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An automatic method is described for the solution ofa oertainfamily ofproblems. To belong
to thisfamily aproblemmust be expressiblein the language ofgraph theoryas that offinding
a path between two specified nodes of a specified graph.

The method dependsupon the evaluationofintermediate statesofthe problemaccording to
the extent to which they havefeatures in common with the goal state. We define evaluation
functions each of which assigns to any state ofthe problem a value whioh is in some way
related to its ' distance ' from the goal state. Equivalently we assign to nodes of the corre-
sponding graph values which are related to the distance over the graph from the goal node.
Distance is reckoned as the smallest number of arcs needed to connect two nodes.

An Algol program, the Graph Traverser, has been written to operate in this context.
It is designed in a completelygeneral way,and hastwo 'empty' proceduresoneofwhich must
bewritten to specify the structureofthe graph, that is the constraints oftheproblem, and the
other to define an evaluation function.

Results obtained by supplying the program with definitions of various sliding block
puzzles and also a simple problem of algebraic manipulation are reported for a range of
evaluation functions.

Introduction
A heuristic method is one that seeks to obtain 'good ' solutions for a small fraction
of the cost which would be involved in obtaining optimal solutions. To take for
illustration one example among many, Burstall (1966) has described a heuristic
program for the design of electricity distribution networks. Optimal solutions to
this problem can be obtained by integer linear programming. However, thecalcula-
tions required to apply this method increase exponentially with the number of
stations in thenetwork, and ifthis number exceedsnine or ten, themethod becomes
impracticable. Burstall's program can process networks with 16 stations, and
generates solutions which, although not always optimal, compare well with those
obtained by experienced human designers.

An admirably clear review of research in heuristic methods has recently been
presented by Newell & Ernst (1965), who survey work relevant to the charac-
terization of general problem-solving procedures. They limit their treatment, as
does this paper, to those problems which are susceptible of a particular formal
representation, namely, a set of discrete states to which may be applied a set of
permitted transformations ('moves', 'operators'). Thus stated, the task is to find
a sequence of transformations which will convert some initial state into a final
state, or goal. Thehistory ofwork in this general areahas shown a certain tendency
to polarize around two distinct approaches. At one pole, attention is concentrated
upon the evaluation of states, while at the other pole the emphasis is upon the
selection ofoperators. In thefirst case we ask: 'To which state shall we next apply
operators ? ' In the second case we ask: ' Which operator is tobe applied next to this
state?'
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Thefirst preoccupationhas been characteristic ofmuch ofthe work on automatic
game-playing; indeed Turing's original proposal ofthe idea was in the context of
hisexperiments withchess-playing automata (Turing 1953; Michie 1 966). A standard
method (see Samuel i960) has been to work out all possible combinations to a fixed
number ofmoves ahead, evaluate, according tosome strategic features, all theboard
positions generated in this way, and use these evaluations to trace apath back to
the current position. This path is used to define the next move to be selected, as
shown in figure 1.

Thework basedprimarily on operator selection is typifiedby thestudies madeby
Newell, Shaw & Simon (i960) with their 'General Problem Solver' program. Here
evaluations are made only to the crude degreenecessary to define an ordered set of

evaluations made at this level

Figubb; 1. Simplified diagramshowing how evaluations are baoked-up through the 'tree'of
possiblemovesto arriveat thebest nextmove.The process starts at level (3) by assigning
scores (high if

favourable,

low if not) to the board positions inspected. At level (2) the
score assigned to a position is the maximumof the scores of the descendantpositions
(machine moves seek to maximize the score). At level (1) the score assigned is the
minimumof the scores at the lowerlevel (opponent'smovesseek to minimizethe score).
At the topofthediagram the machine selects the moveleading to thehighestscore, thus
doing thebest it can allowingfor the action of the opponent.

intermediate goals (subgoals). Operator selection is then applied by asking about
each operator in turn 'does it directlypromote subgoal 1 ? If not, does it promote
subgoal 2? etc'

Thepresent work constitutes thefirst stage of anattempt tobind these two basic
procedures into a unified framework. This framework takes theform of a computer
program which we call the Graph Traverser. Theresults reported hereare concerned
exclusively withstate-evaluation,andthe means wherebya search based upon this
principle alone may be organizedefficiently. But indication is also given of lines
along which the program might be enabled to improve its own evaluations.

Although we have used sliding block puzzles to investigate heuristic principles,
thesepuzzles are not thepointof interest ofthe work: on thecontrary ourapproach,
and the Graph Traverser program which implements it, claims a wide generality.
As an illustration of this generality we include in our report some preliminary
data gained by presenting the program with an exercise in elementary algebraic

manipulation. We should also mention in this context some recent work by our
colleague Popplestone (1966) who has found the program useful in his study of
heuristic methods in elementary group theory.

While the logical design and experimental development of the Graph Traverser
has been conducted jointly the programming itself has been the work of one of us
(J.E.D.).

Problems and'graphs
A problem, of the type with which we are concerned, is a one-person game. In

contrast to two-person games, the stateofthe gameremains undisturbed between
the player's successive moves. A convenient formal representation is that in which

Fiqubb 2. Part ofa symmetric graph with start (*S) and goal (("?) nodesmarked.

a game is identified with a graph in which the nodes represent states, and the arcs
represent permitted transitions (legal moves). A graph in the mathematical sense
may be thoughtof asa set of nodes some ofwhich are connected to some othersby
arcs which may be directed (oriented graph) or undirected (symmetric graph).
Figure 2 shows part of a symmetric graph (i.e. arcs represented by linesrather than
arrows).

The task is to find a path across the graph from the start to the goal as econo-
mically as possible, i.e. with as little labour as possible expended in the search,
avoiding, as far as possible false trials, blind alleys and meanderings far from the
final path . Ifthepath is short, we say that thesolution is ' elegant . If the searchwas
short, we say that the solution is 'economical.
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The Graph Traverserprogram
Theprogram, written in Algol, has three main characteristics:
(1) It can be applied to any problem which can be translated into the abstract

'graph traversal' terms specified in detail below.
(2) In its present version it seeks always to achieve maximum economy, that is

minimal search, and is satisfied to find any path consistent with this.
(3) In order tocarry out its search it must be given anevaluation function which

enables nodes of the graph to be evaluated according to their estimated distance
from the goal. If the evaluation function is constant and therefore contains no
information, then the strategy of the program reduces to systematic enumeration
terminating only when the goal is found.

