) demonstrated less variance in sensitivity and

specificity (p < 0.05) across the teleoperated and supervised control models but did

not exhibit significantly higher mean sensitivity or specificity compared to subjects

self-identified as having less than one year of experience with robotics. While some

subjects were able to achieve performance similar to the autonomous agent, not all

subjects achieved this level of performance and perhaps would have benefited from

more or a different type of training. We would expect that more intensive training,

possibly implemented by letting the subjects freely palpate a region while seeing a

graphical overlay of the actual location of the stiff inclusion may do more to convey
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Figure 4.7: Examples of human and robot selected inclusion boundaries for the in-

clusion segmentation and boundary identification experiments, respectively. (a) In-

clusion segmentation experiment. Human subjects chose palpation locations and the

final boundary for teleoperation and supervised collaboration models. The robotic

agent chose many or all palpation locations and the final boundary for traded con-

trol and autonomous collaboration models. (b) Boundary identification experiment.

Boundaries identified by human (top) and robotic (bottom) agents for virtual tissues.

the difference in rendered stiffness between the hard inclusion and the surrounding

soft tissue compared to subjects being verbally instructed where the boundary of the

inclusion was located during training trails. It may also be the case that increased

haptic feedback would assist in subjects identifying a more accurate boundary of the

inclusion and reduce the maximum force exerted on the tissue, however the ideal

amount of haptic feedback for this task is beyond the scope of this work.

Based on participant responses for collaboration models involving a human agent,

teleoperation was desirable for the speed it offered as well as the high degree of
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control available to the human operator. Six participants preferred traded control,

citing the minimal effort on their part as an attractive feature of this collaboration

model. Supervised control was considered to be easier by some, though two others

felt robotic palpation was too slow and hindered their task performance. Several

participants also indicated that one metric they used to determine when they had a

sufficient number of points to segment the boundary was fatigue. This observation

is reflected by the lower number of palpated points present for human-led palpation

methods versus those led by a robotic agent.

4.2.3.2 Boundary Identification Experiment

Figure 4.8 shows the sensitivity and specificity results from the boundary identifi-

cation experiment. The sensitivity of boundaries segmented by the robotic agent

was higher and had less variation compared to the results obtained by human agents

(p = 0.0465 and p = 0.00043 for median and variance, respectively). Human agent

results also show higher variance for specificity (p = 0.00013). Specificity was not

dependent on shape for human users. These results suggest that while specific par-

ticipants such as the individual who identified the boundary in Figure 4.7(b) may

perform well at this task, the overall variability in our population of participants

limits the significant claims we can make about the performance of humans in our

experiments.

4.2.4 Conclusions

In this work we assessed the performance of our previously defined human-robot col-

laboration models with the goal of determining which model resulted in superior task

performance as defined by metrics of procedure time, force, and accuracy of bound-

ary identification. The implementation of our autonomous boundary identification

algorithm was improved to increase accuracy for non-convex shapes. Determining the

best collaboration model depends on which performance metrics are deemed to be

the most important. Teleoperation results in shorter procedure times. Collaboration

models which use autonomous palpation minimize force impact on the tissue, and
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Figure 4.8: Sensitivity (dark grey) and specificity (white) for boundary identification

experiment. Error bars indicate the standard deviation. (While the values of sen-

sitivity and specificity cannot be greater than one, the error bars representing ±1

standard deviation are provided for visualization purposes even though they extend

past the limit of one.)

autonomous boundary identification has more consistent, higher specificity results.

However, no collaboration model excels in all these metrics. The high variability

present between human agents in these collaboration models is of particular impor-

tance, as this variation in applied force and sensitivity can have an unpredictable

impact on a surgical task.

4.3 Extending the Multilateral Manipulation Soft-

ware Framework to a Debridement Task

In this section, we examine multilateral manipulation in the task of simulated de-

bridement: removing dead tissue or damaged tissue fragments to allow remaining

healthy tissue to heal. We extended our previously developed multilateral manipula-

tion software framework to the task of debridement and implemented four different

collaboration models: (1) fully autonomous debridement, (2) shared control between

a human and robotic agent, (3) supervised control where the operator identifies for-

eign bodies to be excised, and (4) teleoperation. We demonstrate these collaboration
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models with the RAVEN-II robot, an open-architecture surgical robot with two cable-

driven 7-DOF arms. Each collaboration model included methods to remove foreign

bodies from the field of view of a stereoscopic camera setup. Results indicate tradeoffs

in experiment duration, hardware requirements, and safety implications among the

four collaboration models. The work in this section appears in a paper presented at

the IEEE/RSJ International Conference on Intelligent Robots and Systems [84].

4.3.1 Introduction

4.3.1.1 Background: Robotic Debridement

Autonomous multilateral debridement has been investigated in earlier works [8, 85].

Kehoe et al. demonstrated autonomous multilateral debridement with the RAVEN-II

surgical robot, hereafter abbreviated as RAVEN. In their work, a mounted camera de-

tected foreign bodies in the surgical field while the RAVEN used both arms to remove

the bodies [8]. In similar work, Murali et al. used a more clinically realistic debride-

ment task conducted with a da Vinci surgical robot. Their surgical task included

grasping foreign bodies and cutting them from the surrounding normal artificial tis-

sue [85]. The robotic agent learned by observation from experts, and played back

recorded trajectories in artificial tissue. In our study, we performed a debridement

task involving identification, grasping, and cutting of foreign bodies.

