

SYSTEM-LEVEL EFFECTS OF SOFT ERRORS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Hyungmin Cho

August 2015

This dissertation is online at: http://purl.stanford.edu/zm955yw2192

© 2015 by Hyungmin Cho. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

ii

http://purl.stanford.edu/zm955yw2192

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Subhasish Mitra, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

John Gill, III

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Oyekunle Olukotun

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

iv

Abstract

Radiation-induced transient errors (soft errors) are a major reliability concern

for digital systems in advanced silicon CMOS technologies. Soft errors create

unexpected changes in signal values during system operation, mostly in on-chip

memories and flip-flops, resulting in undetected data corruption or expensive

downtimes. This dissertation focuses on soft errors in flip-flops because design

techniques to protect flip-flops are generally expensive. To protect on-chip memories,

coding techniques are routinely used.

Error injection simulations are widely used for characterizing system-level

effects of soft errors in a given design. These techniques generally inject single-bit

errors into randomly-chosen locations (flip-flops, software-visible registers and

memories) during randomly-chosen clock cycles. Flip-flop-level error injections suffer

from slow Register-Transfer-Level (RTL) simulations. High-level error injections, that

inject errors into software-visible registers or memories, are generally fast.

Unfortunately, very little literature exists on the accuracies of high-level error

injection techniques. We demonstrate that existing high-level error injections can be

highly inaccurate by over an order of magnitude, and present detailed error

propagation analysis to quantitatively explain the causes of such inaccuracies.

For fast, yet accurate, error injection simulations, we present a new mixed-

mode simulation platform that combines simulators at two different abstraction levels.

This platform achieves 20,000× speedup over RTL-only simulation for an industrial

v

multi-core chip consisting of approximately half-a-billion transistors. This platform

targets soft errors in uncore components (e.g., memory subsystem, I/O controllers) that

occupy significant portions of the overall chip area. Using this platform, we

demonstrate, for the first time, that flip-flop soft errors in uncore components can

significantly impact system-level reliability. We also demonstrate that recovery from

uncore soft errors can be challenging for traditional system-level checkpointing

techniques. A new replay technique overcomes these challenges for uncore

components belonging to the memory subsystem.

vi

Acknowledgments

First, I would like to express my sincere gratitude to my advisor, Prof.

Subhasish Mitra, for his guidance, support, and encouragement. He inspired me with

his tremendous commitment and enthusiasm for innovative research. During my

degree progress, he always led me with visions and disciplines. I feel that I am very

fortunate to have him as my academic advisor. Without him, my achievement would

not have been possible.

I would like to thank my reading committee, Prof. Kunle Olukotun and Prof.

John Gill. I also would like to thank my oral exam’s chair, Prof. Phillip Wong. I also

would like to extend my gratitude to Dr. Tanay Karnik, who kindly agreed to be on

my oral’s committee in spite of the inconvenience of the travel to Stanford.

I wish to thank all members of the Stanford Robust Systems Group for their

enormous support and companionship. I would also like especially thank Dr. Young

Moon Kim, Eric Cheng, David Lin, Thomas Shepherd, Dr. Mohamed Sabry, and Dr.

Shahrzad Mirkhani with whom I have had close interactions. I have learned a lot from

all of my fellow group members, and I will always treasure their friendship. Also, I

thank Ms. Beverly Davis and Ms. Uma Mulukutla for being the best administrators

and good friends.

vii

I was fortunate to work with great collaborators and mentors including Prof.

Jacob A. Abraham from the University of Texas at Austin, Dr. Chen-Yong Cher at

IBM T. J. Watson Research Center, and many others. These wonderful collaborations

have been one of the most important contributions for this dissertation.

Last but not least, I would like to thank my family and friends for their love

and support. More than anyone else, I owe my deepest gratitude to my dear wife,

Katherine Naeon Shin.

My studies at Stanford were supported by DARPA, FCRP GSRC, DTRA,

STARnet SONIC, the National Science Foundation (NSF), Variability Expedition

(NSF-sponsored), and Korea Foundation for Advanced Studies (KFAS).