Figure 3. The graph offigure 2 with values attached to the nodes.

Theparticular graph to be investigated is specified to theprogram by means ofa
procedure ' develop ' which, given a node, produces a listofall nodes adjacent tothe
given node. For the purposes of this program, which is subject to the restrictions
of the language Algol 60, a node, which represents a problem state, is an integer
matrix. Two nodes must be specified to the program as the start and the goal. In
addition, a procedure 'evaluate' must be made available which, given a node,
applies some evaluation function and delivers the corresponding value.

The search proceeds iteratively. At the start of an iteration the program has
stored the nodes it has so far discovered, together with the following information
about each: (1) its value, as obtained by applying 'evaluate', and (2) a pointer to
the node from which it was developed. The former is required for directing the
search and the latter for constructing a path when the search terminates. The
iteration proceeds by finding the undeveloped node with the smallest value (i.e.

(a)
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Figure 4. The Graph Traverser searching the graphof figure
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greatest 'apparent promise') and using 'develop' to find all nodes adjacent to it.
Every node not previously located is evaluated and stored. The program thus
constructs a tree (i.e. a graph without loops). The iteration is now complete.

Initially the program holds one node, thestart, and iteration continues until the
goal is located. A procedure is thenentered which constructsandprints out a path
from thestart to the goal. Shouldthe numberofnodes held ('size' ofthe tree)reach
a pre-set limit before the goal is located, theprogram will select themost promising
undeveloped node andprint out a path to it. A fresh search is then initiated using
the selectednode as thenewstart. Itfollows from this that the search couldcontinue
indefinitely. In practice a 'resignation' criterion is included. The term 'partial
search' will be usedfor the growth of one of a sequence of 'search trees'.

Figures 3and 4 show theprogram atwork on thegraphoffigure 2. Thesignificance
of the diagrams is:

Figure 3 The graph of figure 2, with values attached to the nodes, which the
program is to explore.
Figure 4 (a) Initial state ofprogram's knowledge.

(b) End of first iteration. The value of the initial node has beenreplaced by the
symbol 'D\ indicating that it has been developed and thus cannot be selected for
development again.

(c) End of second iteration. Notice that when a node is already on the tree it is
never added again. This is indicatedby theuncompleted connexion from the newly
developed node to the node valued 22.

(d) End of third iteration. Two undeveloped nodes now tie for minimum value.
The one which was addedearlier to the tree will be chosen for development. Notice
also that the new point of departure is not necessarily near to the node developed
in the previous iteration.

(c) End offourth iteration.
(/) End offifth iteration.
(g) The goal is found.
(h) Thepath is printed out. In practice, of course, it would be in numericalform.
We shall now give a more formal statement of the abstract problem attacked by

the program, and of the strategy adopted.

FOBMAL STATEMENT

There is specified a graph G = {X, T} where X is a set of nodes each of which
(ashandledby thepresentprogram) is adistinct two dimensionalmatrix with integer
entries, andwhereT is amany-valuedfunction mapping X into itself (seeBerge 1962,
p. 5). In our context T(x) is the set of nodes resulting from the (one-step) develop-
ment ofx. Given « c X and gc X, s 4= g, it is required to find a path from s to g, i.e.
a sequenceof nodes xx ,xit ...,xnfor some n, such that

(1) xx = s and xn =g,
and (2) for all m such that I<ro< n— 1, xm+l e T(xm ).

It isrequired tofind such a sequencewith as few applications of V as possible. This
is the economy condition. Note that G need not be symmetric.

The search is assisted by an evaluationfunction E which is a function from X to

thenon-negative integers. Thevalues takenby E(x) as x varies over Xare intended
toberank-order correlated with the ' distances ' from xto g, where by this is meant
one less than the minimum possible number of nodes (the minimum number of

' arcs ') in apath from xtogr.
The strategy implemented by the program uses V and s together with E to con-

struct a sequenceof graphs Tt = {Xj, AJ each ofwhich isa tree. Each member ofthe
sequence of trees, except the first, is constructed by the enlargement of its pre-
decessor (members of the sequence do not coexist), and each has built into it the
whole oftheprogram's acquired information about theproblem graphG. A^x) may

be thought of as the ' T-parent' of the node x in the ith graph.
Tt has the properties:

(1) XiCiX and seXy,
(2) &i(s) =O, the null set;
(3) ifxcXt and x+ s then A^z) = {y} where yis such that xc T(y).

Thus Tj is apartial subgraph of G except that the arrows are reversed.
Anodeissaid tobe developedifV has been applied to itandundevelopedotherwise.

Initially T0

&

{{s}, Ao}, where A0(s) = o>. Ti+l is constructed from Tt as follows:

(1) Theundeveloped nodexcXt for which E{x) is least is found. Should therebe
more than one node with the minimum value, that which was earliest located is

selected. Should there still be a tie—and this can occur if the nodesconcerned have

been located by the same application of T—then an arbitrary selection is made.

Call the selected node xmi n ..
(2) If a:mm. * g and further space is available then Tis applied to xmi a . and

Ti+l = {Xi+l , Ai+l} is constructed where
(a) Xi+l slju r(a;mln .)

and (b) A<+l(*) = A,(a:) if xcXit and Ai+l (x) s {xmm.} if *€X«+1 -.X<.
(3) If Zmin. = 9 or no further space is available then a path is constructed from

s tozmin.. This path is the sequence of nodes

where the pathlength is ro; A^node) is interpreted here as a node rather than as a

set containing one node. If xml „. = g then search terminates. If »mln . * 9 then a

new sequence is initiated with T0 = {{xm m.}, Ao}.