4.3.1.2 Summary of Contribution

In this work we present a novel extension of our previously developed multilateral

manipulation software framework from Chapter 3 as follows: (1) We extend the

software framework to the new surgical task of debridement. (2) We implement four

different collaboration models for the debridement task, including pure teleoperation,

supervisory control, shared control, and full robot autonomy. (3) Using the RAVEN

surgical robot, we demonstrate the flexibility of the framework to extend beyond one

human input device and one robotic arm.
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Figure 4.9: Class hierarchy diagram. All base-level classes (green) except the Manager

are extended for the specific task (here, the debridement task). Four such extensions

from base classes are pictured. Child class extensions from task extensions are in

blue, further extensions of which are pictured in pink. Lines between classes indicate

an extended class relationship. Class names are read from the bottom up i.e. Shared

Debridement Operator (for this example the class names and extensions colored red).

4.3.2 Methods

In this section we describe the extension of the MMSF from Chapter 3 to the de-

bridement task.

4.3.2.1 Software Framework

Base Class Structure Figure 4.9 illustrates the class structure and the extensions

necessary for the framework to execute an debridement task. The classes used in this

work are described in detail in Chapter 3. In Figure 4.9, base classes are green while

the task-specific extensions are yellow. Further extensions of the task-specific classes,

pictured in blue and pink, will be introduced in Section 4.3.2.2, when we describe the
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collaboration models prototyped for a debridement task.

Figure 4.10: Four collaboration models tested. The different collaboration models

are shown along with their information exchange between the master and slave robots.

4.3.2.2 Collaboration Models for Debridement Task

We use the software framework introduced in the previous section by extending its

base classes to support the task of debridement. We implemented four different collab-

oration models. Each of these different collaboration models, pictured in Figure 4.10,

differ in how they combine the intents of the human and robotic agents. Each collab-

oration model is tasked with identifying and removing multiple foreign bodies from
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artificial tissue. While all collaboration models aim to accomplish the same task,

different collaboration models emphasize performance, autonomy, or safety implica-

tions. The described collaboration models instantiate at lease one extension of each

base class picture in Figure 4.9. Table 4.3 lists the specific classes instantiated for

each collaboration model.

Table 4.3: Class Instantiation Table

Collaboration Model Operator Slave Robot Master Robot Graphical Display

Teleoperation Teleoperation Two-Arm Human Interface Debridement

Supervised Control Supervised Debridement N/A Human Interface

Fully Autonomous Autonomous Debridement N/A Debridement

Shared Control Shared Debridement Human Interface Debridement

Each row lists the collaboration model with its instantiated extensions of the base classes (refer to Figure 4.9).

For the debridement task, the following new Robot Actions are created: Grasp

Robot Action, Ungrasp Robot Action, Cut Robot Action, and Move Under Guidance

Robot Action. While most of these actions’ purposes are self-evident, the Move Under

Guidance Robot Action is used exclusively in the supervisory control collaboration

model and will be described in Section 4.3.2.2.

Three of the collaboration models extend the Debridement Operator Class. The

Debridement Operator Class class contains the state machine seen in Figure 4.11,

which encodes our debridement task. Each of the collaboration models extending

this class follow the same state machine, but differ in how one or more of the states

is handled, i.e. which Robot Actions are sent from the Debridement Operator to all

Robot classes.

Supervised Control The supervised control collaboration model is the only class

directly extending the Debridement Operator. In this collaboration model, the stereo-

scopic camera setup presents left and right images to the human operator at the be-

ginning of the procedure. The user interacts with the graphical display by clicking

on the locations of all foreign bodies in both images. The foreign bodies are then

triangulated and registered in the robotic workspace, and removed autonomously.

For supervised control, the human operator uses his or her judgment to interpret and
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Figure 4.11: Debridement algorithm flow chart. Pictures on the right show the robot

during execution of the Robot Actions associated with the states.

analyze the surgical field, and the robotic agent handles the surgical procedure.

Full Robot Autonomy The fully autonomous collaboration model is very similar

to the supervised control collaboration model, hence its Operator is an extension of

the Supervised Debridement Operator. The only difference between this collabora-

tion model and the Supervised Debridement Operator is that in this collaboration

model, all foreign bodies are automatically identified using the algorithms described

in Section 4.3.3.1.

Shared Control The shared control collaboration model leverages many of the

methods used in the supervised control collaboration model, with a few differences.

The motivation for this collaboration model is to combine robotic precision and com-

puter vision with teleoperated control for tissue manipulation actions to emphasize

safety. In shared control, the inclusions are identified autonomously. After inclusion



4.3. EXTENDING THE MMSF TO A DEBRIDEMENT TASK 93

identification, the robotic agent autonomously positions the grasping arm above the

foreign body of interest. At this point, instead of the robotic agent grasping the

inclusion autonomously, a Move Under Guidance Robot Action is issued by the Op-

erator to both robots. With the new type of Robot Action, the slave robot remains

positioned above the foreign body of interest. However, the degree of freedom per-

pendicular to the surface of the tissue is under teleoperated control. Teleoperated

control also extends to the grasping degree of freedom. The operator can, under this

collaboration model, move the robot to grasp the foreign body, grasp the body, and

retract the body. Once the foreign body has been retracted above the tissue to a

specified height, the Operator issues a Hold Position Robot Action to the grasping

arm and issues a Move Under Guidance Robot Action to the cutting arm. The cutting

arm has its teleoperated degree of freedom parallel to the surface of the tissue, such

that the operator can cut the retracted tissue. Once the cutting arm has returned

to the position from which the Move Under Guidance Robot Action was first issued,

control of the cutting arm will return to the robotic agent. Then, the next foreign

body will be excised.