viii

Table of Contents

Abstract iv

Acknowledgments vi

Chapter 1. Introduction 1

1.1. Soft Error Challenges . 1

1.2. Contributions . 3

1.3. Outline . 4

Chapter 2. Quantitative Evaluation of Soft Error Injection Techniques 5

2.1. Introduction . 5

2.2. Error Injection Methodology . 10

2.2.1. Benchmark Applications . 11

2.2.2. Error Injection Samples . 12

2.2.3. Error Injection Techniques . 13

2.3. Results: Error Injection Inaccuracies for the LEON3 processor 15

2.4. Results: Error Injection Inaccuracies for the IVM processor 22

2.5. Results: Inaccuracy Analysis . 25

2.5.1. Flip-flop Error Propagation Tracking 25

2.5.2. Flip-flop Error Propagation Types 28

2.5.3. Outcomes versus Flip-flop Error Propagation Types 32

ix

2.5.4. Flip-flop Error Propagation Patterns 35

2.5.4.1. Flip-flop Error Propagation Pattern Details 37

2.5.5. Equivalent Error Candidates . 39

2.5.6. Error Propagations to “Other” Software-visible States 43

2.5.7. Results Cross-Check . 54

2.6. Conclusion . 58

Chapter 3. Mixed-mode Simulation Platform for Soft Error Simulation 59

3.1. Introduction . 59

3.2. Mixed-mode Soft Error Simulation Platform 62

3.2.1. Mixed-mode Platform Simulation Modes 63

3.2.2. Soft Error Injection Methodology 66

3.2.3 Mixed-mode Simulation Performance 70

3.3. Soft Error Injection Results for Uncore Components 71

3.3.1. Flip-flops Targeted for Error Injection 72

3.3.2. Benchmark Applications . 73

3.3.3. Application-level Erroneous Outcome Rates 76

3.4. Mixed-mode Platform Accuracy . 79

3.4.1. Warm-up Period of Co-simulation Mode 79

3.4.2. Limited Co-simulation Length 80

3.4.3. Application-level Outcomes Accuracy 82

x

3.5. Conclusion . 83

Chapter 4. Soft Error Resilience for Uncore Components 84

4.1. Introduction . 84

4.2. System-level Checkpoint Recovery Challenges 85

4.2.1. Long Error Detection Latency of Uncore Soft Errors 86

4.2.2. Long Rollback Distance for Uncore Soft Errors 87

4.3. Uncore Soft Error Resilience Using Quick Replay Recovery 89

4.3.1. QRR Normal Operation . 93

4.3.2. QRR Replay Recovery Operation 93

4.3.3. QRR Results . 96

4.3.3.1. Selective Flip-flop Protection Using QRR 97

4.3.3.2. QRR Overheads Breakdown 100

4.4. Conclusion . 101

Chapter 5. Concluding Remarks 103

Publications 105

References 107

xi

List of Tables

2.1 Error injection techniques at various layers of abstraction. 7

2.2 SPECINT 2000 benchmark applications. 12

2.3 Percentage of an outcome contributed by a propagation type for the LEON3

processor. . 34

2.4 Percentage of an outcome contributed by a propagation type for the IVM

processor. . 35

2.5 Observed rates of flip-flop error propagation patterns for R- and M-only

propagation types for the LEON3 processor. 39

2.6 List of architectural states belong to the Other states and their corruption

rates for the LEON3 processor. . 47

2.7 States shared by processor cores in Fig. 2.8. 48

2.8 Various backup checker firing scenarios. 49

2.9 Observed rates of Other state corruption patterns and subsequent

propagation patterns to the register-file and memory. 54

2.10 Inaccuracies of outcome rates resulting from RegW error injections for the

LEON3 processor. . 56

2.11 Inaccuracies of outcome rates resulting from VarW error injections for the

LEON3 processor. . 56

2.12 Inaccuracies of outcome rates resulting from RegW error injections for the

IVM processor. . 57

xii

2.13 Inaccuracies of outcome rates resulting from VarW error injections for the

IVM processor. . 57

3.1 High-level uncore states modeled by the high-level uncore models. 66

3.2 Mixed-mode simulation performance per each step. 71

3.3 Processor core and uncore components in OpenSPARC T2. 72

3.4 Number of flip-flops in the targeted uncore components. 73

3.5 Benchmark applications for uncore component soft error injection

simulations. . 75

4.1 Error resilience improvement goals and the required portions of flip-flops

that need to be protected. 99

4.2 QRR overhead comparison. . 100

4.3 QRR area and power overhead breakdown for L2C and MCU. 101

xiii

List of Figures

2.1 BEE3 emulation system using Virtex-5 FPGAs. 11

2.2 Comparison of the observed rate of each outcome type obtained from

various error injection techniques for the LEON3 processor. (a) Vanished.

(b) ONA. (c) OMM. (d) UT. (e) Hang. 19

2.3 Comparison of the observed rate of each outcome type obtained from

various error injection techniques for the IVM processor. (a) Vanished. (b)

ONA. (c) OMM. (d) UT. (e) Hang. 23

2.4 Error propagation detection logic. 28

2.5 Flip-flop error propagation types and their observed rates. (a) Flip-flop error

injections into the LEON3 processor. (b) Flip-flop error injections into the

IVM processor. 31

2.6 Percentage of a propagation type resulting in an outcome. (a) Flip-flop error

injections into the LEON3 processor. (b) Flip-flop error injections into the

IVM processor. . 33

2.7 Observed probabilities of obtaining equivalent error candidates using high-

level error injection for a given flip-flop error. 43

2.8 Error propagation detection logic for the Other states. 47

2.9 Observed rates of flip-flop error propagation types including Other state

corruptions. 51

xiv

3.1 Mixed-mode platforms. (a) Accelerated mode. (b) Co-simulation mode. . . 65

3.2 Error injection using our new mixed-mode simulation platform. Steps in

gray color use co-simulation mode. 67

3.3 Application-level erroneous outcome rates resulting from error injection for

uncore components. (a) L2C. (b) MCU. (c) CCX. (d) PCIe. 77

3.4 OMM rate of uncore components and processor cores. 79

3.5 Microarchitectural state difference during the warm-up period. 80

3.6 Percentage of flip-flops that result in situations in which errors in uncore

microarchitectural states not modeled by high-level uncore models persist

beyond the given co-simulation cycles. 82

3.7 Comparison of observed erroneous outcome rates from RTL-only

simulations vs. those from our mixed-mode platform. 83

4.1 Cumulative distribution of uncore error propagation latencies to processor

cores. . 87

4.2 Cumulative distribution of required rollback distance resulting from soft

errors in L2C and MCU. . 89

4.3 QRR for L2C and MCU. . 92

1

Chapter 1

Introduction

1.1. Soft Error Challenges

Radiation-induced transient errors (soft errors) are a major reliability concerns

for digital systems in advanced technologies [Sanda 08, Seifert 12]. They cause

transient errors, mostly in on-chip memories and sequential elements (latches and flip-

flops). These errors can result in undetected data corruption or expensive downtimes.

To ensure robust operation of digital systems in the presence of soft errors, it is

crucial to understand system-level effects of soft errors, i.e., how soft errors alter the

behavior of the entire system and eventually affect the outcome of the application

running on the system (applicaton-level effects). Proper understanding of such effects

is important to achieve the desired level of system reliability in the presence of soft

errors without incurring excessive costs; error protection techniques usually involve

additional costs, such as power, performance, and area overheads [DeHon 10, Mitra

10].

In this dissertation, we study the accuracy levels associated with existing

techniques for quantifying system-level effects of soft errors. Using extensive

2

simulation and emulation, we quantitatively compare accuracy levels and perform a

thorough analysis on the sources of (in)accuracies associated with those mechanisms.

This dissertation also studies system-level effects of soft errors in uncore

components 1 , such as memory subsystem or I/O controllers. Uncore components

account for a significant portion of today’s large-scale systems (e.g., multi-core

processors) [Li 13]. However, very few publications address soft errors in uncore

components, unlike widely-studied soft errors in processor cores. Such limited

understanding on soft errors in uncore components hinders efficient system design that

are resilient to soft errors.

This dissertation focuses on radiation-induced soft errors in flip-flops (flip-flop

soft errors) for several reasons:

1. Published data in literature, based on actual radiation test results, demonstrates

that flip-flop-level error injection, which injects a single bit-flip to a randomly

chosen flip-flop at a randomly chosen clock cycle, closely mimics system

behavior in the presence of soft errors [Bottoni 14, Sanda 08].

2. Radiation testing results over several technologies (including 22nm FinFETs)

show that combinational logic circuits are significantly less susceptible to soft

errors [Seifert 12].

3. Design techniques to protect a system from flip-flop soft errors are generally

expensive [Bernick 05, Borkar 07]. Coding techniques are routinely used for

protecting on-chip memories [Kim 07, OpenSPARC].

1 Also be referred to as “nest,” “outside-core,” or “northbridge”. In this dissertation, we use this term to

refer to components that are not processors or accelerators.

3

4. For permanent faults, there exist some published results comparing high-level

fault models with gate-level stuck-at faults (mostly in the manufacturing testing

literature and some in the architecture literature) [Maniatakos 11b]. In contrast,

there exists very little analysis for temporary errors.

1.2. Contributions

1. We quantify the inaccuracies associated with various error injection techniques

through detailed emulation and simulation results. Our results show high levels

of inaccuracies (up to an order of magnitude) associated with widely-used soft

error injection techniques compared to flip-flop-level soft error injection. We

also explain the cause of such inaccuracies through a detailed analysis, which

reveals that they directly model only a very small subset of system-level

behaviors that can arise from flip-flop-level errors.

2. We present a simulation platform that is capable of simulating large-scale SoCs

while modeling detailed flip-flop soft errors in uncore components. This

approach overcomes the inaccuracies associated with existing soft error

injection techniques while achieving high throughput for soft error simulations,

when compared to soft error simulations that use the Register-Transfer-Level

model of the entire system design (RTL-only simulation), this platform

achieves over 20,000× speedup.

3. We present the first study of system-level effects of soft errors in uncore

components in a large-scale industrial-grade OpenSPARC T2 SoC with 500

million transistors, eight processor cores, and many uncore components

4

[OpenSPARC]. We report quantified results on the effects of soft errors in L2

cache controllers, DRAM controllers, crossbar interconnects, and PCI Express

I/O controllers. We show that soft errors in uncore components can have

significant reliability impact comparable to that of processor cores.

4. Our soft error analysis shows that traditional system-level checkpoint recovery

techniques that generally target processor cores are inadequate for uncore

components since those techniques may incur long delays for system outputs.

To overcome the challenge, we present a new soft error recovery technique

called Quick Replay Recovery (QRR). We demonstrate the effectiveness of

QRR for the L2 cache controller and the DRAM controller in the OpenSPARC

T2 design. QRR results in 100× improvement (i.e., reduction) of the probability

that an application run fails to produce correct results due to soft errors; the

corresponding chip-level area and power impact for all L2C and MCU instances

are 1.44% and 2.49%, respectively.

