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Abstract 
 

We examine the physics of nanoscale energy conversion in low-dimensional 

silicon structures and devices. The theoretical and experimental results of this work 

will facilitate improved designs of the silicon nanoelectronic and nanophotonic 

devices vital to emerging high-density, high-bandwidth information systems.  

We begin by quantifying the reductions in nanotransistor performance by 

nonequilibrium optical phonons (OPs) generated in the drain as a result of hot electron 

energy relaxation. An inefficient conversion of OPs into the long-wavelength acoustic 

phonons (APs) responsible for heat conduction can cause an energy conversion 

bottleneck leading to reduced device currents and negative differential conductance 

instability, which poses a threat to the continued scaling of CMOS technology. We 

develop fully-coupled, electron-phonon, Monte Carlo Boltzmann transport simulations 

to assess the impact of this effect on device operation. The new approach includes 

electron and phonon dispersion and introduces a novel, occupation number-based 

stochastic rejection algorithm to efficiently couple the electron-phonon dynamics and 

nonequilibrium particle interaction. To address gaps in existing data, we use full-band, 

anharmonic perturbation theory to calculate the 2-phonon joint densities of states and 

lifetimes of OPs critical to hot electron energy conversion. We find that the reduction 

in electron mobility and the increase in leakage current due to hot OPs were greatly 

overestimated in previous studies and that drive current will not be impacted 

significantly for power densities below 200 TW/cm3. This corresponds to 20x the 

existing device densities and 2x what is predicted at the end of the technology 

roadmap.  

Next, we develop a new theory of the electron dynamics and nonradiative energy 

transfer in optically-pumped silicon nanocrystals (NCs) embedded in a dielectric host. 

This class of materials is promising in the development of inexpensive, CMOS-

compatible, optical sources due to strong luminescence in the 600-1000 nm band and 

an ability to sensitize codoped Er3+ emitting near 1540 nm. We study the nonradiative 

recombination (NR) processes which limit the optical gain of these materials and 
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which prevent their adoption into commercial applications using a custom built, two-

color optical pump-probe system which demonstrates sub-10 picosecond temporal 

resolution and sensitivity within 3 dB of the shot noise limit. From an improved data 

set, we establish a new theory which shows the importance of long–range Coulombic 

dipole-dipole interaction between excited electron states at high excitation levels, an 

important loss mechanism neglected in all previous work. The proposed model 

accurately reproduces the data on bulk and quasi-2D NC films down to 10 nm over 

more than four decades of pump intensity and unifies existing models by showing that 

their solutions are limiting forms of the new model. We experimentally observe the 

transition from 3D to 2D behavior as a systematic reduction in NR at high excitation 

levels by as much as 2x which is accompanied by a characteristic change in power-law 

dependence on pump intensity from 1/3 to 1/4 with decreasing film thickness in exact 

agreement with our theory. Further reductions in NR losses and a change in power-law 

to 1/7 are predicted in 1-D NC laden ridges. The substantial reduction in NR losses 

observed in 2-D films and even greater reductions predicted in 1-D ridges and 0-D 

islands reduces the intrinsic lasing threshold of these materials and demonstrates a 

path forward to realizing silicon NC lasers.  
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Chapter 1  

 

 

Introduction  

 
Curiosity demands that we ask questions, that we put the things 
together, to understand this multitude of aspects as perhaps the action 
of a small number of elemental things.   

 
             - R. P. Feynman 
 
When we think of energy conversion, solar panels, wind turbines, hydroelectric dams, 

and nuclear power plants likely come to mind. As a scientist or engineer, our thoughts 

may quickly turn to energy conversion devices found in the lab, such as fuel cells and 

thermoelectric modules. Each of these is an example of a macroscopic system or 

device whose intended function is, by design, to convert energy from one form into 

another. In the examples listed, solar, gravitational, nuclear, chemical, and thermal 

energy are converted into a more convenient form of electrical energy. If we think a 

little harder, we may start to include devices not commonly listed as energy 

converters, such as photodetectors (optical to electrical), piezoelectric actuators 

(electrical to mechanical), and diode lasers (electrical to optical). If we then consider 

the fact that any device which performs useful work must generate entropy and 

thereby dissipate energy in the form of heat in accordance with the second law of 

thermodynamics [1], we must conclude that all devices which perform useful work* 

are essentially energy converting devices, whether or not their intended function 

warrants their classification as such in common practice. Work is required to process, 

transport, and store information and so it follows that information handling devices 

necessarily produce heat and are thus fundamentally energy converting devices.  

                                                 
* By definition, a device is something which does useful work.  
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Take for example the silicon transistor, the basic building block of modern 

information systems. Its function is simple: to translate a voltage level at its gate 

electrode into a corresponding voltage at its drain electrode. An input voltage at the 

gate controls the flow of current through the transistor channel leading to the charging 

or discharging of an output capacitance whose voltage represents binary information, 

i.e. a “1” or a “0”. One needs only to place their hand on the backside of their “laptop” 

computer to discover where all of the energy flowing through the billions of transistors 

making up the CPU ultimately winds up.  

Modern microprocessors dissipate on the order of 100 J of heat every second or 

the equivalent of 1.5 incandescent light bulbs. Since a single microprocessor chip can 

execute roughly a billion instructions every second, the average energy required to 

execute a single instruction is of order 1012 eV, which is 14 orders of magnitude larger 

than the theoretical minimum of  kBT·ln(2) ~ 10-2 eV required to execute a single 

binary operation [2]. Clearly, there is plenty of room at the bottom for improving 

efficiency!  

What dictates the amount of heat generated during a single binary operation? How 

long does it take to convert this energy into heat? What are the elementary particles 

and processes which participate in the conversion of energy into heat and thereby act 

to increase the entropy of the system? Where does the heat go once it is generated? 

These are important questions to be asked of any system. However, asking such 

questions is vitally important when it comes to building and analyzing devices that are 

made so small that the number of atoms comprising the device become countable†.  

This dissertation describes a theoretical and experimental investigation of the 

fundamental energy conversion processes which strongly influence the basic operating 

characteristics and stability of emerging silicon-based nanoelectronic and 

nanophotonic information processing devices. Let us consider the foundation of the 

problems to be addressed in this work by examining more closely the nature of energy 

dissipation in nanoscale electronic and photonic devices individually.  

 
                                                 
† Roughly speaking, countable means systems containing less than 106 atoms or volumes of material 
less than a few tens of thousands of cubic nm.  
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1.1 Energy Conversion in Silicon Nanoelectronic Devices 
 

The silicon-based Complementary Metal Oxide Semiconductor (CMOS) technology 

has dominated the information systems landscape for more than three decades. The 

device structures may change substantially over time but the same basic operating 

principles should continue to apply even as novel device structures such as carbon 

nanotube (CNT) field effect transistors (FET) get closer to supplanting the silicon 

MOSFET.  

The simplest of CMOS logic gates, the inverter, and its equivalent circuit as it 

“processes” either a logical 1 or 0 at its input is shown in Figure 1.1. Here, p and n 

subscripts identify the majority carrier type, hole or electron, respectively. Although 

this dissertation is concerned primarily with microscopic transport physics and energy 

conversion occurring within a single transistor, it is useful to briefly review the 

macroscopic behavior of the CMOS inverter because the complexity of the systems 

we will model have great potential to diminish our physical intuition of the system 

behavior.  

During a logical transition, only one of the transistors in the CMOS inverter is 

intended to be fully turned on. Making this increasingly poor assumption, we can 

model the system as an network of resistance and capacitance with the transistor being 

modeled as a time varying resistor like that drawn in Figures 1.1b and 1.1c for the case 

of a 1  0 and 0  1 transition at the gate, respectively. 
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Figure 1.1: The standard CMOS inverter logic gate and its idealized equivalent RC circuit model. 
shown during a logical (b) 0 to 1 and (c) 1 to 0 transition.  One of the notable idealizations is the 
assumption that the opposing transistor is completely turned off during the opposite half cycle.  
 

 In analyzing even this simplified form of the circuit, it is instructive to begin with an 

even simpler example,  our old friend, the switched RC circuit drawn in Figure 1.2a. 

The capacitor is initially discharged and the switch is opened at time t = 0.   

 

 

 

 

 

 

 
Figure 1.2: (a) The RC circuit, the most basic of circuit models helps build our intuition for far more 
complicated transport models. As the complexity of our physical models increase to capture details of 
the microscopic transport, we must return these concepts. (b) An equivalent circuit where resistor is 
replaced by an unknown device with nanoscale dimensions. Modeling the transport within the box can 
be quite challenging but the energy flowing into and out of the boundaries of the device must be 
conserved (on average). Dissipative processes within the box act like a time-varying resistor.  
 

Heat generated by the circuit is entirely the result of the resistor element, the 

instantaneous heat generation being given by the Joule heating rate,  
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where RI  and RV  is the current flowing through and the voltage dropped across the 

resistor R respectively. If the resistance remains unchanged during the charging cycle, 

i.e. 0)( RtR = , we obtain the well-known result,  

 

∫∫
∞→

−

∞→

==

'

0

/'2

0

2
'

0

')0(')'( 0

t

CRtR

t

dte
R

VdttQQ &                     

ER UCV == )0(
2
1 2                    (1.2) 

 

which states that the total heat generated Q  by the charging of the capacitor is equal to 

the amount of potential energy stored in the electric field of the capacitor EU  upon 

completion of the charging‡. The value of )0(RV  is the voltage dropped across the 

resistor just after the switch has been closed, which in this case is equal to the value of 

the source voltage. Although, all of the heat is dissipated in the resistor, the magnitude 

of the resistor plays absolutely no role in dictating the total amount of heat dissipated; 

in combination with the capacitance value, it only modifies the rate at which energy is 

dissipated and transferred to the capacitor by the ideal voltage source.  

Furthermore, if the capacitor is periodically charged and discharged every T = 1/f 

seconds, then the total amount of energy dissipated every second is given by 

 

fCVP Rtot
)0(2=                           (1.3) 

 

                                                 
‡ Mathematically speaking, this of course takes an infinite amount of time but in a practical sense, about 
5 time constants.  
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But does this result hold if the resistor is time-varying, as for example in the case of a 

CMOS logic gate during its switching between binary states? The total heat generated 

during the transition is now given by the following expression 

 

∫
∞→ ⎟

⎠

⎞
⎜
⎝

⎛

=
∫−'

0

2 '
)'(

exp
)0(

'

0 )''(

''2t

R dt
tR

VQ

t

tR

dt

C
                     (1.4) 

 

The increased complexity of the function masks a simple and most elegant result. 

Provided that R(t) remains positive§ over all time, the total amount of heat generated 

over the course of the charging cycle is identical to the case of when the resistance 

remains constant, that is )0()2/1( 2
RCVQ = . 

As an example, let us compare the instantaneous power and total heat generated as 

a function of time for an RC circuit for two cases: first, the resistance is fixed with a 

value R0 and second, the resistance is time-varying having an arbitrary temporal 

dependence given by R0·f(t) where f(t). Let us normalize the time base by the time 

constant of the standard RC problem, i.e. t* = t/τ where τ = R0C, and the instantaneous 

heat generation by CVR
2(0)/τ, and the total heat generated up to time t* by CVR

2(0). 

For the case of the variable resistance, let us take as our arbitrary function to be 

 

[ ]*)tsin(102R*)R(t 0 ⋅+=                   (1.5) 

 

The results of these two cases are plotted in Figure 1.3. In the top panel, the 

normalized instantaneous heat generation (red lines) and cumulative heat dissipated 

(blue lines) as a function of the normalized time are shown. The solid and dashed lines 

represent fixed and variable resistance conditions respectively. In the bottom panel, 

the I-V curves of the two resistor models are shown. For the case of the temporally 

varying resistor, we observe over the range of voltage plotted eight negative 

                                                 
§ A negative resistance, not to be confused by a negative differential resistance, implies gain of the 
system which must be facilitated by an additional energy source.  
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differential conductance zones. Such behavior is typical of resonant tunneling diodes 

[3] and quantum cascade lasers [4] where intrinsically quantum mechanical effects 

dominate the macroscopic behavior of the device.  

 
 
Figure 1.3: The instantaneous power dissipated and the total cumulative heat dissipated over time for 
two different hypothetical resistor-time paths. In the top panel, the normalized instantaneous heat 
generation (red lines) and cumulative heat generated (blue lines) as a function of the normalized time 
are shown. The solid and dashed lines represent fixed and variable resistance conditions respectively. In 
the bottom panel, the I-V curves of the two resistors is shown. 
 

The point of this simple exercise is to make it clear that regardless of the 

complexity of the objects placed inside the gray box of Figure 1.2b, or what level of 

physical detail we chose to describe the objects in the box, the total amount of energy 

transferred to the load capacitance and the total amount of heat generated in the box is 

fixed by the external parameters of the system as defined at its input and output 

ports**.  

If we were interested only the total amount of energy dissipated by the device, and 

not in how long it took to perform the transfer of energy to the reactive load, or where 
                                                 
** Admittedly, I have conveniently sidestepped the tricky issue of defining the edge of the box!  
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exactly the heat was generated between the terminals of the device, this would 

essentially be the end of the story. The only apparent levers available to the device 

engineer would be stray capacitance, operating voltage, and clock frequency. 

However, this is only part of the story. We care very much about how quickly and 

where the heat is generated within the device as it directly impacts the performance of 

the device and ultimately the system. How the energy is distributed within the device 

controls the rate of information transfer, the stability of the information contained at 

its terminals and the long-term reliability of the device, three critically important 

aspects of an information processing device. 

Efficient removal of heat from the transistor and interconnect layers will be a 

growing challenge to the successful scaling of digital nanotechnologies for the 

foreseeable future. This challenge is growing due to the continued scaling down of 

transistor dimensions and the increasing density of devices combined with the move to 

thin-body single and multiple gate devices that provide improved control of the 

channel electric field. The most promising multi-gate device is the FinFET [5] of 

which numerous derivatives have been proposed in recent years [6] [7]. While these 

devices offer superior subthreshold slopes approaching the theoretical limit of 60 

mV/decade, they exhibit higher thermal resistance than bulk devices because of 

geometric confinement by low thermal conductivity materials as well as enhanced 

phonon boundary scattering in the active layers.  

The amount of energy converted to heat during the flipping of a single logical bit 

is reducing over time due to a gradual reduction in supply voltage and a continued 

reduction in device capacitance. However, these elements are not reducing as rapidly 

as the volume where the heat is initially dissipated, typically the drain extension 

region of the device. As a consequence, the volumetric power density is increasing 

with each technology generation. Based on simple volumetric scaling arguments and 

considering a modest rate of reduction in voltage as outlined by the ITRS, the 

volumetric power density can be shown to scale as Lg
-1.7, where Lg is the physical 

channel length of the transistor [8].  This basic trend is shown in Fig. 1.4 for sub-20 

nm single gate (SG), double gate (DG) and triple gate (TG) thin body silicon 
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transistors. The upper two curves correspond to ITRS [9] values for TG and DG 

devices and the lower curve represents the scaling set forth in [10] for TG, DG, and 

SG devices. The volumetric power density of a 20 nm device is of the order 10 

TW/cm3 and a 6 nm device at the end of the roadmap is expected to increase by one 

order of magnitude. The calculations assume uniform current distribution [7] and that 

heat generation in the S/D fin extension dominates as we will discuss in Chapter 5.   

 

 
Figure 1.4: Volumetric heat generation rates as a function of transistor channel length through the end 
of the existing ITRS roadmap [8].  
 

Reducing channel lengths Lg in order to increase packing density and to reduce the 

energy-delay product [10] has a direct impact on the departure from equilibrium of the 

electron and phonon systems within devices, thus increasing both the complexity in 

modeling the electrothermal behavior. If the rate of energy conversion becomes 

sufficiently strong within a volume of material such that a quasi-equilibrium can not 

be maintained between all particles, energy may accumulate in a particular segment of 

the multi-particle distribution. In such a case, a single temperature no longer suffices 

in characterizing the microscopic ensemble. A subgroup of particles may become 

“hot” relative to some background particle distribution until the system can relax to a 

near-equilibrium state by inter-particle scattering and conversion of energy between 

the particle sub-systems. Figure 1.5 shows an example of this effect in the electron 

system within a nanoscale transistor. On the left of the figure, the electron potential 

energy function is drawn for two different cases, with zero bias (top) and with an 
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applied gate to source VGS and drain to source VDS voltage equal to the supply voltage 

VCC. On the right hand side, the electron distribution in energy is sketched.  

When no bias is applied (top image), the electrons in the system are in thermal 

equilibrium with themselves and the lattice and therefore have a common temperature 

throughout the system. When a bias is applied (bottom), a portion of the electron 

distribution in the source (S) is injected into the channel region and are subject to the 

large electric field and potential dropped across the channel. At very short time scales, 

e.g. less than 100 fs, electrons do not typically have time to exchange energy and 

momentum. As a consequence, the segment of the electron distribution which is 

injected into the channel will have a distribution resembling that of a thermal 

distribution which is displaced in energy by the amount of potential energy dropped in 

the channel.  

 

 

 

 

 

 

 

 

 

 
Figure 1.5: The effects of high-density energy conversion in small volumes leads to non-equilibrium 
particle distribution functions. 
 

The electron system can then be seen as consisting of two sub-populations, a 

nonequilibrium component and a near-equilibrium component. The superposition of 

these two systems reveals a bimodal distribution as drawn. After a few nanometers 

into the channel, however, the electrons will have had sufficient time to thermalize 

yielding an equilibrium distribution for the entire electron population but one which is 

characterized by an effective temperature exceeding 1000 K. The elevated temperature 
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is enabled by the inability to transfer energy to the lattice vibrational modes 

efficiently. The “hot” electron system proceeds to cool in the drain by scattering with 

phonons, the quanta of the lattice vibrational modes. As electrons tend to favor some 

phonon modes more than others, a nonequilibrium population of phonon modes may 

occur within the first 10 nm of the drain junction. Eventually, all of the excess energy 

is converted to heat and is conducted away to the heat sink of the device by long 

wavelength acoustic phonons. The nature of this cascading process of energy 

conversion will be the subject of Chapters 4 and 5.  

 

1.2 Energy Conversion in Silicon Nanophotonic Devices  
 

Integrating optics into high-density digital information processing devices such as. 

microprocessors, graphics chips, or network processors has been a long held dream 

shared by countless engineers, scientists, and technologists. Having the ability to build 

information systems that combine the innate advantages of silicon electronics with 

those of an optical communication network, would likely spawn a new era in 

computing capability that would mimic the accelerated growth in performance seen in 

the transition from mainframe computers to the introduction of the personal computer 

in the 1980s. Silicon has been the material choice for the electronics industry for 

decades but it has played a highly diminished role in the telecommunications sector 

for fundamental reasons. Because silicon is an indirect bandgap semiconductor, 

meaning it requires a phonon, an impurity or some lattice defect to assist in the 

collection and generation of light, it has relatively poor optoelectronic properties 

compared to the III-V semiconductors such as GaAs and InP. Despite its limitations, 

silicon is increasingly finding its way into optoelectronic systems in the form of 

waveguides, modulators, detectors, and filters. The critical optoelectronic component 

missing, however, is an efficient electrically pumped, coherent silicon light source.  

A promising path forward to developing an all-silicon CMOS compatible source is 

through the modification of the intrinsic optoelectronic properties of silicon by 

reducing the physical size of the crystal to only a few nanometers on a side. In doing 
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so, relatively efficient photo- and electro-luminescence have been reported on account 

of momentum uncertainty created by the confined electronic wavefunctions in and 

radiative surface states – the latter being particularly true for silicon nanoparticles 

embedded in silicon nitride host. Despite the great interest in their optical properties, 

the energy losses due to nonradiative processes such as free-carrier absorption (FCA) 

and fast multi-charge Auger recombination severely limit the prospects of achieving 

population inversion and consequently the point of reaching the condition of lasing. 

Progress towards understanding these intrinsic loss mechanisms which compete 

unfavorably with stimulated emission has been greatly impeded by the fact that the 

systems of silicon nanocrystals typically produced are inhomogeneous and are plagued 

with complicated carrier dynamics physics. To make progress in this field, there needs 

to be a complete understanding of how the energy of an excitation source, either an 

electrical or optical pump, is converted to the either desired light output, the creation 

of defects, or the generation of heat.  

Chapter 7 discusses my work identifying some of the key physical processes 

which limit population inversion in dense silicon nanocrystal  composite films. In 

support of these efforts, a custom, two-color optical pump-probe system with sub-10 

picosecond temporal resolution is developed to measure the carrier dynamics of 

silicon NCs films through indirect probing of the excited carrier intraband absorption.   

 

1.3 Overview 
 

Chapter 2 reviews the fundamentals of energy conversion in bulk and finite 

nanostructures. Chapter 3 discusses the electron and lattice vibrational energy 

eigenstates of bulk and finite nanometer scale silicon crystals which were modeled 

using semi-empirical numerical techniques. Chapters 4 and 5 present my work in 

advancing the state-of-the-art in modeling detailed energy conversion and transport in 

quasi-ballistic silicon electronic devices. Such highly scaled quasi-1D transistors are 

routinely operated under high-field, and thus highly nonequilibrium, conditions where 

both the electrons and phonons deviate substantially from thermal equilibrium 
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distributions. Chapter 4 presents calculations of optical phonon lifetimes which are 

based on the full-band dispersion calculations discussed in Chapter 3. Chapter 5 

develops rigorous, fully-coupled, self-consistent, electron-phonon Monte Carlo 

simulations which culminate in the simulation of a realistic 20 nm silicon devices 

operating under typical bias conditions. From this work, we are able to assess the 

magnitude of the role in which hot optical phonons will play in silicon devices within 

the horizon of the latest semiconductor roadmap.  

Chapters 6 and 7 are devoted to describing the development of a two-color laser 

pump-probe technique with picosecond time resolution and its use in quantifying 

nonradiative energy conversion in dense systems of silicon nanocrystals embedded in 

host amorphous dielectric films. The unique dependence of the excited carrier losses 

vs. probe delay and pump intensity is used to garner new insights into the physics of 

energy transfer between nanoparticles and a non-local electron-electron interaction 

model is developed for bulk and low-dimensional systems.  

Chapter 8 concludes this dissertation by summarizing the major contributiosn of 

this work. A proposal for new research is proposed which builds on the results of this 

work.  
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Chapter 2 

 
 

Fundamentals of Nanoscale Energy Conversion 

 
I must say that I also do not like indeterminism. I have to accept it 
because it is certainly the best that we can do with our present 
knowledge. 

 

-P. A. M. Dirac 

 
In this chapter, I will review the fundamental physics of microscopic energy 

conversion and specifically as it applies to silicon nanostructures. In doing so, we will 

examine the key differences between finite nanoscale crystals and their bulk 

equivalent, while placing special emphasis on the characteristics of the silicon lattice.  

 

2.1 Energy 

 
In the framework of non-relativistic quantum mechanics, the total energy or 

Hamiltonian of a single particle such as an electron may be written as a complex 

differential operator H which acts on a two-component (arising from the two spin state 

basis +/-) particle field or wavefunction ),( trv±Ψ  according to  

 

),(),( tr
t

itrH v
h

v
±± Ψ

∂
∂

=Ψ                    (2.1)  

 

For a single electron coupled to the electromagnetic field ),( trA vv , but neglecting spin 

interactions, i.e. A
v

×∇  ~ 0, H acquires the following form:  
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itrVtrAe

im
H

∂
∂

=+⎟
⎠
⎞

⎜
⎝
⎛ −∇= h

vvvh ),(),(
2
1 2

              (2.2)  

 

the two spin states corresponding to the same spatial wavefunction are degenerate in 

energy. We gain physical insight into the meaning of energy by examining the 

eigenfunctions of the non-relativistic Hamiltonian operator, which satisfy the equation 

 

),(),( trEtr
t

i vv
h Ψ=Ψ
∂
∂                    (2.3)  

 

where E is a constant. The eigenfunctions have the following form 

 
( ) ( )titi erertr θθ ϕ −− =Ψ=Ψ )()0,(),( vvv                 (2.4)  

 

where the temporal phase θ  is linear in time with the eigenvalue E setting the rate of 

angular variation according to  

 

 tEt )/()( h=θ                       (2.5)  

 

An important characteristic of the energy eigenfunctions is that a measurement of the 

total energy of an electron residing in such an energy eigenstate is independent of 

time, i.e. is stationary,  and will always return the value E with 100 % certainty. In 

mathematical terms,  EHH =><=>ΨΨ< || , and 022 =><−>< HH .  

 Although E is an eigenvalue of the operator ti ∂∂ /h , it is not necessarily an 

eigenvalue of the left-hand side of (2.3), a necessary condition if E is to represent the 

total energy. To generalize the case, then let H be time-dependent but for the sake of 

simplicity, allow for ),(')(),( 0 trHrHtrH vvv +=  where )()(),(' tfrgtrH vv = . Operating 

on the separable eigenfunction (2.4), we have 
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( ) ( ) ( )

( )tiθ

tiθtiθ
0

tiθ

e)r(E

e)r(f(t))rg(e)r()r(He)r(t),rH(
−

−−−

=

+=
v

vvvvvv

ϕ

ϕϕϕ
                (2.6) 

                        

Then, multiplying both sides by ( )tier θϕ +)(* v , integrating over all space, and using the 

orthonormality of the eigenfunctions, we obtain the final result 

 

gf(t)Egf(t)HE(t) 00 +=+=                 (2.7)  

 

where  

 

∫= )r()rg()r(*rdg vvvv ϕϕ                           (2.8)  

 

is referred to as the matrix element. We conclude that, if the Hamiltonian operator has 

a time-dependence, then E must also depend on time and the assumption E = constant 

fails to hold. Despite this contradiction, the form of the wavefunction is maintained 

albeit with the phase angle modified to  include an additional time-dependent term:  

∫+=

t

dttfgtEt

0

0 ')'()/1()/1()( hhθ                 (2.9)  

Evidently, the time-dependent part of H changes the energy of the particle 

continuously and manifests itself as a continuous change in the quantum mechanical 

phase angle, which depends explicitly on the temporal history of H(t). Clearly, the 

total energy of the electron is not conserved in such a case; the time-dependence of H 

is the result of an external force pumping energy into (+) or out of (-) the system. This 

force must arise from the interaction with another particle or the interactions of a 

group of particles not explicitly described in the specified system.  

 For a time-independent H, there is an infinite set of linearly independent energy 

eigenfunctions which span the Hilbert space. The complete time-dependent 
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wavefunction can be expressed as a linear combination of these orthonormal basis 

states as 

 

∑ −=Ψ
n

ti
nn

nerctr )()(),( θϕ vv                        (2.10)  

 

The expected value of the total energy for such a state is  

 

∑=
n

nn cEH 2|| = E = constant                      (2.11)  

However, there is now an intrinsic uncertainty in the total energy as quantified by the 

variance σE
2  

 

[ ]∑ −=−=
nm

mnmnnE cENEEc
N

HH
,

222222 ||||1 σ                 (2.12)  

 

Here, N is the total number of basis states necessarily included in the expansion to 

describe the state. Considering the normalization condition, 1|| 2 =∑ nc , it can 

easily be shown that if 1|| 2=nc for any n, i.e. the electron is fully described by a single 

energy eigenfunction, then 2
Eσ = 0 as expected.  