Teleoperation In teleoperation, the master robots send position and orientation

data to the slave robot. The human operator is free to explore the environment and

remove any foreign bodies at will. There is no graphical display in this collaboration

model. Table 4.3 shows that the Teleoperation collaboration model does not use a

Debridement Robot, but the parent class Two-Arm Robot. Since teleoperation involves

no decision-making on the part of the robotic agent, the more simple Two-Arm Robot

class is instantiated. Additionally, because teleoperation does not require the state

machine in Figure 4.11, the teleoperation collaboration model extends the Operator

class directly instead of the Debridement Operator.

4.3.3 Experiment

The four different collaboration models developed in the previous section were tested

using the experimental setup shown in Figure 4.12. Two Geomagic Touch devices

(Geomagic, Morrisville, NC, USA) were used as the human input devices, while the
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Figure 4.12: Experimental Setup. Two Geomagic Touch devices (bottom) control

two RAVEN arms (center). A stereoscopic camera setup (top) captures and analyzes

images of the artificial tissue (center).

slave robot, the RAVEN robot, was positioned to excise foreign bodies from the

artificial tissue. A stereo camera setup positioned above the tissue analyzed captured

images for foreign bodies. The experiment ended when the slave robot excised all

foreign bodies. The metric gathered from these experiments is the amount of time

from the onset of the experiment to the moment that all three foreign bodies have

been removed. A single expert user tested all collaboration models prototyped.
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4.3.3.1 Graphical User Interface

The graphical user interface captures and analyzes images to calculate positions of

foreign bodies in the artificial tissue. Two Flea3 cameras (Point Grey, Richmond, BC,

Canada) were used for stereo vision. Intrinsic and extrinsic camera parameters were

calculated using the CalTech calibration toolbox [86]. Images captured were analyzed

for foreign body locations using opencv [87]. Specifically, the opencv module takes

the input images, converts it to intensity values on a greyscale and performs a Hough

transform to search for circles in the image. With all foreign bodies identified in

both the left and right camera images, the software module triangulates the positions

of the bodies. A sample image of the artificial tissue analyzed for foreign bodies is

shown in Figure 4.13a. The filled dark circles are the foreign bodies. Once the image

was captured, a Hough transform would output detected circles, whose outlines in

red and centers in green are overlaid on Figure 4.13a. The green center points,

once transformed into the robot task space, parameterize the Move Robot Actions to

position the RAVEN grasping arm above a foreign body of interest.

4.3.3.2 Artificial Tissue

The artificial tissue and foreign bodies were constructed from packaging foam (Fig-

ure 4.13). We chose foam material because foam can be easy to grasp and cut with

the da Vinci large needle driver installed on the RAVEN. To enable cutting by the

RAVEN, the end-effector of the left arm was outfitted with a sharp blade. The for-

eign bodies, constructed from black foam, were tethered to the base tissue with a thin

strips of additional foam, so that the foreign bodies can be retracted (Figure 4.13b).

4.3.4 Results and Discussion

4.3.4.1 Robotic Debridement

The results for all four collaboration models excising three foreign bodies are seen

in Table 4.4. In this work we used time as the metric, although in future work we

intend to transition to a more robust experimental setup which in addition to being
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(a) (b)

Figure 4.13: (a) Output from the computer vision algorithm. The green dots repre-

sent the estimated center of the foreign body while the red circle approximates the

boundary. (b) The Cut Robot Action. The right grasper has retracted the detected

foreign body while the left arm moves in a position to cut the tether from the body

to the base tissue.

compatible with a wider array of tools, can also grasp smaller targets consistently.

With this more robust setup we can remove inclusions embedded in the tissue instead

of tethered, and compare sensitivity and specificity metrics of the removed foreign

body. We could also compare tissue disturbance across collaboration models.

We first present the time pre-movement, which is the time spent capturing and

analyzing images of the surgical field. The majority of the difference in execution

time between the supervised control and full robot autonomy collaboration models is

spent pre-movement. This is expected since for the supervised control collaboration

model the user identifies the foreign bodies in both images before robotic movement.

Secondly, for collaboration models where the user teleoperated the grasping degree

of freedom (shared control and teleoperation), the amount of time spent grasping was

much greater than the time observed for autonomous grasping. This is because each

grasp under teleoperated control took multiple attempts, as opposed to autonomous
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Table 4.4: Experimental Results

Collaboration Model Time Pre-Movement Time Moving Time Grasping Total Time

Supervised Control 19.56 90.27 3.60 113.43

Full Robot Autonomy 1.24 86.54 3.60 91.38

Shared Control 1.27 98.18 8.04 107.49

Teleoperation 0.00 56.38 21.91 78.29

grasping. Grasping difficulty was increased when all degrees of freedom were con-

trolled by the operator, as it took several attempts for the user to converge to the

ideal grasping angle already encoded in the autonomous grasping action. Due to the

multiple grasping attempts, collaboration models with Grasp Robot Actions under

teleoperated control caused more tissue disturbance.

Finally, we note that the teleoperation collaboration model took less total time

than any of the other collaboration models. However, for collaboration models which

used Move Robot Actions, only one arm was moving at a time while the other arm

was typically out of the surgical field. With greater emphasis on the path-planning

algorithms used for Move Robot Actions, we believe that the experiment duration for

autonomous or semi-autonomous collaboration models would significantly decrease.

4.3.4.2 Software Framework

Extending the framework to the debridement task using the RAVEN robot presented

a significant challenge that may affect design choices in the future as we continue to

extend the framework towards more complicated experimental setups and tasks. We

were motivated to use the RAVEN robot because it is an open-source commercially

available research platform. However, the RAVEN’s unilateral communication pro-

tocol is significantly different than the bilateral communication used with Phantom

commercial devices. Bilateral communication was necessary for closed-loop control

in our previous work. In the future, we may define communication protocols as part

of the class structure, such that there is a Two-arm open-loop Robot and a Two-

arm closed-loop Robot. Each of these robots would handle Robot Actions differently.