1.3. Outline

Chapter 2 discusses the inaccuracies associated with existing soft error

injection techniques for simulation studies. In Chapter 3, we introduce a new

simulation platform that accelerates soft error simulation for uncore components.

Chapter 4 presents system-level effects of soft errors in uncore components and

discusses soft error resilience challenges for uncore components. Finally, we conclude

this dissertation in Chapter 5.

5

Chapter 2

Quantitative Evaluation of Soft Error Injection Techniques

© [2013] IEEE. Part of this chapter has been reproduced with permission from H. Cho

et al., “Quantitative Evaluation of Soft Error Injection Techniques”, Proceedings of

Design Automation Conference 2013.

2.1. Introduction

While radiation testing is generally successful in evaluating the soft error

resilience of digital systems [Michalak 12, Sanda 08], simulation-based error injection

techniques are also important at various stages of robust system design:

1. To analyze the application-level effects of soft errors.

2. To quantify the effectiveness of various soft error resilience techniques.

3. To make decisions about the set of error resilience techniques that must be used

to protect a given design from soft errors.

Error injections at the flip-flop level can accurately capture the effects of flip-

flop soft errors [Ramachandran 08, Sanda 08]. Such injections generally rely on slow

6

RTL simulations, sometimes with hardware acceleration or emulation. In contrast,

error injections at higher abstraction layers are much less precise but can be very fast.

Error injection techniques at high-level abstraction layers are important for

understanding the application-level erroneous behaviors. The following abstraction

layers are widely used (Table 2.1):

1. Software-level: Errors are often represented as single bit-flips in software

variables, e.g., [Chen 08, Yim 10].

2. Architecture-level: Errors are injected into states defined by the Instruction Set

Architecture (ISA). Single bit-flips in the architectural registers are often used,

e.g., [Feng 10, Pattabiraman 11, Racunas 07, Zhang 10].

3. Micro-architecture-level: Error injection is performed using a detailed micro-

architectural simulator. The internal states of the simulator are targets of error

injection. Depending on the simulator implementation, such error injection

targets may not always correspond to actual hardware components.

7

Table 2.1. Error injection techniques at various layers of abstraction.

Abstraction layer Example platform
Performance

(cycles / sec.)

Software x86 processor [Yim 10] 3109

Architecture TSIM SPARC simulator [Leon] 6107

Micro-architecture gem5 simulator [Gem5]
3106 (Simple CPU)

2105 (Detailed CPU)

Flip-flop
IVM Alpha-like processor

RTL simulation [Maniatakos 11b]
6102

Flip-flop

(Emulation)

OpenSPARC T1 FPGA emulation

[Pellegrini 12]
107

To select a suitable error injection technique that meets the target accuracy and

execution time requirements, one must address the following two essential aspects:

1. Quantify the inaccuracies of results obtained from error injection at various

layers of abstraction.

2. Analyze the sources of these inaccuracies.

There exist very few publications that quantitatively address these questions.

[Rimen 94] discusses inaccuracies of pin-level error injections that model only a small

fraction (9-12%) of flip-flop errors. The authors also conclude that results from flip-

flop error injections can match those from a special register-level error injection

technique that injects register-level effects profiled from flip-flop error injections.

However, the comparison is limited to a simple processor for which 80% of all flip-

8

flops belong to user-visible registers. [Rebaudengo 02] reports that register-file error

injections can result in up to 400% inaccuracies for a version of the LEON processor

[Leon]. However, the authors do not quantitatively analyze the sources of such

inaccuracies.

[Arlat 03, Sanda 08] compare results obtained from actual error injection

experiments with those obtained from error injection simulations / emulation. [Arlat

03] compares radiation, pin-level stuck-at faults, and electromagnetic interference

experiments versus error injection simulations into program code and data. Although

the authors report that error injections into program code and data can generate

(erroneous) outcomes similar to actual error experiments, the observed rates of these

outcomes can differ from actual error experiments. [Sanda 08] compares radiation

tests versus flip-flop soft error injection, and concludes that results obtained from flip-

flop soft error injections closely match those obtained from radiation experiments.

Some publications, e.g., [Kalbarczyk 99, Kanawati 93, Maniatakos 11b],

profile high-level effects resulting from low-level errors, and use these high-level

effects for quick error injection simulations. It has been pointed out in [Kanawati 93,

Miskov-Zivanov 10, and numerous other papers on testing and high-level fault models]

that a single flip-flop error can propagate through the system resulting in multiple

error effects at the architecture- or software-level. However, there exists little work on

systematic methodologies for deriving such high-level effects and for quantifying their

effectiveness.

The lack of quantitative understanding of the accuracy trade-offs and their

causes hinders progress in the evaluation and design of robust systems. This problem

9

becomes especially pronounced in the context of cross-layer resilience, where multiple

error resilience techniques from different layers of the system stack cooperate to

achieve cost-effective error resilience [DeHon 10, Mitra 10]. To achieve effective

cross-layer resilience, error injection techniques must be able to capture low-level

details accurately, simulate real-world applications in a scalable manner, and enable

correct design decisions quickly.

In this chapter, we make the following contributions:

1. We quantify the inaccuracies of various error injection techniques through

detailed FPGA-based emulation of the LEON3 in-order SPARC processor. Our

results show high levels of inaccuracies (up to an order of magnitude) associated

with high-level soft error injection techniques compared to flip-flop soft error

injection.

2. In order to explain the sources of inaccuracies associated with high-level error

injection techniques, we introduce a methodology which enables us to track,

observe, and analyze how errors propagate through the system: from flip-flops

all the way to the application outputs.

3. We explain why high-level error injection techniques directly model only a very

small subset of system-level behaviors that can arise from flip-flop-level errors.

4. We demonstrate the generality of our results through RTL simulations of a

super-scalar and out-of-order processor [Wang 04].

10

2.2. Error Injection Methodology

We created an FPGA-based error injection system by mapping a LEON3

processor (in-order and SPARC-based [Leon]) on the BEE3 emulation system [Davis

09] using Xilinx Virtex-5 FPGAs (Fig. 2.1). The LEON3 processor is a good choice

for experimentation because the entire system, including L1 and L2 caches and the

DRAM controller, can be mapped on the emulation platform. As a result, a large

number of error injections can be performed. Moreover, in-order processor cores are

often used in multi- and many-core SoCs [Borkar 11, Howard 10, OpenSPARC]. We

designed the system with appropriate hardware support to track the propagation of

injected errors through various layers of the system stack (details in Sec. 2.5.1). Such a

setup enables us to compare various error injection techniques and analyze their

inaccuracies using the same consistent environment for the same set of applications. In

order to minimize the sensitivity of our results to the LEON3 architecture, we also

present results using another set of error injections (fewer than LEON3) through RTL

simulations of the IVM processor, which is a super-scalar and out-of-order processor

[Wang 04].

11

Figure 2.1. BEE3 emulation system using Virtex-5 FPGAs.

2.2.1. Benchmark Applications

We used 11 out of 12 applications from the widely-used SPECINT 2000

benchmark suite 1 . We used the MinneSPEC workload for the input dataset

[KleinOsowski 02]. The execution times of the benchmark applications range from

1.4108 cycles to 3.5109 cycles, and the cycle-per-instruction (CPI) values range

from 1.54 to 3.36 (Table 2.2).

1 We excluded the perlbmk application because it requires extensive file system support that was not

modeled in our emulation system.

12

Table 2.2. SPECINT 2000 benchmark applications.