A measurement of an observable Q performed on a superposition stateΨ generally 

will have a time-dependence, irrespective of whether the operator Q includes a time 

dependence or not. For example, take the case of an electron residing in a 

superposition of two energy eigen states,  

 
hh vvv /

22
/

11
21 )()(),( tiEtiE ercerctr −− +=Ψ ϕϕ                     (2.13)  
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where, by the normalization condition we have 12
2

2
1 =+ cc . If we perform the 

measurement >ΨΨ<=>< || QQ , and Q has no explicit time dependence, we 

obtain the general result 

 

( )2121212122
2

211
2

1 /cos|||||||| δ−++=>< htEQccQcQcQ                (2.14) 

    

where 1221 cc ∠−∠=δ , 1221 EEE −= , ><= jiij QQ ϕϕ || and *
jiij QQ = due to the assumed 

Hermiticity of the observable Q ††. For example, if )'( rrQ vv −= δ , the measurement 

>Ψ−Ψ< |)'(| rr vvδ = 2|),'(| trvΨ , yields the probability of finding the particle in a 

volume 'rdv about 'rv  and depends on time according to the relation 

 

)/cos()'()'(||||2|)'(||||)'(||||),'(| 21212121
2

2
2

2
2

1
2

1
2 δϕϕϕϕ −++=Ψ h

vvvvv tErrccrcrctr  

         (2.15)  

 

The energy difference E21 dictates how rapidly the expected measurement value 

changes as it sets the period of oscillation of the phase angle. Finally, if Q = H and H 

is time-independent, then the measurement >< H  yields 

 

EEcEcH =+=>< 2
2

21
2

1 ||||   =   constant           (2.16)  

 

as H is diagonalized (Hii = Ei) through the choice of the energy eigenfunction basis. 

By use of (2.12) and the requirement 2
2

2
1 ||1|| cc −= , the intrinsic uncertainty in the 

measurement of the total energy is found to increases in proportion to the energy 

separation between the two states,   

 

21
2/12

11 )||1(|| EccE −=σ                 (2.17)  

 

                                                 
†† Q must be Hermitian if it is to represent an observable quantity.  
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where 1221 EEE −= . By inspection, the maximum uncertainty is 2/21E and occurs 

when 2/1|||| 2
2

2
1 == cc .  

Having discussed what energy is within the framework of non-relativistic quantum 

mechanics, and identified the special properties arising when choosing to represent the 

particle wavefunction in the energy eigenfunction basis, we are now in position to 

describe the exchange of energy between particles and systems of particles. We begin 

with establishing the mechanism for exchange of energy between an isolated particle 

and an “external” force. We then proceed to establish how energy is exchanged 

between interacting particles within a closed system and how the distribution of 

energy amongst a population of interacting particles can be adequately characterized.  

 

2.2 Energy Conversion  
 

In the previous section, we saw that if the Hamiltonian of a system is independent of 

time, then the expectation value of the total energy of that system will be constant. 

Furthermore, this result holds even if there is an intrinsic uncertainty in the total 

energy due to the wavefunction being described as a superposition of eigenstates 

(2.10). In essence, the constancy of H  is a quantum mechanical statement of energy 

conservation; for the average total energy to be a conserved quantity, the Hamiltonian 

describing all particles and their interactions within the volume of a closed system 

must be time-independent. Particles may interact and exchange energy within the 

system but the total expected value of energy must be conserved at all times. In this 

section, we build the foundations for describing the exchange of energy between 

particles.  

Consider the case of a single electron in a closed system whose wavefunction is 

expressed as a superposition of the complete set of energy eigenstates of )(0 rH v  

having eigenvalues En. At time t = 0, an external force is turned on adding a 

contribution to the total Hamiltonian operator which can be described as 
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)()(),(' tfrgtrH vv = . The amplitudes of the basis states are now time-dependent so that 

the description of the electron can be written as  

 

∑ −=
n

t/iE
nn

ne)r((t)ct),rΨ( hvv ϕ                (2.18)  

 

The fact that the amplitudes are time-dependent means that the probability of finding 

the particle in a particular eigenstate at time t, given by 2|)(| tcn , is changing with 

time. This is equivalent to saying that the particle makes transitions between 

eigenstates of different energy thereby exchanging energy with the external force in 

the process. The explicit time-dependence of these coefficients is found by solving the 

time-dependent Schrödinger equation as follows:  

 

 [ ] ∑∑ −−

∂
∂

=+
n

tiE
nn

n

tiE
nn

nn ertc
t

iertctfrgH hh v
h

vv //
0 )()()()()()( ϕϕ   

 

∑∑ −− =
n

tiE
nn

n

tiE
nn

nn ertciertfrgtc hh v
&h

vv // )()()()()()( ϕϕ      

 

Using the orthonormality of the energy eigenfunctions of the closed system, we 

multiply both sides by hv /)(* tiE
m

ner +ϕ and integrate over all space to obtain the following 

result 

 

∑ +=
n

tiE
mnnm

mnegtftc
i

tc h

h
& /)()(1)(               (2.19)  

 

where  the matrix elements are given by  
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∫= )()()(* rrgrrdg nmmn
vvvv ϕϕ                 (2.20)  

 

Integrating over time, we find the amplitude of the mth basis state to be  

 

)0()'()'('1)(

0

/'
m

n

t

tiE
nmnm cetftcdtg

i
tc mn +

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑ ∫ + h

h
         (2.21)  

 

The explicit time-dependence of the amplitudes can be determined using an array of 

available numerical techniques. It should be noted that solving the coupled equations 

for the instantaneous values of the amplitudes is equivalent, albeit with a potential 

reduction in the parameter space, to solving the full time-dependent Schrödinger 

equation using a finite difference method. However, the mapping of the instantaneous 

solution onto the energy eigenstates provides the physical intuition of electrons 

making discrete transitions between these basis states over time as well as may lead to 

important simplifying assumptions.  

Once the amplitudes are determined, the average rate of energy conversion due to 

the external force can be calculated using the following expression‡‡ (Appendix B)  

 

])()([|)(| *2∑ ∑+=
n n

nnnn tctc
dt
ditc

dt
dEH

dt
d

&h           (2.22)  

 

Another important characteristic is the instantaneous spread or uncertainty in the 

system energy which can be measured as the energy variance which can be shown to 

be given by  

 

                                                 
‡‡ The second series term in 2.22 is not intuitive and is often neglected by assumption of strong de-
coherence.  
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It is easy to show that (2.23) reduces to the time-independent expression (2.12) when 

the amplitudes themselves are time-independent.  

We now discuss the most widely used approximation technique for determining 

the time-dependent amplitudes )(tcn . This approximation, referred to as  time-

dependent perturbation theory (TDPT), has been employed with great success since 

the early days of Quantum Mechanics. The principle assumption enabling the use of 

TDPT is that that magnitude of the time-dependent component of the H is small 

compared to the energy separation between the interacting states. Consequently, the 

external force can be treated as a perturbation. Furthermore, each basis state amplitude 

may then be expanded as a perturbation expansion. For book-keeping purposes, the 

amplitudes are expanded as a power series using a perturbation series parameter λ , 

which we set to unity at the end of the analysis.  We begin with the substitution   

 

),('),(' trHtrH vv λ→                 (2.24a)

      

and for each amplitude, generate the series 

 

...)(...)()()()()( )()3(3)2(2)1()0( ++++++= tctctctctctc p
n

p
nnnnn λλλλ        (2.24b)  

 

where (p) indicates the order of the expansion. Inserting (2.24) into (2.19), we get  

 

[ ] [ ]∑ ++++=+++
n

tiE
mnnnnnnm

mnegtftctctc
i

tctctc h

h
&&& /)2(2)1()0()2(2)1()0( )(...)()()(1...)()()( λλλλλ   

Equating like-powers of λ  and then allowing 1→λ , we obtain the varying orders of 

the perturbation expansion:  

 

0)()0( =tcm&      =)()0( tcm  constant             (2.25a)  
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n

tiE
mn
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n
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m

mnegtftc
i

tc h

h
& /)1()( )()(1)(     ;    p > 0         (2.25b)  

 

If we assume that the electron initially resides in one of the eigenstates labeled i, then 

the coefficient for a final state labeled f is given by the sequence  

 

 ...)()()()( )2()1()0( +++= tctctctc ffff              

 

It follows from 2.25 that    

 

⎩
⎨
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=
0
1

)()0( tc f
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/)1( )(1)( tiE
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fiegtf
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tc +=                    (2.26b)  

 

∑ +=
n

tiE
fnnf

fnegtftc
i

tc h

h
&

/)1()2( )()(1)(              (2.26c)  

 

where n is an index running over all intermediate states. Furthermore, we set the initial 

conditions to be  

 

⎩
⎨
⎧

=
0
1

)0()( p
fc                   (2.26d)  

 

Figure 2.1 illustrates schematically the three lowest order terms in the expansion. In 

the first-order correction, only direct paths between the initial and final state of interest 

enter into the expression. In the second-order expansion, the summation includes 

intermediate paths. The total amplitude to take an electron from the initial (state 1) to 

the final state (state 3)  includes a summation of all possible paths.  

;  f = i  
 

;  f = i ; p = 0
;  else  
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Figure 2.1: Schematic representation of the three lowest order perturbation expansion terms concerning 
the probability amplitude of taking the electron from state 1 with energy E1 to state 3 with energy E3 
when there are a total of four eigenstates of the system. The first order term describes only the direct 
path whereas the second order includes all intermediate paths. The intermediate states are also referred 
to as “virtual” states.  
 

As an example, consider once again the two-level system. From (2.25), we arrive at 

the two coupled differential equations:  

 

{ }h
h

& /*
2121111

21)()()()(1)( tiEegtftcgtftc
i

tc −+=         (2.27a) 

 

{ }222
/

2112 )()()()(1)( 21 gtftcegtftc
i

tc tiE += + h

h
&         (2.27b) 

 

2.27 can be solved exactly using standard finite difference techniques or 

approximately using TDPT.  

Assuming that the electron starts out in state 1, the three lowest order TDPT 

approximations are, in accordance with 2.26,   
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0th order  
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1 =tc                  (2.28a)  
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2 =tc                  (2.28b) 

 

1st order  
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Figure 2.2: Schematic representation of the one electron, two state example described by (2.28). 

 

 

In general, the time-dependent part of the perturbation )(tf can be expanded in the 

Fourier basis, 

 

∫= tieFdtf ωωω )()(                   (2.29)  

 

thus allowing us to transform 2.29d into  
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If f(t) takes the simple form of a sinusoidal perturbation, e.g.  

 

)cos(2)( 0tAtf ω=  ;  )]()([)( 00 ωωδωωδω −++= AF          (2.31) 
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then 2.28d becomes   
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                        (2.32) 

 

The probability of finding the particle in state 2 after a time t has elapsed is found by 

taking the modulus square of 2.32 to get 
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where )(tχ represents the cross-terms:  
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The first term in the brackets of 2.33a will clearly dominate over the second term near 

resonance, i.e. 210 ωω ≈ , provided 021 >ω  and |||| 021021 ωωωω +<<−  thus 

allowing us to safely ignore the second term. This is almost always the case since the 

far-from resonant condition would place the probability of a transition to be of order ~ 
2

21
2

21 /|| Eg  or smaller. The third term in the brackets represents a rapidly oscillating 

term, which on resonance, has a high-frequency oscillation of 2103~ ωωω + and 

diminished magnitude 2121 2/)2sin()( ωωχ ttt →  which makes it small compared to the 

first term. Due to the diminished magnitude and the fact that the rapid oscillations 

wash out in the presence of system decoherence, we eliminate all but the first term. 

We are now left with the expression 
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We see that the probability of finding the electron in state 2 oscillates between a 

minimum value 0 and a maximum of 2
021

2
21

2 )/(|| EEgA −  << 1. We require that the 

maximum be much less than unity in order for the use of TDPT to be valid. 

Furthermore, the rate of change in the probability, or rather the transition rate in going 

from state 1 to 2, r21, is also oscillatory, and is given by taking the derivative of 2.34.  
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The oscillation frequencies for the two quantities are 2/)( 021 ωω − and 021 ωω −  

respectively near resonance and are predicted to go to zero when 0ω is on resonance 

within the framework of TDPT. However, a non-perturbative analysis shows that the 

oscillation frequency of 2)1(
2 |)(| tc does not fall to zero on resonance. Rather, it is 

described by the Rabi (flopping) frequency (2.36) which reaches a minimum value 

of )2/(|| 21 hg  at resonance§§.  

 

22
21

2
021 /||)()2/1( hgr +−= ωωω              (2.36) 

      

                                                 
§§ We note that sensitive measurements of || 21g can be made by performing reflection spectroscopy on 
quasi-two-level systems such as III-V semiconductor quantum dots coupled to high-Q cavities and 
using 2.36.  
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The oscillatory behavior of 2.34 and 2.35 is the result of a coherent perturbation, that 

is the perturbation has a stable (either constant or slowly varying) phase angle. If 

instead the perturbation is the sum of a number of incoherent sinusoidal sources, i.e. 

having no correlation in phase angle, then we can add the probabilities rather than 

taking the modulus squared of the amplitudes. In doing so, the additional cross-terms 

which arise in 2.33 rapidly average to zero. Converting )(2 ωA into a spectral density 

(in units of inverse frequency), we have for the incoherent case the following 

expression 
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22
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h
       (2.37)  

 

Furthermore, since the function 2
2121

2 )/(]2/)[(sin ωωωω −− t is strongly peaked 

around the value 21ωω = , having a time-dependent characteristic bandwidth of 

t/4πω =Δ , we can make remove )(2 ωA  from the integral by making the 

approximation )()( 21
22 ωω AA ≈  to get 
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       (2.38)  

 

Finally, if the perturbation is turned on for a time long enough such that 1/ 21 <<Δ ωω , 

the integral in 2.38 can be converted to  
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where 2/)( 21 tx ωω −≡ . We then arrive at the expression 
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tAgtc )(||2|)(| 21
22

212
2)1(

2 ωπ
h

=                 (2.40) 

 

The probability is linear with time and thus the transition rate is constant and given by 

 

)(||2
21

22
21221 ωπ Agr

h
=                (2.41a)  

 

Alternatively, normalizing the spectral density to unity, i.e. 1)(2 =ωA , we have the 

more common form*** 

 

 )(||2
21

2
2121 EEgr −= δπ

h
              (2.41b) 

 

Expression 2.42, and more commonly 2.42b, is referred to as Fermi’s Golden Rule and 

is perhaps the most practically useful expression arising from all of Quantum 

Mechanics. We will make great use of this expression throughout the work presented 

in this thesis. A key feature of 2.42 is that energy is strictly conserved as indicated 

explicitly by the delta function 2.42b. Recall that the use of the delta function relied 

upon the assumption that the perturbation was turned on for a very long time 

satisfying the condition hπ421 >>tE . At very short time scales where this condition is 

not met a transition can occur even if the perturbation is not on resonance. This is 

because there is an uncertainty in the energy of the perturbation due its having a finite 

duration.   

 

 

 

 

 

                                                 
*** Note that the property axax /)()( δδ = was used here.  
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Figure 2.3: Illustration of how the uncertainty in the energy of a perturbation (caused here by the 
assumption that it is turned on abruptly at t = 0) leads to the equivalence of energy conservation 
breaking at short time scales. The energy of the coherent wave is given by Ep at long time scales. When 

21/4~ Et hπ , there is an appreciable overlap of the spectral density function of the perturbation. 
However, this overlap vanishes as t tends to infinity.   
 

For a one electron, multi-level system exposed to an incoherent source such as we 

have been discussing, we can write a system of coupled equations describing the 

probability of finding the electron in any one of the levels described by an index i and  

f as follows 

 

)(∑ −=
f

ififif
i prpr

dt
dp   ;   τ/1== fiif rr            (2.42) 

with the requirement that 1=∑
i

ip . Furthermore, the expected value of energy is  
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∑=
i

iiEpE                    (2.43) 

 

which can be compared to 2.22. Taking the derivative, we obtain the rate of energy 

conversion to be 

 

)(
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ifififi
i

i

i prprE
dt
dpE

dt
Ed

            (2.44) 

 

For the two-level system, we obtain  

 

[ ] [ ] [ ]2
21

1
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21
21 2112 pEpEppE

dt
Ed
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τττ

          (2.45) 

 

Intuitively, we find that the maximum average rate of energy conversion is τ/21E± . 

For a continuous or quasi-continuous distribution of energy levels, the instantaneous 

probability of finding an electron within an energy E is given by the distribution 

function, ),( tEf . At equilibrium, t 

 

1
1

/)( +
=

− βμEe
f       (Fermi-Dirac)         (2.46a) 

1
1

/ −
= βEe

f        (Bose-Einstein)        (2.46b) 

where TkB=β .  

 

∫ ⋅= dEEgtEfE
dt
d

dt
duE )(),(                (2.47) 

 

where ),( tEf is the time-dependent particle distribution function.  
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2.3 Relevant Length and Time Scales 
 

In the previous section, we saw that the transition rate due to a coherent perturbation 

exhibited rapid oscillations at short time-scales, 21/2~ Eht . Recalling Eq. 2.17, we 

generalize this notion to multi-level systems by defining a coherence time as   

 

Ec ht σ/~                      (2.48) 

 

The uncertainty in energy can be thought to arise from either of two sources or a 

combination of the two: (1) it may arise due to the creation of a superposition state as 

in the example in the previous section leading to the result 2.17 even in the absence of 

a perturbation††† or (2) it arises due a perturbation that has a finite duration and 

therefore a finite energy spectral bandwidth. For a thermally equilibriated state, the 

uncertainty in energy of an electron will be of order σE ~ kBT. Thus we can estimate 

the coherence time to be Tkht Bc /~ .  

As a natural extension to the concept of temporal coherence, we can define a 

coherence length lc as the mean displacement of the centroid of a particle wavepacket 

occurring in a time equal to tc and is given by the expression 

 

 cgc tvl =                   (2.49) 

 

where vg is the magnitude of the group velocity with the wavepacket centered in 

momentum space around the wavevector 0k
v and mean energy E0. The vector relation 

can be obtained by taking the gradient in k-space of the energy about a point in k-

space.  

 

                                                 
††† Or, the perturbation that produced the superposition state has been turned off.  
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For an electron having a free-particle-like bandstructure *2/22 mkE h= . The group 

velocity of an electron having an average thermal energy of 1.5·kBT, is  
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=                   (2.51)  

 

It follows that the coherence length is of order 

 

Tkm
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B
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                   (2.52) 

 

Furthermore, we may define a mean-free-path Λ as the average displacement of the 

wavepacket before experiencing a momentum-randomizing scattering event with an 

average rate of R = 1/τ.  

 

τgv=Λ                      (2.53)  

 

The mean relaxation time can be extracted from electrical or thermal conductivity 

measurements using the following relations  

 

*

2

m
Ne elD

e
τσ =     

D

e
el Ne

m
2

*σ
τ =              (2.54a)

     

phgvvCk τ2
3
1

=     2
3

gv
ph vC

k
=τ              (2.54b) 

 



  

                                                                                              

35

where m* is taken to be the conductivity effective mass, which is found by taking a 

weighted average over the six conduction band valleys using (2.55a). 

 

  e
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+=

−

259.0
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2
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1

                  (2.55a) 

 

etlDOS mmmm ⋅== 182.1)(6* 3/12**3/2
)(            (2.55b) 

 

To determine the effective group velocity of an electron near the conduction band 

minimum of silicon, we make use of the density of states effective mass given by 

2.55b in combination with (2.51). Tables 2.1 and 2.2 provide estimates for average 

values of vg, tc, lc, and Λ for electrons and phonons in bulk silicon at 77 K and 300 K.  

Note that for equilibrium conditions, the average coherence time is common to all 

particle types within a system at equilibrium, provided that the distribution functions 

can be approximated using a Boltzmann distribution, i.e. when the temperatures are far 

from absolute zero.  

 
Table 2.1: Estimates of the electron coherence time, length and mean free path in silicon. Note that the 
density of states (DOS) effective mass is used to estimate the average group velocity and the 
conductivity effective mass is used to determine mean-free scattering times and lengths.  
 

  
 
 
 
 
 
 

T  

[K] 

ND  

[cm-3] 

1/σe  

[μΩ-cm] 

vg  

[x107 cm/s] 

tc 

[fs] 

τ 

[fs] 

lc 

[nm] 

Λ = vgτ  

[nm] 

77 1013 N/A 0.54 623 N/A 67 N/A 

77 1020 N/A 0.54 623 N/A 67 N/A 

300 1013 5x108 1.07 160 841 17 90 

300 1020 400 1.07 160 105 17 11 
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Table 2.2: Estimates of the phonon coherence time, length and mean free path in silicon. Note that the 
group velocity is taken to be the acoustic velocity averaged over the low-frequency [100] longitudinal 
and acoustic modes, i.e. vg = (vac,l+2vac,t)/3 where vac,l and vac,t are 8.43 and 5.84 Km/s respectively. 

 

The coherence length of electrons is more than an order of magnitude longer than that 

of phonons, a discrepancy which arises from the differences in dispersion relations for 

the two particle types. Consequently, it is far more challenging to create phonon 

superlattices than it is for electronic superlattices. For the case of electrons, quantum 

coherence effects can be readily observed for structures with physical dimensions can 

on the order of 10 nm or even larger. However, to see similar type effects with 

phonons, the physical size of the structure needs to be of order 1 nm, at which point, 

atomic level surface roughness and lattice defects must be controlled to extreme 

levels. In Chapter 3, we will examine the nature of the bandstructure for both electrons 

and phonons in nanoscale cubic sized silicon crystals.  

 

2.4 Energy Conversion in Nanostructures 
 

In this section, we discuss how energy conversion processes are modified when one or 

more of the physical dimensions of a solid are reduced to lengths comparable to either 

the coherence length lc of the dominant energy carriers. Two significant effects are 

observed. First, the distribution of energy levels, or energy spectrum, of the solid are 

shifted with respect to the spectrum of the bulk material. Secondly, the wavefunctions 

are modified such that the…We begin by reviewing the nature of the particle 

wavefunction in an infinite crystal and then see that happens when we one or more of 

the crystal dimensions is reduced to a scale comparable to the coherence length of the 

energy carrying particles.  

T  

[K] 

kth  

[Wm-1K-1] 

Cv  

 [MJ/K/m3] 

vg  

[Km/s] 

tc 

[ps] 

τ 

[ps] 

lc 

[nm] 

Λ = vgτ  

[nm] 

77 1,442 0.41 6.70 0.62 234 4.17 1568 

300 148 1.66 6.70 0.16 5.95 1.07 39.9 



  

                                                                                              

37

 In an infinite crystal, we know from Bloch’s theorem, that the wavefunction can be 

written as the product of a function, 
0,knu v , which is periodic in the primitive crystal 

lattice vectors iav , and a plane wave envelope function rkie
vv
⋅0 where 0k

v
represents a 

wavevector contained within the first Brillouin Zone (FBZ) , i.e.  

 

 tkitkrki
k ererutr ⋅+⋅ ==Ψ )())((

0
000

0
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vvvv
v

vvv ωω φ             (2.56) 

 

2.54 has the property  
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where  

 

321 alanamR vvvv
++=   ;    m, n, l   ∈  integers            (2.58) 

 

Taking the Fourier transform of 2.56 with respect to the spatial coordinate, we have  
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*)()()( ,φ              (2.59) 

 

where (*) represents the three-dimensional convolution integral. Since )(ruk
v

v is a 

periodic function, it will have a discrete periodic spectrum in reciprocal lattice vectors, 

ib
v

which are related to the real-space lattice vectors according to  

 

 321 brbqbpG
vvvv

++=   ;    p, q, r   ∈  integers             (2.60) 

 

with the primitive reciprocal lattice vectors being defined in the standard way as  
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. 

and )( 321.. aaaV cp
vvv ×⋅= . Using the Fourier transform property, { } { } { }gfgf ℑℑ=⋅ℑ * , 

2.57 can be written as   
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An infinite series of delta functions with magnitudes ||2
0 Gkc vv
+π  are located at the 

points defined by Gkk
vvv

+= 0 where G
v

is the complete set of reciprocal lattice vectors. 

The nature of Eq. 2.59 is illustrated in Figure 2.4 for a hypothetical one-dimensional 

crystal.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4: Schematic illustration of the Fourier representation of a Bloch wavefunction (right) 
describing an electron in a periodic crystal. The composite phase-space wavefunction arises from the 
convolution of two components: (top left) the non-periodic phase factor and (bottom left) the periodic 
function.  

*

0 1 2 3 4-1 -2-3 -4 
k/(2π/a)

0 1 2 3 4-1 -2-3 -4 

=  φ(k)F[eik0x] F[uk0(x)] 

k/(2π/a) 

0 1 2 3 4-1-2-3-4
k/(2π/a) 

k0 

k0 



  

                                                                                              

39

 

If non-periodic boundary conditions are imposed upon the crystal, as is the case for 

any real finite crystal, then the periodic portion of the wavefunction is necessarily lost 

and the Bloch theorem does not strictly apply. Of course for large crystals, the Bloch 

function is still an excellent approximation. An important question then becomes: 

what is the critical length scale at which the Bloch function ceases to provide a useful 

description of the wavefunction? To see the effect in practice, we take a one-

dimensional crystal and abruptly truncate the edges to a finite length, L. This can be 

modeled by applying a top-hat function to the infinite periodic crystal with lattice 

period a having a value of one over the region x = ± L/2 and zero outside of this 

region. The Fourier transform of the modulation function is 

 

⎟
⎠
⎞

⎜
⎝
⎛⋅=

2
)( LkLkM sinc                   (2.63)  

 

which has a characteristic spatial bandwidth of Lkx /4π=Δ . We find that each of the 

discrete Fourier components exhibited by the bulk crystal wavefunction will 

essentially be convolved with a broadening function closely resembling 1.61. The 

difference between bulk and finite crystals is shown qualitatively in Fig. 2.5. The key 

results is that the broadening of each peak is of order 1/L and is therefore negligible 

until L ~ a.  

 

 

 

 

 

 

 
Figure 2.5: Schematic of the frequency space representation of a particle wavefunction (left) residing in 
a hypothetical one-dimensional periodic lattice and having good quantum numbers n and k0 and (right) 
the same particle in a finite one-dimensional crystal with a linear dimension equal to L ~ 4a. Each of the 
Fourier components of the wavefunction exhibit a characteristic broadening of order 1/L.  
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We now solidify this result with a simple but extremely important example, which 

provides essential insight into the characteristics of real 3-D solids, including silicon. 

We take the standard Kronig-Penny model and see what happens when we truncate the 

boundary of the crystal to only a handful of unit cells. Fig. 1.9 shows the unit cell for 

the example which has dimension of b = 1.25 Å, L = 2.5 Å and a = 5 Å. We compare 

two cases: (case 1) four unit cells with periodic boundary conditions (a ring of four 

cells) and (case 2) four unit cells with constrained boundary conditions where the 

barrier is extended sufficiently far outside of the crystal so as to not impact the 

wavefunction.  The energy of the barrier, Eb, was chosen to be 3 eV which leads to 

two bound states with energies E0 and E1 in the finite single unit cell case.  Increasing 

the number of unit cells to four causes the two energy levels to split into a total of 

eight energy levels as shown in the manifold on the right hand side of Fig. 2.6. In the 

case that periodic BCs are imposed, two of the energy levels are degenerate due to 

symmetry requirements and is indicated as such in the figure.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.6: (left) The potential energy of a single unit cell of a hypothetical 1-D crystal having two 
bound energy states E0 and E1 in the isolated, i.e. one unit cell, case. (right) Energy manifold showing 
how E0 and E1 split into a total of eight levels, two of which are degenerate, when four unit cells are 
included and periodic boundary conditions are enforced.   
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The left side of Fig. 2.6 shows the energy band diagram in the extended zone scheme 

for the periodic case. The red circles highlight points in k-space for the four-unit cell 

crystal. The solid black dots are E-k points for the same crystal but with the number of 

unit cells increased to 40 in order to show that the shape of the band diagram is 

unchanged; only the density of levels increases to the point of a continuum in an 

infinite crystal.  

 

 
 

 
 

 

 

 

 

 

 

 

 

 
Figure 2.7: (Left) Energy band diagram for the periodic crystal having 4 unit cells (red open circles). 
The black dotted lines represent the form of the bands as the number of unit cells is increased to 40. 
(Right) Projection of the two lowest energy state wave functions (ground state = black square ; 1st 
excited state = blue squares) onto a plane-wave (i.e. Fourier) basis for (a, c) a periodic crystal having 4 
unit cells (a ring) and (b, d) a finite crystal with exactly 4 unit cells.  
 