Hardware-specific protocols could be isolated into a Robot Hardware class, included
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as a member variable of the Robot class.

4.3.5 Conclusions

In this work we extended our previously developed multilateral manipulation setup to

the task of debridement. We tested four collaboration models: Teleoperation, Shared

Control, Supervised Control, and Full Robot Autonomy. Each of these collaboration

models differed in how the inputs from the human and robotic agents are combined.

4.4 Extending the MMSF to Combined Stiff Re-

gion Exploration and Electrocauterization

In this section, we investigate multilateral manipulation in a surgical procedure con-

sisting of two surgical subtasks: stiff region exploration and electrocautery along a

boundary. The stiff region exploration subtask is a subset of the inclusion segmenta-

tion subtask presented in Chapter 3, and we use the same four collaboration models

tested in Section 4.2 for the stiff region exploration subtask. For the electrocautery

along the boundary subtask, four collaboration models were developed: (1) fully au-

tonomous electrocautery along the boundary, (2) shared control between a human

and robotic agent, (3) supervised control where the operator identifies the boundary

to be electrocatuerized, and (4) teleoperation. A pilot study was conducted in which

an expert user was asked to complete the surgical procedure with different combi-

nations of collaboration models between the two subtasks. Results indicate that use

of a robotic agent for the electrocautery subtask can reduce task time, maximum

force exerted on the tissue, and average force exerted on the tissue, while increasing

specificity.

4.4.1 Introduction

One of the most difficult steps during robotic radical prostatectomy is dissecting

the bladder from the prostate. Robotic radical prostatectomy is one of the most
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Figure 4.14: The male reproductive organ. Drawing by CFCF, distributed by a

CC-ASA 3.0 unported license.

prominent forms of RMIS, and use of RMIS compared to open radical prostatectomy

has been shown to reduce blood loss, hospital stay, and trauma to other neighboring

organs [4]. Figure 4.14 shows the male reproductive anatomy from the lateral perspec-

tive, with the bladder adjacent to the prostate. In fact, the bladder and prostate are

fused together by multiple layers of bladder muscle in addition to fatty tissue. The

connection also includes urinary sphincter muscles that are responsible for urinary

continence [88]. The typical procedure for separating the bladder from the prostate is

to dissect into the bladder neck, exposing a Foley catheter inserted into the urethra.

Surgeons grab and position the Foley catheter at the top of the surgical field, leaving

the prostate at the bottom of the surgical field below the bladder, which is behind

and above the catheter [89]. The boundary between the two organs must be cauter-

ized during radical prostatectomy so that the organs can be separated. However, the

boundary is not easily visible, and often the most prominent discriminating factor

between the two organs are their stiffnesses, as determined via palpation [90]. The
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lack of mapping mechanical properties of the two organs during RMIS has been cited

as one of the strongest critiques of robotic prostatectomy in favor of open prostate-

ctomy [90]. We seek in this section to simulate electrocauterization of the boundary

between the prostate and the bladder by extending the MMSF to a procedure con-

sisting of two subtasks: stiff region exploration and electrocauterization along the

boundary. This would be the first instance of the MMSF being extended to a surgical

procedure consisting of multiple subtasks, and in this section we seek to demonstrate

results exploring how different pairs of collaboration models for the two subtasks vary

performance in our procedure simulation.

In this section we present an extension of the MMSF first introduced in Chapter 3.

This extension is novel in the following ways: (1) We implement an electrocautery

task with the MMSF. (2) We implement four different collaboration models for the

electrocautery along a boundary subtask: bilateral teleoperation, shared control, su-

pervised control, and full robot autonomy. (3) We demonstrate a surgical procedure

consisting of two different surgical subtasks, stiff region exploration and electrocau-

terization along a boundary. We test pairs of collaboration models, providing a first

investigation of varying control authority between a human and robot agent depen-

dent on surgical subtask.

4.4.2 Extension of the MMSF to the Electrocautery task

The electrocautery subtask as defined in this study takes a set of palpated points with

their associated stiffnesses output from the stiff region exploration task and cauter-

izes along a boundary either determined autonomously or by the human operator as

prescribed by the implemented collaboration model. This is an important departure

from the inclusion segmentation task described in Chapter 3, where the boundary of

the segmented inclusion is output from the surgical subtask. Instead, the first sub-

task is responsible for tissue exploration only. Each of the collaboration models for

the electrocautery subtask, shown in Figure 4.15, vary both in how they identify the

boundary of the stiff region and how the boundary of the region is cauterized. The
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four different collaboration models used for the boundary identification and electro-

cautery subtask are bilateral teleoperated control, shared control, supervised control,

and full robot autonomy. Two base classes, FileIO and Graphical Display, are not

implemented as part of this subtask. FileIO is not extended for this subtask be-

cause there is no data unique to the electrocautery subtask which requires recording,

while the Graphical Display class is omitted from the implementation of this task for

reasons to be given in Section 4.4.3.4.

To implement the electrocautery subtask, one new Robot Action was created, the

Electrocauterize Shared Control Robot Action, described in detail in the following

paragraph. All four collaboration models instantiate the same Electrocautery Proce-

dure, Electrocautery Robot, and Human-Interface Electrocautery Robot classes. The

collaboration models only differ by which extension of the Electrocautery Operator is

instantiated (Figure 4.16(b)).