Name Execution time (cycles) CPI

bzip2 2,429M 1.97

crafty 294M 2.43

eon 3,479M 1.54

gap 145M 2.29

gcc 216M 2.71

gzip 2,753M 2.25

mcf 627M 3.37

parser 683M 1.84

twolf 751M 1.66

vortex 222M 2.60

vpr 424M 1.66

2.2.2. Error Injection Samples

It is impossible to inject all possible error scenarios (injection target ×

execution cycle). Hence, for each error injection technique and each application, we

collected results from 40,000 or more error injection runs. (For error propagation and

tracking analysis in Sec. 2.5, we report results from 320,000 flip-flop error injection

runs for the LEON3 processor emulation, and from 160,000 flip-flop error injection

runs for the IVM processor simulation.) Our error injection system initializes all the

system states to their default reset values before each error injection run. A state is set

to zero if its reset value is undefined, e.g., cache arrays and DRAM.

We implicitly assume that each flip-flop has the same (raw) soft error rate,

similar to [Ramachandran 08, Seifert 10, Wang 04, 07], for the ease of reporting

13

results. For situations where this assumption may not apply, the observed results from

error injections may change. However, the error injection methodology used in this

dissertation still can be applied for those situations. To determine the confidence

intervals of the error injection outcomes, we use a derivation similar to [Choi 90] and

many other publications. With a sample size of 40,000 error injections, the 95%

confidence interval is smaller than ±0.1% when the observed outcome rate is 1%. This

derivation implicitly assumes that the system behavior with respect to soft errors is

statistically similar during the execution, i.e., the probability of a certain outcome does

not change according to a particular phase of the execution.

2.2.3. Error Injection Techniques

We compare five error injection techniques across three abstraction layers. To

ensure proper initialization, no error is injected during the first 10,000 clock cycles

(warm-up period).

1. Flip-flop: For each error injection experiment, the content of a randomly-chosen

flip-flop is flipped during a randomly-chosen clock cycle. SRAM structures, e.g.,

register-file and cache, are not included because they are generally protected

using ECC and parity2. Each flip-flop in the processor is an error injection target

(1,250 flip-flops for LEON3, 13,877 flip-flops for IVM). The results obtained

from flip-flop error injections are treated as “ground truth” because they closely

mimic actual soft error effects [Sanda 08].

2 Error injection results that include register-file errors can be derived by combining flip-flop error

injection results and RegU error injection results (defined in 2.3.2a).

14

2. Register-file: Error injection into software-visible registers is widely used.

Depending on the target system architecture and simulator capabilities, various

error injection studies use slightly different register-file error injection

techniques.

2a. Register Uniform (RegU): For each error injection experiment, a single-

bit error is injected into a randomly-chosen bit location of a randomly-

chosen register during a randomly-chosen clock cycle. The target register

set includes all general-purpose registers, stack pointer, and branch pointer.

This type of error injection is used in [Feng 10, Zhang 10]

2b. Register Write (RegW): For each error injection experiment, during a

randomly-chosen clock cycle, a single-bit error is injected into a randomly-

chosen bit location of a register being written into during that clock cycle.

If no register is being written into during that clock cycle, the error injector

waits for the next instruction that writes into a register, and injects error

into a randomly-chosen bit location of that register. The target register set

is the same as that for RegU. This type of error injection is used in

[Pattabiraman 11, Racunas 07].

3. Program Variable: Errors are injected into application software (program)

variables: global data, heap, and stack.

3a. Program Variable Uniform (VarU): For each error injection experiment,

a single-bit error is injected into a randomly-chosen bit location of a

randomly-chosen program variable during a randomly-chosen clock cycle.

The target program variables include all variables in memory (stack, global

15

data, and heap) at the chosen error injection cycle; i.e., the target set

includes memory locations actually used by the program. No error injection

is performed into freed heap objects or intermediate variables eliminated

during compilation. This type of error injection is used in [Chen 08, Yim

10].

3b. Program Variable Write (VarW): For each error injection experiment,

during a randomly-chosen clock cycle, a single-bit error is injected into a

randomly-chosen bit location of a program variable being written into

during that clock cycle. If no program variable is being written into during

that clock cycle, the error injector waits for the next instruction that writes

into a program variable, and injects an error into a randomly-chosen bit

location of that variable. The target variable set is the same as that for

VarU. A similar error injection technique is used in [Chen 06, Gu 04].

2.3. Results: Error Injection Inaccuracies for the LEON3 processor

The outcome of an error injection run can be categorized into one of the

following categories [Sanda 08, Wang 04, 07]:

1. Vanished: The application terminates normally, and at the end of the execution,

the output files and all architectural states match with those obtained from the

error-free run.

2. Application Output Not Affected (ONA): The application terminates normally

without any error indication, and, at the end of the execution, the output files

from the erroneous run match those obtained from the error-free run. However,

16

one or more remaining bits of the architectural state differ from those obtained

from the error-free run.

3. Application Output Mismatch (OMM): The application terminates normally

without any error indication. However, at the end of the execution, the output

files of the application are different from those obtained from the error-free run.

The remaining architectural state bits may or may not match with those of the

error-free run. This category is often referred to as silent data corruption (SDC)

as well [Sanda 08, Michalak 12].

4. Unexpected Termination (UT): The application terminates abnormally with

error indication. These include error reporting interrupts, e.g., divide-by-zero,

invalid instruction, or memory access violation, and application-detected errors,

e.g., exit() function calls with error codes.

5. Hang: The application does not produce any result or does not terminate within

a specified timeout limit set to 2 the nominal execution time3.

Figure 2.2 compares the observed rate of each outcome category (outcome rate)

obtained from 40,000 error injections for each of the 11 applications using each of the

5 error injection techniques. The 95% confidence intervals from the error injection

samples are shown as the error bars. (We verified the integrity of our error injection

results by comparing results obtained from 10 subsamples, 4,000 error injection runs

each, for each error injection technique. The differences in the outcome rates across

these subsamples are less than 2%.)

3 The nominal execution time is measured on warmed-up caches (without error injection).

17

To compare the results for various injection techniques, consider the OMM

rate of the crafty application in Fig. 2.2c as an example. 1.3% of flip-flop error

injections result in OMM. However, high-level error injections result in different rates

for the same outcome: 2.7% for RegU, 6.7% for RegW, 0.53% for VarU, and 16.1%

for VarW. These differences are well beyond the confidence intervals (e.g., the 95%

confidence interval for the OMM rate of the crafty application is ±0.11% for flip-flop

error injection and ±0.24% for RegW error injection).

Since outcome rates vary across applications even for the same error injection

technique (e.g., the OMM rate obtained from flip-flop error injection varies from 0.02%

for the parser application to 1.78% for the twolf application), the inaccuracy levels are

compared using normalized outcome rates with respect to the corresponding flip-flop

error injection results. For example, for the parser application, the 0.04% OMM rate

obtained from RegU error injection is 2 that of the corresponding flip-flop error

injection result. Figure 2.2 also compares these normalized outcome rates using

geometric means according to the following expression [Fleming 86]:

 G. Mean(x, t) = √∏
Rate(x,t,i)

Rate(x,flip-flop,i)
n
i=1

n
 (2.1)

where x is an outcome, t is an error injection technique, and n is the number of

benchmark applications. Rate(x,t,i) is the observed rate of outcome x when error

injection technique t is applied for application i .

18

While geometric means show overall inaccuracy levels, they may not capture

how inaccuracy levels vary across various applications. For example, consider the UT

outcome type in Fig. 2.2d. The geometric mean of normalized UT outcome rates for

RegW error injection is 1.15 that of flip-flop error injection. However, the

normalized UT outcome rates for RegW error injection (with respect to flip-flop error

injection) vary from 0.5 to 3 across applications.