Application or the pbogkam

To make any particular application, a translation must be made from the 'real'
problem to be solved, to the 'ideal' problem embedded in the program. To make

this translation it is necessary to write:
(a) input and output procedures which control the relationship between the

external ('data tape') and internal ('integer matrix') representations
ofthe problem states;

S = A^mln.), bT-Hxmln.),

""",

A^min.), Xmin.
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(b) a procedure, 'develop ', specifying the graph function T; and

(c) a procedure 'evaluate ', specifying theevaluation function E.
It is also necessaryto adjust certain datatapeparameters which setbounds to the

graph set X. Also specified via the data tape are:
(a) thestarting and goal nodes;
(b) the total number of locations available for storage of the tree, subject to

a limitation imposed by the machine size;

(c) theseverity of theresignation criterion.

The role of theevaluationfunction
For a given application, 'evaluate' may be changed at will, andcertain adjust-

ments to this function will usually be possible via the data tape. Thefunction given
to the program can be 'infallible' or 'useless' or 'worse than useless. In the first
case its rank correlation with the distances over the graph will be unity, in the
second case zero, and in the third case negative. The fallibilityof the evaluation
function determines the search economy, measuring this in terms of the number of
applications ofthe procedure 'develop' neededto find a path from the start to the
goal.

Search economy is only fully defined in these terms if viewed from the point of
view ofthe program. Overall economy also involves minimizing the 'cost' of each
application of 'develop', as well as minimizing the number of times this cost is
incurred. In practice this relates to the simplicity in some sense of the evaluation
function. In thepresent form of the program this brand ofeconomy is entirely the
responsibility of the user.

We now consider members of a restricted class ofpuzzles known as sliding block
puzzles, starting with theeight-puzzle. This puzzle will provide our first illustration
of the action of the Graph Traverser program.

The eight-puzzle
Theeight-puzzle is one ofalarge class ofsliding block puzzles, inwhichthesolver

is typicallyrequired tomanipulate square orrectangular objects onaboundedplane
so astorearrange them into some specifiedconfiguration. Gardner(1964, 1965a,b,c)
has devotedsome stimulating discussions to these puzzles.

An early and famous example to which we shall return later in this paper is the
fifteen-puzzle, consisting of fifteen numbered square pieces set in a 4x 4 array, one
cell of the array being empty. The eight-puzzle is a simpler member of the same
family, there being only eight numbered pieces set in a 3 x 3 array. We shall
arbitrarily define the goal configuration as follows:

1 2 3
8 0 4
7 6 5

denoting the empty squareby a zero. Before proceeding further, two points should
be noted.

(1) Half the possible ways of setting up the puzzle are soluble and half are not.
Solubility implies that a sequence of moves can be found which takes the starting
configuration into the goal configuration. Equivalently, solubility implies that a
path connecting the starting and goal nodes of the puzzle graph does exist. In the
present instance it demands that the starting configuration should be an even
permutation ofthe goal configuration (Johnson & Story 1879; Tait 1880). We shall
only concern ourselves with the subset of soluble configurations, which can col-
lectively be represented by a connected graph.

(2) Thepuzzle lookseasy, but it isnot. Three groups ofsubjects, about a dozenin
each group, were given a battery of mental tests, including the five eight-puzzle
subtests shown in figure 5 (Hayes, Michie, Pole & Schofield 1965). The group
averagesfor efficiency ofsolutionranged from 30 to 40 %, where thepath efficiency
of a solution is defined as:

minimum possible path length
actual path length

minimum number of moves
needed for solution

Figure 5. Five eight-puzzlestarting configurationsused for testing humanperformance,

Efficiency was not affected in any way by the length of the minimal path, except
for very short minimal paths ('easy puzzles'). These results were obtained with
subjects to whom the puzzle was entirely unfamiliar. In unpublished further
observations of the improvement of efficiency with practice, the best subjects
attained path efficiencies exceeding 70 %. When we ourselves, and a number of
colleagues familiar with thepuzzle, were given randomly chosen configurations to
solve, efficiencies ranged from 70 to 90 %.
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The same subjects were testedwith the Passalong, a sliding block puzzle usedby

psychologists for mental testing (Alexander 1946) (see figure 6). Theresults obtainedcontrasted with thosefrom theeight-puzzle in away whichindicated that thenatureof the intellectual task may itself be very different. We mention this finding toindicate that therange ofproblems comprised by sliding block puzzles may offer amore diversified field of investigation than one might atfirst suppose.* .S
ii .s Solution of the eight-puzzle by computer programo

$

A computer program can be written to analyse the eight-puzzle exhaustively by
a 'brute force' technique, involving enumeration of the 20160 centre-empty
'normal' positions, startingfrom the goal and working outwards. Such a program
has been written and successfullyrun by P. D. A. Schofield (see Hayes et al. 1965).

Elegance is maximized by this method, in the sense that the shortest path is
always obtained; economy, on the other hand, is at a minimum since the space
searched is effectively the whole graph. Thefact that the eight-puzzle can be, and
has been, completely analysed in this way makes it a particularly suitable starting-
point for an examination ofheuristic methods, where theaim is toeffect the greatest
possible economy at the sacrifice of as little elegance as possible. Human problem-
solving behaviour is conspicuous precisely in the capacity to develop effective
approaches without attempting enumeration.
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Consider how the Graph Traverser deals with the eight-puzzle when equipped
with a definition of the puzzle and with a simple evaluation function. Without
being concernedfor the moment about how such a function might be constructed,
let us examine in figure 7 therecord of a specimenrun. Thevalues produced by the
function used are plotted in figure 8 for successive nodes along the path found.

It is worth recapitulating in this specific context two features ofthe program:
( 1) Thenextnode tobedevelopedis always thelowest-valued undeveloped node,

regardless of its distance from theprevious node tobe developed. Search is thus not
constrained into connected steps, but pushes forward whichever sector ofthefront
is currently evaluated as the most promising. 'Disconnected developments' there-
fore occur when the 'main line ' of search fails. The path is filled in retrospectively
by a backward trace from the goal, once this is found.
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(2) Whentwoor moreundeveloped nodes tiefor the lowest value, thenode which
was earliest added to the tree is chosen for development. Should this rule be
insufficient to break the tie, an arbitrary selection is made. We have subsequently
realized thatrandom selection would be preferable, since variation ofthe arbitrary
rule employed turned out to have non-trivial consequences.