4.4.2.1 Shared Control

In shared control, boundary points for the stiff region are never explicitly identified by

the human agent during execution of the stiff region exploration and electrocautery

task (see Figure 4.15). Instead, the user first indicates where he or she would like

the cauterization to begin by squeezing the master-side gripper of the dVRK. At

this point, a Move Robot Action positions the slave-side robot to the desired location

on the surface of the tissue and at a pre-specified depth into the tissue. Following

completion of this action, an Electrocauterize Shared Control Robot Action is issued to

the slave robot. The depth of the electrocautery tool is held constant by the robotic

agent while the user teleoperates the tool across the surface of the tissue. This

division of labor between the robot and human agent is added as a safety measure,

such that the human cannot cauterize to a dangerous depth into the tissue while

teleoperating. The experiment concludes when the user indicates that he or she has

finished cauterizing along the boundary.
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Figure 4.15: Collaboration models tested. Four different collaboration models are

shown along with their information exchange between the master and slave robots.
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4.4.2.2 Bilateral Teleoperated Control

In bilateral teleoperated control, boundary points for the stiff region are not indicated

by the user, as in shared control. Following the stiff region exploration subtask, the

user directly begins bilaterally teleoperating the robot to cauterize the tissue. The

subtask is started when the Teleoperation Electrocautery Operator issues a Teleoperate

Robot Action command to the robot. Once the user indicates that he or she has

completed cauterization of the boundary of the stiff region, the experiment ends. The

Teleoperation Electrocautery Operator extends the Shared Electrocautery Operator,

in order to issue a Teleoperate Robot Action instead of an Electrocauterize Shared

Control Robot Action. The remainder of the procedure is the same between the two

collaboration models.

4.4.2.3 Supervised Control

In supervised control, the human agent indicates the boundary of the stiff region

while the robot cauterizes along the user-specified boundary. Using the graphical

environment displayed visually in the stereoscopic display from Section 4.2, the user

sees a virtual proxy of the master manipulator alongside the palpated points and their

representative stiffnesses. The user indicates points along the boundary by moving the

virtual master manipulator proxy in the graphical environment to a desired position

and squeezing the master manipulator grippers. Once the user indicates that they

have completed their boundary point identification procedure, Bezier splines are used

to interpolate among the set of points, and an equally spaced distribution of 10 points

along the interpolated boundary parameterize a set of Move Robot Actions sent to

the slave robot. The depth of the Move Robot Action is held constant by the same

robotic agent as in shared control.

4.4.2.4 Fully Autonomous Control

In fully autonomous control, the boundary points are identified using the procedure

in Chapter 2. Following the same procedure as Section 4.4.2.3, the boundary points

are interpolated between using Bezier splines, and an evenly-distributed set of points
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Figure 4.16: The class hierarchy diagrams for the stiff region exploration (a) and

electrocauterization subtasks (b). All base-level classes (green) are extended for the

specific subtask. Child class extensions from subtask extensions are in blue, with

the exception of the Robot class. Further extensions are pictured in pink. Lines

between classes indicate an extended class relationship. The Manager class is at

the procedure context, not limited to the implementation of a single subtask, and is

therefore pictured outside of the hierarchy trees.

parameterizes a set of Move Robot Actions subject to the depth constraint from Sec-

tion 4.4.2.1. The Fully Autonomous Electrocautery Operator extends the Supervised

Electrocautery Operator by redefining the method by which boundary points are spec-

ified. However, once the boundary points are identified, the two collaboration models

behave similarly.

4.4.3 Experiment

An artificial tissue with an embedded stiff region was placed beneath a dVRK slave

arm augmented with an attached Nano-17 force-torque sensor (ATI Industrial Au-

tomation, Apex, NC, USA) and configurable tool tip which was switched between a

palpation end-effector and electrocauterization tool during the procedure. A human
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user sits at the dVRK master console and manipulates the right arm of the mas-

ter manipulators. Through the stereoscopic display, users visualize both the dVRK

slave arm and the stiffness of the palpated points with the same graphical display

developed in Section 4.2 (see Figure 4.17). Users were asked to identify and cauterize

along the boundary of a stiff region. For the stiff region exploration subtask, users

explored the tissues using one of the collaboration models described in Section 4.2.

Once tissue exploration is completed, either by user indication, for supervised or tele-

operated control, or by the autonomous palpation algorithm running to completion

in the other cases, the procedure would transition to the electrocautery subtask. This

differs from the inclusion segmentation subtask developed in Chapter 3, where the

human or robotic agent was explicitly responsible for identifying the boundary of the

stiff inclusion after exploration. In this work, once the stiff region exploration subtask

has completed, the tool tip was changed from the palpation attachment to the elec-

trocautery tool (see Figure 4.17). The surgical procedure then continues under one

of the collaboration models described in Section 4.4.2. The performance of collabora-

tion models are compared against each other with the following metrics: sensitivity,

specificity, average force exerted by the electrocautery tool on the tissue, maximum

force exerted by the electrocautery tool on the tissue, and time of procedure.

4.4.3.1 Artificial Tissue

Artificial tissues were created from gelatin. We used gelatin because it can be con-

structed to exhibit a sufficient range of stiffness to mimic hard inclusions in surround-

ing soft tissue, and it melts when exposed to temperatures of greater than 150◦ F,

facilitating implementation of our electrocautery subtask. Different concentrations

of gelatin powder mixed with water yield different stiffnesses, and in this respect we

were able to create a stiff region (9.0 g gelatin/8 oz water) and surrounding soft tissue

(5.6 g gelatin/8 oz water). Stiff oval inclusions with principal axis lengths of sizes

18 mm and 26 mm made from highly concentrated gelatin powder were placed into

gelatin of a lower concentration of size 6×6 inches during the surrounding gelatin’s

curing process.
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Figure 4.17: Experimental setup for the stiff region exploration and electrocauteri-

zation along the boundary subtask. A human user sits at the master console of the

dVRK (a) and manipulates a single master manipulator (white circle). A visual-

ization rendered through the stereoscopic display shows the slave manipulator arm

and a top-down view of the sample tissue, with the stiffness of palpated points being

represented by colored circles across the surface of the tissue. Red points represent

more stiff points, while blue points less stiff points. (b) The slave-side manipulator

was outfitted with an attachment that contained a force-torque sensor and a palpa-

tion probe for the stiff region exploration subtask. (c) The slave-side manipulator

outfitted with an electrocautery tool for the electrocauterization subtask.
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4.4.3.2 Electrocautery Tool

High current driven through nichrome resistive wire electrocauterized the gelatin

phantom. The wire was fixed in place with a ceramic fixture, to prevent damaging

other components in the tool. The ceramic part was held in place with a 3D-printed

part which attached the electrocautery tool to the force-torque sensor.