19

(a)

(b)

(c)

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
o
rt

e
x

v
p
r

0%

20%

40%

60%

80%

100%

V
a
n
is

h
e
d
 R

a
te

G.Mean

0

1

N
o
rm

a
liz

e
d
 V

a
n
is

h
e
d
 R

a
te

s

89.1%

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
o
rt

e
x

v
p
r

0%

5%

50%

100%

1.8%

O
N

A
 R

a
te

G.Mean

0

2

4

30

40

N
o
rm

a
liz

e
d
 O

N
A

 R
a
te

s

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
o
rt

e
x

v
p
r

0%

2%

4%

6%

10%
15%

O
M

M
 R

a
te Flip-flop:

 0.02%

RegU: 0.04%

RegW: 0.2%

VarU: 0.0%

VarW: 1.4%

G.Mean

0

1

6
8

10
12

0.79%

N
o
rm

a
liz

e
d
 O

M
M

 R
a
te

s

20

(d)

(e)

Figure 2.2. Comparison of the observed rate of each outcome type obtained

from various error injection techniques for the LEON3 processor. (a) Vanished.

(b) ONA. (c) OMM. (d) UT. (e) Hang.

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
o
rt

e
x

v
p
r

0%

5%

10%

20%
30%
40%

7.67%

U
T

 R
a
te

G.Mean

0.0

0.5

1.0

N
o
rm

a
liz

e
d
 U

T
 R

a
te

s

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
o
rt

e
x

v
p
r

0%

1%

10%

20%

0.03%H
a
n
g
 R

a
te

G.Mean

0

1

2

3

N
o
rm

a
liz

e
d
 H

a
n
g
 R

a
te

s

0x
1x
6x8x10x12x

: Flip-flop : RegU : RegW : VarU : VarW

 : 95% Confidence Interval

21

Key observations from the above results are:

1. Existing high-level error injection techniques, that inject single errors into

registers or program variables, can result in high degrees of inaccuracies by

more than an order of magnitude. For example, the geometric means of

normalized outcome rates obtained from VarU error injection can range from

0.07 (for the UT outcome type) to 45 (for the ONA outcome type) when

compared to the corresponding flip-flop error injection results.

2. There is no single trend (e.g., always optimistic or always pessimistic) that can

explain the inaccuracies associated with existing high-level injection techniques.

For example, the studied high-level error injection techniques generally tend to

overestimate OMM outcome rates, but the RegU and VarU error injection

techniques tend to underestimate UT outcome rates.

3. RegU and VarU error injection techniques result in very high degrees of ONA

outcome rates. These techniques select error injection targets uniformly over the

entire target space, and, hence, may inject errors into locations that may not be

accessed during the rest of the application execution (resulting in ONA outcomes

at the end of the execution). These situations can potentially contribute to the

very high ONA outcome rates for RegU and VarU error injection techniques.

22

2.4. Results: Error Injection Inaccuracies for the IVM processor

Similar to Sec. 2.3, we present a comparison of inaccuracies associated with

various error injection techniques for the IVM processor 4 . We use the same

benchmark applications 5 and error injection techniques as for the LEON3 error

injections. Figure 2.3 compares the observed rate of each outcome obtained from

40,000 error injections for each of the nine applications using each of the five error

injection techniques. The results show trends similar to the LEON3 error injections.

1. Existing high-level error injection techniques, that inject single errors into

registers or program variables, can result in high degrees of inaccuracies by

more than an order of magnitude. For example, the geometric means of

normalized outcome rates obtained from VarU error injection can range from

0.07 (for the Hang outcome type) to 22 (for the ONA outcome type) when

compared to the corresponding flip-flop error injection results.

2. There is no single trend (e.g., always optimistic or always pessimistic) that can

explain the inaccuracies associated with existing high-level error injection

techniques. For example, the RegU error injection technique generally tends to

underestimate Hang outcome rates, but it tends to overestimate OMM outcome

rates. Also, the RegU error injection technique generally tends to underestimate

UT outcome rates while RegW error injection technique tends to result in

overestimated UT outcome rates.

4 Error injection simulations for IVM processor were conducted by Dr. S. Mirkhani and Prof. J. A.

Abraham at The University of Texas at Austin. The simulations were performed using the Stampede

supercomputer at the Texas Advanced Computing Center.
5 We excluded eon and twolf since these applications very frequently use floating point instructions

which are not supported by the existing IVM processor model.

23

3. RegU and VarU error injection techniques result in very high ONA outcome

rates.

(a)

(b)

b
z
ip

2

c
ra

ft
y

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

v
o
rt

e
x

v
p
r

0%

20%

40%

60%

80%

100%
V

a
n
is

h
e
d
 R

a
te

G.Mean

0

1

N
o
rm

a
liz

e
d
 V

a
n
is

h
e
d
 R

a
te

s

87.0%

b
z
ip

2

c
ra

ft
y

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

v
o
rt

e
x

v
p
r

0%

5%

50%

100%

3.3%O
N

A
 R

a
te

G.Mean

0

1

10

15

20

25

N
o
rm

a
liz

e
d
 O

N
A

 R
a
te

s

b
z
ip

2

c
ra

ft
y

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

v
o
rt

e
x

v
p
r

0%

5%

10%

15%

O
M

M
 R

a
te

G.Mean

0

1

2

3

4

5

N
o
rm

a
liz

e
d
 O

M
M

 R
a
te

s

1.62%

24

(c)

(d)

(e)

Figure 2.3. Comparison of the observed rate of each outcome type obtained

from various error injection techniques for the IVM processor. (a) Vanished. (b)

ONA. (c) OMM. (d) UT. (e) Hang.

b
z
ip

2

c
ra

ft
y

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

v
o
rt

e
x

v
p
r

0%

5%

10%

15%

20%

U
T

 R
a
te

G.Mean

0

1

2

N
o
rm

a
liz

e
d
 U

T
 R

a
te

s

6.49%

b
z
ip

2

c
ra

ft
y

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

v
o
rt

e
x

v
p
r

0%

2%

4%

6%

10%

20%

H
a
n
g
 R

a
te

G.Mean

0

1

2

N
o
rm

a
liz

e
d
 H

a
n
g
 R

a
te

s

1.54%

0x
1x
6x8x10x12x

: Flip-flop : RegU : RegW : VarU : VarW

 : 95% Confidence Interval

25

2.5. Results: Inaccuracy Analysis

To understand the causes of inaccuracies associated with high-level error

injection techniques (Sec. 2.3 and 2.4), we track how flip-flop errors propagate and

affect high-level system states. This is enabled by special hardware support that we

implemented in our FPGA-based emulation system for the LEON3 processor (details

in Sec 2.5.1). The inaccuracies generally result from the following limitations of

existing high-level error models:

1. They generally inject a single error into a single location, e.g., a single register or

a single program variable, during a (randomly-chosen) clock cycle.

2. Error injection targets do not always cover all software-visible states. For

example, error injection targets are often limited to general-purpose registers

while flip-flop errors can propagate to other software-visible states, e.g., integer

condition codes and interrupt modes for the LEON3 processor (details in Table

2.6).