A crude evaluationfunction
In the above example of the Graph Traverser as applied to the eight-puzzle

nothing was said as to how the evaluation function used was obtained, except that
it was given to the program.

CD Twofeatures ofan eight-puzzle configuration suggest themselves as particularly
relevant for evaluation purposes—the 'position' ofthe pieces and their 'sequence'
and these were used to construct the function which controlled the search in
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figure 7. A 'position score' px can be assigned to the ith piece, according to the
number ofmoves it is distant from 'home ', disregardingfor thepurpose the barrier
offered by intervening pieces (i.e. 'city block' distance). A 'position count', P, of

8
agiven configuration of thepuzzle is thenobtained as £ p{. A ' sequencescore ', s,

can be assigned to each piece by checking round the non-central squares in turn,
allotting 2 for everypiece notfollowed by itsproper successor and 0 for every other
piece, except that a piece in the centre scores one. An empty non-central square is
ignored for applying the succession criterion so that in, for example, the following
configuration: - n ,2 0 3

5 8 6
1 7 4

2 is held to be followed by 3. A 'sequence count', S, for the configuration is formed
8

as the sum of the sequence scores, 2 sit which in the case illustrated is 13.

Having isolated these two simple features as hopefully relevant to goal-seeking
behaviour, we may takesome weightedcombination of them, in theform P + wS, as
thevalue ofthe configuration. Notice that a small changein wwill not always cause
a change in the strategic choices imposed by the evaluation function, as both the
position and sequence count can take only a finite number ofvalues. However, the
number of settings of w which are in general distinct is sufficiently large that one
may safely think in terms of continuous variation of performance from w = 0 to
w = 24. For w > 24 a unit change in sequence count outweighs even the largest
possible difference of position count.

Measuresofperformance
Thereare two interestingmeasures ofthe program's performanceover aparticular

search of a graph: (1) the length of the path produced (P) (i.e. the number of arcs
comprising the final path), and (2) the total number ofnodes developed (D). Since
every path node but the last must have been developed, but notevery developed
node is necessarily included in the path, it follows thatP < D. Denote theminimal
path length for a given start and goal by P*. Then P*/P = path efficiency (as
defined earlier). There is a corresponding idea applicable toD, the number ofnodes

V

FiGTmB 7. A Graph Traversersearchofthe eight-puzzle graph. Tho -^^^ ..""^
«>" rinqod. The «»*g«d figures give the order in which the configurations were

added to the search tree. Figube 7. (cont.)
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developed, yielding a measure of the amount by which this figure exceeds the
minimum necessary. It is easy to see that the minimum necessary is equal to P*,
so that a measure of efficiency in respect of development is P*jD, which we shall
call the 'development efficiency.

Finally we note that P*jD can be written P*/P xPjD. This is a useful decom-
position in drawing our attention to thefurther quantity PjD which is thefraction
ofthe total number ofnodes developed which are incorporated into theactual path
found. We shall later see that this quantity, which we shall refer to as the 'pene-
trance ', is ofgreatimportance where, incontrast to theeight-puzzle,P* isunknown.

start ofspecimenrun

number ofmoves

Fiqube 8. The values along thefinal path of the search of the eight-puzzle
graph shown in figure 7.

Itcan bethoughtofasrepresenting the degree towhich the searchtreeis 'elongated '
rather than 'bushy. Its reciprocal, DfP, could reasonably be termed the 'blind
alleyratio. Torecapitulate then

path efficiencyxpenetrance = development efficiency,

Results
Schofield's results show that the largest minimal path for any eight-puzzle

starting configuration is 30, and that the configurations with this property fall into
12 distinct symmetry classes. We therefore selected for our first test battery A of
starting configurations an arbitrary representative from each of these classes. In
order to investigate therelationship between program performance and minimal
path length, we formed a second test battery B by choosing nine configurations
whose minimal path lengths were distributed between eight and 28, four of these
being configurations upon which human subjectshad been tested (subtests E 2,E3,
E4 and E6 in Hayes et al. (1965)). Each of these 21 initial configurations was

attacked by the Graph Traverser by means of the evaluation function described
above with w set successively at 0, j, § , f, 9. Notice that when w = 0, sequence is
ignored, and evaluation is based upon position only.

Table 1 presents the performance indices, for a selectedvalue of w, for differentminimal path lengths, while table 2 presents mean values of the various per-
formance indices for different values ofthe weighting coefficient w.

Table 1. Results obtained by applying the Graph Traverser to eight-
puzzle CONFIGURATIONS WITH VARYING MINIMAL PATH LENGTHS.

A simpleevaluation function with one variableparameter (w = 9) was used.
minimalpath lengths

8 12 14 18 20 22 24 26 28 30
test battery B A
path efficiency (%) 100 100 54 100 77 100 48 57 93 72development 100 92 23 78 74 85 16 45 88 47efficiency (%)
penetrance (%) 100 92 43 78 96 85 34 79 94 63

Table 2. Results obtained by applyingthe Graph Traverser to
two test batteries of eight-puzzleconfigurations

A simple evaluationfunction with one variable parameter (w) was used. B* denotes testbattery B after exclusionof two configurations(MP = 8 and MP =12, text).

Testbattery A

mean path efficiency
mean developmentefficiency
mean penetrance

Thefollowing points may be noted:
(1) For both testbatteries thebest performance on thevarious criteria lies in the

region from w = § tow = 9. Results, not shownhere, obtainedby further increasing
thevalue ofw (i.e. therelative weight allottedto 'sequence ') showed nochange from
theresults with w = 9. Thepicture is of comparatively poor performance at w = 0,
but improving, as w increases, until a plateau is reached.

(2) Ifwe now compare thefigures for thevarious efficiencies we see that they are
closely correlated. There is thus no evidence that by changing w elegance can be
sacrified for economy or vice versa.