On the right side of Fig. 2.7, the Fourier spectrums of the two lowest energy levels for 

the four-unit cell crystal having periodic and finite BCs are shown.  Fig. 2.7a and 2.7b 

are the Fourier spectrums of the ground state (black square) of the four unit cell crystal 

having periodic and fixed BCs respectively. Fig. 2.7c and 2.7d are the Fourier 

spectrums (magnitudes) of the first excited state (blue squares) of the four unit cell 

crystal having periodic and fixed BCs respectively. As was predicted, the finite crystal 

exhibits broadening about each Fourier component of the periodic crystal spectrum 
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with a characteristic bandwidth of ~4π/L = π/a which is exactly half the width of a 

single  Brillouin Zone. Finally, we compare the real-space representation of the 

ground state wavefunction with its Fourier-space representation for the two cases in 

Fig. 2.8.  

 

 
 

 
Figure 2.8: (a, c) Real-space and (b, d) k-space representations of the ground state wavefunction for the 
(a, b) finite crystal with 1 (purple), 2 (blue), 3 (green), and 4 (black) unit cells in comparison with (c, d) 
a periodic crystal  having four unit cells.  The four-unit cell periodic potential is shown in (a) and (c) for 
qualitative comparison.  
 

We are now in position to understand a key consequence to reducing the 

dimensionality of the crystal to a length comparable to the lattice constant.  
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2.5 Special Properties of the Silicon Crystal 
 

By scaling down the physical size of the silicon crystal, the basic electronic, 

optoelectronic, and thermal-mechanical properties of silicon are modified. Through 

advances in fabrication techniques, the size and shape of silicon crystal can be tailored 

to adjust these physical properties to meet the demands of a particular device 

application. For example, despite being a very poor source for photons in its bulk 

form, silicon nanocrystals having dimension of order 1-10 nm have been shown to 

exhibit efficient luminescence under optical and more recently electrical pumping. The 

enhanced light emission is attributed to the relaxation of the k-conservation rule as the 

physical dimension of the crystal becomes comparable to the lattice constant. This 

behavior was shown numerically in Section 2.4 with the 1-D multi-quantum well 

examples.  

 By decreasing the physical size of the crystal to some small multiple of the crystal 

lattice constant (5.43 A), the physical meaning of a Brillouin zone and a k-vector 

associated with a wavefunction begins to be blurred. At some point, we must begin to 

ask ourselves if it makes sense to treat silicon as an indirect bandgap material? In 

many respects, we have already addressed this question in Section 2.4. Strictly 

speaking, the concept of a Brillouin zone scheme, is only valid for infinite periodic 

crystals. For a finite crystal, each of the k-vector components begins to broaden into 

continuous k-space distribution but which is still highly peaked around the positions 

defined for the infinite crystal. This broadening increases to the point that the full-

width of each peak extends across the entire FBZ at roughly when the crystal is one 

lattice constant wide. Therefore, we see that silicon will still retain its characteristic as 

an indirect bandgap material until the crystal size is just a few nanometers on an edge. 

We will examine the modifications to the bandstructure of silicon for small 

nanocrystals in the following chapter.  
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Chapter 3 

 

The Energy Eigen States of Silicon 

 
In this chapter I will describe the computational methods I used to compute the 

electron and phonon energy eigen states for silicon in both bulk and finite nanoscale 

structures. The electron eigen states are calculated using an emperical tight binding 

(ETB) model and the phonon eigen states are computed using a valence force potential 

(VFP) model. Both are semi-empirical models which accurately reproduce the full 

electron and phonon bandstructure of the bulk crystal and can be easily adapted to the 

treatment of large (5 nm) nanocrystals like those which will be discussed in Chapter 7. 

The computed eigen states will be used in subsequent chapters to determine electron-

phonon and phonon-phonon transition probabilities and energy conversion rates using 

time-dependent perturbation theory. 

 
3.1 Background 
 
As we discussed extensively in Chapter 2, time-dependent perturbation theory (TDPT) 

can often be used effectively to compute transition probabilities and therefore energy 

transfer rates between particles provided the conditions for its validity are met. In 

order to employ TDTP, explicit knowledge of the energy eigen states of the 

unperturbed crystal are required. However, calculating the eigen states of the 

unperturbed crystal exactly from first principles is a monumental undertaking even for 

the most simplest of crystals. Even the most rigorous calculations performed today 

using super computers are forced to make simplifying assumptions, particularly when 

it concerns the exceptionally difficulty task of treating many-body electron-electron 

(e-e) interactions. The most successful “first principles” calculations for either electron 

or phonon eigen states has been density functional theory (DFT), which addresses the 

e-e interaction through an effective potential determined through self-consistency of 
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the Poission and Schrödinger equations. Despite many successes in its predictive 

powers, DFT calculations are computationally expensive and are therefore limited to 

the treatment of very simple systems, including small molecules and crystals with 

long-range periodicity. Furthermore, DFT calculations do not always produce superior 

results compared to semi-empirical techniques which are physics based but which rely 

on a small number of adjustable parameters optimized to reproduce the bandstructure 

at a large number of measurable points. As an example of a glaring limitation, DFT 

calculations routinely underpredict the bandgaps for bulk crystals by more than 2x 

[11]. Surprisingly, this is despite the ability of DFT calculations to accurately predict 

the dispersion within individual bands. The inability to predict the bandgap of bulk 

semiconductor materials greatly diminishes our confidence in using it to predict the 

energy eigen states of small particles.  

In contrast, DFT calculations have been very successful in predicting the phonon 

bandstructure of a wide range of semiconductor materials including heterogeneous 

alloyed semiconductor materials [12]. However, DFT calculations fall short when it 

comes to modeling relatively large nanocrystals and the coupling between eigen states 

with reduced crystal symmetry, i.e. those modes which do not fall along a high-

symmetry axis including the zone center.  

 Molecular dynamics (MD) simulations using a rigid inter-atomic potential is also a 

powerful technique for describing phonon propagation and energy relaxation as a 

result of high-order lattice anharmonicity [13]. Though, for many cases, including 

silicon, this approach does not adequately treat the valence electron density 

redistribution which acts to dampen the effective inter-atomic force constants. This 

leads to an increase in an effective stiffness of the lattice and errors in the phonon 

energies computed [13].  

Given the limitations of ab initio calculations and our need to compute the 

electronic and vibrational eigen states of relatively large silicon nanocrystals as well as 

the interactions of states with reduced symmetry, semi-empirical techniques offer an 

suitable balance of accuracy and computational cost to meet the needs of this work. 

An additional benefit to using a semi-empirical approach is that we are able to make a 
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more meaningful comparison between eigen states computed for bulk and finite 

nanometer scale crystals.  

In the next two sections, we will discuss the semi-empirical techniques employed 

to determine the energy eigen states of the atomic lattice, i.e. the vibrational states, and 

of the valence electrons. Before doing so, let us first review briefly the basic chemical 

bonding structure of silicon. Figure 3.1 shows the primitive cell of silicon along with 

the atoms contained within the 12 nearest neighbor primitive cells. The basic bonding 

structure is tetrahedral with an unstressed bond angle of 109.5°, the solid lines drawn 

between atoms indicating the primary bond axes. The crystal has a diamond lattice 

structure, which can be described as a face centered cubic (FCC) lattice with a basis of 

two nonequivalent atoms displaced by the vector (a/4)(1 1 1) where a is the lattice 

constant (5.43 Å at room temperature). The two nonequivalent silicon atoms are 

indicated in the figure as filled and unfilled spheres.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Atomic structure of silicon including the primitive cell and the 12 neighboring primitive 
cells which include up to fourth nearest neighbor.  
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Each of the primitive cells is labeled with a barred or unbarred number from 1-6, in 

accordance with the labeling convention used by Tubino et al. [14]. The barred and 

unbarred nomenclature simplifies the analysis by identifying the primitive cell pairs 

which share a common lattice vector R
v

 but with opposite sign, i.e. their phase factors 

are related by 6,...2,1;)exp()exp( =±=⋅± jiRGi jj θ
vv

.  

 Finally, we recall that the reciprocal space representation is that of a body-centered 

cubic lattice, whose primitive cell (the first Brillouin zone) is a 14 sided truncated 

octahedron as shown in Figure 3.2. The high symmetry points of the reciprocal space 

lattice and the corresponding Group symbols are indicated for the irreducible wedge, 

which contains a reciprocal space volume equal to 1/48th of the FBZ.  

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2: The primitive cell of the reciprocal lattice of silicon, i.e. the first Brillouin zone (FBZ) 
showing the irreducible wedge and Group symbols for the high-symmetry points and directions.  
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3.2 The Vibrational Eigen States 

 

The  vibrational energy eigen states of the silicon crystal are computed using a six-

parameter semi-empirical valence force potential (VFP) model developed by Tubino 

et al. [14], which accurately reproduces the phonon bandstructure which is known 

from angle-resolved neutron diffraction experiments. The core elements of the VFP 

model was originally developed by E. B. Wilson [15, 16] as a way to predict the 

infrared absorption and Raman scattering spectra of molecules in the gas phase. This 

early approach, referred to as the “GF” method,  was later adapted to the modeling of 

periodic crystals by Piseri and Zerbe [17] and then specifically to silicon, germanium 

and diamond by Tubino and co workers [14]. At its core, the approach is no different 

than any other lattice dynamics model which uses a set of effective force constants 

between the massive atomic cores in order to describe the Newtonian motion of the 

molecule. That is, the crystal is treated essentially as a coupled mass-spring system. 

However, there are several key attributes which make this technique particularly 

appealing over other semi-empirical lattice dynamics approaches. To appreciate these 

advantages, a brief review of lattice dynamics calculations will be beneficial.  

First, consider the case of a finite crystal or molecule. Recall that, the motion of 

the N atoms about their equilibrium positions can be described in relation to the total 

kinetic (T) and total potential (V) energies as  follows: 

 

0=
∂
∂

+
∂
∂

jj q
V

q
T

dt
d

&
   ; Nj 3,...,2,1=               (3.1) 

 

where jq is the jth displacement coordinate corresponding to atom n = floor(j/3). There 

are 3N such coordinates, one for each of the three established orthogonal coordinate 

axes per atom of the crystal. T and V are defined in the standard ways as  
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∑
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=
N

j

jj qmT
3

1
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2
1

&                 (3.2) 

+= ∑
=

N

ji

jiij qqfV
3

1,
2
1 higher order terms               (3.3) 

 

where the 9N2 (3xNx3xN) values of ijf  represent the full set of  inter-atomic harmonic 

force constants. When inserted into 3.1, we arrive at the set of 3N coupled equations 

 

0
3

1

=+∑
=

N

i

iijjj qfqm &&        j = 1,2,…3N               (3.4) 

 

The 3N solutions to this equation retain the form   

 

)cos( φω += tAq ii                     (3.5) 

 

where =ω are the 3N eigen frequencies of the lattice which are solutions to the secular 

equation  

 

( ) 0
3

1

2 =−∑
=

N

i

iijijij Amf λδ                    (3.6) 

 

Each eigen state is characterized by each atom in the crystal having a simple harmonic 

oscillatory motion about its equilibrium position at a frequency and phase which is 

constant for all atoms. However, the relative amplitudes of the displacement of each 

atom is unique and characterized by the 3N values of Ai. Note that thee are three 

values of A for each atom for each orthogonal coordinate direction. In the special case 

that the masses are the same for all atoms in the crystal, λω m= .  
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One of the great benefits of the VFP approach comes in its ability to account for 

intermediate range forces, i.e. forces spanning several neighbor distances, with a 

highly reduced set of adjustable force constants ijf . The reduction in effective force 

constants is achieved by grouping the inter-atomic coupling into a smaller set of 

natural molecular motions such as the linear stretching of a bond between two atoms 

or the bending of an angle defined by the intersection of two bonds with an apex atom 

as shown in Figure 3.3. 

 

  

 

Figure 3.3: Schematic representation of two basic internal coordinates, including (left) bond stretching 
and (right) angle bending. The bond stretching internal coordinate involves two atoms whereas the bond 
angle displacement internal coordinate involves the motion of three atoms. The orientation of the 
displacement vectors for each of the atoms is indicated by a straight arrow.  

 

By building up from simple molecular motion, physical intuition into the crystal 

vibrational spectrum is maintained as the size one examines the crystal being built 

from a small number of atoms into an infinite periodic crystal.  

The simple molecular motions are defined as linear combinations of atomic 

displacements and can be treated as a new coordinate called an “internal coordinate.” 

To be consistent with Wilson’s notation, the internal coordinates are represented by 

the symbol St where t represents the label of the internal coordinate. The Newtonian 

motion of the crystal can then be recast in terms of these internal coordinates as 

 

∑
=

−=
P

tt

tttt SSGT
1',

''
1

2
1 &&                     (3.7) 
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and  

 

∑
=

=
P

tt

tttt SSFV
1',

''2
1                     (3.8) 

 

where P is the total number of defined internal coordinates for the finite crystal or 

molecule under study. The internal coordinates, labeled with the t,t’ subscripts running 

over the internal coordinate space, are expressed as linear combinations of the real 

coordinate displacements through the B matrix, i.e.  

 

∑
=

=
N

i

itit qBS
3

1

                    (3.9) 

 

The inverse G matrix in (3.7) is defined in relation to the B matrix and the atomic 

masses as follows  

 

∑
=

=
N

i

itti
i

tt BB
m

G
3

1

''
1                   (3.10) 

 

Again, it should be noted that here are only N available values of mi but there are 3N 

values of the subscript i in order to account for the three degrees of freedom for each 

atom. It follows that the secular equation for each eigen value can be written in the 

following form  

 

0=− λIGF                     (3.11) 

 

which was the motivation for calling it Wilson’s “GF” method. The G matrix is 

essentially a matrix describing the geometric relationship between the internal and 
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crystal (true) coordinates of the molecule. The F matrix is the matrix describing the 

forces which translate displacements of the internal coordinates to the contribution to 

the potential energy function.  

This technique is extended to periodic crystals in the following way. First, the 

phonon coordinate dynamical matrix D is defined as  

 

 2/12/1 )()( −−= MKFMKD q
vv                  (3.12) 

 

where the M matrix is a diagonal matrix containing the masses related to each atomic 

coordinate. The F matrix is related by the B matrix through the transformation 

 

)()()()( KBKFKBKF Sq
vvvv +=                  (3.13) 

 

where, again, the B matrix transforms the force constant description from crystal 

displacement coordinates (q) to internal coordinates (S). Note that the B matrices are 

in general not square matrices. Their size is instead given by (P)x(3N), where P is the 

number of internal coordinates. Finally, the phonon space ( K
v

-space) representations 

of the B and Fs matrices are given by the expressions 

 

[ ]∑ ⋅−=
l

ll RKiBKB
vvv

exp)(                  (3.14) 

[ ]∑ ⋅−=
l

llS RKiFKF
vvv

exp)(                  (3.15) 

 

where K
v

is the reciprocal space vector and lR
v

is the displacement vector corresponding 

to the lth unit cell relative to the origin. lB and lF  are the geometric transformation and 

force constant matrices which account for the atoms involved in the lth unit cell. 

Combining these expressions, we obtain the following secular equation where )(KL
v

 is 

the eigenvector matrix whose columns represent the mass weighted displacement 

coordinates of the atoms in the primitive cell.  
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0)(])([ 2 =− KLIKD
vv

ω                 (3.16) 

 

For the case of silicon, there are two atoms in the primitive cell and thus the matrix is 

6x6. For each value of K
v

, there will be six eigenvalues ω . These values represent the 

six different phonon branches which are classified according to their polarization 

along the symmetry axis ]001)[/2( aK π=
v

.  

Tubino and coworkers [14] were able to model the full dispersion of the silicon 

lattice using only three internal coordinates along with three off-diagonal force 

constants totaling six force constants in the internal coordinate representation. These 

six collective atomic motions are represented schematically in Figure 3.4 and the force 

constant values are listed in Table 3.1. The total number of internal coordinates 

reaches 16 after accounting for all possible interactions between the primitive cell 

atoms and their neighbors through these three internal coordinates.  

   

   

 
Figure 3.4: Schematic representation of the types of atomic displacements which make up the three 
internal coordinates (top row) and the coupling between internal coordinates (bottom row) used to 
describe the motion of the silicon lattice. There is a total of 16 internal coordinates defined for the bulk 
silicon lattice.  
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Table 3.1 Valence force potential constants for bulk silicon as determined by Tubino et al. [14] and 
used in this work.  
 

 

 

 

 

 

 

 

 

 

Ftt’  value unit 

KR 1.469 ± 0.031 mdynes/Å 

HΔ 0.164 ± 0.011 mdyne-Å-rad-2 

FR 0.052 ± 0.008 mdynes/Å 

FRΛ 0.073 ± 0.008 mdynes/rad 

FΛ’ -0.025 ± 0.013 mdyne-Å-rad-2 

FΛ’’’ 0.132 ± 0.021 mdyne-Å-rad-2 
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3.2.1 Bulk Phonon Modes 

 

In this section, we examine the phonon bandstructure and constant energy surfaces for 

the bulk (infinite, periodic) silicon crystal computed using the valence force potential 

approach described in the previous section. Figure 3.5 shows the full phonon 

bandstructure and constant energy surfaces in k-space along the high symmetry 

directions of the crystal.  
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Figure 3.5: (top) Bulk phonon dispersion relationship for the silicon lattice computed using the VFP 
model. (bottom) Constant energy contours of the six phonon branches in the Kx, Ky plane.The acoustic 
modes are shown on the top row and the optical modes on the bottom row. The red octagons indicate 
the boundary of the FBZ in the specified plane. Lighter regions indicate higher energy.  
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Along the equivalent [1 0 0] directions (ΓX), the six phonon branches are labeled 

according to the polarization vector of the eingenfunctions, i.e. the displacement 

vectors of the primitive cell atom, and the relative phase angle of the displacement 

vectors of the two atoms in the primitive cell. The three optical branches correspond to 

the case where the two primitive cell atoms are out of phase (φ = π) where as the three 

acoustic modes are defined by the case when the two atoms are in phase (φ = 0). 

Within these two categories, we have longitudinal and transverse modes 

corresponding to the cases that the direction of the polarization vector falls along the  

ΓX axis or orthogonal to it respectively. By symmetry, the transverse modes are 

degenerate along ΓX but are split along other lower-symmetry axes, as for example 

along the ΓK and XK. Furthermore, the transverse and longitudinal modes are 

degenerate at the zone center (Γ) for the acoustic and optical modes. The acoustic 

frequency is vanishes at the zone center whereas the optical phonon frequency of (63 

meV). This mode is optically active and can be probed using Raman or IR absorption 

or reflection spectroscopy.  

 

3.2.2 Vibrational Modes of Silicon Nanocrystals 

 

In this section, we examine the results of computing the vibrational spectrum of finite 

silicon crystals using the VFP approach and the internal coordinate force constants 

which reproduce the bulk phonon dispersion.  

Figure 3.6 shows the evolution of the distribution of eigen energies as a function of 

increasing the size of the nanocrystal. The number of atoms included in the crystal are 

indicate in each plot and range from a 28 atoms to 730 atoms with the assumption that 

the basic tetrahedron bonding structure is maintained. The number of atoms 

correspond to crystals having 1x1, 2x2, 3x3, and 4x4 unit cells. Note that there are 8 

“whole” atoms within the silicon unit cell. However, in our construction of a crystal 

with the same size, the atoms at the corners of the unit cell are included which gives us 

a larger number of atoms.  
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Figure 3.6: Energy distribution of the vibrational states as a function of crystal size as indicated by the 
number of atoms. The distribution rapidly converges to that of the bulk crystal.  
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In the typical experimental scenario, the silicon nanocrystal will be surrounded by a 

host material or fluid and the energetic coupling to the local environment would need 

to be accounted for. However, modeling the coupling to the environment requires 

knowledge of the atomic structure and inter-atomic forces which is not readily 

available. Therefore, it is instructive to examine the effective of the boundary atoms 

on the vibrational spectrum. In Figure 3.7, we examine the impact of the choice of 

boundary condition imposed on the lattice dynamics by simply changing the mass of 

the boundary atoms. Here, we examine the case that m = mSi and m = ∞ for a cubic 

nanocrystal containing 730 atoms. The vibrational spectrum of the finite nanocrystal 

for these two cases are compared to the density of states of the bulk crystal, which was 

computed using a Brillouin zone Tetrahedral integration method to be described in 

more detail in Chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Figure 3.7: The effect of boundary conditions on the energetic distribution of vibrational modes. The 
top two distributions represent the cases where the surface atoms are take to be equivalent to the silicon 
mass or taken to be infinite in mass respectively.  
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Once the energy distribution is known, one can proceed to compute thermodynamic 

properties such as the heat capacity of a single silicon nanocrystal. Using expression 

(3.17), we compute the heat capacity per atom as a function of temperature for four 

different sizes of nanocrystals and compare it to the heat capacity of the bulk crystal 

computed using (3.18) where )(Eρ is the volumetric density of states. The results are 

shown in Figure 3.8.  
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Figure 3.8: The effect of boundary conditions on the energetic distribution of vibrational modes.  
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3.3 The Electronic Eigen States 

 

In this section, we discuss the methodology in computing the electronic bandstructure 

for silicon using nearest-neighbor empirical tight binding (ETB) approach, which uses 

a 10 orbital plus spin basis in an sp3d5s* configuration developed by Boykin and 

coworkers [18]. The foundation of the ETB formalism, equivalent to the method of 

linear combination of atomic orbitals (LCAO), was developed by Slater and Koster 

[19] in the 1950s. and has remained essentially unchanged despite refinements in the 

parameter and basis state optimization made by notable researchers over the 

subsequent decades. An excellent reference for the method as well as its history is the 

text by W. Harrison [20]. For immediate reference, we briefly review this method 

below.  

 In the tight binding (TB) or LCAO method, the electron eigenfunctions are taken 

as linear combinations of the atomic orbital functions of the isolated atoms 

ταφ , where the index α specifies a particular orbital label, e.g. s, px, py, pz, and τ is an 

index which specifies the atom within the crystal. In this context, the orbital functions 

associated with a given atom are taken to be mutually orthogonal. In the case of the 

full crystal, the nth eigenfunction is described as the linear combination of the form 

  

τα

τα

τα φ ,

,

,∑=Ψ n
n c    α = 1,2,…Norbitals ;  τ = 1,2,…Natoms                (3.19) 

 

where the nc τα , are complex coefficients and the indices α and τ run over the labels of 

the particular orbital and atom within the crystal respectively. It is then easy to see that 

the probability of finding an electron about a single atom of the crystal labeled λ when 

it is in the nth eigen state, is then given by the summation  

 

 ∑=
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The nth  eigen energy is then found by solving the time-independent Schrödinger 

equation (3.21)  

 

nnn EH Ψ=Ψ                    (3.21) 

 

which upon substitution of (3.19) into (3.21),  gives 
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Using the variational theorem, the above equation can be recast into the following 

secular equation  
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The challenge then becomes the determination of the values of the two classes of 

overlap integrals  

 

τατατταα φφ ,',',',,' HH =                (3.25a) 
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τατατταα φφ ,',',',,' =S                (3.25b) 

 

Computing these values from first principles is extremely difficult and even the most 

rigorous approaches often fail to produce satisfactory results. Therefore, these values 

are typically determined by adjusting their values in order to minimize the error in 

reproducing the experimentally determined electron bandstructure. The first step in 

computing these values is therefore to minimize the number of adjustable parameters. 

Since the overlap integrals become fitting parameters at this point, the first simplifying 

assumption is to assume that the orbital functions are mutually orthogonal, even for 

orbitals associated with different atoms. This allows us to write τταατταα δ ,',,',',,' =S  and 

limits the task to computing the overlap integrals in (3.25a). Beyond this, the best 

approach is then to begin with the smallest number of atomic orbitals necessary to 

reproduce the bandstructure with the necessary level of accuracy.  

There is a choice in the number and type of orbitals to use in representing the 

electronic eigenfunctions. Each representation results in a different set of values of the 

overlap integrals. Given that the valence of silicon is 4 and the bonding is 

predominantly covalent, it would seem that the bandstructure should be satisfactorily 

reproduced by using only a basis set which includes sp3 hybridization. Indeed, 

pioneering work by Ren and Harrison [21] using tight binding approach to reproduce 

the silicon electronic bandsructure used this minimal basis set while limiting the 

overlap integrals to include only nearest neighbor interactions. With this choice of 

basis, the bandstructure can be reproduced with reasonable qualitative agreement. 

However, as Klimeck et al. [22] highlighted, the minimal basis configuration does not 

adequately describe the effective masses and even leads to some absurd results such as 

an infinite transverse effective mass at the X point. Niquet et al. [23] were able to 

resolve this limitation by including interactions up to third nearest-neighbor. However, 

this approach severely complicates the analysis of computing optical and electron-

phonon matrix elements, the latter requiring the determination of the effects of local 

strain on the overlap integrals. After reviewing the various approaches to represent the 
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silicon lattice, the nearest neighbor sp3d5s*  configuration was deemed to be the most 

suitable for computing the energy eigen states for finite crystals. The values of the 

same-site and two-center overlap integrals used to compute the eigen energies of the 

bulk and finite nanocrystals are summarized below in Table 3.2 [18]. The notation is 

the same used by Slater and Koster [19].  

 
Table 3.2: Summary of on-site and two-center overlap integrals used in computing the bulk and finite 
crystal bandstructures. The values are from Boykin et al. [18].   

 

αα ,'H  Value [eV] 

Es -2.15168 

Ep 4.22925 

Es* 19.11650 

Ed 13.78950 

λ 0.01989 

ssσ -1.95933 

s*s*σ -4.24135 

ss*σ -1.52230 

spσ 3.02562 

s*pσ 3.15565 

sdσ -2.28485 

s*dσ -0.80993 

ppσ 4.10364 

ppπ -1.51801 

pdσ -1.35554 

pdπ 2.38479 

ddσ -1.68136 

ddπ 2.58880 

ddδ -1.81400 

 

 



  

                                                                                              

64

3.3.1 Bulk Electron States 

 

In this section, we examine the electronic bandstructure of bulk silicon using the ETB 

method described in the previous section. Figure 3.9 shows the full band dispersion of 

electrons along the high-symmetry directions as well as the constant energy surfaces 

of both the valence band hole states and the conduction band electron states. The 

conduction band has three six equivalent valleys located at the equivalent (2π/a)[0.85 

0 0] positions. In the bottom right panel of Figure 3.9, the constant energy surface in 

the Ky-Kx plane shows four of these minima.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Figure 3.9:  (top) Electronic bandstructure of bulk silicon along high-symmetry directions and (bottom) 

constant energy surfaces for (left) valence band holes and (right) conduction band elecetrons.  
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3.3.1 Electrons in Nanoscale Silicon  

 

In this section, we calculate the distribution of eigen energies for small silicon 

nanocrystals and show that the dependence of the bandgap follows the effective mass 

approximation well. Figure 3.10 shows the histogram of energy states for two cubic 

hydrogen terminated nanocrystals of size 0.54 nm and 1.08 nm. The fundamental 

bandgap is located about 0 eV and is seen to increase from 2.33 eV to 3.42 eV in 

going from 1.08 nm to 0.54 nm.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Electron state histogram (discrete density of states) for (top) Si18H40 0.543 nm cube (Eg = 
3.42 eV, λ  = 362 nm)  (bottom)  Si95H124 1.08 nm cube (Eg = 2.33 eV, λ  = 532 nm).  
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Figure 3.11 shows the bandgap computed for four different finite nanocrystals as well 

as the bulk crystal (blue open circles). The  red dotted line represents the bandgap as 

predicted by the effective mass approximation (3.26) using the conduction band 

longitudinal effective mass and the valence band heavy hole effective mass.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.11: Energy gap of cubic silicon nanocrystals as a function of crystal size as calculated using 
the empirical tight binding approach and the simple effective mass approximation.  
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Chapter 4 

 

 

Phonon-Phonon Energy Conversion  

 
We should be able to put into the mathematical machine the interatomic 
force function and receive from the other end the value of the thermal 
conductivity at any temperature. If this has not been done, it is because 
of the great complexity of the computation.  