2.5.1. Flip-flop Error Propagation Tracking

In the FPGA-based emulation system for the LEON3 processor and the

simulation environment for the IVM processor, we implemented two copies of the

processor cores, the erroneous core and the golden core (Fig. 2.4). Flip-flop errors are

injected only into the erroneous core. The golden core shares the same general-

purpose registers, main memory (L1 and L2 caches, off-FPGA DRAM). All the other

modules on the emulated system, e.g., the interrupt controller and the Ethernet

controller, are shared between the two cores. These modules have memory-mapped

26

interfaces and are accessed through load and store operations only. The address space

for these modules is not accessible by user applications, and any access to these

modules triggers memory access violations resulting in UT outcome.

We implemented a set of propagation checkers to detect if a flip-flop error in

the erroneous core results in a mismatch with the golden core (i.e., error propagation

occurs). The R-checker (Register-checker) and the M-checker (Memory-checker)

detect error propagation to the general-purpose registers (hereinafter referred to as

“register-file”) and the main memory (hereinafter referred to as “memory”),

respectively. The address inputs, the data inputs, and the read and write enable signals

to the register-file from both cores are compared by the R-checker at every cycle to

detect if there is any mismatch. Since load and store operations access program

variables through the memory interface, the M-checker compares the address inputs,

the data inputs, and the read and write enable signals to the memory from both cores to

track error propagations to program variables in the memory.

The I-checker (Instruction-checker) compares the instruction fetch addresses to

detect if the erroneous core fetches instructions from incorrect memory locations.

Executing instructions fetched from incorrect memory addresses can eventually result

in mismatches in the register-file or memory. Depending on how one implements

high-level error injection (e.g., error injection techniques that target program variables

only vs. error injection techniques target the entire memory space including

instructions), the effects of the errors detected by the I-checker may or may not be

captured.

27

Suppose that, upon injection of a flip-flop error during clock cycle i, a

mismatch is detected by the R-checker during clock cycle j (and no more mismatch is

detected by any other checker). This detection indicates the propagation of the injected

flip-flop error to the register-file. If no more mismatches are detected until the end of

program execution, the effect of the injected flip-flop error during clock cycle i is

identical to the injection of the detected register error(s) during clock cycle j.

A mismatch detected by the R-, M-, or I-checkers (initial propagation) may

cause other registers or memory locations to have incorrect values (subsequent

propagation). For example, a flip-flop soft error may corrupt the value of register A

(initial propagation; detected by the R-checker). If the processor core updates register

B with the results of an operation involving the corrupted value in register A, register

B may also have an incorrect value (subsequent propagation). To identify if the

injected flip-flop error can be modeled by high-level error injection techniques, our

error propagation tracking mechanism detects initial propagations only. Otherwise, a

flip-flop error that could be modeled by a single error injection into the register-file or

memory (e.g., a flip-flop error that results in a single initial propagation during the

execution followed by multiple subsequent propagations) might be incorrectly

classified as a flip-flop error that would require multiple error injections into the

register-file or memory. In the previous example, if the R-checker detects both initial

and subsequent propagations, the checker triggers multiple times (propagations to

registers A and B); in reality, the flip-flop error can be modeled by injecting only a

single error corresponding to the initial propagation to register A only.

28

In our error propagation tracking mechanism, the golden core and the

erroneous core share the same (erroneous) register-file and memory. Therefore, these

two cores have the same register-file and memory state after the detection of the initial

propagation, and both cores behave in the same way during subsequent propagation

(i.e., R- and M-checkers do not trigger during subsequent error propagation).

Golden Core

Erroneous Core

Register-fileRegister-file Interface

Memory Interface

Register-file Interface

Memory Interface

: Propagation Checker: Golden Copy: Erroneous Copy

: Input Signals from the Core : Output Signals to the Core

R-checker

 Memory

L1 Data Cache
L2

Cache

(off-FPGA)

DRAM

M-checker

Flip-flop

Error

Injector

Memory-mapped Modules

(E.g., Interrupt Controller, Ethernet

Controller, …)

L1 Instruction

Cache
Instruction Fetch

I-checker
Instruction Fetch

Figure 2.4. Error propagation detection logic.

2.5.2. Flip-flop Error Propagation Types

The effect of an injected flip-flop error can be categorized into one of the

following types (Fig. 2.5) depending on its propagation during (not necessarily at the

end of) program execution.

1. Masked: The flip-flop error never propagates to the register-file or memory at

any point during the execution, i.e., no propagation checker in Fig. 2.4 detects a

29

mismatch. Since no register or program variable has a different value compared

to the error-free golden execution at any point during the execution, a masked

flip-flop error results in the Vanished outcome only. The converse is not

necessarily true.

2. Register-only (R-only): The flip-flop error propagates only to the register-file

and corrupts register-file contents, i.e., only the R-checker triggers (once or

multiple times) during program execution. For example, if a flip-flop error

injected during cycle i directly propagates to a register during cycle j, the R-

checker triggers during cycle j. If the erroneous flip-flop also corrupts additional

flip-flops, and those additional flip-flop errors propagate to the register-file

during clock cycles k, l,…, the R-checker can trigger multiple times during the

execution. A mismatch in the read or write enable signal or the address input is

categorized as an R-only propagation type because it can be modeled as single or

multiple register-file error injections.

3. Memory-only (M-only): The flip-flop error propagates only to the memory and

corrupts program variable contents, i.e., only the M-checker triggers (once or

multiple times) during program execution.

4. Instruction-only (I-only): The flip-flop error affects the instruction fetch

addresses, i.e., only the I-checker triggers (once or multiple times) during

program execution. Due to the instructions fetched from incorrect addresses, the

application may eventually result in mismatches in the register-file or memory

(when compared to the error-free execution); these subsequent error

propagations do not trigger the R- or M-checkers.

30

5. Combination: The flip-flop error results in error propagations that cause two or

more of the R-, M-, and I-checkers to trigger. As discussed before, errors

detected by one of the checkers do not result from the propagation of errors

detected by the other checkers.

Figures 2.5 shows a Venn diagram with the percentages of various propagation

types. For the LEON3 processor, the figure shows percentages resulting from

3,520,000 flip-flop error injections (320,000 flip-flop error injections for each of 11

benchmark applications). For the IVM processor, the numbers are obtained from

1,440,000 flip-flop error injections (160,000 flip-flop error injections for each of 9

benchmark applications). High-level error injection techniques that inject errors either

into the register-file or memory target error propagation types ② or ③ (e.g., 7.44%

of injected flip-flop errors or 40.81% of non-masked flip-flop errors for the LEON3

processor). However, high-level error injection techniques not always model the

effects of all register-file or memory propagations. Many existing high-level error

injection techniques 1) inject single bit-flip errors 2) into a single target (single register

or single memory word) 3) at a single cycle (as discussed in Sec. 2.2.3). In Sec. 2.5.4,

we show that only small portions of regieter-file and memory propagations are directly

modeled by single-bit error injections into the register-file or memory.

31

Detected by the

R-checker

⑤:

0.83%

Detected by the I-checker

④: I-only 4.18%

Detected by the

M-checker

①: Masked 81.77%

②: R-only
5.88%

③: M-only

1.56%

⑤-⑧: Combination

⑥:

4.23%

⑧:

1.54%
⑦:

0.01%

(a)

Detected by the

R-checker

⑤:

1.63%

Detected by the I-checker

④: I-only 2.22%

Detected by the

M-checker

①: Masked 86.28%

②: R-only
1.32%

③: M-only

4.66%

⑤-⑧: Combination

⑥:

0.10%

⑧:

3.20%
⑦:

0.59%

(b)

Figure 2.5. Flip-flop error propagation types and their observed rates. (a) Flip-

flop error injections into the LEON3 processor. (b) Flip-flop error injections into

the IVM processor.