(3) There is little evidencefrom this sample of any continuing trendrelating the
various measures ofefficiency to the length ofthe minimal path (i.e. the 'distance'

W = 0 W = J W = | MJ =

$

MJ=9

Testbattery B*
41-2 35-3 61-9 75-3 75-5

5-3 6-2 21-9 56-7 58-4
120 14-7 30-8 70-3 72-7

ledian path length
lediannumber of nodes developed
lean path efficiency
tean developmentefficiency
lean penetrance

60
277J

52-7
10-9
20-8

47
209
56-9
18-2
29-7

46
164J
67-6
25-4
36-2

40
61
76-3
47-1
600

43
66*
720
46-7
63-3
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ofthe starting configuration from the goal). Thetwo shortest minimal path lengths
(table 1) are perhaps exceptions and these two 'easy' puzzles have been excluded
in compiling tables 2 and 3.

It is a consequence of point (2) that the optimal values of w could have been

located by inspecting the penetrance alone. Now the difference between a 'toy'
problem, as is theeight-puzzle, and a 'real ' problem, is that in thelatter we typically
have no idea of the length of the minimal path, and therefore can calculate neither

path efficiences nor developmentefficiencies. Thepenetrance, however, can always

be calculated, and is thereforepotentially of the greatest use as a general measure
ofthe efficiency of an evaluation function in solving a 'real' problem. Even more

important, the penetrance may be calculated, and therefore progress estimated,

during the solution of a problem, thus opening the door to methods whereby the

program might improve its own evaluation function during the course of a long

search.
With theseideas in mind, we next tried theprogram on the fifteen-puzzle.

Experiments with thefifteen-puzzle
For the fifteen-puzzle a limit of 500 was set on the tree size, and a single starting

configuration was randomly chosen for preliminary tests. This configuration was

the following: 7 n 11 17 13 11 1

Tests were conducted under a 'stop rule', according to which the search was

abandoned as soon as a partial search, as previously defined,failed to decrease the

mean value ofthe nodesencountered in it by more than 5 %, as compared with the

previous partial search. As a start, evaluation was based on piece-positions only.

Preliminaryresults revealed two undesirable features. Thefirst of theseconsisted

in the stranding of a piece at a considerable distance from its home, cut off by an
intervening barrier of more-or-less correctly positioned pieces. An example is the

following, encountered after 90 moves:

50 6 8
12 7 4

13 14 11 12
9 10 15 3

Hereall pieces are two moves or fewer from theirrespective homes, i.e. p < 2, with

the single exception of piece number 3, for which p = 5. Expressions of the form

S KvX where 0 < a < 1 < 6, were found to be effective. ht was defined as the

distance separating the empty square from the »th piece, expressing distance as

before in unit steps.

The cure of 'stranding' threw a second feature into prominence, namely the
presence of intra-row and/or intra-column reversals. An illustration is provided
by thefollowing configuration, encountered after 190moves:

3 4
5 6 7
9 10 11 |. 8

13 14 0 15

Althoughsuperficially this appearsclose to solution, sinceeverypiece iseither home
or next door to home, such configurations are in fact rather far from the goal.
Solution requires a quite radical disruption of the degree of order which has been
built up, and a good evaluation function should reflect this fact.

Thematterwas dealt with in an ad hocfashion, by addition ofaterm, R, counting
the number of suchreversals present. The function finally adopted thus took the

15
form 2 h\p\+cR, witha, b andcrepresenting adjustable parameters determining

i=l
therelative weightings given tothe threefeatures expressedby the h,p andR terms.

A testbattery of ten starting configurations was now set up, by adding to the
configuration shown earlier a further nine, drawnfrom a table ofrandom permuta-
tions . Byrunning theprogram on thesetenwith different settings oftheparameters
o, 6 and c, a systematic exploration was now made of theresponse of the system to
variation in these weightings. Three levels were taken for each parameter, thus:

so that there were in all 27 'treatment combinations'. The best performance was
with a = £, b = 2, c = 100. At these settings of the parameters, six out of the the
puzzles were solved within the limitation ofa single search tree. To growa complete
tree took about 4 mm on an Elliott 503 computer.

Again, optimization could have been successfully performed using penetrance
alone, sincethemean valuefound atthesesettings, 60 % ,wasthehighest encountered
over all the 27 combinations. (Compare theeight-puzzle results of tables 1 and 2.)
Some combinations resulted in uniform failure to solve—for example all those with
a = b = 1.

It seemed of interest to try themost successful version of theevaluation function
(a =\,b= 2,c = 100) on the eight-puzzle, to compare performance with that
obtained from the function specially designedfor the smaller problem. Theresults
compared surprisingly well, as evidencedby the summary given in table 3.

Predictive power ofpenetrance
It is anaturalextension ofearlier definitions to calculate, asa measure ofprogress,

thepenetrance ofa 'partial search .The latter hasbeen defined in terms of the limit
set to the size of the search tree.A partial search consists in the growing of the tree
up tothepresent limit,remembering thateachtime thislimit is reached in thecourse
of a long search, the corresponding 'partial path' is printed out and the tree is

0 4 14 6
8 5 2 12

10 15 9 3
a = 0,4,1; 6=1,2,3; c = 100,300, 500;
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erased. Resetting ofweighting coefficients could also occur at the point, with the
use as 'figure of merit' of

° r, -i . . 1

,'l,l.

number of nodes in the partial path
penetrance = —mber Qf the partial search"

In thiswayprogram-improvement ofthe evaluationfunction itselfcan be envisaged.
A relevant test of the possible usefulness of penetrance in this respect is to see to
what extent itcan predict theperformance ofa givenevaluationfunction overother
areas ofthe graph than those from which it was calculated. In particular we would
like toknow whether thepenetrance of one partial search can be used as a guide to
what is likely to happen in subsequent ones.

Table 3. Results obtained by applyingthe best fifteen-puzzleevaluation

function to the eight-puzzle, compared with results obtained using

the standard eight-puzzleevaluation function.