 
              - J. M. Ziman 
 
In Chapter 3, we discussed the methods for computing the basis (eigen) states for 

electrons and phonons of the silicon crystal. In the determination of these states, the 

fundamental assumption is that the Hamiltonian is time-invariant. As was discussed in 

some detail in Chapter 2, in this picture, the eigen states are linearly independent and 

therefore a particle residing in one of these states can not interact with another state. 

The physical world would indeed be quite uneventful should such a condition ever be 

met.  

 

4.1 Anharmonic Perturbation Theory  
 

Interactions between phonon modes due to third-order terms of the anharmonic crystal 

potential can be expressed as a second-order perturbation expansion with a perturbing 

Hamiltonian expressed as [24]  

 

( ) 210210
(3) Q̂Q̂Q̂Q,Q,QU

N
1H'≡                 (4.1) 

 

where  
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( )
210

E
3

210
(3)

QQQ
U

Q,Q,QU
∂∂∂

∂
≡                 (4.2) 

 

is the third-order derivative of the crystal potential with respect to the three sets of 

normal mode coordinates 210 ,, QQQ . Here, the subscripts refer to a phonon mode 

which is characterized by a reduced wavevector lqv  and polarization vector lê . When 

the phonon modes are expressed in the number basis (Fock Space), the amplitudes of 

the normal modes can be expressed as operators  

 

( )rqi
l

*
l

rqi
llM ω2

Q̂ ll

l
l eaêeaê

vvvv
h ⋅−+⋅

= +              (4.3) 

 

where +
la and la are the creation and annihilation operators for phonon mode l 

respectively, having frequency lω . In this space, the following bosonic algebra can be 

employed to calculate the phonon-phonon matrix elements:  

 

,...1...,,......, −= llll NNNa            (4.4a) 

,...1...,1,......, ++=+
llll NNNa           (4.4b) 

,......,,......, lllll NNNaa =+             (4.4c)  

1],[ =+
ll aa                 (4.4d) 

1, −=
lm NNlllm NNaN δ             (4.4e) 

1,1 +
+ +=

lm NNlllm NNaN δ            (4.4f) 

 

After a series of tedious algebra, we arrive at the final expression fo the square of the 

matrix element  
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                     (4.5)  

 

When integrated over all modes, the phase factor yields the momentum conservation 

rule discussed in Chapter 2, Gqqq
vvvv ++= 210 . 210 EEE += .  

                        

4.2 Acoustic Phonon Interaction  
 

Empirically determined phenomenological scattering rates (τ ~ 1/Г) for acoustic 

phonons for each type of scattering mechanism were discussed extensively in [25]. 

The forms of the equations are based on the early works of Klemens  [26], Callaway 

[27], and Holland [28] and arise from limiting forms of the BTE and the assumption of 

an isotropic dispersion relation. The general forms for normal (N) and Umklapp (U) 

phonon-phonon (p-p) as well as phonon-impurity/defect (p-i) scattering rates for 

acoustic phonons are summarized in  Eq. 4.6   

 
32

LAN,
LA

Np,p TωAΓ =−                  (4.6a)  
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4
δRδMip ω)A(AΓ +=−                 (4.6d) 

 

where the set of ‘A’ coefficients are taken to be independent of frequency and 

temperature. The best-known values for these coefficients, along with the frequency 

parameters 1ω and 2ω  appearing in (4.6c) for TA Umklapp scattering are listed in 

Table 1. In (4.6d), the coefficients δMA and δRA  correspond to impurity scattering 
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caused by mass differences and local lattice distortion respectively and are both taken 

to be proportional to the impurity concentration.  

 

4.3 Optical to Acoustic Phonon Energy Conversion    
 

The thermal energy is transported out away from the transistor hotspot primarily 

through low energy acoustic modes which have group velocities between 5000 and 

9000 m/s in silicon. However, as was shown in [29], a significant amount of the 

thermal energy  (as much as 2/3 [30]) is initially stored in the optical phonon modes 

which have group velocities less than about 1000 m/s.  Thermal conduction, therefore, 

has the potential to be impeded locally as a result of the additional energy decay step 

required for optical modes to decay into acoustic modes. Many researchers have cited 

the potential of an energy bottleneck arising from a relatively long relaxation time for 

optical phonons compared to the electron-phonon scattering time (~100 fs) [31]. Such 

an intermediate decay process is believed to set an upper limit on the frequency 

performance for some important III-V quantum well optoelectronic devices [32]. The 

lifetimes of the optical modes are therefore very important parameters in 

understanding nonequilibrium heat conduction near the transistor hotspot. In 

particular, the g-type longitudinal optical (g-LO) phonon decay rate is thought to play 

an important role in nonequilibrium energy relaxation in the drain of silicon based 

transistors and in determining the onset of hot phonon effects [31, 33, 34] This is 

because of its strong coupling with high energy electrons [35] and its relatively low 

modal heat capacity as determined by the inverse of its group velocity. However, 

despite the importance of the decay processes of the g-LO phonon, among others, very 

little work has been performed in determining either the lifetime or in illuminating the 

decay channels available to this mode, cf. [36]. One of the main reasons for this is that 

the g-LO phonon is not optically active like the zone-center Raman active LO-TO  

mode (R-LTO). Furthermore, because of the reduced symmetry of the g-LO mode, 

simulations of these phonons require large supercells and therefore extensive 

computational resources. Sinha et al. [13] recently performed detailed MD simulations 
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of g-LO phonon wavepackets. The key results from that work were that normal three-

phonon processes dominated in the relaxation process and that the primary decay 

channels were of LO  LA + TA type. Despite the complexity and rigor of the MD 

simulations, a subtle limitation in the choice of interatomic potentials was that they do 

not reproduce the exact harmonic eigen frequencies of the Si crystal. Hence, the decay 

channels described in that work  are necessarily different than what can occur in Si. To 

provide additional insight into the physics of the decay process for an arbitrary optical 

phonon mode in silicon, and in particular the g-LO phonon, we calculate the density of 

final states ω)ω(ωωg 02 −  [37] for pairs of phonons which conserve both energy 

( )q(ω)q(ω)q(ω 2s1s0s 210

rvv += ) and crystal momentum ( Gqqq 210
vrvv ++= ) for an optical 

phonon with initial wavevector  0qv  and branch index 0s . This “final states spectrum” 

for three-phonon processes arise naturally from third order anharmonic perturbation 

theory as applied to the calculation of the energy relaxation time for a single mode. 

Such calculations were rigorously performed using density functional theory (DFT) 

for the R-LTO mode of silicon by Debernardi and coworkers [12]. The expression for 

the transition rate under the assumption that only three phonon processes are present is 

given by Eq. 10 [38] 
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where U is the third-order matrix element. Here, all third order processes except for 

the process in which the initial phonon decays into two lower energy modes are 

retained, a reasonable approximation considering the phonon dispersion relation for 

silicon [12].  
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Figure 4.1 Constant energy contours of the silicon phonon band structure along the Kx-Ky plane for the 
longitudinal optical, longitudinal acoustic, and transverse acoustic branches (left to right). These 
contours were calculated using the Valence Force Potential (VFP) approach discussed in Chapter 3.  
 

Using a tetrahedral B.Z. integration method [39-42], we calculate ),( 02 ωωω −g  for 

various initial LO phonon modes along Г-X (including the R-LTO mode, the g-LO 

mode and approximately the f-LO mode as discussed in Section II) by integrating over 

the entire B.Z. using the full-band phonon dispersion relation in Fig. 2 [14][43]. We 

restrict our calculations to normal processes, i.e. 0=G
v

. Fig. 3 shows the results of the 

calculations for LO phonons with initial wavevectors of ],0,0)[/2(0 απ aq =v
 where 

α = 0, 0.3, 0.5, 0.7, and 1.0 as labeled (a)-(e) respectively.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Visualization of the mathematical problem required in solving the joint density of states in 
3-D and 2-D systems.  
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Figure 4.3:  g2(E, E0 -E)  for an LO phonon of initial energy E0 and wavevector directed along Г-X at  
the points (2π/a)[0,0,α]where α = 0, 0.3, 0.5, 0.7, and 1.0 (labeled (a)-(e) respectively) decaying into 
two lower energy, crystal momentum conserving normal modes of energies E and E0 – E. The single-
phonon density of states g(E) is shown in light blue for reference on top of (a). (bottom) Zoomed in 
view of the g2(E, E0 -E) spectrum for the g-LO (α = 0.3) phonon. The vertical axes are in arbitrary units.  
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The single phonon density of states function )(ωg  for silicon is superimposed on top 

of the ω)ω(ωωg 02 −  plot for the R-LTO mode for easy comparison. We now point out 

several key features in these plots. First, ),( 02 ωωω −g  is always even with respect 

to 2/0ωω = . The monotonic red shift in 2/0ω seen in going from (a) to (e) is a 

consequence of the LO dispersion along Г-X. Secondly, we see that ),( 02 ωωω −g  is 

strongly peaked at regions where both )(ωg  and )( 0 ωω −g  have comparable strength. 

This is why combinations of low frequency and high frequency modes contribute 

negligibly to ),( 02 ωωω −g  in silicon despite the very large )(ωg at high frequencies. 

Finally, we point out the relatively weak central peak around 2/0ω for the R-LTO 

mode. This is the so-called “Klemens channel” [44]. As evident in Fig. 3, this channel 

has a relatively small ),( 02 ωωω −g   and hence should not dominate in the decay for 

the R-LTO mode unlike Klemens’ initial postulation. These results are consistent with 

the work of Debernardi et al. [12][45].  

  Because of the stated importance of the g-LO phonon, we examine its 

ω)ω(ωωg 02 −  spectrum more closely in the bottom panel of Fig. 3. We identify four 

dominant final state phonon pairs, labeled 1-4, and their representative wavevectors 

and energies are summarized in Table 2. For each of these pairs, we observe only 

combinations of the form LO  LA + TA which is consistent with the detailed MD 

calculations of [13].  

 
Table 4.1. Energy and representative wave vectors for four dominant LA + TA phonon pairs which a g-
type LO phonon may create during spontaneous decay while conserving energy and crystal momentum.  
 

Initial Pair I Pair II Pair III Pair IV  

LO LA TA LA TA LA TA LA TA 
qx/(2π/a) 0.0 0.95 -0.95 0.75 -0.75 0.63 -0.63 0.53 -0.53 

qy/(2π/a) 0.0 0.23 -0.23 0.48 -0.48 0.18 -0.18 0.05 -0.05 

qz/(2π/a) 0.3 -0.13 -0.43 0.25 0.05 0.53 -0.23 0.68 -0.38 
Energy [meV] 62 44 18 41 21 38 24 35 27 



  

                                                                                              

75

4.4 Optical Phonon Lifetimes  

 

Finally, we take our calculations one step further and estimate the intrinsic phonon 

lifetime for each of the modes shown in Fig. 6 as a function of temperature. We do so 

by computing Eq. 12 and assuming the third order matrix elements to be a constant 

equal to 0U which we fit to the Raman line width data of [46]. After obtaining U0 for 

the R-LTO mode, we apply this same factor to the remaining modes of interest and 

compute the lifetime as a function of temperature. These results are shown in Fig. 4. 

The inset of Fig. 4 shows the R-LTO linewidth as calculated using our semi-empirical 

method and compared to the more rigorous calculations of [12] and the experimental 

data of [46]. Our results are within 10 % of the experimental data over a range of 

nearly 0-700 K using the single fit parameter, 0U . The success of this calculation 

supports the conclusion that the 3rd order matrix element magnitudes are only weakly 

dependent on wavevector. From these results, we see that the g-LO mode is estimated 

to be around 8.5 ps near 0 K and reduces to about 5 ps at room temperature. Over any 

operating temperature typical of integrated circuits, the g-LO lifetime is seen to be 

about twice that of the R-LTO mode but is still of the same order of magnitude. At 

high power densities, this lifetime is expected to decrease on account of higher phonon 

occupation. The temperature dependence of the lifetimes arises from the occupation 

factors in Eq. 10 which are given by the B-E distribution at equilibrium. For 

nonequilibrium conditions, it is straightforward to compute these lifetimes provided 

we know the appropriate nonequilibrium occupation factors to apply [47].  
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Figure 4.4: Calculated lifetime for LO phonon modes along Г-X. The inset shows the calculated 
spectral full-width at half maximum (FWHM) for the R-LTO mode calculated using semi-empirical 
approach (black solid) and by the DFT calculations (red dotted curve) of [37] compared to experimental 
data (solid blue dots) [46]. Note that the axes ranges for the inset are the same as that shown in Fig. 2 of 
[46]. 
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Chapter 5 

 

 

Energy Conversion in Silicon Nanoelectronic Devices   
 

Since a given system can never of its own accord go over into another 
equally probable state but into a more probable one, it is likewise 
impossible to construct a system of bodies that after traversing various 
states returns periodically to its original state, that is a perpetual motion 
machine.  
 

                 – L. E. Boltzmann 

 
   
This chapter describes my work in modeling detailed coupled nonequilibrium 

electron-phonon transport in nanoscale silicon devices. The Boltzmann transport 

equation (BTE) is solved for both electron and phonon populations at each grid point 

in the simulated device in an iterative fashion until convergence is reached. These 

simulations rely heavily on the Monte Carlo technique, which has been an invaluable 

tool for nearly four decades in studying semiconductor devices under high-field 

conditions. This work builds upon the research of two former graduate students in the 

Goodson Lab. The base of the Monte Carlo simulation code using quadratic phonon 

dispersion relations was developed by Eric Pop and the idea of the split-flux BTE 

model was developed by Sanjiv Sinha. Critical modifications to the Monte Carlo 

simulations were implemented in order to allow for the feedback of the updated 

phonon populations during the phonon transport sub-routines. From this coupled 

transport approach, we are able to make important conclusions about the likelihood of 

hot phonon effects being relevant in silicon devices.  
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5.1 Background   

 

There has been a strong interest in studying electro-thermal processes in silicon 

electronic devices since the early 1970s, only a short time after large-scale integrated 

(LSI) silicon logic devices hit the market in high-volume. This was a time when only 

n-MOS transistors were being employed in integrated circuits, a consequence of the 

many integration challenges inherent to complementary MOS technology yet to be 

overcome. The cost to moving to the far-less power hungry CMOS technology 

imposed an even greater economic barrier, whereby, only until power densities 

reached the point where cooling chips with a fan became impractical, did it become 

justifiable. The power density problem appeared to be solved by the move to CMOS 

technology in the late 1970s, and ushered in the era of ultra-large-scale-integration 

(ULSI) and the reality of personal computing. However, as devices were aggressively 

reduced in size into the 1980s in accordance with Moore’s Law, a new power density 

issue began to emerge. Rather than being concerned with overall power consumption 

and the challenges of maintaining junction temperatures below 90 °C, researchers 

began to be concerned about the rapidly growing volumetric power densities within 

individual transistors. Despite the adoption of so-called constant electric field scaling, 

electric fields in fact continued to increase to the point where the electron population 

within a few 10’s of nanometers of the peak electric field would be sufficiently 

energized by the field to render it no longer in equilibrium with the lattice, i.e. the 

phonon system. The electron population near the drain of a transistor could reach 

nonequilibrium temperatures exceeding 2000 K. This presented a significant reliability 

problem for CMOS devices and warranted deeper investigation.  

The idea of assigning a temperature, a quantity strictly defined at thermodynamic 

equilibrium, to an electron system which is not in equilibrium with its surroundings 

would seem meaningless. However, because the electron population thermalization 

times are typically less than 100 fs, it can typically be assumed that the electrons 

population itself in equilibrium with itself, i.e. it has redistributed its energy amongst 
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all of the electrons within a mean-free-path such that it approaches an equilibrium 

distribution at elevated temperature.  

Due to the enormous complexity of transport physics under highly non-

equilibrium conditions and to the inability to experimentally probe such microscopic 

system properties directly, Monte Carlo simulations became an invaluable tool for 

analyzing the dynamics of energy gain and loss of the electron system. An historical 

overview of the Monte Carlo technique applied to CMOS, and most often n-MOS 

devices, is provided by Fischetti and coworkers [48] and an early review of the 

technique is provided by Jacoboni and Reggiani  [49], both pioneers of this field. In 

the 1990s, a new experimental technique relying on near-infrared electro-

luminescence of the hot electrons in switching transistors was developed [50, 51], 

enabling researchers to indirectly measure the effective temperature of the electron 

distribution. Temperatures approaching 2000 K were reported [52].  

The continued scaling of transistor dimensions and spatial density continues to  

cause major thermal management challenges on the chip. Effective removal of heat 

from the transistor and interconnect layers will be a growing challenge to the  

successful scaling of digital nanotechnologies for the foreseeable future. These 

thermal management challenges are necessarily being addressed at all levels of design, 

from the transistor, to the circuit and microarchitecture, to the package and enclosure. 

While the challenges are growing more significant at all of these levels, the 

electrothermal phenomena occurring within transistors are particularly challenging 

because of the multi-carrier transport physics involved.  Reducing channel lengths Lg 

in order to increase packing density and to reduce the energy-delay product [10] has a 

direct impact on the departure from equilibrium of the electron and phonon systems 

within devices, thus increasing both the complexity and the importance of nanoscale 

electrothermal phenomena. Transistor-level thermal management is made more 

important by the move to thin-body single and multiple gate devices that provide 

improved control of the channel electric field. The most promising multi-gate device is 

the FinFET [5] of which numerous derivatives have been proposed in recent years [6] 

[7]. While these devices offer superior subthreshold slopes approaching the theoretical 
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limit of 60 mV/decade, they exhibit higher thermal resistance than bulk devices 

because of geometric confinement by low thermal conductivity materials as well as 

enhanced phonon boundary scattering in the active layers.  

This chapter discusses the fundamental heat generation and transport mechanisms 

in silicon devices and shows why nanoscale and nonequilibrium thermal phenomena 

are being factored into device technology decisions. The paper is organized into four 

main sections. Sections II and III deal with the detailed electron transport and the 

generation and transport of heat at length and time scales less than 100 nm and 10 ps 

respectively. In Section IV, we close the transport loop by describing efficient 

simulation techniques for coupling the heat and charge transport, an essential 

requirement for understanding the thermal impact on electrical characteristics in future 

devices. In Section V, we use the results of Sections II-IV to understand the 

implications of nonequilibrium coupled charge-heat transport at nanometer length 

scales and their impact on leakage power, electrical drive current, and reliability. 

Additionally, we address the topics of anomalous temperature rise near nanometer-

scale heat sources as well as the issue of hot optical phonons in silicon, both topics 

being heavily debated over the past two decades.  

 

5.2 Nanoscale Heat Generation  

 

Within the transistor, thermal energy is predominantly stored and transported by the 

vibrational modes of the lattice, or phonons, of the semiconducting material. Heat 

generation is the result of electrons transferring their excess energy gained from the 

electric field to the phonon population by means of scattering. To model the details of 

the heat generation process, we use an electron Monte Carlo simulator (e-MC) 

developed by Pop et al. in [53] and later modified in [54].  

The local volumetric heat generation rate )(''' rQ w  (W/cm3) is equal to the energy-

weighted difference of emitted (ems) and absorbed (abs) phonons times the ratio of the 

electron density )(rne
v  to the number of simulated electrons simN  (typically 10,000) 

divided by the simulation time interval step tΔ  [29] [55]: 
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where we define the modal volumetric heat generation rate as 
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The frequency spectrum of net emitted phonons for both bulk and strained silicon 

was computed as a function of electric field and for various doping conditions by Pop 

et al. [29]. At low fields, the heat generation is restricted to intravalley acoustic modes 

as the electrons do not have sufficient energy to transfer between valleys. At 

intermediate fields, sharp peaks centered around the signature g-type and f-type 

phonons are observed. At higher fields, the emission spectrum broadens about each of 

the intervalley peaks as a result of the finite phonon dispersion which leads to a 

gradual relaxation of the k-conservation rule associated with the f and g-type phonons.  

Fig. 5.1 illustrates this concept.  

 
 
Figure 5.1: Schematic representation of the broadening effect on the phonon generation spectra with 
increasing power density. The energy contours represent energy spacing of approximately one phonon 
energy such that a transition from one valley to the other corresponds to a reduction in energy by the 
amount equal to f-type phonon.  
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5.3 Electron Transport 

 

While the models are summarized here, the reader is referred to the original works as 

well as a large body of work describing the general Monte Carlo technique [48, 49]. 

The e-MC code employs a six valley, analytic, nonparobolic, single conduction band 

model described by (5.3) [49]. 

 

∑ −
=+

i
*
vi

2
vii

e

2

kk m
)k(k

m2
)αE(1E h  ; 6,...,3,2,1;,, == vzyxi         (5.3) 

 

The effective mass *
vim  is along the direction index i for valley v and the 

nonparabolicty factor α  is taken to be 0.5 ev-1 for silicon. The valleys are centered at 

the six equivalent ]0,0,85.0)[/2( aπ  points within the Brillouin Zone (B.Z.). The 

analytic electron band structure is shown in Fig. 5.2 (red) along with an accurate full 

band model (blue) [18]. The density of states (DOS) for the analytic band closely 

matches that for the full-band description below about 1.5 eV [53].  

 

 

 

 

 

 

 

 

 

 

 

 

 



  

                                                                                              

83

 

 

 

 

 

 

 

 

 

 
Figure 5.2: Electron conduction band structure for silicon computed using (blue) an empirical tight 
binding parameter set [18] and (red) a single six-valley analytic nonparabolic electron band [53] used in 
this work. The shaded region corresponds to the region of the conduction band below 1 eV where 
electrons are likely to be found in sub-1V devices. As the figure shows, the biggest limitation in the 
single, analytic, non-parabolic band in low-voltage transport is the inability to capture the structure of 
the second lowest energy conduction band, which is important in the neighborhood of the X and K,U 
points.  
 

Since gate voltages are not expected to rise above 1 V for future nanotranistor 

technologies, the analytic nonparobolic band provides reasonable accuracy while 

achieving a significant reduction in computational cost compared to more accurate 

full-band codes [56-58]. By reducing the complexity of the electron band model, the e-

MC program is able to efficiently incorporate a more detailed dispersion relation 

model for both acoustic and optical phonons for computing scattering probabilities and 

energy and crystal momentum conserving final states. The biggest limitation in the 

single, analytic, non-parabolic band in low-voltage transport is the inability to capture 

the structure of the second lowest energy conduction band, which is important in the 

neighborhood of the X and K,U points.  

The dispersion for each polarization branch, s, is modeled by a quadratic, relation 

given by 2
0, qcqv sss

sq ++=ωω where q is the wavevector magnitude along an arbitrary 

direction in the crystal [53]. The bottom panel of Fig. 5.3 shows the isotropic 

dispersion relation (red) for silicon for directions of high symmetry along with a full-

band phonon dispersion calculated using a six-parameter, empirical valence force field 
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(VFF) model as described in Chapter 3 [14]. The single phonon density of states  of 

these two models is compared in Fig. 5.3. The quadratic parameters used in the e-MC 

simulations here were optimized to fit the dispersion relation along 100  direction.  

 

 
Figure 5.3: Phonon dispersion for silicon computed using (blue) a valence force field model [14] 
compared to (red) an isotropic model [53] using simple quadratics as used in this work.  
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Figure 5.4: Comparison of the single phonon density of states spectrum as computed using a full-band 
calculation [14] and the isotropic model [53] with quadratic dispersion relations for all branches.  
 

In addition to elastic ionized impurity scattering, both intravalley and 

intervalley phonon scattering are treated inelastically [59]. Intervalley scattering is 

modeled by three g-type (equivalent valley) and three f-type (non-equivalent valley) 

transitions, both of which are Umklapp (U) processes [60]. The g-type phonons are 

directed along 100  and are located at ]0,0,3.0)[/2( aπ  and at equivalent points within 
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the B.Z. whereas the f-type phonon is directed 11º off the 100  equivalent directions 

at ]15.0,15.0,1)[/2( aπ  and at equivalent points within the B.Z. To enable the isotropic 

phonon dispersion assumption, the f-type phonons are considered to be directed along 

100  and positioned at the edge of B.Z. at the X point [53].  

Electron-phonon scattering is treated in the standard way using Fermi’s Golden 

Rule. The forms of the scattering rates for both intravalley acoustic and intervalley 

acoustic and optical scattering are, respectively [53]  
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The values for the effective intravalley and intervalley deformation potentials, aD and 

ifΔ  used in this work are reported in Table 1. The upper and lower signs correspond 

to absorption and emission processes respectively throughout this paper. sqN , is the 

average phonon occupation  number given by the Bose-Einstein (B-E) distribution, 

( )[ ] 1
,, 1exp −−= TkN Bsqsq ωh  at equilibrium. Under nonequilibrium conditions sqN ,  must 

be determined by solving the Boltzmann Transport Equation (BTE), which we will 

discuss in subsequent sections.  
 
Table 5.1: Summary of electron and phonon transport model parameters used in simulations discussed 
in this work. 
 

Electron Transport Parameters 
TA
fΔ  

[eV/cm] 

LOLA
f

/Δ  
[eV/cm] 

TO
fΔ  

[eV/cm] 

TA
gΔ  

[eV/cm] 

LA
gΔ  

[eV/cm] 

LO
gΔ  

[eV/cm] 
LAD  

[eV] 
TAD  

[eV] 

0.5x108 3.5x108 1.5x108 0.3x108 1.5x108 6.0x108 6.39 3.01 
Phonon Transport Parameters 

LANA ,  

[s-K-3] 
TANA ,  

[K-4] 
TAUA ,  

[s-1] 
MAδ + RAδ  

 [s3]  n0=1x1020 cm-3  
1ω  

[THz] 
2ω  

[THz] 
opτ  

[ps] 
2.0x10-24 9.3x10-13 5.5x10-18 1.3x10-44(n/n0)  23.56 27.49 0.5-10   
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It needs to be stated that the choice of phonon deformation potentials used in this work 

(Table 1) are not unique and that a wide range of values have been reported over the 

past three decades [e.g., 6,17]. Full band models typically yield lower (~2-3x) 

effective phonon deformation potentials than the simpler, non-parabolic band models 

due to the differences in the electron-phonon joint density of states (JDOS).  Even for 

cases where the bulk observable electron transport properties, such as the mobility, are 

captured correctly, the large variations in deformation potentials strongly influence the 

internal specifics of the simulations including the ratio of phonon energy absorption 

attributed to the various phonon modes.  The present calculations employ the multi-

valley, nonparabolic band (NPB) model because of its computational simplicity, and 

does not attempt to resolve the specific limitations of this approximate method. We 

discuss the possible impact of the differences that may arise due to the use of the NPB 

model in greater detail in Section 5.8. 