32

2.5.3. Outcomes versus Flip-flop Error Propagation Types

Flip-flop errors resulting in various error propagation types (Sec. 2.5.2)

ultimately produce various outcome rates at the end of program execution. In Fig. 2.6,

for each propagation type, we report its percentage that results in a given outcome. For

example, 100% of flip-flop error injections that result in masked propagation type (①)

produce the Vanished outcome type only because those flip-flop errors does not have

any effects on register values or program variable values during the execution. Flip-

flop soft errors that result in error propagations detected by all propagation checkers

(propagation type ⑧) frequently result in the UT type outcomes (77.2% for the

LEON3 processor).

In Tables 2.3 and 2.4, for each outcome type, we report the percentage of that

outcome contributed by each propagation type. For the Vanished outcome, the masked

propagation type (①) is the dominant cause, but other propagation types also

contribute as well. For the remaining outcomes, correct modeling of all non-masked

error propagation types (②-⑧) is crucial.

33

(a)

(b)

Figure 2.6. Percentage of a propagation type resulting in an outcome. (a) Flip-

flop error injections into the LEON3 processor. (b) Flip-flop error injections into

the IVM processor.

① ② ③ ④ ⑤ ⑥ ⑦ ⑧
0%

20%

40%

60%

80%

100%

Propagation Type

 Hang

 UT

 OMM

 ONA

 Vanished

① ② ③ ④ ⑤ ⑥ ⑦ ⑧
0%

20%

40%

60%

80%

100%

Propagation Type

 Hang

 UT

 OMM

 ONA

 Vanished

34

Table 2.3. Percentage of an outcome contributed by a propagation type for the

LEON3 processor.

Outcome

Propagation
Type

Vanished ONA OMM UT Hang

Masked (①) 92.54% 0.00% 0.00% 0.00% 0.00%

R-only (②) 3.11% 57.26% 46.26% 15.22% 33.68%

M-only (③) 0.92% 15.86% 6.94% 3.12% 4.24%

I-only (④) 2.53% 3.51% 9.13% 17.23% 12.87%

Combination (⑤) 0.33% 9.17% 8.24% 3.21% 7.78%

Combination (⑥) 0.37% 11.49% 22.54% 45.47% 19.21%

Combination (⑦) 0.01% 0.02% 0.11% 0.04% 0.15%

Combination (⑧) 0.19% 2.69% 6.78% 15.71% 22.07%

Total (①-⑧) 100.00% 100.00% 100.00% 100.00% 100.00%

35

Table 2.4. Percentage of an outcome contributed by a propagation type for the

IVM processor.

Outcome

Propagation
Type

Vanished ONA OMM UT Hang

Masked (①)
97.05% 0.00% 0.00% 0.00% 0.00%

R-only (②)
0.94% 1.89% 1.79% 6.24% 0.69%

M-only (③)
1.85% 20.88% 19.23% 33.00% 8.53%

I-only (④)
0.00% 0.03% 5.23% 30.04% 26.54%

Combination (⑤)
0.13% 12.96% 14.90% 13.85% 11.61%

Combination (⑥)
0.01% 1.02% 0.47% 0.94% 0.13%

Combination (⑦)
0.01% 10.72% 9.35% 2.56% 1.42%

Combination (⑧)
0.03% 52.51% 49.02% 13.37% 51.08%

Total (①-⑧) 100.00% 100.00% 100.00% 100.00% 100.00%

2.5.4. Flip-flop Error Propagation Patterns

Even if a flip-flop error results in R- or M-only propagations, it may not be

directly modeled by a single bit-flip error injection into the register-file or program

variable. This is because the resulting differences in the register-file or memory

(propagation pattern) may not be the same as a single-bit error. In this section, we

show that only small portions of R- or M-only flip-flop errors are directly modeled by

single-bit error injections into the register-file or memory due to the propagation

patterns of flip-flop errors.

36

To have the same resulting differences in the register-file (memory) as single

bit-flip error injections using high-level error injection techniques, the error

propagation detected by the propagation checker should be a single-bit mismatch in

the data input to the register-file (memory), and that should be the only one error

propagation during the execution. We refer this propagation pattern as the single-bit-

data only propagation, or SBD. The rest of propagation patterns generally do not

result in only a single-bit difference in the register-file or memory (details in Sec.

2.5.4.1).

For the LEON3 processor, the SBD propagation pattern accounts for 39.20%

and 7.34% of R-only and M-only propagations, respectively. Considering the

percentages of R-only and M-only propagations themselves (Fig. 2.5), R-only SBD

accounts for only 2.30% of all flip-flop error injections (or 12.65% of all non-masked

flip-flop error injections), and M-only SBD accounts for only 0.11% of all flip-flop

error injections (or 0.63% of all non-masked flip-flop error injections).

Similarly, R- or M-only SBD accounts6 for small portions of flip-flop error

injections for the IVM processor either. For the IVM processor, the SBD propagation

pattern accounts for 31.82% and 5.79% of R-only and M-only propagations,

respectively. R-only SBD accounts for only 0.42% of all flip-flop error injections (or

3.06% of all non-masked flip-flop error injections), and M-only SBD accounts for

6 The error injection platform for the IVM processor is slightly different from the error injection

platform for the LEON3 processor [Cho 13], and the error propagation checkers for the IVM processor

do not directly compare the signals (data input, write enable, etc.) to the register-file and memory.

Instead, an error propagation is detected if a flip-flop error results in differences in the register-file or

memory contents. For example, the SBD propagation pattern is detected if the resulting difference in

the register-file or memory is a single-bit mismatch. The I-checker detects incorrect instruction fetches

by monitoring the program counter value.

37

only 0.28% of all flip-flop error injections (or 2.04% of all non-masked flip-flop error

injections).

2.5.4.1. Flip-flop Error Propagation Pattern Details

The resulting effects of R-only (M-only) flip-flop errors may not be captured

by injecting only a single bit-flip into the register-file (memory) due to the following

reasons:

1. R- (or M-) checker can trigger multiple times (Multi-instance propagation).

2. Even if the R- (or M-) checker triggers only once (Single-instance propagation),

the following cases can happen:

2a. Multiple bits of the data input to the register-file (or memory) can

mismatch (Multi-bit propagation).

2b. Write address input mismatches.

2c. Write enable signal mismatches.

2d. Read address input mismatches.

2e. Read enable signal mismatches.

2f. Combinations of 2 or more of cases 2a-2e. Situations resulting in a single-

bit mismatch in the data input to the register-file (or memory) together with

any one or more of cases 2b-2e are also included in this category.

The resulting effects of these non-SBD propagations can be captured by single

bit-flip error injections only under limited circumstances, e.g., a write enable signal

38

mismatch pattern when the previous value of the target and the current data input (to

the register-file or memory) happens to have only a single-bit difference between them.

For the LEON3 processor, we show the breakdown of the detailed error

propagation patterns for the R- and M-only flip-flop errors (Table 2.5). For most of the

error injection runs with the R-only propagation type, the R-checker triggers only once

(single-instance propagation; 70.67% of R-only flip-flop errors). However, not every

single-instance propagation has the SBD propagation pattern. Single-instance

propagations that may not be directly modeled by a single-bit error injection into the

register-file or program variable (cases 2a-2f) account for 31.47% of R-only

propagation types. As aforementioned in Sec. 2.5.4, flip-flop errors with the SBD

propagation pattern is only 39.20% of R-only flip-flop errors. Multi-instance

propagation (case 1) is fairly common for M-only propagation (53.73%). Also, cases

2a-2f account for 38.93% of M-only propagations. For M-only flip-flop errors, the

SBD propagation pattern accounts only for 7.34%.