Function 1 (eight-puzzle):Epi + 9Es,;.
Function 2 (fifteen-puzzle): I,hiip] + IQQR,

Test battery A

meanmean
development path mean

efficiency efficiency penetrance
637247function 1

function 2 737656

Test battery B

meanmean
development path mean

efficiency efficiency penetrance
7358 75function 1

function 2 6546 71

* Not includedin means, see text.

To investigate thispoint we re-ran theprogram on the same test battery over a

restricted range of 11 different parameter settings, with the further difference that
the search treewas limited to a size of 250, and two successivepartial searches were

permitted. The degree of success was only slightly lower than before. Excluding
those cases in which the goal was found in thefirst partial search, we haveplotted,
in figure 9, a measure of subsequent performance against the penetrance of thefirst
partial search only. Theevident correlation supports theproposed use ofpenetrance
as a promise measure.

A trial of the program on the Passalong sliding block puzzle
As a first trial of the adaptability of the program, a 'develop' procedure was

written for thePassalong (see figure 6). A simple evaluation function was devised.
First, one 'black mark' was allotted for each of the 12 cells of the 3 x 4 array not
covered by a piece of the correct type. Secondly, additional terms were added to

60

"| 60
T3

penetrance over first partial search (%)
Figttbe 9. Scatter diagram showinga success measure overonepartial search

plotted against thepentrance of theprevious partial search.

Table 4. Results obtained by applyingthe Graph Traverser to the Pass-
along SLIDING BLOCK PUZZLE, BY MEANS OF A SIMPLE EVALUATION FUNCTION

For the configurations, refer to figure 6.
minimum path development
pathlength actual no.of efficiency efficiency penetrance

configuration possible pathlength developments (%) (%) (%)
7 30 30 32 100 94 94
8 28 30 156 93 18 19
9 46 58 258 79 18 23

10 70 72 359 97 19 20

express various features of a configuration, such as degree of right-left symmetry,
mutual proximity ofthevertical rectangles, freedom ofmovement ofthe horizontal
rectangle, etc.

Theresults of this limited trial, set out in table 4, show good performance on all
criteria for configuration 7. Thereafter we find pathefficiency high but development
efficiency low—compare theabrupt increase in difficulty for human solvers at this
point (Hayeset al. 1965)—indicating that theevaluation function is no longer fully
adequate for these configurations. With a totally inadequate evaluation function
i.e. a constant function, the program is guaranteed to find the minimum path, at
the cost of an abysmally low developmentefficiency. In such a case it is in effect

> §
o v
m * 40

ll
li 20

oionfiguration
ninimum pathlength
levelopment efficiency (Fl)
levelopmentefficiency (F2)

1
30
81
30

2
30
34
53

3
30
91
67

4
30
48
48

5 6
30 .30
28 30
48 65

7
30
23
31

8
30
26
39

9
30
47
86

10 11
30 30
56 54
35 100

l:
3i
4:
7.

sonfiguration
ninimumpathlength
levelopmentefficiency (Fl)
ievolopmentefficiency (F2)

I
)

1
8

100*
73*

2
12
92*

100*

3
14
23
58

4
18
78
51

5
20
74
28

6
22
85
32

7
24
16
59

8
26
45
49

9
28
87
43
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employing the well known, and laborious, algorithm of locating first all nodes at
distance 1 from the origin, then all at distance 2, etc. (see Berge 1962, pp. 67-68).
At this extremepoint the heuristic element has disappeared.

Application to algebraic manipulation
Thenext application—algebraic manipulation—was chosen to be further afield.
Theproblem asstated hereistodemonstrateequivalencebetweentwoexpressions,

i.e. to show that they can be connectedby a sequenceof legitimate operations. We
chosefor thefirst experiments theverysimple case ofa single binary operation, ' * ' ,
on a set of elements {a, b, c, d, e,f, g,h, i,j} with associativity and commutativity. We
can see that these properties imply that any well formed expression, however

3 -* problem state *- ((a*b)*a) .
i| (n° de)

/

1 \

\^ transformations.——^. / \ >^(arcs> / \ (a*(b*a))
04 8 I ((b*a)*a) \12 3 *
7 6 5 . <a*(**b)>

1 2 3 |4 2 8
7 6 5 10 3

7 6 5

generated states
(descendant nodes)

Figube 10. Diagrammatic representation of the relationship between the general graph
traversal problem, the eight-puzzle, and a simple algebraic manipulationproblem.

bracketed, is equivalent to any other well formed expression containing, in any
order, the same set ofelements, but thisisnot known to theprogram, which seeks to
demonstrate equivalence from first principles. The analogy here with the eight-
puzzle or fifteen-puzzle is that although we can see that the solubility of a given
configuration is determined by whether it is an even permutation of the goal con-
figuration, the program seeks to demonstrate solubility by constructing a path.

The way in which a correspondence was set up between the algebraic problem
and the graph traversal schema is shown in figure 10, with the corresponding
identifications for theeight-puzzle shownfor comparison. Just asthe ' development'
ofan eight-puzzle configuration generatesall theconfigurations ofthepuzzle which
can bereachedby asingle move from thestate in question, soan algebraic expression
is ' developed ' by generating all expressions which canbe derived from itby a single
application of either the commutativity or the associativity rule. We adopted
standard goal expressions of the type

({{a#b)*c)*d),
or (({(a*a)*a)#h)*k),
or ((d*e)#e),
where alphabetical order is required and where the 'open brackets' are concen-
trated to the left of the expression.

As an evaluation function, the sum sps was calculated, where thesummation
8

is over the symbols of the expression excluding ) and

#,

and where ws is a weight
assigned to s—for example the weights 10,9,8,7 1,0 might be assigned to
(, a, b, c, . . . , i, jrespectively—and wherepsis theordinal number ofthesymbol in the
string, again excluding ) and *. In practice, the weights assigned to the symbols

where Q is an adjustable parameter.
The results obtained for one simple task are summarized in tables 5 and 6. They

are mainly of interest as illustrating once again the increase in search economy
attendant on the use ofeven the simplest evaluation function (cf. tables 1 and 2), as
well as indicating that the field of symbol manipulation is open to the Graph
Traverser approach.