 

5.4 Phonon Transport  

 

The electron system cools in the drain end of the transistor through net phonon 

emission.  The phonon population then proceeds to evolve in a manner which tends to 

bring the phonon population back towards the equilibrium B-E distribution. This 

evolution of the phonon distribution can be described by a phonon BTE. Scattering 

mechanisms include phonon-phonon (p-p), phonon-electron (p-e), phonon-

impurity/vacancy (p-i), and phonon-boundary (p-b) types. In this work we use a split-

flux form of the phonon BTE (p-SFBTE) introduced by Sinha et al. [34] to describe 

the phonon transport. The p-SFBTE was derived under the relaxation time 

approximation and ensures macroscopic energy conservation. It captures ballistic 

phonon conduction near the transistor hotspot but also yields a convenient interface to 

continuum calculations (i.e. diffusive conduction) far from the hotspot. In effect, the 

phonon distribution is split into two populations, the first being a near-equilibrium 

component, )( Fq,s TN  which has the B-E distribution corresponding to a temperature 

FT  which obeys Fourier’s heat conduction law. The second population q,sn  is a 
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nonequilibrium departure component, which dominates the transport near the hotspot 

and is determined by solving the phonon BTE in the relaxation time approximation 

given by (5.5). 
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Once q,sn is determined, macroscopic energy conservation is used to determine 

FT according to (5.7).  
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Here, k
t

is the thermal conductivity tensor, which for thin films can be appropriately 

modified to account for increased boundary scattering. It is important to recognize that 

while phonon-boundary scattering can reduce the effective thermal conductivity of 

thin films, this additional scattering mechanism may not necessarily force the phonon 

system farther from equilibrium. On the contrary, the additional scattering may serve 

to allow the local phonon system to more closely approximate the B-E distribution at a 
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given temperature. In contrast, the introduction of specific phonon modes due to 

electron scattering is inherently disruptive to the phonon distribution function and can 

cause severe departure from equilibrium. Boundary scattering becomes important if 

the smallest dimension of a material domain is comparable to the mean-free-path (Λ) 

of a phonon mode, given by the product of the modal group velocity and lifetime (Λq,s 

= νq,s·τq,s) [61] [62]. For LA modes, which conduct most of the heat, Λ is of the order 

of 100 nm near room temperature. However, for optical phonons, Λ < 10 nm and so 

only in ultrathin films or inversion layers will boundary scattering play an important 

role in optical phonon transport.   

 Once ))(( rTN Fq,s
v and )(rnq,s

v  have been determined from (5) and (7), an effective 

temperature, effT , can be defined by equating the total energy density at a particular 

location to that for an equivalent B-E distributed population and integrating over the 

appropriate polarization branches and wavevector space according to 5.8.  
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If we restrict the integration to a particular polarization branch then we obtain an 

effective branch temperature. If we further restrict the integration to include only a 

single wavevector and branch, then we obtain an effective temperature for a single 

mode at sq,ω  [63]. The use of an effective temperature is merely a convenient means 

for communicating the degree to which a  particular segment of the phonon population 

deviates from equilibrium. Ultimately, what matters is the modal occupation number 

since this determines the strength of the scattering processes through (5.4).  

 The transient form of the p-SFBTE can also be found in [34]. In that work, Sinha 

et al. examined the important issue of phonon population build-up between successive 

clock cycles using a typical phonon generation spectrum calculated by Monte Carlo 

simulations. They concluded that the optical phonon lifetimes were sufficiently short 

as to prevent phonon accumulation from cycle to cycle for typical operating 

frequencies. Although the transient problem is important, we will continue to focus 
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our attention on the steady-state solutions within this paper. We now turn our attention 

to the determination of the modal lifetimes τ which are essential for capturing the 

transport physics of the microscopic system.  

 

5.5 Coupled Electron-Phonon Transport  

 

To model the effects of self-heating in a transistor, the electron and phonon systems 

must be fully coupled together. It is not sufficient for electron-phonon scattering to be 

simply included in an electron transport model since the phonons that are generated 

during the simulation are not “sensed” by the simulated electrons. There needs to be a 

way to feed the updated occupation numbers back into the calculation of the e-p 

scattering rates. Furthermore, the phonons generated during the simulation must be 

allowed to propagate and decay as they would in a real device as discussed in Section 

III. The complexity and magnitude of such a task has prevented truly rigorous 

solutions of the coupled transport physics at such length and time scales. Various 

approximations in either the electron or phonon models are typically necessary to 

make the problem tractable.  In references [64-66], either moments of the phonon BTE 

or the use of a ballistic-diffusive form of the BTE using major simplifications in the 

electron and phonon dispersions were performed. Lake and Datta [67] used a 

nonequilibrium Green’s-function formalism to study detailed energy transfer between 

electrons and phonons in a mesoscopic diode. As discussed briefly in [54, 68], we 

have chosen to fully couple the electron and phonon populations by combining the e-

MC technique described in Section II with the p-SFBTE described in Section III and 

by solving the two transport problems in sequential iteration. Provided the 

simplifications made in modeling both the electron and phonon systems as well as in 

the solution techniques for solving the phonon BTE, we are able to examine the 

coupled transport physics for realistic devices while retaining valuable physical 

insights into the spectral decomposition of the heat within the device at all segments of 

the calculation.  
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Figure 5.5: The algorithm for combining the electron MC simulation with the phonon BTE solution. 
 

 

For each iteration, two independent simulations are performed: one for the electron 

system and the other for the phonon system. Outputs from each simulation are fed 

back into the other and the simulation proceeds until satisfactory convergence is 

achieved. We find that this method typically achieves convergence within five 

iterations. The coupled simulation begins with an isothermal (300 K) e-MC simulation 

whose initial conditions are given by a drift-diffusion device simulator such as 
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MEDICI. The e-MC computes electron transport self-consistently with the electric 

field by solving the Poisson equation at all steps across the device grid. Net phonon 

generation rates as a function of position and phonon frequency are gathered from the 

e-MC and fed into the p-SFBTE portion of the code. In the latter, the phonons are 

allowed to propagate in the absence of the electron system and only p-p and p-i 

scattering are included. The scattering rates for acoustic modes are determined at the 

beginning of the p-SFBTE simulation using (4.6). The temperature dependence of the 

p-p scattering rates are  treated by using the temperature field calculated from the 

classical heat diffusion equation and taking the volumetric power generation rate from 

the e-MC simulation as the source term. Because of a lack of experimental data, we 

have typically assigned a single lifetime for all optical modes to be in the range of 0.5-

10 ps which is consistent with Raman data and theoretical calculations. At the end of 

the p-SFBTE calculation, an updated distribution of phonons as a function of position 

is computed. This distribution of phonons is then used to compute the electron-phonon 

scattering rates for the subsequent e-MC simulation by updating the phonon 

occupation numbers. It can be impractical to use separate phonon occupation numbers 

for all modes and branches and for all grid points in computing the scattering rates. 

Therefore, we typically compute an effective temperatures for the dominant optical f 

and g-type phonons as well for the LA and TA branches. In all, we compute and pass 

six position dependent effective temperature vectors back to the e-MC. These 

temperature vectors are then used to adjust the scattering rates in a manner we will 

discuss shortly. Before doing so, we note that aside from the added complexity and the 

reduction in computational speed, there is nothing fundamentally preventing the use of 

additional temperatures to account for the occupation of individual phonon modes or 

ranges of phonon modes during scattering rate calculations.  

 The maximum scattering rate for each electron-phonon scattering type is then 

calculated using the corresponding maximum effective temperature and the simulation 

begins. To include the dependence of the local phonon occupation, we then employ a 

temperature-based (or rather occupation number-based) rejection algorithm, a 

technique commonly used in the Monte Carlo technique [49]. When an electron at a 
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grid location ri is chosen to scatter with a particular phonon of type j, the local 

effective temperature ( )ieff,j rT  is compared to the maximum effective temperature 

eff,j,MAXT  through (5.9)  
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where 0 ≤ )( ij rη  ≤ 1. A random number X  with uniform probability density over the 

unit interval [0, 1] is then generated and if Xrij <)(η  then the scattering event is 

allowed to take place. Otherwise, it is rejected and the electron continues on its initial 

trajectory unperturbed, i.e. is treated as a self-scattering event. With the phonon 

generation source term output from the e-MC and the electron-phonon scattering rates 

being adjusted to account for phonon occupation (via the effective temperature and the 

rejection algorithm), the electrons and phonons form a closed-loop system. We now 

discuss the application of this algorithm to the simulation of a simple 1-D silicon 

device.  

 Figures 5.6 and 5.7 show the 1-D n+/n/n+ silicon device along with its electrical 

characteristics which we have used extensively in developing the e-MC and p-SFBTE 

and coupled simulation algorithms [33, 54, 68]. Although the device is infinite in 

extent in the transverse plane and lacks a gate terminal, such a device structure 

resembles the core of transistor structures such as the FinFET. The band diagram 

along the channel is similar to that along the channel of typical CMOS devices, 

especially DG devices where vertical (transverse) symmetry exists. Additionally, this 

device structure allows us to extract physical insight into the energy relaxation 

processes which can be applied to more sophisticated 3-D device structures.  

 The device consists of three regions. Two 150 nm “source/drain” regions are 

doped to 1020 cm-3 and are separated by a 20 nm lightly doped (1016 cm-3) “channel” 

region [69]. For thermal boundary conditions the departure from equilibrium phonon 
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population, nq,s is taken to be zero for all modes at the left and right contacts, i.e. the 

contacts are treated as perfect thermal reservoirs. Furthermore, the temperature TF , 

which determines the distribution of the near-equilibrium phonon population, is set to 

300 K at both contacts and its spatial derivative is continuous.  

 
 Double 

Gate 
Drain

Source

 
Figure 5.6: A schematic representation of the quasi-1D two-terminal n+/n/n+ device structure modeled 
in this work and a comparison to a more realistic device structure.  
 

 Fig. 6 shows the steady-state power density generated within the device at three 

different bias conditions (0.6, 0.8, and 1.0 V) and were computed using (5.1). As 

discussed in  [33], nearly all of the power generation within this device structure 

occurs within the drain, a common characteristic for transistors operating in the quasi-

ballistic transport regime. Furthermore, the generation profile is exponentially 

decaying with a characteristic length of about 20 nm which is essentially independent 

of applied drain voltage. This lack of dependence of drain voltage was attributed to the 

fact that the average electron velocity as well as the electron-phonon scattering rates 

both scale approximately as ~ 2/1)( gEE −  and thus the energy relaxation length 

remains essentially constant. The peak average kinetic energy gained by the electrons 

across the channel is found to be proportional to the drain-to-source voltage 

( )dsg eVEE 4.0~)( − [33]. The impact on energy relaxation length by a fully-silicided 

drain located within 20 nm of the channel/drain boundary has not been investigated. 
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However, because of the amorphous nature of the silicide, the scattering length is 

expected to be of the order of the disorder length, ~1 nm. We believe that in the case 

that the fin extension is less than 20 nm, the energy relaxation length will likely be 

reduced and will be comparable to the fin extension length itself.  

 
 
Figure 5.7:  Electrostatic characteristics of the 1-D n+/n/n+ device simulated in this work. The device 
has three regions: two 150 nm n+ (1020 cm-3) source and drain regions separated by a 20 nm n-type 
(1016 cm-3)  “channel”. The doping is uniform within each region and 1.25 nm/decade characterizes the 
doping concentration roll-off between regions. (top) current density (left axis) and peak electric field 
(right axis) vs. source-drain bias voltage. (bottom) electron potential energy vs. position within the 
device for three bias conditions.  
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Figure 5.8: Volumetric power generation rate vs. position within the 1-D n+/n/n+ device. The power 
generation at each grid point was computed according to (5.1). 
 

Fig. 5.9 shows the phonon generation spectra computed at four positions within the 

drain region beginning with the peak power generation point. As the electron system 

continues to cool deeper into the drain, the phonon emission spectrum becomes more 

concentrated about the f and g-type phonons. The impact on average electron energy is 

shown in Fig. 10. The average energy increases in both the source and drain regions 

but there is little effect in the channel region, a result of the near-ballistic transport 

across the channel. Furthermore, despite an appreciable temperature rise within the 

device, it is found that the device current is reduced by only about 1 % at 1 V. The 

reduction in drive current is attributed to an increase in the drain scattering, which 

leads to a slight increase in the channel barrier height and ultimately a reduction in the 

electron source injection rate. A slightly larger drain current reduction would occur if 

it wasn’t for the partial compensation of the higher injection velocity of source 

electrons due to the temperature rise at the source. We see that overall, the effective of 

temperature on a device in the on-state is reduced.  
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Figure 5.9: (left) Phonon dispersion and (right) phonon generation spectra computed at 4 locations 
within the device for the 1V case. The red (right-most) curve corresponds to the location of the peak 
power dissipation. The remaining curves correspond to r = 10, 20, and 30 nm displaced from the peak 
generation point or hotspot within the drain.  
 

 
Figure 5.10: Average electron energy as a function of position for an optical phonon lifetime of 10 ps 
for uncoupled (dashed line) and fully-coupled/closed-loop (solid line) simulations.  
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5.6 Hot Optical Phonons  

 

Highly nonequilibrium optical phonon populations have the potential to significantly 

impact electrical transport and impede thermal conduction near the hotspot. The 

effects of hot optical phonons have been widely observed in III-V semiconductor 

devices through observation of extended energy relaxation times in ultrafast optical 

measurements [70] as well as through excess noise at microwave frequencies [71]. 

Recently, negative differential conductance in suspended 2-terminal, metallic, single-

wall carbon nanotube (CNT) devices were attributed to hot optical phonons [72]. 

There it was postulated that the optical phonon lifetime was significantly enhanced by 

lack of a substrate. A large population of nonequilibrium optical phonons in the drain 

of a transistor may cause the energy relaxation length to extend beyond the 20 nm 

characteristic length calculated in this work. Furthermore, the increased scattering rate 

would lead to a marked reduction in mobility in the drain and perhaps even lead to 

negative conductance effects. In order for these types of effects to take place, the 

optical phonon occupation numbers need to be comparable to or larger than unity such 

that the absorption processes are comparable to the emission processes. 

 The upper panel of Fig. 5.11 shows the profiles of the effective temperature for the 

entire phonon population. Near the hotspot, the phonon temperature is dominated by 

the effects of ballistic transport and an anomalous temperature rise is observed.  
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Figure 5.11: (top) Effective lattice temperature (Teff) computed using the self-consistent e-MC/p-SFBTE 
method. (bottom) Teff for the LO phonon branch (solid black - b) compared to that of the g-LO phonon 
(dashed black - c) for the 1 V bias condition. The temperature computed from classic heat diffusion 
equation is also shown for reference (solid blue – a). 
 

Beyond about 50 nm into the drain, the temperature profiles are predicted well by the 

classical heat diffusion equation (dashed lines). In the bottom panel of Fig. 5.11, we 

compare the effective temperatures for the LO branch and the isolated g-LO mode 

obtained by appropriately restricting the integration in Eq. (8). From this figure we can 

see how poorly an effective LO branch temperature would describe the large departure 

from equilibrium exhibited by certain individual modes within the LO branch.  

The phonon energy distribution at the peak power generation point in the device is 

shown in Fig. 5.12. The acoustic phonons (< 51 meV) are well-behaved in that they 

closely adhere to a B-E distribution of elevated temperature Teff,(LA,TA) = 343 K. 
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However, the optical phonons (> 51 meV) exhibit significant departures from the B-E 

equilibrium distribution. Temperatures near the zone center approach 1000 K and the 

g-LO phonon peaks at about 570 K for an optical phonon lifetime ( opτ ) of 10 ps. The 

inset of Fig. 5.12 shows the dependence of the phonon distribution on the optical 

phonon lifetime parameter as it is varied from 0.5 to 10 ps. The deviation of the 

optical phonon modes from the equilibrium distribution diminishes in direct 

proportion to the phonon lifetime and a B-E distribution describes the entire phonon 

population well for opτ  < 1 ps for the power densities simulated.   

 
 
Figure 5.12: Phonon distribution at peak power generation point (r = 25 nm). The inset shows a zoomed 
in view of optical mode occupation as a function of optical phonon lifetime (τop = 0.5, 1, 10 ps).  
 

 As discussed in Section III, the g-LO phonon has been flagged as a good indicator for 

hot phonons in silicon. A simple expression for the excess occupation number, derived 

from a single mode rate equation is given by (5.10).  
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where '''
LOgQ −  is the volumetric power being transferred to the g-LO phonon by the 

electrons in the spectral width  ωΔ  and LOg−τ  is the modal relaxation time, estimated 

to be about 5 ps at room temperature. This expression is valid only under 

homogeneous power generation conditions and tends to be an overestimate of the 

population by a factor of about 2. Fig. 5.13 shows the excess occupation number, for 

the g-LO mode as a function of the volumetric power density for bulk silicon as well 

as at the hotspot of the 1-D device of Section IV.  

 
 
Figure 5.13: Excess occupation number for the g-type longitudinal optical (g-LO) phonon as a function 
of volumetric power density as calculated for uniform power generation (upper dashed line data set) and 
as calculated at the peak power generation  point in the 1-D device (lower solid line data set). 
 

We find that the excess occupation number increases approximately as 
4/3'''

tot
10

LOg Q10x1~n −
−  where '''

totQ is the total volumetric power density measured in 

W/cm3. Reducing this number by a factor of 1/2 to account for nonuniform heat 

generation, we find that the nonequilibrium occupation number will reach unity for a 

power density of about 20 TW/cm3. This assumes that the phonon lifetime does not 

decrease with increasing power density. If we assume that the phonon lifetime is 

reduced to subpicosecond levels at high power densities, as some recent experimental 

work has indicated may be likely [73], then the critical power density would exceed 

200 TW/cm3. According to our estimates in Figure 1.4, this level is just beyond the 
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projected power density for well-behaved, end-of-the-roadmap FinFET devices. Since 

the transistor volumetric power density is sensitive to the fin (body) thickness, 

statistical process variations may cause a significant fraction of the transistors across a 

chip to cross into the regime where nonequilibrium heating plays a significant role in 

the electrical transport. This may lead to an enhancement in the variation of 

performance across die and wafer. In addition to a critical volumetric power density, 

we can estimate a critical electric field by relating the peak power density for ballistic 

transport to the peak power density given by the classical joule heating term as 

{ } { } γ/EJmax~Qmax '''
ballistic

vv
⋅ where γ  can be taken to be ~2-3 [33]. By assuming the 

current density to be given by gβ/L~J
v

 μA/nm2 where the magnitude ofβ  is 

equivalent to the number of gates electrodes (also ~2-3) times 1 μA/nm, we arrive at 

an expression for the critical electric field, ( ) { } g
'''

ballisticcrit
LQmaxβγ~E ⋅

v
. For a 10 nm 

device, a critical power density of 200 TW/cm3 would correspond to a peak electric 

field of about 20 MV/cm, about 40x the field strength associated with dielectric 

breakdown in silicon.  

Interfacial or boundary scattering was not included in this simulation but would  

act in a way to reduce the optical phonon temperature as well as impede acoustic 

phonon conduction especially in thin-body devices such as FinFETs. The effective 

thermal conductivity for a 22 nm thin film of undoped single-crystalline silicon was 

measured to be only 20 W/m-K near room temperature, about an order of  magnitude 

lower than the bulk undoped value of 148 W/m-K which was used in this work. A 10 

nm film is expected to be reduced to just 13 W/m-K [74] as the conductivity scales 

approximately as δ = ds/Λb [61] where ds is the film thickness and Λb is the bulk 

phonon mean-free-path (~100 nm). The consequences of thermal boundary scattering 

for ultra-thin body silicon and germanium devices were recently discussed by Pop et 

al. [74]. Reductions in the effective thermal conductivity for the silicon layer in quasi-

1D devices such as FinFETS are expected to be even more severe than 2-D films.  
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5.7 The Size Effect  

 

In this section, we discuss some of the consequences of nanoscale and nonequilibrium 

transport which were discussed in detail within the previous three sections on leading 

edge and future thin-body silicon FET devices. First, we address the origins of what 

various researchers have referred to as the “size-effect” of the heat generation source 

in bulk materials [75]. For realistic materials, there may be an increase in a local 

temperature as we have defined in Eq. 8 relative to the temperature field which would 

be calculated using diffusive conduction equations, i.e. Fourier’s Law. This was quite 

evident in Fig. 8 for the 1-D device. This rise in effective temperature is the 

consequence of a skewed phonon distribution near the heat generation source (Fig. 10) 

which tends to favor higher energy modes (with lower group velocities) at high power 

densities. The additional thermal resistance which leads to this increased temperature 

rise near the source is directly related to the energy relaxation processes between 

optical and acoustic phonons as discussed in Section III. This additional thermal 

resistance disappears with a vanishing optical phonon lifetime and the size of the 

source does not dictate the magnitude of the anomalous temperature rise, unlike what 

has been hypothesized [34, 76, 77].  

 The anomalous increase in the effective temperature within the first 20-50 nm of 

the channel/drain boundary acts to reduce the device current and may have an 

appreciable impact on the reliability of the transistor. Despite the ballistic nature of 

nanometer scale devices, the drain and source are still electrically coupled; to maintain 

current continuity, the potential barrier seen by the source electrons will increase in 

the presence of increased scattering in the drain which acts to reduce the source 

injection rate. In contrast, an anomalous temperature rise at the source-channel 

boundary acts to increase the electron injection rate. For the device studied in Section 

IV, we observed a reduction in the drive current by about 1 %, a rather weak effect. 

Although direct evidence of an anomalous increase in the device temperature is 

lacking, there are some preliminary indications that transistor reliability may be 

impacted by the effects of nonequilibrium phonon populations [78].  
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5.8 Limitations of the Analytic Electron Band Model 

 

Finally, we address the consequences of our choice in using a simplified analytic 

nonparabolic band (NPB) model. As we mentioned briefly in Section II, the 

intervalley deformation potentials used in this work are about twice the values 

computed using full-band models [57, 79]. This is despite the fact that the NPB model 

reproduces the electron DOS reasonably well up to about 1.5 eV. Fischetti and Laux 

[57] attributed the smaller deformation potentials of the full-band model to the ability 

of the electron population to reach a lower energy configuration through equivalent 

valley repopulation by means of an enhanced contribution from Bloch oscillation, 

which the NPB model fails to describe adequately. Using the NPB model it was 

shown that the ratio of energy being dissipated by optical and acoustic phonon modes 

is ~2:1 [29]. However, full-band MC codes have shown the reverse ratio of ~1:2. To 

account for the deficiencies of the NPB model, we can somewhat crudely add an 

additional factor of ½ to Eq. 12 and increase the estimates for the onset of hot optical 

phonons to power densities approaching 500 TW/cm3. Full-band calculations would 

undoubtedly improve the accuracy of these estimates but they should not change one 

of the more important conclusions of this work, that hot optical phonons are unlikely 

to play a significant role in the electrical behavior of well-behaved silicon devices 

described by the existing technology roadmap.  

 

5.9 Summary  

 

Transistor designs over the next decade will feature confined geometries with 

increasing surface-to-volume ratios and rising volumetric power densities. Thermal 

conductance within the transistor will be dramatically reduced due to increased surface 

scattering and by the confinement of intrinsically low-conductivity materials. 

Furthermore, thermal boundary resistance at interfaces between dissimilar materials, 

including Si and SiGe alloys, will lead to higher junction temperatures and therefore 
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higher leakage currents than what may be expected. Reliability will be impacted by 

the increase in junction temperatures caused by lower thermal conductance and may 

also be influenced by nonequilibrium optical phonons in the drain. Mobility reduction 

due to hot optical phonons does not seem to be a major threat to the near-term 

evolution of CMOS technology. However, this assessment only stands for well-

behaved devices operating under ideal conditions through the end of the current 

roadmap. In some analog or high-power applications, hot phonons could play a major 

role. Based on our work, we estimate that hot phonon effects will not play a significant 

role for power densities below about 100 TW/cm3 for silicon based devices if we 

consider optical phonon lifetimes to reduce below 1 ps under typical operating 

conditions. For silicon-based quantum well devices, the models used in this work will 

need to be modified appropriately and the issue of hot phonons will need to be 

reevaluated. Our conclusions are largely dependent on the optical phonon lifetime 

parameter. Therefore, experimental validation of the optical phonon lifetimes for 

realistic device conditions is essential.  
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Chapter 6 

 

Optical Delay-line Pump-Probe Measurements  

 
To acquire lore, one needs a big sandbox and long uninterrupted 
stretches of time to spend there, absorbed in the play.  
 
To improve a measurement, you have to know what limits it.  

 
               - P. C. D. Hobbs 
 

In this chapter, I will discuss my development of a custom two-color optical delay line 

pump probe system which was used to measure short timescale energy transfer 

physics in silicon nanoparticle oxide films and other nanostructured materials. I 

developed the system in collaboration with Matt Panzer, a fellow graduate student in 

the Goodson Lab at Stanford University. The system was used extensively in two 

basic experimental configurations which enabled differential reflection and differential 

transmission style measurements. The focus of my work was on the development of 

differential transmission measurements for the purpose of characterizing carrier 

dynamics and energy transfer in optically pumped silicon nanoparticle-oxide films. 

However, the co-development of transient thermo-reflectance measurements proved to 

be an invaluable technique for calibrating the accuracy of the pump-probe system on 

account of the linearity of the technique and the ability to rely on well-known thermal 

properties of common materials produced in an academic fabrication facility, e.g. thin 

film aluminum and thermally grown silicon oxide. The subject of Chapter 7, will be 

the results of the pump-probe studies performed on silicon nanoparticle oxide films.  

 

6.1 System Layout  

 

Figures 6.1 and 6.2 shows a simplified schematic and images of the existing 

picosecond pump-probe optical metrology platform developed to probe energy 
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transfer physics in thin films and nanostructured materials. The heart of the system is a 

9 ps pulsewidth, 82 MHz repetition rate, mode-locked Nd:YVO4 laser from Time 

Bandwidth Products (Switzerland) emitting at 1064 nm. The maximum pulse energy is 

7 nJ, corresponding to an average output power of  about 1 W. After exiting the laser 

cavity and an isolator (Faraday rotator), the output stream of pulses are split into a 

pump path (green) and a probe  path (red) using a polarizing beam splitter (PBS). A 

half-wave plate before the PBS allows for control of the balance of power between the 

two paths.  

 
 

 
 
Figure 6.1: Experimental layouts for the two basic configurations of the pump-probe system. In the top 
panel, the system is configured in “reflection” mode which can be used for measurements such as 
transient thermal reflectance thermometry. In the bottom panel, the system is configured in 
“transmission mode.” In this configuration, the system can be used for transient differential absorption 
measurements.  
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Figure. 6.2: Images of the picosecond pump-probe system developed by myself and Matt Panzer. The 
pump-probe system is used in two basic configurations: reflection and transmission mode. Reflection 
mode was used extensively for extracting thermal properties of nanostructured thin films using time-
domain thermo-reflectance technique. The transmission mode configuration was used extensively for 
measuring carrier dynamics in silicon nanoparticle oxide films, the subject of Chapter 7.  
 

After converting to 532 nm, the pump beam is imaged onto the sample  to a spot size 

of the order of 10 μm in diameter using an infinity-corrected, 0.41 N.A. long working 

distance objective lens (20x,  f = 10 mm, Mitatoyo). The reflected pump beam is then 

imaged back along the primary optical axis and imaged onto a CCD camera where the 

beam properties of either the pump and probe can be precisely analyzed. The 

combination of the objective lens and the 500 mm tube lens form a basic 50x 

microscope which allows the operator to accurately determine the spatial properties of 

both the pump and probe beams on the sample.  

The probe beam, which remains at 1064 nm, takes a path whose length can be 

precisely controlled using a variable optical delay stage (Newport) and a broadband 

retroreflector. The delay stage provides a total delay of about 4 ns (maximum 

roundtrip time). However, in practice it is very difficult to achieve accuracy of the 

a 

b

c
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measurement over such a large time delay. This is due to several issues. First, the 

beam can be “steered” by several miliradian (mrad) by moving the stage position from 

one end to the other. This is the best that can be achieved despite the best efforts of 

alignment. When considering a 10 mm focal length objective lens, such as the 20x 

Mitatoyo, 1 mrad translates into a 10 μm deviation on the sample, which is 

comparable to the focused spot size. This means the probe beam would walk 

completely off of the pump beam on the sample surface during the course of the 

measurement. Second, because the beam is divergent, the beam width before entering 

the objective lens will change substantially from one end of the stage to the other 

(~3x). This will cause both the spot size and the focal position to change continuously 

throughout the measurement. Neither of these effects are easily corrected in the data 

analysis. Therefore, we adopted the following approach to eliminate these effects.  

After traversing the delay stage, we pass the probe beam through a fiber “mode 

scrambler” (FMS) which consists of a 2 m long single mode fiber which is wrapped 

around two mandrels, clockwise around the first and counter-clockwise around the 

second. The beam profile at the output of the FMS is insensitive to the beam shape 

entering the fiber and therefore eliminates the effects of beam steering as well as beam 

divergence. However, there remains an output intensity dependence on stage position. 