4.4.3.3 Stiff Region Exploration

The first subtask, stiff region exploration, is the same as developed in Section 4.2 with

one minor adjustment. Previously, collaboration models for the inclusion segmenta-

tion task developed in Section 4.2 concluded when the autonomous or human agent

identified the boundary of the inclusion by selecting a set of palpated points. Here,

the stiff region exploration subtask completes when the human agent indicates that

they are comfortable identifying the boundary of the inclusion, not after they have

already completed identifying the boundary. For inclusion segmentation collabora-

tion models that generate a boundary autonomously, the final segmented boundary

is no longer generated by the stiff region exploration subtask.

4.4.3.4 Graphical Interface

The graphical interface is the same as that in Section 4.2 for both the computer

running the MMSF and the dVRK computer. The graphical display created by the

MMSF is still used to seed the stiffness classifier for the stiff region exploration task

implementing the traded control collaboration model. The dVRK graphical display

shows the palpated point data in real time. The cauterization task requires the user

at the dVRK master console to see the palpated data gathered during the first part

of the procedure but does not require any new data to be displayed by the MMSF.

For this reason the implementation of the electrocautery subtask does not include

any instantiations of a Graphical Display class.
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4.4.3.5 Collaboration Pairs Tested

We define a collaboration pair to be the combination of (1) a collaboration model

used for the stiff region exploration subtask and (2) a collaboration model used for

the electrocautery subtask. These collaboration models need not be the same for

both subtasks, and the purpose of this study is to take advantage of being able

to switch between collaboration models between subtasks. Figure 4.18 shows the

tested collaboration pairs. The collaboration models available for the stiff region

exploration subtask are shown horizontally, while the collaboration models available

for the electrocautery subtask are shown vertically. Two pairings are not realizable

in our definition of the surgical procedure: supervised or teleoperated control for

stiff region segmentation followed by fully autonomous control for the electrocautery

subtask. These pairings cannot be realized because they rely on human exploration

for the stiff region exploration task, and do not provide a densely-populated sampling

of points along the boundary of the stiff region. A dense sampling of points along the

boundary of the stiff region is necessary for the fully autonomous collaboration model

for the electrocautery subtask to generate a boundary along which to cauterize.

4.4.3.6 Evaluation Metrics

To compare the performance of different collaboration pairs against each other, we

primarily rely on the sensitivity and specificity metrics used in Chapter 2. In this

study we compare the actual boundary of the inclusion against the cauterization path

of the robot, whether under human or autonomous control. Sensitivity and specificity

metrics comparing the actual boundary of the inclusion against an identified (but not

cauterized) boundary of the inclusion are explained in Section 4.2. We also record

the time of the electrocauterization procedure, and the average and maximum force

exerted on the tissue.

4.4.4 Results and Discussion

The sensitivity and specificity results for the stiff region exploration and electrocau-

terization along the boundary subtasks for all collaboration pairs are summarized in
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Figure 4.18: Sensitivity and specificity results for the surgical procedure. Across

columns are the collaboration models for the stiff region exploration subtask, while

down rows are the collaboration models tested for the electrocauterization along the

boundary subtask. For each pairing of collaboration models, the sensitivity is in the

upper-left hand corner while the specificity in the lower-right hand corner. The two

pairs of collaboration models which cannot be implemented for this procedure have

the red crosses.

Figure 4.18. The time to complete the electrocautery subtask as well as the maxi-

mum and average force exerted on the tissue for the electrocauterization collaboration

models averaged across all stiff region exploration collaboration models are shown in

Table 4.5. Since these results are from a pilot study with one expert subject, the re-

sults indicate trends among the pairings of collaboration models and not statistically

significant differences among pairings of collaboration models.

The results in Figure 4.18 show that while most collaboration model pairs resulted

in a sensitivity of 1.0, collaboration pairs which used the autonomous agent had a

specificity that was nearly 0.1 higher than any other electrocautery collaboration

model. Thus for this individual human user, all collaboration models that relied

on the human to control the shape of the electrocauterized boundary resulted in a
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cauterized region that included 10% more healthy tissue than the autonomous agent.

Additionally, the autonomous agent spent less time electrocauterizing the tissue

compared to the human (see Table 4.5). The autonomous agent took half the time

cauterizing the tissue compared to the human under teleoperation, and 15 seconds less

compared to the shared collaboration model. In the supervised collaboration model,

the human would identify the boundary of the stiff region while the autonomous

agent would cauterize along the boundary. The time metric reported includes both

the boundary identification phase and the electrocautery phase. However, since the

electrocautery phase for supervised control uses the same method as fully autonomous

control, the actual time that the supervised control collaboration model spent cau-

terizing the tissue is the same as the amount of time the autonomous agent spent

electrocauterizing, around 24 seconds.

Another result shown in Table 4.5 is that the teleoperation collaboration model

exerted a higher maximum force and an higher average force on the tissue, which the

autonomous agents used in the other collaboration models were designed to limit by

controlling the position of the end effector perpendicular to the tissue surface.