Table 5. Results obtained by applying the Graph Traverser to a simple

algebraic manipulationproblem

A simple evaluationfunction with one variableparameterwas employed.A dash indicates
failure to solve the problem within a search tree of 600 nodes.

Starting expression: ((h*(a*f))*((c*d)*c)).
'Goal' expression: (((((a#c)*c)*ei!)*/)*/\).

parametersetting for evaluation function

5 7 8 9 10 11 12 13 14 15 20
pathcount — — 13 9 9 10 10 10
nodes developed — — 46 15 16 17 19 19
tree size — — 268 112 117 124 132 132
penetrance (%) 24-4 11-5 28-3 600 56-3 58-8 52-6 62-6 18-2 13-6 10-2

Table 6. Solution paths to an algebraic manipulationproblem

The task is to convert the expression {(h*(a*f))*((c*d)*c))into (((((e»*c)*c)#d)*/)*A) using
only the associativity and commutativity of the operation *. The solution on the left was
found by the Graph Traverser, and that on theright by hand.

shortestpath found by program
(parameter setting = 9) shortest pathknown

0 ((A*(a*/))*((c*d)*c)) ((fe*(a*/))*((c*d)*c))
1 (((c*d)*c)*(fc*(a*/))) (((c*d)*c)*(h*(a*f)))
2 (((c*d)*c)*((a*f)*^)) (((c*d)*c)*((a*f)*h))
3 ((((c*d)*c)*{a*f))*h) ((c*(c*d))*((a*/)*A))
4 (((((c*d)*c)*a)*/)*/i) ({(c*{c*d))*{a*f))*h)
5 (((a*((c*d)*c))*/)*A) ((((c*(c*d))*o)*/)*^)
6 (((a*(c*(c*d)))*/)*A) (((a*(c*(c*d)))*/)*A)
7 (((a*((c*c)*d))*f)*h) ((((a*c)*(c*d))*/)*ft)
8 ((((a*(c*c))*d)*/)*A) (((((a*c)*c)*d)*/)*A)
9 (((((a*c)*c)*d)*/)*A)

Discussion
The fact that over arange of problems the program was able to find solutions

whichcouldbe called ' good'by human standardsisnotin itselfof great significance
since in these experiments a 'short term memory' of some hundreds of problem

(,a,b,c,...,i,j were #,9,8,7, �.,0
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states was permitted—an order of magnitude greater than the span available to
thehuman solver. What is significant is

(1) That this level ofperformance can be reached by a search method utilizing
state evaluation only, of a fairly simple sort, before any principles of operator-
selection have been built into the system.

(2) That the program proved fairly easy to adapt to problems as mutually
dissimilar as sliding block puzzles and algebraic manipulation.

(3) That the program showed itself an effective instrument not only for the
implementation of evaluation functions in 'production' runs, but also for their
initial development by trial and error.

(4) That the 'penetrance' gave good indications of potential usefulness for
endowing theprogram with thefacility of improving its given evaluation function.
For this purpose, there must be some measure available to the program by which it
can judgehow wellit is doing whenin themidstofanattempt tosolve some problem.
Thepenetrance,which is afunction of the structure of the search tree,promises to
serve this purpose. More generally, if theprogram is to 'learn', it can only do soby
using the information it has storedabout theproblem, i.e. by using the information
embedded in its search tree.

Some analogies are offered here by thework of Samuel (i960) mentioned earlier
in particular by his techniques of adjusting his scoring polynomial (evaluation
function) so as to tend to give equal values to configurations lying on the same
minimax chain within the stored search tree. Theanalogy would be strengthenedif
an attempt were made by the program to adjust the evaluation function so as to
reflect the metric properties (as compared with structural properties, such as
measured by thepenetrance) ofthe stored search tree—i.e. assign suitably different
values to nodes lying far apart on abranch and vice versa.

This idea is developed further in an article by Doran (1966) where there is also
a description ofa new version of theprogram which uses a dynamic tree. By thisis
meant that theprogram, onreaching thegrowthlimit, behavesless catastrophically .
It no longer selects the most promising terminal node, and then commits itself to
a path to that node before deleting the entire tree to create new working space.
Instead, theprogram commits itself only to a single 'move', and only that part of
the tree therebyrendered valueless is erased.

In the detailed description ofthe graph traversal schema, a specific problem type
was described, and the applications we have discussed have all fallen within this
type. In this context, we wish to make two points. First, our applications have all
had in common a particular limiting condition, namely that their problem graphs
havebeen symmetric. Thismeans that the search strategyhas beeninefficient tothe
degree that a search tree could usefully have been grown from the goal node
simultaneously with growth from the start. To see this, consider theanalogy with
the case ofa search conducted, not over a graph, but over anw-dimensional Euclid-
ean space. Specifically we imagine in case 1 that a 'search hypersphere' is grown
from theoriginuntil it touchesthe goal, while in case 2 hyperspheresare grownfrom
both startand goaluntil they toucheach other. Here it can easily be shown that the
factor ofeconomy (supposing cost to berepresented by the total volume explored)

is 2"-1. As pointed out to us by D. G. Kendall, it is possible that this way of looking
at the matter might lead to a useful definition of the effective dimensionality of a
graph. The second point is that although aproblem type has been strictly specified,
in practice fairly minor adjustments to theprogram will permit its application to a
wider range of problem types, for example to a situation where some defining
property ofagoal configuration is available, butwhere no particular goalis specified.

A classification ofproblem types may be obtainedby distinguishing threepairs of
alternatives: (1) whether it is a path or a node that must befound; (2) whether the
goal node is fully specified, or specified up to some property it must have; and
(3) whether the graph is symmetric or non-symmetric.

We now identify the problem types:

Type A : path full symmetric
Sliding block puzzles are of this 'demonstration of equivalence' type. It seems

likely that search trees should be grownfrom 'both ends'. Practical problems that
fall naturally into this category seem rather rare, although some problems in
algebraic simplification and theorem-proving are of this type.

Typeß: path full non-symmetric
path property symmetric
path property non-symmetric

The Graph Traverser strategy is most appropriate to thesesituations, although
it does not use the symmetry in the second. Sliding block puzzles with partially
specified goal configuration are of this type, a solution consisting in a path from the
starting configuration to a terminal configuration satisfying the goal condition.
Again practical applications seem rare.