This intensity dependence can be easily removed in the final signal by dividing the 

lock-in signal with the average power illuminating the detector. We do so by splitting 

the output of the phototodetector into two signals, one signal going into the input 

channel of the lock-in and the other going to one of the auxiliary channels. The 

auxiliary channel simply digitizes the average value of the detected signal and the 

input channel detects the first harmonic of the modulated probe signal. The division is 

performed digitally. Care must be taken to assure that no appreciable DC offsets exist 

in either the primary signal or in the normalization signal. Photodetector saturation, 

particularly intensity saturation, can be particularly troublesome in performing this 

normalization scheme which we discuss at the end of this section. After emerging 

from the FMS, the probe beam is imaged onto the samples through the same 20x 

Mitatoyo objective. The reflected signal is reflected back along the principal optical 
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axis and is directed onto the photodetector. A 10 nm bandpass filter centered at 1064 

nm is located in front of the PD in order to prevent the 532 nm pump beam from 

leaking into the detector. Before every measurement, pump leakage can be determined 

by simply blocking the probe beam, measuring the noise floor and then blocking the 

pump beam and measuring the noise floor. If there is no pump leakage, then the noise 

floor should be the same for both measurements. 

 

6.2 Frequency Domain Analysis 

 

The output of the MLL (before modulation occurs) is a pulse train with period T = 

12.2 ns (82 MHz repetition rate) with each pulse having a finite width of about 9 ps. 

The probe beam is a scaled (amplitude) and delayed version of the pump beam as 

illustrated in Figure 6.3.  

 

 

 

 

 

 
Figure 6.3: Real-time sequence of the unmodulated pulse train. 

 

The laser pulse is split into two components, )(tp pump and )(tp probe which are given 

by  
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where the asterisk (*) indicates the convolution integral, 

 

dt')t'tg()f(t'f(t)*g(t)g(t)*f(t) −== ∫
+∞

∞−

             (6.3).  

 

tΔ  is the time delay of the probe pulse relative to the pump pulse as determined by the 

optical delay line and the parameter a defines the temporal pulse width. The pulse 

width is commonly defined by the full-width at half maximum (FWHM) and is related 

to a by the expression  

 

a
FWHM )2ln(2=                    (6.4)  

 

or  

22
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The Fourier Transform of (..) is the product of a Gaussian envelope function with 

characteristic width of )2ln(4/a and a comb function with frequency spacing  
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Figure 6.4: An idealization of the frequency spectrum of the unmodulated laser pulse train. 

 

 

The pump beam is typically amplitude modulated by a rectangular 

transmission function defined by  m(t), given by   
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where η is the fraction of the cycle which is high (duty cycle = η ·100) and 

10 ≤<≤ HL AA . The resultant intensity function of the heating pump pulse is then 

given by the product 

 

)()()( tmtIth pump ⋅=                    (6.8)  

 

which is as illustrated in Figure 6.5.  

 

 

 

 

 

 

Figure. 6.5: Pump modulation signal approximated as a rectangular wave, 10 ≤<≤ HL AA  
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The Fourier transform (F.T.) of (6.8) is found by the convolution  

 

)(*)()(ˆ ωωω MII pumppump =                  (6.9)  

 

where )(ωpumpI  was given by (6.6) and )(ωM can be shown to be 
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Proceeding with the convolution, we obtain the final result:  
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It can easily be shown that the maximum signal will occur when η = 50 %.  

With the exception of a scalar constant, the amplitude spectrum of the probe beam 

will have the same spectrum as the unmodulated pump beam (Fig. 6.4). In addition to 

a real scaling factor, each spectral component will have a phase angle which depends 

on the relative delay to the pump pulse train, )exp( tif nΔ where n is the nth harmonic of 

the laser repetition frequency and tΔ  is the relative delay between the pump and probe 

signals. If the pump and probe beams are focused onto a sample that will respond 

instantaneously to the pump signal, then the temporal properties of the beam can be 

measured indirectly by examining the interaction on the sample. By the width property 
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of the convolution integral, the width of the response function will be the sum of the 

widths of the pump and probe beams.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
Fig. 6.6: Visualization of the spectrum of the square-wave amplitude modulated pump pulse train when 
the pulse repetition period is much smaller than the modulation period, i.e. T << Tmod. 
 

Figure 6.7 shows the results of such a measurement performed on a 500 nm thick film 

of silicon nanocrystal doped silicon oxide grown by Rohan Kekatpure of the 

Brongersma Lab (Stanford University). In the absence of the pump beam (532 nm), 

there is negligible absorption in the sample by the probe beam. However, the pump 

beam is able to promote ground state electrons to a series of upper excited states which 

are then capable of absorbing the probe light. This upward transition is estimated to be 
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much less than 1 ps and can thus be taken to be instantaneous. The relaxation time 

however takes much longer, on the order of 100 ps for the initial decay and a much 

longer (10s of ns) beyond that due to multi-level recombination processes which will 

be the subject of the Chapter 7. Because the initial response is effectively 

instantaneous, we can use this to measure the intrinsic temporal width of the pump and 

probe beams. The response time is approximately 20 ps and corresponds to 2x the 

expected temporal pulse width of the source in exact agreement with theory.  

 
 
 
Fig. 6.7: The response of the probe beam due to a fast excitation in a thin film caused by the pump 
beam. The initial change of the excitation is assumed to be sub-picosecond and therefore the rising edge 
of the response is a good measure of the convolution of the pump and probe intrinsic temporal widths. 
From this data, we see that the characteristic width is roughly 20 ps which corresponds to the 2x the 
pulse width of the source. The sample used to make this measurement was a thin silicon rich silicon 
oxide film containing 5 nm silicon nanocrystals with a density of approximately 2x1018 cm-3.  
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6.3 Time Domain Thermo-Reflectance Thermometry  

 

The pump-probe system described can be used to extract thermal properties of ultra-

thin films and nanostructured materials using a time domain thermal reflectance 

(TDTR) technique [80]. In addition to being a powerful tool for probing thermal 

conduction physics of thin films and nanostructured materials, the TDTR technique is 

an excellent approach to calibrating the pump-probe system due to the linearity of the 

transient system response at low excitation levels to materials easily deposited on a 

substrate, e.g. aluminum on thermally grown silicon oxide. Prior to performing any 

critical set of measurements, it became common lab practice to measure what became 

our calibration standard: 30 nm Al on 102 nm thermal SiO2 on a Si substrate. At the 

time scales of measurement, the thermal oxide is thermally infinite and thus thermal 

interface effects in the SiO2/Si boundary can be neglected. Because this technique was 

used heavily for researching the thermal properties of novel samples as well as a 

calibration technique, I will spend time here discussing the details of this 

measurement.  

The measurement concept is simple. A thin (~30 nm) metal transducer layer is 

deposited on top of a material or stack of materials whose thermal properties are of 

interest. A small fraction of a pump pulse directed at the sample is absorbed within a 

skin depth of the transducer layer. The resulting heat generation induces a temperature 

field which evolves over time as the heat diffuses through the underlying layers and 

does so in a manner which depends uniquely on the thermal properties of the 

underlying material layers. A delayed attenuated probe beam is directed at the same 

spot sampling the spatially distributed surface temperature rise through the thermo-

reflectivity effect. For small changes in temperature, (~ 1 K), the reflectivity of the 

metal surface will change in proportion to the change in surface temperature and is 

characterized small-signal thermo-reflectance coefficient, denoted by dR/dT. Typical 

magnitudes of dR/dT are in the range of 10-4 – 10-3 K-1. The temperature diffuses 

vertically (z-direction, out-of-plane) as well as laterally (r, in-plane). The vertical 

diffusion will dominate if the pump beam spot size is substantially larger than the 
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effective diffusion length of the material stack for the time scale of the measurement.  

If the heating pump pulse is axially symmetric, the temperature profile at any 

given time t will also be axially symmetric, depending only on the radial position r.  

Analyzing the region of the surface of the metal transducer layer described by an 

annulus of radius r and infinitesimal thickness dr, we find that the total reflected probe 

power for this region is given simply by the product of the probe power striking this  

region, the temperature rise at this radius, and the thermo-reflectance coefficient, the 

total incident probe power of course being the product of the intensity at radius r and 

the differential area of the region.  
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where ),( trI probe is the radial distribution of probe intensity.  

 

 

 

 

 

 

 

 
 

Figure 6.8: Schematic of the heating geometry of the sample looking down on the sample along the 
beam path.  
 

The total change in reflected probe power is then found by integrating over all space:  
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By modulating the pump beam as described in previous sections, high-SNR lock-in 

techniques can be employed. Thus, we are ultimately interested in extracting 

),( mod tPprobe ΔΔ ω , the frequency domain modulated probe signal collected at the 

fundamental modulation frequency as a function of probe delay time. Taking the 

Fourier transform (FT) of (6.12), we have  
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where we used the well-known FT relation 

 

),(*),(),(),( ωω rGrFtrgtrf ⇒              (6.14) 

 

It remains then to determine the functions ),( ωrTΔ and ),,( trI probe Δω  and is the 

subject of the following sub-sections. After measuring the temperature response 

indirectly through ),( tPprobe ΔΔ ω , we rigorously solve the heat diffusion equation in 

space (radial) and time coordinates (frequency space) and vary the unknown material 

parameters such as thermal conductivity and interface boundary conductances in order 

to fit the data. In the following sections, we describe the solution to the heat diffusion 

equation which we use to obtain the surface temperature distribution as a function of 

radial position and time delay as measured on the lock-in amplifier. Before doing so, 

we discuss a few key characteristics of this technique which complicate the analysis.  

Because the temperature decay due to a single pump pulse occurs over a long 

timescale (μs) compared to the repetition period of the laser (~10 ns), the 

instantaneous temperature rise is significantly impacted by the temperature response 

of previous pump pulse. Therefore, the signal at any time must be represented as a 

convolution of the temperature responses induced by all previous pump pulses. 

Furthermore, since the pump beam is modulated, the heating response will have 
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Fourier components at integral multiples of the modulation frequency and therefore 

the probe signal will also have Fourier components at these frequencies.  

 

6.3.1 General Solution of the Temperature Field  

 

We begin by assuming that for each layer within the material stack, the thermal 

properties are homogeneous with the exception that the in-plane (r) and out-of-plane 

(z) thermal conductivities may be different.  

 

 

 

 

 

 

 

 

 

 

 
Figure 6.9: Schematic representation of a material stack to be modeled. The z-component of the 
temperature field is treated using  transmission matrix approach, a well-known technique routinely used 
in electromagnetics and quantum mechanics but which is less known within the thermal physics 
community.  
 

 

For each of these layers, we take the form of the heat diffusion equation to be axially 

symmetric, described by the general form   
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where zrzr kkk /, ≡ the ratio of the in-plane to out-of plane thermal conductivity and 

vz ck /=α is the out-of-plane thermal diffusivity. The solution of the temperature 

profile in each layer is separable in the two spatial coordinates r and z. Furthermore, 

we transform the equation into the frequency domain to obtain the solution  
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where ),(),(),,( ωωω zZrRzrT = . We do so because ultimately, the temperature 

response is measured in the frequency domain by the lock-in amplifier. Through direct 

substitution, (6.15) is transformed into  
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where 2k− is the separation constant for a particular value ofω . The radial (in-plane) 

equation is the well-known Bessel’s equation of zero order 
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which has the solution )()()( 00 krJkrJrR =−= . The z-equation (out-of-plane) is 

given by  
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where 
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and has a solution of the form 
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We then have for layer n  a frequency-domain solution of the form 
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The task then becomes determining the radial temperature distribution at the top 

metallic surface. We discuss how this is done in the following section.  

 

6.3.2 Temperature Field at Surface  

 

The frequency spectrum of the temperature response ),( ωrTΔ due to an axially 

symmetric heating source ),(''' ωrQ can be found by convolving the source function 

with the system thermal response to a time-harmonic radial point source function 

),( ωrg . In rectangular coordinates, this is written as 
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Using once again the FT relation (6.14), we obtain  
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),,(),,('''),,( ωωω yxyxyx kkgkkQkkT =Δ            (6.24) 

 

or, in radial coordinates  
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where the real-space variables are transformed into frequency-space variables as x,y  

kx,y and r  k. The heat generation term is proportional to the modulated pump 

power )(ˆ ωpumpP  at the surface, and can be written as 
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Here, 02w is the beam waist at the sample and A is the average pump power absorbed 

on the surface of the metal. The actual value is not important since the final signal is 

normalized. Performing a Hankel transform (r  k) on  
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where 0J is the 0th order Bessel equation. We then have  
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),( ωkg can be found using a transfer matrix approach in combination with separation 

of variables technique discussed in the previous sub-section. We refer the reader to 

Feldman [81] or References [82, 83] for more detailed derivation of the transfer 

matrices and only summarize the results here.  
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and, for each layer n, the material-dependent parameters 
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( ) 2/1224 nn qku += π                  (6.35)  
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Here, nT ,1  is the transfer matrix along the z-direction for the layered medium relating 

the temperature in the final layer (typically treated as an infinite medium) and top 

surface, i.e. n = 1. In going from layer n + 1 to layer n (begin from layer furthest from 

metal transducer), we have the following relations between the “forward” (+) and 

“backward” (-) propagating complex thermal fields:  
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where 
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and )1( +→ nnTi and nT describes the transfer across interface between n and n + 1 

and across the region n respectively.  
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In the above transfer matrix expressions, 1, +nnR is the boundary resistance (in units of 

K·m2/W) between layers n and n + 1and Ln is the physical thickness for layer n.  

 

 
Figure. 6.10: A typical amplitude spectrum (green) of )( fH for the positive frequency domain from 0 to 
100 MHz. The very low frequency limit is independent of frequency and in the high-frequency 
limit, ω/1)( ∝fH . The amplitude spectrum and real part of H is even with respect to the origin 
whereas the phase and imaginary part are odd.  
 

6.3.3 Frequency Domain Thermo-reflectance Signal  

 

The full solution for ),( tPprobe ΔΔ ω  can be shown to be given by (6.41) 
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The ± indicates an additional summation over the positive and negative components of 

the fundamental modulation frequency. If the pulse width becomes infinitesimal, i.e. 

the laser is modeled as a comb function,  
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and we recover the expression obtained by Cahill [82]. The convolution integral just 

evaluated analytically, is represented in Figure 6.11  



  

                                                                                              

126

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.11: Graphical representation of the convolution which represents the measured signal on the 
lock-in amplifier for each probe delay.   
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Figure 6.12: Graphical representation of the convolution represents the measured signal on the lock-in 
amplifier for each probe delay zoomed into spectral region of interest.   
 

 

6.3.4 Calibration Standard (Al/SiO2/Si) 

 

For calibration, we use a sample which has a 102 nm thermal silicon oxide grown on a 

740 μm silicon substrate and a 30 nm aluminum layer deposited on the silicon oxide. 

A typical trace using the system described in Section II  is shown in Figure 10 along 

with an analytic fit using a code which implements the theory described in Section III. 

The analytic fit was performed using a MATLAB code written to implement the 

theory described in the previous section. We extract a thermal conductivity of 1.4 

W/m/K for the thermal oxide which is the industry established value. 

 
 
 

 

-1/T

fmod 

0 1/T …… 

-1/T

fmod 

0 1/T …… 



  

                                                                                              

128

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. 13: Measured thermal response for an Al/SiO2/Si material stack demonstrating the accuracy of 
the pump-probe thermo-reflectance technique. The negative time delay signal has been subtracted from 
the signal during analysis.  
 

6.4 Transient Differential Transmission Measurements   
 

In this section, we will discuss the differential transmission technique developed to 

probe short-time scale carrier dynamics in dense silicon nanocrystal composite 

materials, the subject of Chapter 7. Figure 6.14 show the differential transmission 

configuration in combination with a liquid helium cryostat enabling measurements 

from about 10 K up to 400 K.  
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Figure 6.14: Pictures of the pump-probe system configured for transient differential transmission 
measurements. The liquid helium cryostat with integrated heater enabled measurements from about 5 K 
up to 400 K.  
 
The pump (532 nm) and probe (1064 nm) beams are aligned to be collinear using a the 

combination of a mirror placed at the sample focal plane and an imaging camera as 

shown in Figure 6.1. The pump and probe beams are both focused down onto the 

sample and collected using long working distance Mitatoyo NIR objectives. The input 

objective was a 10 mm WD 20x 0.42 NA infinity corrected lens and the collecting 

objective was a 20 mm WD 10x 0.25 NA infinity corrected lens. The collecting optic 

is able to efficiently collect the transmitted beam because the full aperture of the 

focusing objective is not used. The beam diameters of the pump and probe beams were 

typically 5 and 8 μm respectively at the sample surface, substantially larger than the 

diffraction limit for the lens due to the underfilling of the entrance pupil, and 

corresponded to an effective NA of less than 0.1. A narrow bandpass filter is placed 

between the output of the collection objective and the single element photodetector 

(ThorLabs – PDA10CS InGaAs detector). The output of the probe beam is fed directly 

into the input channel of a low-frequency lock-in amplifier (SRS SR850) whose 
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reference signal is the function generator which sets the pump square wave 

modulation frequency.  

 The signal measured on the lock-in is the differential transmission signal of the 

probe beam passing through the sample due to the influence of the pump excitation of 

the sample. We are assured that the change in transmission is due to the pump because 

the lock-in extracts only those signal components with frequency at the fundamental 

pump modulation frequency. It is easy to verify that the signal is due to sample 

excitation by blocking the pump to assure that the signal drops to the noise floor. 

Because of the large separation in laser frequency, the off-the-shelf 1064 nm bandpass 

filter is more than adequate to suppress pump leakage to below the noise floor of the 

detector.  

 In studying excited carrier dynamics, the pump generates excited electrons which 

occupy conduction band states. Over time, these electrons relax back to the ground 

state in a unique manner which can be used to study the physical recombination 

processes. Neglecting two-photon absorption processes, the probe photon energy is 

insufficient to excite electrons from the valence band to the conduction band. 

However, the probe photon energy is sufficient to excite an electron already in the 

conduction band due to the initial excitement by the pump beam which passes through 

the same interaction volume of the sample. Therefore, the probe beam will be 

attenuated slightly in the presence of the pump-excited carriers and will produce a 

modulation signal at the detector related to the pump modulation spectrum. If the 

system is perfectly linear or only weakly nonlinear, then the probe modulation 

spectrum will be identical, with the exception of a scaling factor. The probe beam is 

then delayed in time with respect to the pump beam using the delay line and at each 

equivalent position of the delay line, the rms signal at the fundamental pump 

modulation frequency is collected to produce the transient full transient signal over 

several nanoseconds with sub 10 ps temporal resolution. In the following section, I 

will discuss some of the issues that arise when trying to build such an experimental 

system.   
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6.5 Application Notes  
 

Building a pump-probe system which relies on an optical delay technique appears 

straightforward and in retrospect is not terribly difficult to construct. However, there 

are a few subtle aspects of the system which need to be communicated to the next 

generation of students, which unfortunately does not appear in standard text books on 

optics and photonics. In this section, I will spell out some of the more important 

lessons learned during the development of the system. In addition to these application 

notes, I refer the reader to the excellent text by P. C. D. Hobbs [84]. A copy of Hobbs’ 

text should be on the shelf of any practicing or aspiring experimentalist.  

 

6.5.1 Beam Divergence and Beam Steering  

 

In the pump-probe system described here, the probe pulse is delayed in time with 

respect to the pump pulse using a 0.6 m optical delay line (Newport) giving a 

maximum time delay of 4 ns. One of the challenges of making delay-line 

measurements over long time scales (nanoseconds) is that the roundtrip distance is 

sufficient to cause appreciable beam expansion due to standard beam divergence. In 

addition to beam divergence, the delay line can introduce a small but appreciable 

position dependent angular deflection. Both of these effects introduce an amplitude 

signal which can not easily be separated from the time-dependent sample response that 

is of interest. In practice, these effects can be subtracted from the true signal by first 

converting these two effects into a pure amplitude signal. We achieve this by running 

the probe beam through a single mode fiber (SMF) stage after traversing the delay 

line. Therefore, the beam divergence and steering only affects the transmission signal 

but the beam quality on the output of the fiber is independent of the optical delay line 

position. During data analysis, this calibration curve can then be used to normalize the 

signal and therefore extract the true signal.  Figure 6.15 shows a typical probe signal 

amplitude on the detector as a function of probe delay time using the SMF spatial 

filter.  
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Figure 6.15: (top) A typical trace of the average detected probe signal voltage over the full time-delay 
scanning window (3.8 ns). The signal drops off with increasing delay because of finite beam steering of 
the delay stage as well as divergence of the beam. (bottom) A typical differential transmission signal 
obtained by exciting a silicon nanocrystal oxide film with 532 nm light and probing at 1064 nm. The 
red curve is the uncorrected lock-in magnitude and the blue curve shows the same signal after dividing 
by the normalization signal (top). Beyond about 500 ps, the need for correcting for finite beam steering 
and divergence is clearly evident.  
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6.5.2 Offsets and Signal Normalization 

 

In order to mitigate the effects of beam expansion and beam steering as the delay line 

changes position (the round trip path length changing up to six feet), we pass the probe 

beam through a single-mode optical fiber mode scrambler stage. This essentially 

converts any beam expansion and beam steering into changes in amplitude. It would 

seem straightforward to simply normalize the raw signal by the nominal probe power 

in order to correct for the delay-line position dependent intensity. However, it is 

difficult to mitigate the effects of small offsets which show up at the modulation 

frequency. Such offsets can arise from internal device components as in the case of 

insufficient grounding, or through RF pickup through the cables.  
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where ε represents a small offset for the numerator (N) and denominator (D). If 

),0( tPprobe Δ >> Dε  and ),( mod tPprobe ΔΔ ω >> Nε  are large compared to  for all tΔ , 

then this problem does not present a significant problem. There are two main sources 

of offsets that need to be eliminated or at least accounted for. Because the 

measurement is performed over a narrow frequency band by method of lock-in 

amplifier, an offset in this case represents a small leakage signal at the fundamental 

modulation frequency.  

The largest source of an interfering signal at this frequency is of course the 

experimental rig itself. The square wave amplitude modulation of the pump is 

achieved by using an electro-optic modulator (EOM) in combination with a polarizing 

beam splitter. The EOM requires over 100 V modulation to achieve the pi/2 phase 

shift and therefore the broadcasted signal can be quite large if proper electrical 

isolation is not implemented. In practice, we found that this could easily add a 

microvolt of baseline. This signal, if stable, can be subtracted from the measured 
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signal during data processing but it is best to try to minimize it as much as possible.  

  A more subtle source of offset can come from stray (random scatter) pump light 

which has not been converted to 532 nm and is therefore at the probe wavelength. It is 

necessary to include a bandpass filter at the pump wavelength at the output of the 

second harmonic generator to prevent 1064 nm leakage into the detection path. 

However, sources of scatter upstream need to be watched carefully. If blocking the 

pump beam does not cause the signal on the detector to drop to the dark noise floor, 

try moving a beam block (e.g. a piece of cardboard) around the table to see if you can 

block an stray signal coming into the detector. If you still can’t get rid of the offset, it 

is likely to be electronic coupling.  

 

6.5.3 Photodiode Saturation 

 

One of the largest causes of error in any photonic measurement arises from the 

operation of the photodetector in a nonlinear regime. It would seem that such a 

scenario could only happen to the most junior of experimentalist but detector 

nonlinearity can fool even the most seasoned lab veterans. Never assume that the 

detector is operating linearly. Prove to yourself that it is by measuring it each time 

before making a set of measurements.  

There are two basic types of photodiode saturation to consider: (1) power 

saturation and (2) intensity saturation. Although the effects of either forms may take 

may present themselves as subtle artifacts in a measurement requiring a trained eye, 

the first form of saturation is easiest to detect. Increasing the power striking the 

photodetector should increase linearly. This should be verified each time.  

Intensity saturation of the photodetector occurs when the incident intensity on the 

photodetector exceeds the level at which the detector behaves linearly. The real 

problem with this scenario is that the DC voltage readout of the detector at which the 

intensity saturation occurs can be much lower than the level which would indicate 

power saturation of the detector, a value typically provided in datasheets. The only 

way to determine if one is in this regime is by measuring output voltage as a function 
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spot size on the detector. This can be done by putting the detector on a linear positiong 

stage. Diagnosing this problem can be rather tedious but needs to be done.  

 

6.5.4 SNR Optimization  

 

A common mistake of a junior experimentalist is to optimize signal level rather than 

signal to noise ratio (SNR). At the end of the day, the signal level is meaningless. It 

only matters what information you can extract from your measurement which is set by 

the SNR. So, it is understandable that one would first reach for the gain knob on a 

detector in order to improve SNR if one encounters a noisy signal. The fact is that the 

gain knob will amplify both the signal and the noise in at best equal amounts but in all 

real cases, additional noise gets added to the system thus degrading the SNR. 

Therefore, it is necessary to compute the SNR as a function of signal level or gain or 

other experimental system parameters in order to identify the optimal SNR.  

The fundamental limit of measuring a signal in the pump-probe system is shot 

noise of probe laser beam, which is given by the expression (6.46)  

 

fPeRRi probermsrms Δℜ== 2v               (6.46) 

 

where R is the transimpedance gain (V/A) of the detector amplifier Probe is the probe 

power and ℜ  is the responsivity of the detector measured in A/W. The ThorLabs 

switchable gain InGaAs detector has a responsivity of about 0.75 A/W at 1064 nm and 

a transimpedance gain of 1.5x103 V/A (0 dB setting, high-Z load). Therefore, an 

average 200 mV output signal corresponds to an average power of about 180 μW or a 

photodiode current of 134 μW. At this power level the rms voltage fluctuation due to 

shot noise at the input to the lock-in amplifier would then be approximately 10 nV in a 

1 Hz measurement bandwidth. This sets the ultimate detection limit of the system. In 

practice, however, it is difficult to reach the shot noise level for a number of reasons. 

First, the laser itself has excess amplitude noise which can greatly exceed the shot 

noise limit. Furthermore, vibrational motion of mirrors and etalon effects in the system 
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can lead to additional amplitude modulation but is typically limited to audio 

frequencies. Within the detector itself, there is a wealth of additional sources of noise 

which may bring the total noise floor above the shot noise limit. Figure 6.16 shows the 

rms noise signal for the ThorLabs PDA10CS detector used in this work as a function 

of average probe laser power measured as average detector output voltage.  

The blue diamond data is the actual noise signal measured and the purple square 

data set represent the predicted shot noise rms voltage. The inset in the top plot shows 

the ratio of the two voltages and indicates how close we are to the shot noise limit. We 

see that for detector output voltages less than 200 mV, we achieve a noise floor within 

3 dB of the shot noise limit. This is achieved without any laser noise canceling 

techniques which indicates that the laser amplitude noise is shot noise limited at 100 

KHz. In bottom plot, the relative SNR for a measurement of a 20 nm thick silicon 

nanoparticle-oxide film is shown as a function of probe power (again measured as the 

average output voltage of the detector). Here, the pump power incident on the sample 

was fixed while the probe power was changed. We can see from this measurement that 

the SNR  is optimal for a value of 200 mV detector voltage. All of the measurements 

described in the following chapter were taken at this probe power.  
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Figure 6.16: (Top) (Blue diamond) Measured RMS voltage fluctuation on probe detector in a 1 Hz 
bandwidth as a function of average detector signal voltage. (Magenta square) Data points showing 
calculated shot noise voltage for given photocurrent. The inset shows the ratio of the measured voltage 
noise to the shot noise limited voltage noise. For signal levels on the order of 150 mV, one can operate 
3 dB of the shot noise floor. (Bottom) Plot of the relative SNR as a function of average detector voltage. 
Increasing the signal above about 150 mV does not improve SNR.  
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Chapter 7 

 

 

Energy Conversion in Silicon Nanophotonic Materials 

 

In this chapter, I will present my work investigating the dynamics of energy 

conversion in dense systems of luminescent silicon nanocrystals, a class of materials 

which is promising in the development of silicon-compatible optical sources. The 

carrier dynamics of optically pumped silicon nanocrystals embedded in amorphous 

silicon oxide films were measured using picosecond transient and steady-state two-

color optical pump probe techniques described in part in Chapter 6. Rohan Kekatpure 

and Dr. Aaron Hryciw of the Brongersma Group in the Materials Science Department 

at Stanford University provided thin-film silicon nanocrystal-oxide samples in support 

of this work.  