4.4.5 Conclusion

In this section we extended the MMSF to a surgical procedure consisting of multiple

subtasks: stiff region exploration and electrocauterization along a boundary. Initial

results from the electrocautery task suggest that collaboration with an autonomous

agent can reduce task time, force exerted on the tissue, and increase specificity. To

make claims comparing different collaboration models would require more extensive

testing via a formal user study.
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Chapter 5

Conclusion

5.1 Synopsis of Contributions

In this dissertation we developed the Multilateral Manipulation Software Framework,

which is capable of enabling rapid prototyping and deployment of varied human-

robot collaboration models. The MMSF was extended to support three different

mock surgical subtasks, and implemented on three different hardware systems. To

conclude my dissertation, here we summarize the main contributions of this work.

In Chapter 2, we developed the first autonomous agent in literature to both explore

tissue mechanics autonomously and segment hard inclusions from surrounding soft

tissue in the robot’s own coordinate system. The autonomous agent exercised two

different capabilities: tissue exploration and classifying palpated points as part of

the hard inclusion or part of the surrounding soft tissue. The autonomous palpation

algorithm explored the tissue in an intelligent way by exploring neighborhoods around

points theorized to belong to the hard inclusion, instead of generating a high-density

grid of palpated points across the entire surface of the tissue. Classification of the

points was facilitated by an expectation-maximization scheme, with Markov random

fields constituting the E-step, and Gaussian Discriminant Analysis constituting the

M-step. The use of Markov random fields enabled our classification algorithm to

use stiffness information from the clique around a palpated point to influence its

classification, such that points sufficiently close to each other were more likely to be

112
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similarly classified. Use of the expectation-maximization algorithm helped generate a

sample-specific final classifier for stiffness discrimination. Over three trials segmenting

a rectangular stiff inclusion from its surrounding soft tissue, sensitivity was above 0.95

and specificity was above 0.92.

The expectation-maximization machine learning algorithms require an initializing

classifier. In the first experiment in Chapter 2 we used elastography to generate the

initializing classier. To prove the robustness of our inclusion segmentation algorithm,

we tested the performance of the inclusion segmentation algorithm subject to a wide

range of initializing classifier values. For all values of the initializing classifier, the

sensitivity and specificity were greater than or equal to 0.875.

With an autonomous agent in hand, we developed the Multilateral Manipula-

tion Framework (MMSF), described in Chapter 3 and extended in Chapter 4. The

MMSF was created as a developer’s tool to enable rapid prototyping and deployment

of varied human-robot collaboration models. The MMSF decomposes a human-robot

collaborative task into seven base classes, six of which can be extended to implement

a particular surgical subtask, while the seventh, the Manager class, is procedure-

wide and is only instantiated once, regardless of how many surgical subtasks are

implemented. The implementation details of the MMSF were communicated through

UML diagrams, and an in-depth explanation of the inter-thread communication pro-

tocol established the integrity of data communicated between the base classes of the

MMSF. In Section 4.4, we described an implementation of the MMSF to a surgical

task consisting of multiple subtasks.

The MMSF was extended to support five different human-robot collaboration

models in an inclusion segmentation task. The autonomous agent developed in Chap-

ter 2 established our notion of fully autonomous control, while this same robotic agent

was combined with human agent input to form human-robot collaboration models of

supervised control, shared control, and traded control. We also tested a bilateral

teleoperation collaboration model, in which the human was in full control of the slave

robot. Results from a pilot study suggested that the autonomous agent was better

at segmenting a hard inclusion from soft tissue with a higher sensitivity compared a
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human agent, while collaboration models which relied on human agent input com-

pleted the task faster and resulted in fewer palpations. Additional results suggested

that methods which relied on the autonomous agent to limit palpation force on the

tissue did so more effectively than collaboration models where the palpating degree

of freedom was under complete human control. These results were expanded upon

in a user study, where twelve subjects were tested in the inclusion segmentation task

(Section 4.2). Results showed that for traded control and fully autonomous control,

where the robotic agent at least in part explored and segmented the inclusion, the sen-

sitivity was higher compared to supervised control and bilateral teleoperation, where

exploration and segmentation was the responsibility of the human agent (p = 0.53).

Additionally, the variance of the sensitivity under robotic boundary segmentation was

significantly less than human segmentation (p = 2.49 ∗ 10−9). The final result from

this study is that the force exerted on the tissue was significantly less for collaboration

models which used the robotic agent for force-limited palpations compared to when

the palpating degree of freedom was under complete human control (p = 0.009).

In Section 4.1 we described the implementation steps necessary to implement the

MMSF on the RAVEN-II and dVRK robots, which run codebases ROS and CISST-

SAW respectively. These implementations, used throughout Chapter 4, demonstrate

the platform-agnostic feature of the MMSF, which underscores the MMSF’s relevance

to a wide variety of hardware platforms.

The final part of the work we presented as part of this dissertation, in Sections 4.3

and 4.4, extended the MMSF beyond the sole task of inclusion segmentation imple-

mented exclusively on Phantom Premium devices. In Section 4.3, we extended the

MMSF to a debridement task and implemented this task on the RAVEN-II Surgical

Robot. Four different collaboration models are developed and tested, including tele-

operation, supervised control, shared control, and full robot autonomy. Computer

vision techniques informed the autonomous agent used in this study. Results showed

that methods which relied on autonomous grasping of debridement targets resulted

in less time interacting with the tissue than methods relying on human grasping. In

Section 4.4 the MMSF was extended to support an electrocauterization task. The col-

laboration models we implemented for the electrocautery subtask were teleoperation,
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shared control, supervised control, and full robot autonomy. As part of extending the

MMSF to the electrocauterization task, the experimental procedure used this subtask

was combined with the stiff region exploration task, a subset of the inclusion segmen-

tation task from Chapter 3. Section 4.4 compared the performance of collaboration

model pairings between the two subtasks and showed the autonomous agent was more

successful in cauterizing a region with higher specificity while exerting lower forces

on the tissue compared to the human agent.