Type C: node property symmetric
node property non-symmetric

Typically the graph structure is imposed aspart ofthe strategy, rather than given
by the terms ofthe problem. Operations, or 'moves', provided by the strategy for
transforming problem states define arcs in the abstract representation, and thus
convert the initially givenproblem into a connected graph upon which theprogram
can work. In particular, the symmetry or otherwise of the graph is likely to be a
matter of definition. A solution must merely satisfy the goal condition. The path
is not of primary interest. The Graph Traverser strategy is applicable to this type
of problem but it is not yet clear how efficient such an application would be. Many
practical problems areof thistype,for example allocationand timetablingproblems.

A more general type of problem is that where a solution is a set of nodes. This
includes the above problem types, as special cases.

In ourworkto datewith theGraph Traverserwehave avoided the useofoperator
selection, but such techniques can be inserted into the program schema. In its
present form the procedure 'develop' produces all immediate descendants of a
given node. However, there is no difficulty in constraining it to produce only a
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subset ofthe immediate descendants, corresponding to selectionand application of
only a subset of the available operators. This topic is discussed in an article by
Michie (1966).

Generality versus speed
This paper has been about a general problem-solving program. In the extreme

case sucha programembodies nomore specialknowledge about theproblem in hand
thanis required to set in motion a searchfor solutions. It typicallypurchases a wide
range of application in exchange for speed. For example, the Graph Traverser at
best takesabout 20 s to solve a difficult eight-puzzle configuration on an Elliott 503,
and takes about 15s to demonstrate that the two expressions given in table 6 are
equivalent. Special-purpose programs for performing the same two tasks (Michie
1966; E. W. Elcock, personal communication) are an order of magnitude faster. At
first sight this comparison seems so damagingas toprompt the question :whybother
at all with general purpose programs?

An immediate reply is that such programs could have a use when 'one-off'
problem-solving is required, where the attraction of avoiding the labour of con-
structing a special program may outweigh the defects of the general one. For
'production runs', however, the balance would normally be tipped in favour of
constructing an efficient, fast-running program for the particular problem. The
possibility should be borne in mind here, that the construction of such a program
may itself be aided by exploratory work using a general purpose program such as

the Graph Traverser.
Conclusions

The first stage of this design project has been successful, in the sense:
(1) That the program, in its present restricted form, does solve problems. It has

in fact already been found tobe a useful toolby a colleague working in a different
field (automatic theorem-proving: see Popplestone 1966).

(2) Thatitseemsto meetour criteriafor using it as theplatform onwhichtobuild
the next, i.e. 'learning', stage.

The cost of this work was defrayedby a grant from the Science Research Council,
which also provided a Junior Research Fellowship held by one of us (J. E.D.).
Our thanks are also due to Dr N. T. J.Bailey, Director of the Unit of Biometry,
Oxford University, and toDr M. H.Rogers, Director ofthe Computer Unit, Bristol
University, for generous provision of computing facilities, and to our colleague
R. M.Burstall for manyhelpful criticisms and comments.

References

Alexander,W. P. 1946 A performancescalefor themeasurement ofpracticalability. Instruction
book issuedwith 'AlexanderPerformanceScale. London:Councils andEducationPress.

Berge, C. 1962 The theoryof graphs. English translationby AlisonDoig. London: Methuen.
Burstall, B. M. 1966 Computer design of electricitysupply networksby a heuristic method.

Computer Journal (in press).
Doran, J. E. 1966 An approach to automatic problem-solving. In Machine intelligence, 1

(cd. N. L. Collins & D. Michie). Edinburgh: Oliver and Boyd. (In press.)

Gardner,

M. 1964, 1965a, b, c Mathematical games. Scient. Am. 210, 122-30; 212, 112-17;
212, 120-4; 213, 222-36.

Hayes, J. E., Michie, D., Pole, K. E. &

Schofield,

P. D. A. 1965 A quantitative study of
problem-solvingusing sliding block puzzles: the 'Eight-puzzle' and a modified version
oftheAlexanderPassalong Test.ExperimentalProgrammingReport, no. 7. Experimental
Programming Unit, University of Edinburgh.

Johnson, W. W. & Story, W. E. 1879 Notes on the ' 15' puzzle. Am. J. Math. 2, 397-404.
Michie, D. 1966 Game playingand gamelearning automata. Ch. Bof Advances inprogram-

ming and non-numerical computation(cd. L. Fox), pp. 183-95. London: Pergamon.
Michie, D. 1966 Strategy-building with theGraphTraverser. In Machine intelligence, 1 (cd.

N. L. Collins & D. Michie). Edinburgh: Oliver and Boyd. (In press.)
Newell, A. & Ernst, G. 1965 The search for generality. In Information processing 1965:

Proceedings of IFIPCongress 1965,vol. 1 (cd. Wayne A. Kalenich), pp. 17-24.Baltimore:

Spartan.
Newell, A.,

Shaw,

J. C. &

Simon,

H. A. i960 A variety of intelligent learning in a general
problemsolver. In Self-organisingSystems (eds. Marshall C. Yovits and Scott Cameron)
pp. 153-89.London: Pergamon.

Popplestone, R. J. 1966 Theorem proving by Beth tree methods. In Machine intelligence,
1 (cd. N. L. Collins & D. Michie). Edinburgh: Oliver and Boyd. (In press.)

Samuel,

A. L. i960 Programming computers to play games. In Advances in computers
vol. 1 (cd. Franz L. Alt.), pp. 165-92.London: AcademicPress.

Tait, P. G. 1880 Note on the theory ofthe '15 puzzle. Proc. Royal Soc. Edinb. 10, 664-5.
Turing, A. M. 1953 Digital computers appliedto games, eh. 25 of Faster than thought (cd.

B. V. Bowden), pp. 286-310. London: Pitman.



PRINTED IN

GBEAT

BRITAIN AT THE

UNIVERSITY PRINTING HOUSE, CAMBRIDGE