 

7.1 Silicon Nanophotonics 

 

The transistor has been reduced in size to the point that its intrinsic signal delay 

contribution is often negligible compared to that of the electronic interconnect 

bridging two logic gates. This is particularly true when signals must span long 

distances (100s of micrometers to millimeters) such as the case of clock distribution 

networks. The case for replacing copper wire with either free-space or waveguide 

optical interconnects between chips and perhaps even on-chip has been argued by 

many but perhaps most effectively by Miller [85]. Optical signaling provides a number 

of fundamental advantages which include significantly higher signal bandwidth (100-

1000 THz), which allows for higher data rates as well as a reduction in cross-talk 

through frequency filtering, and potentially lower power consumption. The latter 
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advantage arises from the fact that the low-loss waveguides are available and the 

entire signal line does not need to be charged to the signal voltage during transmission.  

In theory, a strong case can be made for replacing copper wire with optical 

interconnects. However, to realize a simple optical communication link, low cost 

CMOS compatible optics and optoelectronic components are needed, including a 

source, a modulator, an interconnect, and a receiver. Tremendous strides in developing 

viable silicon-based solutions for the latter three link elements have been made in 

recent years [86-88]. However, a suitable light source remains elusive. A low-cost, 

CMOS compatible coherent light source which can be detected by silicon or 

germanium detectors is desperately needed to complete the short-haul communication 

link.  

 For fundamental reasons, this goal is a monumental challenge. It is well know that 

silicon in its bulk crystalline state is a poor source of photons due to its indirect 

bandstructure. That is, when making a transition from an excited conduction band 

state near the band edge, the electron must interact with a phonon of large wavevector 

(~1 Å-1) in order to conserve crystal momentum. Hence, the radiative transition is a 

second order process and substantially reduced. A silicon raman laser was 

demonstrated by Rong and coworkers in 2003 [89] and was an technological 

advancement in silicon photonics. However, such a laser is not suitable for optical 

interconnection since it fundamentally requires an optical pumping source. In essence, 

it is a frequency conversion device.  

 The fundamental efficiency of light emission in bulk silicon can be greatly 

increased by reducing the size of the silicon lattice to a length scale which is 

comparable to the unit cell of the silicon lattice, a = 5.43 Å. As discussed in Chapter 2, 

the reduction in the size of the crystal leads to broadening of the wavefunction peaks 

in momentum or k-space on the order of ~ 1/ΔL. Si nanocrystals (NCs) formed inside 

of a host dielectric film exhibit strong and stable room-temperature visible and near-

infrared luminescence [90-97] as well as the ability to efficiently sensitize co-doped 

Er3+ ions which fluoresce in the important telecomm band centered around 1540 nm 

[98, 99]. Such properties offer exciting possibilities in developing practical Si-based 
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coherent light sources for on-chip and chip-to-chip interconnects. Thus, these 

materials are of great technological interest. In addition, the fundamental physics of 

efficient light emission in low-dimensional semiconductors having indirect band gaps 

as well as the dynamics of closely-packed interacting quantum dots or NCs are rapidly 

advancing fields of study which continue to provide intriguing questions of 

fundamental importance.  

Despite great interest in their optical properties, it has now been established that 

free-carrier absorption (FCA) and fast nonradiative carrier recombination (NRCR), 

such as Auger processes, severely limit the net optical gain in Si NC-dielectric films to 

impractical levels [90, 93, 100-102]. Progress towards fully understanding these 

intrinsic loss mechanisms which compete unfavorably with stimulated emission has 

been impeded by the substantial size inhomogeneity that is characteristic of most 

common forms of these films, e.g. porous Si [94, 95], Si rich Si oxides (SRO) [90-93] 

and nitrides (SRN) [97], making it difficult to disentangle the effects of competing 

optoelectronic phenomena [103, 104]. Our limited understanding of NRCR and FCA 

losses in PS and SRO films is evident by the establishment of multiple seemingly 

contradicting sets of carrier rate equations over the past two decades, cf. Refs. [95, 

102, 105-107]. In order to reconcile these differences, we have precisely measured the 

optically induced FCA losses of dense SRO films over an extended pump intensity 

range and have compared the results to existing carrier dynamics models. We find that 

none of the existing rate equation models is capable of accurately reproducing the 

pump intensity dependence over the full range of data. However, by introducing a 

single near-field, Coulombic, dipole-dipole interaction term of similar form as 

described in Ref. [108] between excited NCs to the independent (i.e. non-interacting) 

NC coupled rate equation model by Kovalev et al. [105], we are able to accurately 

reproduce the data over the full range of pump intensities. Furthermore, we find that 

the existing rate equation models can be interpreted as limiting forms of this model.  

The optically induced free-carrier absorption coefficient (αFC) of densely-packed 

(2x1018 cm-3) Si nanocrystals (NCs,)  embedded in a glass matrix was accurately 

measured in the near-infrared using two complementary pump-probe techniques. 
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When compared to established carrier dynamical models, the dependence of αFC on 

optical pump intensity reveals enhanced nonradiative recombination at high pump 

intensity (> 10 KW/cm2) which can be explained by the interaction of carriers located 

in spatially separated NCs. The rate of recombination due to the interaction between a 

pair of excited NCs is determined to increase inversely with the sixth power of their 

separation distance (τ-1~γR-6 ; γ ≈ 2.9x10-31 cm6s-1) and is indicative of near-field 

dipole-dipole energy transfer. These results explain the source of an apparent 

inconsistency in power-law behavior found in previous carrier dynamics studies on 

similar materials which did not account for this interaction.  

 

7.2 Physical Properties of Silicon Nanocrystal – Oxide Matrices 
 

In these studies, we examine the optical properties of silicon nanocrystals formed from 

silicon rich oxides (SRO) fabricated using two different methods, a plasma enhanced 

chemical vapor deposition (PECVD) method and an e-beam evaporation method. Both 

methods employ the same basic nanocrystal formation physics. A non-stoichiometric 

silicon oxide is first deposited onto a substrate (e.g. fused silica or silicon) with an 

excess amount of silicon. After deposition, a high-temperature anneal step is 

performed which induces the nucleation and growth of small ~ 5 nm nanocrytallites 

with a distribution of size and density of order of 1018 cm-3. The next two sections 

will describe the fabrication details and the film properties using the two techniques.  

 

7.2.1 PECVD Deposited SRO 

 

Thin films of silicon rich silicon oxide were prepared by PECVD and subsequent 

annealing by Rohan Kekatpure in the Stanford Nanofabrication Facility (NSF). The 

conditions for processing are described in Ref. [93] but are stated here for reference. 

The deposition was carried out using a 2% silane SiH4 which was diluted in N2 and a 

precursor nitrous oxide (N2O) gas on a fused silica substrate at a temperature and 

pressure of 350 °C and 650 mTorr respectively. The SiH4:N2O flow ratio was set to 
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control the silicon concentration which indirectly controlled the size and density of 

silicon nanocrystals. After deposition, the films were annealed at 1100 °C for 1 hour to 

form the nanocrystallites.  

 

Figure 7.1: Physical properties of the SRO films measured in this work. τrad was obtained from transient 
PL experiments described in [4] and τA,2 was computed using the formula, τA,2

-1 = CA(2/V)2, with CA = 
4x10-31 cm6/s and V = (π/6)D3. The distribution function was calculated using the methodology 
described in [93, 102].  
 

Figure 7.2 shows high resolution HRTEM images of 500 nm thick SRO films grown 

using this technique.  
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Figure 7.2: High resolution TEM cross-section images for a PECVD deposited silicon rich oxide, which 
was subsequently annealed at 1100 C for one hour to produce silicon nano-crystallites with diameters in 
the vicinity of 5 nm and a density of 2x1018 cm-3.  
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7.2.2 E-beam Evaporated SRO  

 

In subsequent sections, we will discuss the motivation for examining SRO films down 

to 10 nm within multi-layer superllatice structures. In order to control the thickness of 

SRO layers to nm resolution, an e-beam evaporation method was preferred over the 

PECVD process. This is because the first 20-30 nm of the PECVD film are believed to 

have a differing film composition than the remainder of the film. Dr. Aaron Hryciw 

performed the deposition of e-beam evaporated silicon monoxide (SiO) in various 

thicknesses and followed the deposition with a 1 hour anneal at 1000 °C. High 

resolution TEMs of a 230 nm thick sample and a superlattice consisting of 10 

alternating layers of 23 nm SRO and 30 nm SiO2 are shown in Figures 7.3 and 7.4 

respectively.  
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Figure 7.3: High resolution TEM cross-section images for a e-beam evaporated SiO, which was 
subsequently annealed at 1100 C for one hour to produce silicon nano-crystallites.  
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Figure 7.4: High resolution TEM cross-section images for a e-beam evaporated SiO/SiO2 superlattice 
film containing 10 periods of 20 nm nc-Si-SiO2 and 20 nm SiO2 barrier layer. The sample was 
annealed at 1100 C for one  hour to produce silicon nanocrystallites as can be seen as bright spots in the 
energy filtered HRTEMs.  
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7.3 Transient and Steady-State Differential Transmission Pump-
probe Measurements 
 

In this section, I will present the results of transient and steady-state differential 

transmission measurements made on systems of silicon nanocrystals embedded in 

silicon oxide matrix. The samples are those discussed in the previous section. The 

pump-probe technique I employed is that described in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.5: Transient, differential transmission measurement results for the PECVD sample. Both the 
background signal and the peak amplitude of losses increase with increasing pump intensity. The initial 
decay time constant reduces with increasing pump intensity as a consequence of Coulombic interaction 
between excited electrons.  
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Figure 7.6: (a) The peak (red square) and negative time (blue circles) delay relative transmission loss as 
a function of pump intensity. (b) The difference between the peak value and the negative time delay 
(steady-state) value vs. pump intensity showing linearity of pump excitation cross-section. (c) The 
initial time constant as a function of pump intensity showing a -2/3 law.  
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Figure 7.7: Two experimental methods used to determine the optically-induced FCA losses in SRO 
films by measuring the (a) loss-induced spectral broadening of the 895 nm PL emission line of an SRO 
microdisk resonator and the (b) steady-state (negative time-delay) component of picosecond transient 
differential absorption (TDA) measurements performed on a 500 nm thick SRO film deposited on a 
fused-silica substrate.  
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Figure 7.8: The normalized free-carrier absorption coefficient (αFC,max = 24.6±0.3 cm-1 at 1064 nm) vs. 
pump intensity for the two complementary pump-probe measurement techniques described in the text 
and in Fig 1. The solid red curve is the best fit for the proposed model. Linear, 1/3 and 1/2 power-law 
curves are included as visual guides. The inset is a zoomed in view of the maximum at 200 KW/cm2. 
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7.4 Carrier Dynamics Modeling  
 

7.4.1 Coupled Rate Equation Analysis   

 

Charge densities exhibiting 1/2 and 1/3 power-law dependences on pump intensity are 

characteristics of bulk semiconductors owing to two (e.g. bimolecular Auger [95]) and 

three-particle Auger processes [109] respectively. Therefore, given the observed 

power-law behavior of the data, bulk-like linear-plus-quadratic [95, 106, 107] or 

linear-plus-cubic [102] loss rate models could explain the data below 10 KW/cm2 and 

100 KW/cm2 respectively. However, these models do not predict saturation at high 

intensities, which is a key signature of isolated or independent NCs [105, 110]. The 

independent NC model by Kovalev et al. [105] provides the closest fit to the data but, 

in its current form, can not reproduce the data to within experimental uncertainty. 

Motivated by the observation of the 1/3 power-law behavior, we modify the isolated 

NC model [16] to include a single cubic interaction term between NCs resulting in the 

following set of coupled rate equations:  

 

1
2*

110010 / NNNNN Γ++−= τφσ&                 (7.1a)  

1
2*

2,2111120011 // NNNNNNN A Γ−+−−= ττφσφσ&             (7.1b) 

2,21122 / ANNN τφσ −=&                  (7.1c) 

210 NNNNT ++=                   (7.1d)

  

where )(DNT  and ( )tDN j , are the densities of NCs with diameter D and those having j 

EHPs respectively,φ  is the instantaneous pump photon flux,
ijσ is the absorption cross-

section for promoting a NC from the ith to the jth e-h state, 1τ is the single EHP 

recombination lifetime including both radiative (rad) and nonradiative (nrad) channels, 

( 111
1

−−− += nradrad τττ ), and 2,Aτ is the two EHP Auger recombination lifetime. Higher 

excitation levels (O(N3)) have been omitted because their steady-state occupations are 

deemed to be negligible for all measured intensities. For the same considerations, we 
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neglect interactions between NCs of higher excitation levels than those which are in 

the N1 state and write the cubic interaction term as the product of N1 and ( )2*N . Here, 

we have defined *N  as the instantaneous average concentration of NCs containing one 

EHP, i.e. ( ) ( )∫≡ dDDtNDtN ),(1
* ρ  where ( )Dρ  is the unit normalized distribution of NC 

diameters which we have plotted in Fig. 3 [93, 102]. We interpret the physical 

meaning of this interaction as an increase in the nonradiative decay of a selected NC in 

the 1N  state due to the presence of neighboring NCs also in the 1N state, whose strength 

increases in proportion to 2
1N  or inversely to the sixth power of their average 

separation distance, i.e. 6
1

1 ~
−− Rτ  where 3/1

11 ~
−

NR  [111]. Such a dependence is 

indicative of near-field Coulombic dipole-dipole coupling [108]. However, unlike the 

case explicitly treated in Ref. [108], where an EHP in one NC interacts with the 

ground state of a neighboring NC, here the interaction occurs between two EHPs 

located in separated NCs in close proximity to each other. Such a resonant 

nonradiative energy transfer mechanism was first investigated by Fröhlich and Mahr 

[112] for a system of excited F-centers in KI crystals.  

 

7.4.2 Long-range Coulombic Dipole-Dipole Coupling Between Excited States 

 

Recently, evidence of Auger recombination involving charge carriers located in 

separate nanocrystals (NCs) was reported for a dense system of silicon NCs embedded 

in a thick (500 nm) silicon oxide glass matrix [113]. The recombination rate of an 

electron-hole pair (EHP) located in a randomly selected NC due to the presence of an 

EHP located in a neighboring NC located a distance R away was determined to have 

the form τ-1 = γR-6, where γ controls the pair-interaction strength. This form of an 

interaction arises from the near-field expansion of the Coulomb potential as described 

by the Dexter-Forster (D-F) theory [114]. However, in contrast to the standard 

definition of Dexter-Forster nonradiative energy transfer whereby an EHP in one NC 

or molecule interacts with the ground state of a neighboring site, here the interaction is 
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between two EHPs located in separate sites. In both cases, two (labeled i and f) two-

electron(hole) wavefunctions ),( 21, rrfi
vvψ  are coupled through the mutual Coulomb 

potential of having the form 

 

21

2
'

rr
eH vv −

−
=
κ

                     (7.2) 

 

where k is the dielectric permittivity function. The distinction here is in the description 

of the initial and final states ),( 21, rrfi
vvψ ; the physical process though is essentially the 

same. We shall therefore refer to the latter case as Förster-Auger (F-A) recombination.  

 

 

)(||2 21
fiif EE −=− δμπτ

h
                 (7.3)  

 

where, the matrix element is given by  

 

∫∫ −
−=

21

2121
21

2 ),(),(
rr

rrrr
rdrde if

if vv

vvvv
vv ψψ

κ
μ               (7.4)  

 

which to lowest non-zero order, the dipole-dipole interaction becomes 

  

∫∫−=≈ − ),(),( 2121213

2
)( rrrrrdrd

R
e

if
dd

ifif
vvvvvv ψψ

κ
μμ            (7.5)  

 

Taking the modulus squared of (7.5), we get the expected result which predicts that 

the transition rate scales as  

 
621 ~ −−− Rκτ .                     (7.6)  
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One of the consequences of D-F theory is that energy is typically transferred from 

smaller NCs to larger NCs as a result of the bandgap scaling through the quantum 

confinement effect. However, in the DFA theory, this trend is not necessarily 

expected. For NCs or quantum dots (QDs) larger than about 1 nm in diameter, the 

quantum state properties, e.g. wavefuntion and density of states, closely resemble that 

of the bulk material for energies greater than about 1 eV above and below the band 

edges. Therefore, given that NC bandgap energies typically exceed 1 eV for small 

NCs, it should not be surprising to find that the DFA energy transfer is less dependent 

on the size of the participating NCs and energy transfer is essentially bidirectional and 

far more efficient than D-F energy transfer.  

In the framework of the DFA model, the total recombination rate of an EHP in a 

randomly selected NC due to such an interaction is found by summing over all of the 

interactions by neighboring NCs containing an EHP. Assuming a uniform density of 

NCs containing a single EHP (N1), a constant value of γ , and that the interactions 

between NCs can be treated independently, the total recombination rate in three spatial 

dimensions (3-D) is 

 

2
1

2
136

2
11

3
842

min

NN
R

dRRN

R

Γ=⎟
⎠
⎞

⎜
⎝
⎛== ∫

∞

−

α
πγπγ

τ               (7.7)  

 

where 3/1
1min
−= NR Vα , the proportionality constant Vα  is of order unity. The factor 

of 2 in the front of the integral accounts for the fact that an excited nanoparticle can 

act as either a donor or an acceptor with equal probability [112]. From this analysis, 

we find that the rate of recombination in 3-D is proportional to 2
1N . Furthermore, we 

find that the ratio between the effective, or macroscopic, dipole-dipole interaction 

strength to the microscopic interaction strength, is given by  

 

110
3
8/ 3 ≈=Γ

Vα
πγ                    (7.8)  
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where Vα is determined to be approximately 0.42 in three dimensional systems which 

are Poission distributed. It is interesting to note that this value falls between the value 

which would give the average nearest neighbor distance ( Vα = 0.55) and the R-6 

weighted nearest neighbor average ( Vα = 0.26).  

Neglecting all other recombination channels, the rate equation for NCs in the one 

EHP state can then be written as 

 
3

111 / NGNGN Γ−=−= τ&                  (7.9) 

 

where G is the average generation rate of an EHP. At steady-state, 3/1
1 ~ GN . The 1/3 

power-law dependence on the generation rate for a system of physically unconnected 

NCs is indicative of DFA coupling but can be confused with continuum transport 

dynamics which also predicts a 1/3 law behavior owing to three-particle Auger 

processes [109]. It should be stressed that this ambiguity exists only at intermediate 

generation rates where multiple EHP probability is low. At higher generation rates, 

multiple EHP generation within a NC leads to rapid decay to the single EHP state and 

exhibits saturation. Such a behavior is not predicted by the standard bulk Auger 

recombination theory.  

 

7.4.3 Analytical Model 

 

By treating each parameter as a constant [115] and setting σij = σ for all i and j, we 

obtain an analytical steady-state expression for 
1N  and 

2N : 

 

[ ] 0NφσN/τ1τσφφσNΓ T11A,2
223

1 =−+++                 (7.10a) 

1A,22 NφστN =                             (7.10b)  
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where 1N  is found by taking the positive real root of (2a) and 
TN is the density of 

all NCs. The effective FCA coefficient for the entire NC system can be written as  

 

[ ]...NeNeNσα 3312211FCFC ++=           (7.11) 

 

where ej1 is a dimensionless weighting coefficient which indicates the contribution of 

the jth EHP state to σFC relative to that of the one EHP state. Typically, the assumption 

ej1 = j is made, a direct extension of the linear FCA theory for nondegenerate bulk 

material [116]. However, recent calculations for CdSe QDs have cast doubt on the 

general validity of this assumption for low-dimensional systems [117]. As we will 

show, we find that e21 must drop below unity in the steady-state case in order to 

reproduce the maximum observed in the data.  

To the best of our knowledge, the maximum in αFC has never been reported before. 

It is best explained by allowing e21 < 1, i.e. N2 states have a lower contribution to σFC 

relative to the N1 states. For, if e21 ≥ 1, then the αFC can not decrease because of the 

reaction N1V + photon  (N1V - 1) + (N2V + 1), V being a unit volume, which leads to 

ΔαFC ~ |ΔN1|(e21 - 1) < 0. Hence, e21 < 1 is necessary to produce a maximum, 

generally. However, this view conflicts with observed picosecond TDA data which 

have shown that FCA losses increase shortly after pump excitation under conditions 

when the fraction of newly created N2 states should be substantial [118]. These 

conflicting observations suggest that e21 is time dependent, e.g. e21(t0) = 2   e21(t∞) = 

0.5. This could occur if the N2 states are composed of multiple 2 e-h pair states, one 

group contributing to FCA (N2,a) and the remaining group being inactive (N2,b), 

perhaps mediated by a surface trap state.  

The solid red curves in Figs. 2, 4, 5 and 6b are the best fits to the data using Eqs. 2 

and 3 and the following optimal parameters: σ = (3.84±0.19)x10-16 cm2 ; τ1 = 

37.72±1.89 ns ; τA,2 = 5.94±2.61 ns ; Γ = (2.88±1.76)x10-29 cm6s-1 ; and e21 = 

0.5±0.06. Fig. 4 plots the values of 1N  and 221 Ne  normalized by the NC density, 

TN , and shows their individual contributions according to the model. The model is 
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capable of fitting the data exceptionally well with the optimal parameter set yielding 

an average relative error magnitude of 0.4 % and a peak error of 2.5 % occurring at the 

lowest measured intensity. The sensitivity of the model to Γ and e21 is conveyed in 

Fig. 4a and 4b respectively.  

It is useful to compare the extracted parameter values to diameter-weighted 

average values using the distribution function shown in Fig. 3 obtained using the 

methods described in Ref. [102]. For the proposed model, we find σ to be ≈ 2x higher 

than the expected value of <σ> = 1.71x10-16 cm2 obtained from transient PL 

measurements but is well within the accepted range of values for annealed SRO 

materials [105]. Furthermore, assuming the relation τA,2
-1 = CA(2/V)2 holds [119],  

where V = (π/6)D3,  and taking CA = 4x10-31 cm6/s [118], we find <τA,2> = 10.26 ns, 

which is also within about a factor of two of the value we extract. Despite the good 

agreement for σ and τA,2, τ1 is found to be ≈ 350x lower than the average radiative 

lifetime, <τrad> =13.2 μs [93]. It is important to note that this value of τ1 which we 

extract is not particularly sensitive to the model used because τ1 primarily impacts data 

fitting in the low intensity regime where existing models are in agreement. We 

attribute the reduced value of τ1 to the large fraction of nonradiating (nrad) NCs which 

are sampled by the pump-probe method but which are not sampled directly in PL 

measurements. The PL quantum efficiency (PLQE), a good measure of the fraction of 

radiating (rad) NCs, was recently reported by Dal Negro et al. [97] for PL optimized 

SRO films exhibiting nearly identical optical properties as the films measured in this 

work to be about 5 %. A low PLQE supports the conclusion that the pump-probe 

methods used in this work primarily sample the nrad-NC population. The fact that the 

value of σ is of similar magnitude for both rad-NCs and nrad-NCs suggests that 

localized defect states near the band edge are responsible for the reduced value of τ1.  

Before discussing these results in greater detail, we first demonstrate the 

effectiveness of the proposed analytical model over that of the independent NC model 

[105] in reproducing the experimental data. In Fig. 5, we compare the best fits to the 

data using the independent NC model [105] with values of e21=2 (Model 1a) and e21 < 

1 (Model Ib) to that of the proposed model which includes both a reduced e21 and the 
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near-field coupling term. Each model variant was optimized to minimize the root-

mean-square error and no further improvements were possible through continued 

variation of the parameter set. As Fig. 5b shows, both Models Ia and Ib with optimized 

parameters oscillate about the experimental data trend and have peak error magnitudes 

which substantially deviate outside of the bounds of experimental uncertainty. For 

reference, the optical parameters we extract from all three model variants are tabulated 

in Table 1.  

 
Table 7.1: Comparison of extracted parameter values for the three model variations plotted in Fig. 7.5.  
 
 
 
 
 
 
 
 
 
 

Model 
e21 
 

σ 
(x10-16 cm2)

τA2 
(ns) 

τ1 
(ns) 

Γ 
(x10-29 cm6/s) 

Ia 2.0 3.7 49 85 NA 
Ib 0.5 1.4 1.5 122 NA 
this work 0.5 3.8 5.9 37 2.9 
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Figure 7.9: (a) Comparison of the three model variants including the independent (i.e. noninteracting) 
NC model [105] with values of e21 = 2 and e21 <1 (black and blue solid curves respectively) and the 
proposed model which includes near-field interaction between N1 states (red solid curve). Each model 
variant is optimal with respect to fitting the data. The curves in the inset are plotted on a logarithmic 
scale zoomed into the region where the 1/3 power law region is observed. (b) Relative error for the 
three model variants compared to the experimental uncertainty (shaded region).  



  

                                                                                              

160

 

Figure 7.10: (a, b) Visualization of model sensitivity to Γ and e21 (c) Data Set B (solid circles), N1 + 
e21N2 (A) scaled to unity and (B) normalized by NT, (C) N1/NT, and (D) e21N2/NT. The sequence of 
pictures in (c) depicts the dominant nonradiative recombination channels vs. pump intensity (Ip) and the 
solid and dashed lines in the manifold indicate active and inactive FCA states respectively.  
 

7.4.4 Monte Carlo Analysis  

To gain further insight into the near-field coupling physics, we rigorously solved 

Eqs. 1 and 3 using Monte Carlo (MC) methods under steady-state pump conditions for 

a NC population having a uniform probability density of 2x1018 cm-3. The near-field 

coupling between two NCs in the N1 state located a distance R1apart was modeled 

using a term of the form τ-1~γR1
-6 where γ was the only adjustable material parameter. 

The physical domain of a typical Monte Carlo calculation is shown below in Figure X 

for two different cases. The first case is for a bulk film, assumed to be infinite in 

extent in all directions. The second is a finite thickness film, which we use to calculate 

the dynamics of ultra-thin (10 nm) quasi-2D films.  
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Figure 7.11: The physical domain of a typical Monte Carlo calculation for (a) the case a thick (> 100 
nm)  film considered to be infinite in all directions and (b) a film with finite thickness, which we use to 
calculate the dynamics of ultra-thin (10 nm) quasi-2D films. (c) A top down schematic cross-sectional 
view of either 3D or quasi-2D domains. The middle cell is generated by randomly positioning the 
nanocrystals according to the specified average density. Then this cell is repeated to impose cyclic 
boundary conditions in directions representing infinite sample extent. The period of the cell is typically 
on the order of 100 nm or larger in order to ensure that any particular nanocrystal does not see a mirror 
image of itself or of its neighbors.  
 

We calibrated the value of γ by matching the results of MC simulations to the 

results of the steady-state analytical model (Eqs. 2 and 3) for a given value of Γ. To 

assist in the calibration of γ and to demonstrate the physical equivalence of the two 

forms of the near-field coupling terms (i.e. γ·R1
-6 ↔ Γ·N1

2) under steady-state 

conditions, we selected material parameters which forced the near-field term to 

dominate the recombination physics over an extended range of pump intensities. A 
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comparison of the MC calibration simulations to the analytical model with the skewed 

parameter set are shown in Fig. 6a where the 1/3 power-law region arising from the 

near-field interaction term is clearly visible over four orders of magnitude. A value of 

γ = Γ/110 was found to accurately reproduce the analytical results. The scaling factor 

(1/110) is entirely accounted for by integrating the near-field contribution of all 

neighboring NCs in the N1 state acting on a randomly selected NC also in the N1 state. 