5.2 Future Work

The inclusion segmentation algorithm introduced in this work could be extended in a

variety of ways. To expand the algorithm to enable detection of multiple inclusions,

a k-means algorithm could be implemented between the EM and the boundary point

steps of the tumor segmentation algorithm to estimate how many different clusters

of points identified as hard inclusions are in the image. Each cluster’s boundary

points could then separately identified. When using the inclusion segmentation al-

gorithm to segment smaller inclusions than the one in this work, it is necessary to

change the parameterization of the clique potentials for smaller cliques. Additionally,

neighborhood searches around stiff points would need to be smaller. However, the

methods introduced in this work remain unchanged. Experimentally, the size of the

force-torque sensor as well as precise control of the robot can create a lower bound for

inclusion size. To adapt this work to a more realistic clinical setting, organ movement

must be accounted for. Brock performed a comparative study of several approaches

towards deformable organ registration [91]. While outside the scope of this disser-

tation, our presented inclusion segmentation algorithm could be used alongside such

organ movement models. An additional requirement to implement the autonomous

inclusion segmentation algorithm in vivo would be to use a smaller, cheaper, poten-

tially disposable palpation probe, which is currently an area of research with a group

of our collaborators [92].

The autonomous agent developed for inclusion segmentation demonstrated longer
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task execution times compared to the other collaboration models in all our experi-

ments. However, improvements could be made to lower the duration of the inclusion

segmentation task under autonomy in a number of ways. Firstly, the Palpate Point

Autonomously Robot Action command was constructed as a series of three Move

Robot Actions, initially to position the end effector above the point of interest, and

the downwards and upwards motion of the palpation. These Move Robot Actions were

completed in two seconds each, making an autonomous palpation complete in six sec-

onds in the longest case, although due to force thresholding the palpation duration

was between four and six seconds. Regardless, four to six seconds is longer than the

time that it took subjects to teleoperatively palpate a point, motivating the need to

more quickly palpate autonomously. If we were to palpate faster, our assumption of

a linear spring dynamical model for tissue mechanics under palpation would become

increasingly invalid as the viscosity component of tissue viscoelasticity will become a

stronger factor in the force data gathered from the force-torque sensor. Methods for

generating robust tissue mechanics models from in vivo data which we could use in

this case have been developed by Ottensmeyer [93, 94]. Another method for reducing

the amount of time the fully autonomous robotic agent requires to segment the bound-

ary of the inclusion is to reduce the number of palpations required before the robot

is confident in its segmentation. While the fully autonomous agent presented in this

work used a variety of machine learning methods for classification of palpated points,

different machine learning methods could be used to drive the exploration phase of

the inclusion segmentation algorithm. This new exploration methodology would be

in contrast to the method presented in this work where we palpated in neighborhoods

theorized to belong to the hard inclusion and between successive iterations of the in-

clusion segmentation algorithm, generated grids for further exploration as the union

of neighborhoods around points along the theorized boundary of the inclusion. We

could instead use a priori tissue models to inform which points, if palpated, would

provide the most informative data about the boundary of the inclusion. These tissue

models could be informed by solid mechanics models, or by various atlases of tumor

cell lines such as those seen in [95]. The classification step of the inclusion segmen-

tation algorithm could remain the same in this case; however, we could potentially
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arrive at a more efficient and a possibly more deterministic sampling of points along

the boundary of the inclusion.

There are many different directions to continue meaningful work in human-robot

collaboration, but there are two in particular that have the most potential to form

high-performing human-robot collaboration models and apply them in tasks where

such collaboration models are necessary. The first is formulating collaboration models

based on human intent. The introduction briefly mentions work by Dragan et al.,

who conducted a human-robot collaborative task in which a robotic agent inferred

and reacted to perceived human intent [24]. This approach towards autonomy could

be powerful when combined with learning through demonstration techniques, such

as those reviewed by Argall et al. [96]. A novel combination of these methods

would be where a robotic agent learns a task through demonstration, and then by

sensing human intent along a trajectory corresponding to the execution of a surgical

task, more fluidly shares control with the human agent. A less-rigid division of

labor between the robotic and human agents may enable a spectrum of human-robot

collaboration models which could potentially be more intuitive for a human operator

to understand and accept. However, collaboration models which use an autonomous

agent trained by demonstration would be difficult to translate into the MMSF without

framing the demonstration as a state machine. Zappella et al. have demonstrated

their ability to segment different actions and create a state machine from a surgical

demonstration [97]. These different gestures would constitute new Robot Actions,

from which collaboration models can be developed.

Another area of research well-poised for the near future is implementing the MMSF

on surgical tasks which require more than two arms to complete. The debridement

task examined in Section 4.3 was limited by the experimental setup available to

an implementation where foreign bodies were not embedded in the tissue. A more

realistic task would be to find the stiff inclusion, cut an artificial skin to expose the

inclusion, and then dissect it. This procedure would require more than two robotic

arms. Now that the MMSF can interface with the RAVEN robot and the dVRK,

such a setup could be constructed. Robotic agents could be developed to support

exposing the inclusion by retracting the skin, and could also help with the dissection
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task more directly with cutting and tensioning. The combinations of human-robot

collaboration models are quite large, but with the MMSF we can enable one human

operator to complete new types of tasks. These tasks would normally require the

human agent switching control between the multiple sets of arms or a second human

agent operating in concert with the first to complete.
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