After calibrating the value of γ, we performed MC simulations using the optimal 

parameter set values which provided the best fit to the data using the analytical model. 

The results of these simulations are shown in Fig. 6b along with the analytical model 

which was already shown to accurately fit the experimental data. Through the MC 

simulations, we are able to extract the effective pair interaction strength between two 

NCs in the N1 state to be γ = Γ/110 = (2.55±1.56)x10-31 cm6/s. This value is nearly 

identical to the bulk Auger coefficient for silicon [109, 118] and supports the 

conclusion that the microscopic near-field mechanism is Auger recombination 

involving two EHPs located in separate NCs.  

 

 
 
Figure 7.12: Typical transient Monte Carlo simulation output showing average nanocrystal occupancy 
vs. time in response to a step function pump intensity input. The red highlighted region of the curve is 
the portion of the curve which is used to calculate the steady-state parameters as a function of pump 
intensity.  
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Figure 7.13: Results of MC simulations (open circles) which treat the near-field coupling between NCs 
in the N1 state by a term of the form γR1

-6 where R1 is the distance between the two interacting NCs. 
The MC results are compared to the steady-state analytical model (Eqs. 2 and 3) where the near-field 
interaction is described by Γ·N1

2  (solid curves labeled A, C, & D as defined in Fig. 4). (a) Results of 
MC simulation calibration performed to fine-tune the ratio γ/Γ and also to demonstrate the physical 
equivalence of γ·R1

-6 and Γ·N1
2. To assist the calibration process, the material parameters were 

intentionally skewed (σ = 3.8x10-16 cm2 ; τ1 = 380 μs ; τA,2 = 59 ns ; Γ = 2.3x10-29 cm6s-1 ; e21 = 0.5) in 
order to force the near-field coupling to dominate the recombination physics, and thereby exaggerate 
the 1/3 power-law region over an extended range of pump intensities. From the calibration, we find γ/Γ 
= 1/110. (b) MC simulation results using the calibrated value of γ = Γ/110 and the optimal parameter set 
described in the text (σ = 3.8x10-16 cm2 ; τ1 = 38 ns ; τA,2 = 5.9 ns ; Γ = 2.9x10-29 cm6s-1 ; and e21 = 0.5). 
The analytical curve is the same as in Figs 7.8, 7.9, and 7.10 and accurately reproduces the 
experimental data.  
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7.4.5 Scaling of Long-range Energy Transfer in Low-Dimensional Systems  

 

Despite the potential for ambiguity of the 1/3 law behavior in 3-D, we find that in 

lower dimensions, some ambiguity is removed by the uniqueness of the power-law 

behavior. In analogous fashion to the above treatment in 3-D, we find for the 2-D and 

1-D cases, the recombination rate for a selected EHP are  
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where 2/1
1min
−= NR Sα  and 1

1min
−= NR Lα for the 2-D and 1-D cases respectively. 

Obviously, the definition of 1N  has necessarily changed to account for the 

dimensionality of the system, e.g. in 2-D, )(
1

SN represents the number of singly excited 

NCs per unit area. At steady-state, the limiting forms for 2-D and 1-D are then easily 

shown to be 4/1
1 ~ GN and 7/1

1 ~ GN respectively following the development of (7.9).  

 It is now instructive to examine the rate equation analysis in non-dimensional form 

for comparison. We have  

 

0ˆ]1[ˆ
1112,
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       (7.14)  

 

 

where p is the dimensionality of the system, and 1N̂ is the fractional occupancy of 

NCs in the single EHP excited state as defined for each dimension as 
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In an experiment, the fractional occupancy is measured indirectly as a measure of the 

total excited carrier losses. In rewriting the rate equations in this non-dimensional 

form, we are able to compare the extracted dipole-dipole coupling strength parameters 

for the various dimensions. We obtain the following relations:  
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where we have used the fact that ( ) 3/2)()( V
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T NN = . Table 7.2 

summarizes the key results of this section regarding the scaling of the long-range 

Coulombic dipole-dipole coupling between excited states of neighboring NCs.  
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Table 7.2: Summary of the laws of scaling for dipole-dipole coupling between excited states in systems 
of Poisson distributed optical centers.  
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Figure 7.14: Steady state Monte Carlo calculations of a quasi-2D film of thickness 20 nm. The scattered 
blue dots in each figure represents the average occupancy at a particular location for single simulation. 
The red curve is an ensemble average of all simulation runs. The sequence of figures represents pump 
intensities of 1, 10, and 25 KW/cm2. As the pump intensity increases, so does the overall occupancy of 
the nanocrystals. However, near the edges of the film, the nanocrystals have higher occupancy on 
average due to the reduced neighbor interaction. At 10 KW/cm2, the ratio of the occupancy at the edge 
to the center is approximately 2:1 and decrease at higher pump intensity due to higher order Auger 
processes limiting the occupancy.   
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7.5 Experimental Evidence of Suppressed Long-range Energy Transfer in Quasi-

2D Systems 

 

In this section, we discuss additional experimental evidence of the d-d interaction 

between excited states in silicon nanocrystal – silicon oxide matrices by showing that 

the predicted behavior of the loss rate vs. pump intensity scales as theory predicts as 

the film thickness is reduced to the order of the characteristic length of the d-d 

interaction (~ 10 nm). Figure 7.15 shows steady-state differential transmission data vs. 

pump intensity data taken on three different samples of silicon nanocrystals formed 

inside of a silicon dioxide host.  
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Figure 7.15: Excited carrier losses vs. pump intensity for three different nc-Si/SiO2 samples fabricated 
using the e-beam evaporation technique as described in Section 7.2. The samples were prepared by Dr. 
Aaron Hryciw of the Brongersma Lab.  
 

The samples were prepared by e-beam evaporation of SiO onto fused silica substrates 

followed by a high-temperature anneal at 1100 °C for 1 hour as described in Section 

7.2. Sample ‘Th’ (black diamonds) is a 230 nm thick (200 nm targeted) nc-Si/SiO2 

film. Sample ‘SL1’ (blue triangles) is a superlattice structure consisting of 10 periods 
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of alternating 20 (23 actual) nm nc-Si/SiO2 and 20 (23 nm actual) nm of SiO2 buffer 

layer. The final sample, referred to as ‘SL2’, is also a superlattice structure but 

consisting of 20 periods of 10 nm (actual unknown at this time) nc-Si/SiO2 and 20 nm 

(actual unknown at this time) of SiO2 buffer layer. The idea behind the sample design 

was to reduce the individual layer thicknesses while maintaining a consistent 

interaction volume of active material for all three samples.  

 The key results are as follows. At low pump intensity, all three samples exhibit 

essentially identical pump-induced loss rates vs. pump intensity, i.e. the linear slopes 

at low pump intensity are identical to within experimental uncertainty. However, at 

high pump intensities, > 0.1 KW/cm2, the curves deviate significantly with the thinner 

films exhibiting higher loss rates than the bulk film in proper order, i.e. ‘SL2’ > ‘SL1’ 

> ‘Th’. A general conclusion which can be derived from this result is that the effects 

of finite film thickness only has a significant impact on the carrier dynamics when the 

nanocrystal occupancy is appreciable. This is conclusive evidence that there is indeed 

electron interaction between excited nanocrystals, independent of the exact 

mechanism enabling the interaction. Now, we discuss the evidence supporting the 

dipole-dipole interaction mechanism.  

 The solid curves represent the best-fit curves using the both the 3-D (‘Th’ and 

‘SL1’ samples) and 2-D (‘SL2’ sample) analytical models. The 3-D analytical model 

fits both the Th and ‘SL1’ samples extremely well and the 2-D model fits the ‘SL2’ 

reasonably well with the exception of the intermediate region between the linear and 

1/4 law regions. Most importantly, the limiting form at high pump intensity is an exact 

1/4 law as predicted by the 2-D theory. The discrepancy in the intermediate transition 

region is the subject of an ongoing investigation using Monte Carlo analysis. It is 

hypothesized that the discrepancy is due to the finite thickness effects of the film 

which are not capture in the 2-D model. Despite this discrepancy, we find that the 

analytical model shows excellent agreement in terms of the parameter selection 

between the ‘Th’ and ‘SL2’ curves. By first fitting the extremes of the ‘SL2’ data with 

the 2-D model, i.e. by neglecting the intermediate regime and then using these same 

parameters in the 3-D model, the ‘Th’ curve is perfectly reproduced with the exception 
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that the VΓ needs to be reduced by a factor of 1.25 or 5/4. Recalling Eq. 7.16, it was 

shown that in going from 2D to 3D, the ratio VS ΓΓ / was approximately 9/8, almost 

identical to the value we extract from experiment. An additional evidence supporting 

the dipole-dipole interaction is that the maximum ratio of occupancies between the 

quasi-2D film and the bulk film approaches 2, which has been a consistent trend in the 

Monte Carlo results as demonstrated in Figure 7.14.  

 

 
Figure 7.16: Steady-state photoluminescence spectroscopy measurements of the three samples: 200 nm 
bulk film (Th), 20 nm x 10 superlattice (SL1) and 10 nm x 20 superlattice film (SL2). The data show an 
increasing blue shift with decreasing film thickness as well as a maximum PL signal by the 20 nm SL 
sample. The PL data was taken by Dr. Aaron Hryciw in the Brongersma Lab (Stanford University).  
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Figure 7.17: High resolution and energy filtered (bottom four images) TEMs of the thick and SL1 
samples shown side-by-side for direct comparison.  
 

 

7.6 Conclusions  
 

Experimental evidence of inter-nanocrystal coupling between optically excited 

electrons in dense silicon nanocrystal systems embedded in amorphous silicon oxide 

films was presented. A theoretical model to explain the observation of enhanced 

nonradiative recombination rates at high pump intensities was proposed. The theory 

asserts that the dominant interaction between excited carriers is a dipole-dipole 

interaction resulting from long-range Coulombic forces. The strength of this coupling 

increases inversely to the sixth power of separation which I have shown to scale as the 

square of the density of excited nanocrystals in 3-D or as the cube of the density in 2-

D, or as the sixth power of the density in 1-D. I presented experimental evidence 
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supporting this theory showing that as the film thickness reduces, the transition theory 

is able to predict the trend in going from 3-D to quasi-2D. Although, additional 

experiments are encouraged to continue test this theory, the evidence collected thus far 

is overwhelmingly in favor of the proposed theory.  

The scaling of the Forster-Auger process to low-dimensions has not been treated to 

date to my knowledge. Therefore, this subject provides an interesting field of new 

research. One of the interesting outcomes of this process is the notion of non-local 

heat generation and transfer. Heat can be generated approximately 10 nm away from 

the source electron. It is interesting to think about the possibility of controlling heat 

generation on the nanoscale in order for selective growth of nanostructures.  

 



  

                                                                                              

173

Chapter 8 

 

 

Conclusion   
 

And it turns out that all of the information that man has carefully 
accumulated in all the books in the world can be written in this form in 
a cube of material one two-hundredth of an inch wide-which is the 
barest piece of dust that can be made out by the human eye. So there is 
plenty of room at the bottom!  
 

                   – R. P. Feynman 

 

Along with the creation, transport, or storage of information, energy must be 

converted. That is, entropy must be created and heat dissipated in accordance with 

fundamental thermodynamic principles. Considering the current trajectory of 

information technology, it is evident that that every atom within a few nanometers of a 

substrate surface will count [120] and every kBT of energy will need to be accounted 

for! Therefore, as we seek to reduce the volume of material used to store and process 

data down to atomic dimensions, we must simultaneously advance our capability to 

model, experimentally measure, and ultimately manipulate the flow and conversion of 

energy on similar length scales.  

This dissertation contributed to the fundamental understanding of energy 

conversion and transport physics in the silicon nanostructures likely to be the building 

blocks of future electronic and photonic information systems. In the following section, 

I will summarize the key contributions of this work as well as the conclusion which 

resulted from this work. In the final section, I will describe future research directions 

which build upon the insights developed in this dissertation.  
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8.1 Concluding Remarks  
 

8.1.1 Nonequilibrium Energy Conversion in Nanotransistors 

 

In the first half of this dissertation, we examined the physics of energy conversion 

between electrons and phonons in nanoscale silicon transistors at conditions far from 

thermal equilibrium. A distinguishing factor of this work is that we examine the case 

when both the electron and phonon subsystems are significantly perturbed from 

equilibrium such that both particle types exhibit quasi-ballistic transport behavior. 

This work was motivated by a long-held concern, initially brought to attention by 

Artaki and Price [31] in the late 1980s, that hot phonon effects may eventually thwart 

the continued scaling of silicon transistor technology. If the rate of energy conversion 

between the hot electrons and the relatively stationary optical phonons (OPs) is 

sufficiently fast, and subsequent decay of OPs into the long-wavelength, high-velocity, 

acoustic phonons (APs) responsible for heat conduction is sufficiently slow, an energy 

conversion bottleneck can exist leading to a growing population of hot OPs in the 

drain junction. If the OP occupancy nop begins to exceed unity, the rate of OP 

absorption by the electrons (τ-1 ~ nop) becomes comparable to OP emission (τ-1 ~ nop + 

1) and the electrons may begin to efficiently absorb OP energy. Consequently, the 

electron momentum relaxation time, which directly impacts the mobility, will be 

reduced while simultaneously extending the energy relaxation time in the drain 

junction. A reduction in device current for a given bias voltage is expected but in 

extreme cases, where OP occupancy greatly exceeds unity, negative differential 

conductance instability like that observed recently in suspended metallic carbon 

nanotube devices [72], may occur. Accurate determination of the conditions required 

to reach such a condition in nanometer silicon devices is therefore essential but 

inherently difficult to quantify.  

To properly simulate the negative feedback effects of hot phonons, the electron 

and phonon subsystems must be fully-coupled and the simulation must be self-

consistent if the perturbation is substantial. It is not sufficient to examine hot phonon 
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effects by simply including electron-phonon scattering (at any level of detail) in an 

electron transport model. Accurately simulating this scenario is inherently challenging 

because it requires individually tracking a wide range of electron and phonon eigen 

states and their interactions in space and time. In order to make the problem tractable, 

some level of approximations are needed. In previous numerical studies gross 

simplifying assumptions were made regarding the electron-phonon scattering 

mechanisms and the phonon dispersion. In particular, previous coupled electron-

phonon or electro-thermal studies did not adequately model the nonequilibrium 

phonon distributions existing near (< 20 nm) the peak energy density region of the 

device or include the mitigating effects of finite optical phonon dispersion and 

reductions in OP lifetimes under high power density conditions.   

 A key contribution of this work was to show that the effects of hot OPs on silicon 

nanotransistor performance were substantially overestimated in previous studies as a 

result of the limitations listed above. To examine the hot phonon effect, this work 

developed fully-coupled and self-consistent, device-level, Boltzmann transport (BT) 

simulations which efficiently coupled the electron and phonon subsystems while 

treating electron and phonon dispersion with a sufficient and comparable level of 

detail. This fully-coupled approach is the most rigorous coupled electron-phonon 

transport simulation implemented for semiconductor devices to date and greatly 

expands upon previous work by Pop [53] and Sinha [121] who developed electron 

Monte Carlo and split-flux Boltzmann models respectively to treat independent 

electron and phonon transport. Efficient coupling between the electrons and phonons 

was achieved through the introduction of a new stochastic nonequilibrium phonon 

occupation number rejection algorithm implemented within a well-established electron 

Monte Carlo framework The electron-phonon scattering rates are dynamically 

adjusted within each device computational cell volume and the rejection algorithm 

becomes more efficient as the level of deviation from equilibrium increases.  

In addition to the development of coupled simulations, the lifetimes and two-

phonon final states spectrum for OPs determined to have high occupancy during 

transistor switching were computed using a full-band, anharmonic perturbation 
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approach. The computed nominal (equilibrium) OP lifetimes were then hardwired into 

the coupled electron-phonon transport simulations to provide an increased level of 

accuracy. The silicon phonon bandstructure was modeled using a six-parameter 

valence force-field model which accurately reproduces the 3D anisotropic phonon 

dispersion.  

Through these self-consistent coupled device simulations, we determined that the 

reduction in drive current predicted by previous studies was overestimated by more 

than an order of magnitude and that energy densities greatly exceeding 100 TW/cm3 

will be required in order to reach an unstable operating condition. To determine the 

likelihood of reaching this critical power density, the drain junction volumetric power 

density trend was computed for various transistor device designs using the current 

ITRS and was found to have a channel length dependence scaling as L-1.7. We find that 

the critical power densities will not be reached within the existing roadmap timeline 

and consequently hot phonon effects should not contribute significantly to device 

performance. In addition to this important conclusion, we find that, contrary to earlier 

estimates [122], the effect of hot phonons on leakage current is negligible due to the 

rapid quenching (~5 ps) of the nonequilibrium condition. Furthermore, it is found that 

self-heating at the source-channel interface during switching increases current 

injection in the quasi-ballistic devices and partially offsets small mobility reductions in 

the drain due to excess phonon scattering.  

Although the coupled model was developed for silicon devices, the approach is 

sufficiently general to be easily applied to other semiconductor systems. Finally, it 

should be noted that this work completes more than a decade of theoretical work 

performed at Stanford by multiple generations of graduate students who have 

addressed this complex topic with increasing degree of accuracy.  
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8.1.2 Energy Conversion in Silicon Nanophotonic Materials 

 

The second half of this dissertation examined the physics of carrier dynamics and 

the associated energy conversion in dense systems of optically pumped silicon 

nanocrystals (NCs) embedded in amorphous dielectric films. These materials exhibit 

stable, room-temperature visible and near-infrared luminescence as well as the ability 

to sensitize codoped Er3+ ions making them promising materials in the development of 

inexpensive, CMOS-compatible short-range coherent optical sources. Due to inherent 

experimental ambiguity, previous pump-probe and luminescent studies resulted in the 

proposal of multiple, seemingly contradicting sets of carrier rate equations to describe 

the NRCR physics in these materials. Specifically, bulk-like, i.e. continuous charge 

distribution models, as well as discrete non-interacting nanocrystal models have been 

employed to describe previous results.  

A key contribution of this work was the development of a custom, two-color 

optical pump-probe system operating at 532 nm (a 2nd harmonic of the fundamental 

1064 nm laser line) and 1064 nm and having sub-10 picosecond temporal resolution 

and a detection sensitivity within 3dB of the shot noise limit set by the probe beam. 

This system was used to measure the carrier dynamics of thin silicon NC films down 

to isolated films of 20 nm thick and superlattice stacks with active layers down to 10 

nm through indirect probing of the excited carrier intraband absorption. The unique 

dependence of the excited carrier losses vs. probe delay and pump intensity revealed 

enhanced NRCR at high NC occupancies, which could not be reproduced using 

existing models. Specifically, saturation at higher excitation levels were in 

contradiction to proposed bulk continuum models.  

A new coupled carrier dynamics theory was developed to model the optically-

pumped NCs embedded in amorphous silicon oxide thin films. The new theory 

explained an enhanced rate of nonradiative recombination observed at high pump 

intensities as the result of long-range Coulombic dipole-dipole coupling between 

excited electron states in neighboring NCs. This coupling efficiency of this process is 

shown to increase inversely with the sixth power of the average separation distance 
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between excited NCs in similar form as Förster resonant energy transfer (FRET) 

theory would predict and has a cubic dependence on average excitation level in 3D 

systems. Although arising from the same origin and having similar properties, the 

resonant energy transfer physics identified and researched in this work differs from the 

FRET process in that the coupling is between two excited states in different NCs 

whereas in FRET, coupling is between an excited state in the donor and the ground 

state of the acceptor. In this sense, the process is also equivalent to Auger 

recombination at a distance. In 3D, the scaling of the d-d coupling is shown to scale as 

the cube of the average excitation level of the NC system and can therefore be 

confused with the standard bulk Auger scaling. An analytical theory of the scaling of 

this effect is developed and the stated ambiguity in 3D is shown to disappear in lower 

spatial dimensions, e.g. ultra-thin films (2D) or ridges (1D) containing NCs,  with the 

d-d coupling scaling as the fourth and seventh powers of the average excitation levels 

for 2D and 1D respectively. The validity of the analytical model was substantiated 

using rigorous Monte Carlo simulation techniques to solve the coupled dynamics for 

low-dimensional systems of particles. Furthermore, the 2D model was experimentally 

validated by measuring excited carrier absorption losses in silicon NC films with 

critical dimensions down to 10 nm. The 10 nm and 20 nm films were grown in 

superlattice structures with 30 nm silicon oxide spacers in order to enhance the signal 

strength and maintain an approximately constant active device material thickness in all 

samples. The transition from 3D to 2D behavior is captured experimentally as a 

systematic reduction in carrier losses and a characteristic change in power-law 

behavior from 1/3 to 1/4. An important consequence of the reduced NC interaction is 

that the rate of nonradiative recombination is reduced by as much as factor of 2 by 

going to ultra-thin films. This result has the potential to impact future nanoparticle 

optical device designs.  

The development of the coupled excited d-d interaction model is not limited to 

silicon systems and should be relevant to other semiconductor quantum dot or 

nanoparticle composite materials.  
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8.2 Future Work: Energy Conversion in Interconnected Nanosystems  
 
The final portions of this dissertation focused on the discovery of strong dipole-dipole 

coupling between excited states in systems of densely packed silicon NCs as well as 

the characteristic signature of this coupling in systems having lower spatial 

dimensions. There has been a considerable amount of work concerning dipole-dipole 

interaction between an excited state of a donor nanoparticle (NP) or quantum dot (QD) 

and the ground state of a nearby acceptor NP/QD. However, surprisingly, no prior 

work can be found regarding the dipole-dipole coupling between excited states in 

NP/QD pairs despite the discovery of this effect six decades ago in impurity centers 

[112] and again much later in the rare-earth doped glass fibers, c.f. Refs. [123, 124], 

heavily utilized in long-haul telecommunications systems. Although the work here 

focused on systems of silicon NCs, the physical processes described are not unique to 

this material system and should play an equally important role in a wide variety of 

densely packed (> 1016 cm-3)  quantum dot systems.  

As mentioned, there has been a considerable amount of work examining the effect 

of d-d coupling between excited states in rare-earth doped glass fibers. Referred to as 

“cooperative up-conversion”, the interaction of two closely spaced erbium ions (Er3+) 

both initially residing in the first excited state (I13/2)  may result in the nonradiative de-

excitation of one ion (I13/2  I15/2), the donor ion, and transfer of energy to the 

acceptor ion which ends in the radiative emission of a photon at twice the initial 

energy. The acceptor ion then makes a transition to the upper I11/2 state via an 

intermediate vibrational coupled transition to the I9/2 state before finally relaxing to the 

ground state (I15/2) where it subsequently emits a photon of energy 1.27 eV (980 nm). 

Having been initially excited by photons of energy 0.838 eV (1480 nm), this d-d 

coupling between neighboring ions results in an up-conversion in photon energy, 

hence the attributed name. It is interesting to point out that, in three dimensions, the 

rate of de-excitation of an any given Er3+ ion is commonly taken to be proportional to 

the square of the density of excited atoms rather than the cube [124]. For a Poisson 

distributed population, we saw in Chapter 7 that such a process should scale as the 

cube of the density. However, a square-law density dependence may result in the case 



  

                                                                                              

180

that the ions are not Poisson distributed but are rather distributed in a manner which 

favors the formation of ionic pairs. In such a case, the average distance between 

excited neighbors has little effect on the deexcitation rate and is effectively removed 

from the integral over all states. Studies which control the density of particles 

effectively could be used to examine this subtle effect.  

There exists a large body of work addressing the physics of FRET and its scaling 

to lower dimensional systems of molecules, defect centers, and more recently, 

quantum dot (QD) systems. A large portion of this work arose from studies performed 

on biological systems where spectroscopic techniques based on this process have been 

used to great advantage in probing biochemical reactions and transport of energy 

across nanometer thick lipid bilayers. A resurgence in research activity in this area in 

recent years has been spurred by the commercialization of semiconductor QDs in 

solution, e.g. II-VI core/shell heterostructures, which have increased chemical stability 

and are relatively robust to extended optical excitation.  The size of the QDs, and 

therefore their bandgap energy, can be controlled with great precision. If one can 

control the positioning of QDs to nanometer precision, then one can manipulate the 

flow of charge through the system by employing the FRET effect. For example, an 

excited electron-hole pair in a particular QD will have a strong tendency to transfer to 

larger, smaller band gap, QDs. Could an analogous approach be used to control energy 

flow using the Auger-Förster RET process, perhaps to deposit heat in a desired 

location?  

Monte Carlo studies have been conducted to quantify the rate of energy conversion 

in low-dimensional systems of nanoparticles (NPs). The results of a study performed 

on one exemplary nanosystem is shown in Figure 8.1. The system is a dielectric 

sphere of radius 10 nm which contains Poisson distributed NPs (or equivalently QDs) 

with a density of 2x1018 cm-3. The physical parameters of the system are identical to 

those used in modeling silicon NCs in silicon oxide as described in Chapter 7.  
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Figure 8.1: Steady-state Monte Carlo simulation of an optically pumped (CW), nanoparticle (NP) 
system having a spherical geometry with radius 10 nm. The simulation model includes inter-NP dipole-
dipole coupling and nonradiative energy exchange between excited electron states as was described in 
Chapter 7. The top panel shows a scatter plot of NP occupancy, defined by the relation N1/NT + 2*N2/NT + 
3*N3/NT +…, as a function of radial position. The solid light-blue line indicates the ensemble average 
occupancy vs. radial position. As expected, the occupancy tends to increase near the edges due to the 
reduction in interacting neighbors. The apparent reduction near the center of the sphere is an artifact of 
the simulation and is not indicative of any physical process. The binning excluded NPs within the inner 
most 1 nm region. The bottom panel is a scatter plot of the steady-state heat generation rate per second 
normalized by the bandgap energy of the NP system. The solid green line indicates the ensemble 
averaged heat generation rate vs. radius. In contrast to the occupancy plot, the heat generation per 
particle at steady-state conditions is uniform along the radius.  
 
 

As expected, the occupancy tends to increase near the edges due to the reduction in 

interacting neighbors. The apparent reduction near the center of the sphere is an 

artifact of the simulation. The statistical binning excluded NPs within the inner most 1 

nm region. The bottom panel is a scatter plot of the steady-state heat generation per 

second normalized by the bandgap energy of the NP system. The solid green line 

indicates the ensemble average heat generation rate vs. radius. In contrast to the 

occupancy distribution, the heat generation per particle at steady-state conditions is 

uniform throughout the sphere. This arises from the necessity to have energy transfer 

balance at steady-state. With the assumption that the energy excitation rate from the 
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optical beam is uniform, the occupancy will adjust itself in order to just balance the 

rate of dipole-dipole energy transfer.  

The model assumes that heat is generated when either an electron-hole pair 

recombines through the standard nonradiative process or as the result of the long-

range interaction with neighboring excited particles via the Forster-Auger mechanism. 

In each case, the amount of heat generated is taken to be equal to the bandgap of the 

particle. However, in the former case, the heat is assumed to be generated within the 

particle where the electron recombined and in the latter case, the heat is assumed to be 

dissipated in the acceptor particle, as the result of a rapid (assumed immediate for 

simulation purposes) intraband relaxation. Since there is a distribution of acceptors in 

which a donor particle can exchange energy with, selecting which acceptor particle 

receives the energy presents an additional challenge. The choice is made during the 

simulation by ranking the probabilities according to the strength of the coupling, 

which scales as 1/R6. The selection is then made in the standard Monte Carlo 

approach. The dipole-dipole energy transfer mechanism could potentially contribute to 

the macroscopic heat transfer rate of low-thermal conductivity materials. One could 

conceivably control the rate of heat transfer across a membrane through external 

charge injection or optical pumping.  
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