39

Table 2.5. Observed rates of flip-flop error propagation patterns for R- and M-

only propagation types for the LEON3 processor.

Propagation type
Propagation pattern

R-only M-only

1. Multi-instance propagation 29.33% 53.73%

2. Single-instance
propagation

2a 7.41% 2.10%

2b 6.51% 5.47%

2c 13.40% 19.79%

2d 1.29% 10.12%

2e 2.33% 0.00%

2f 0.53% 1.46%

SBD 39.20% 7.34%

2.5.5. Equivalent Error Candidates

It is possible that a single error in the register-file or program variable during

some clock cycle c can produce the same behavior (especially at the end of program

execution) as a flip-flop error which results in error propagation patterns other than R-

or M-only SBD.

For example, suppose that a flip-flop error propagates to register A at cycle i

and corrupts the value of register A from 0x10 to 0x11. Later, the flip-flop error results

in another propagation (multi-instance propagation) to register B at cycle j, which

corrupts the value of register B from 0x10 to 0x01 (multi-bit propagation). This

propagation pattern does not correspond to R-only SBD. However, for some cases, the

resulting behavior from a flip-flop error may be produced by injecting an error into the

40

register-file or memory. Continuing from our previous example, consider an

application that performs an XOR operation using registers A and B as operands, and

stores the result into register C. If registers A and B had the erroneous values due to

the flip-flop error (i.e., 0x11 in register A and 0x01 in register B), the result of the

XOR operation that will be stored in register C is different from that under error-free

execution (error-free value: 0x0 vs. erroneous value: 0x10). If the application uses the

value of register C to determine its behavior (e.g., if C > 0 then call task1 else call

task2), the application might produce erroneous operations. Although this flip-flop

error does not correspond to R-only SBD propagation, the same erroneous application

behavior can be produced by injecting a single bit-flip into register C.

Such a “high-level” error may be referred to as an equivalent error candidate.

This concept is related to fault equivalence in digital testing [McCluskey 71]. The

application-level effect of a given flip-flop error can be produced by injecting an

equivalent high-level error. For a high-level error injection model to be accurate, there

must exist many equivalent “high-level” error candidates for each flip-flop error.

Otherwise, it will be highly unlikely that an injected high-level error at a randomly-

chosen location during a randomly-chosen clock cycle will match the effect of a given

flip-flop error.

There could be various definitions of application-level behaviors to determine

whether two application executions are considered to have the “same” behavior or not.

For example, having the same type of application outcome (e.g., outcome type

classification in Sec. 2.3) can be regarded as having the same behavior. In this case,

the probability of having equivalent error candidates can be derived using the error

41

injection results presented in Sec. 2.3 and 2.47 . In this section, we consider two

executions to have the same application-level behavior if they have the same register-

file and memory states at the end of the application execution8. Using this definition,

for instance, two erroneous application executions with the OMM type outcome are

considered different behaviors if their (corrupted) output files do not exactly match

each other. Our analysis in this section shows that there is a very low chance that a

randomly-chosen single-bit error injection into the register-file or memory can be an

equivalent error candidate for a flip-flop error.

We performed a set of error injection runs to save and compare the register-file

and memory states at the end of application execution (last architectural state) for the

LEON3 processor. For each error injection technique (Flip-flop, RegU, RegW, VarU,

and VarW), we collected the last architectural states from more than 40,000 error

injection runs using the crafty application. For each injected flip-flop error, we

compared its last architectural state to each of the last architectural states obtained

from high-level error injections to estimate the probability of obtaining equivalent

error candidates using high-level error injection technique (matching probability). For

this comparison, we exclude the error injection runs that result in the Vanished

outcome type because any application run with the Vanished outcome type will

always have the same architectural state at the end of the execution (by definition).

7 For example, in the LEON3 results, the OMM outcome rate for the crafty application is 1.3% for flip-

flop error injection and 6.7% for RegW error injection. In this case, those flip-flop soft errors (that

result in the OMM outcome type) can be considered to have the same behavior as an error injection run

(using RegW) if the application outcome from the RegW error injection run happens to be OMM as

well (6.7% of RegW error injection runs). Therefore, each flip-flop soft error that results in the OMM

outcome type has a 6.7% chance of obtaining equivalent error candidates by using RegW.
8 For the UT outcome type, we consider the cycle the application stops execution (e.g., processor halt or

reset) as the end of application execution. For the Hang type outcome, we consider the cycle at which

the application reaches the timeout limit as the end of the application.

42

Figure 2.7 shows the observed probabilities (horizontal axis) of obtaining

equivalent error candidates using high-level error injection for a flip-flop error. The

vertical axis shows how many flip-flop errors have such probabilities for obtaining

equivalent error candidates9. The leftmost bar (black bar) shows that for 97.3% of flip-

flop error injection runs (one flip-flop error injected per run), we were not able to find

any match with the error injection runs performed using one of the high-level error

injection techniques (RegU, RegW, VarU, or VarW), i.e., no equivalent error

candidates were found. The low probabilities further confirm that randomly injecting

single bit-flips into the register-file or memory has very little chance of resulting in the

same behavior as flip-flop error injections.

9 Each bar represents the percentage of flip-flop errors that have probabilities belonging to the interval

of the bar. The interval of a bar that is drawn in between x and y of the horizontal axis is (x,y] (one

exception is the leftmost bar, which represents the percentage of flip-flop errors that have zero

probability of obtaining equivalent error candidates). For example, the second bar from the left (drawn

in between 0.00% and 0.01%) shows that 0.8% of flip-flops have probabilities that are greater than 0.00%

and less than or equal to 0.01%.

43

Figure 2.7. Observed probabilities of obtaining equivalent error candidates

using high-level error injection for a given flip-flop error.

2.5.6. Error Propagations to “Other” Software-visible States

In Sec. 2.5.4, we showed that the majority of flip-flop errors do not correspond

to R- or M-only SBD. Also, in Sec. 2.5.5, we showed that there is a very small chance

that a random single bit-flip into the register-file or memory results in application-

level behaviors that are equivalent to that of a flip-flop error. Imitating the behavior of

flip-flop errors by injecting (multiple) errors into the register-file or memory that

corresponds to all error propagations resulting from the flip-flop error may involve

rigorous error modeling and complicated error injection methodologies [Mirkhani 14].

In this section, we explore an alternative way to improve the accuracy of high-level

error injection techniques.

0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 100.00%

0.0%

0.5%

1.0%

95%

100%

F
lip

-f
lo

p
 E

rr
o

rs
 (

%
)

Last Architectural State Matching Probability for Each Flip-flop Error

(i.e., Probability of Obtaining Equivalent Error Candidates)

97.3% of flip-flop error injection runs: No match

No flip-flop error has

a higher probability

than 0.26%

44

There exist other software-visible architectural states in addition to the

register-file and memory that can also affect application execution, e.g., program

counter and integer condition codes10. We refer these states as “Other” states. The

Other states are usually not targeted by high-level error injection techniques discussed

in Sec. 2.2.3. If the Other states have erroneous values that are different from error-

free execution (Other state corruptions), the corrupted other states can result in

subsequent error propagations to the register-file or memory. For example, due to a

corrupted integer condition code, a conditional branch (e.g., branch-on-equal

instruction in the SPARC instruction set architecture of the LEON3 processor) can

take a different execution path; an application executed along an incorrect execution

path may result in multiple mismatching register or memory values (when compared

to those along the correct execution path). In such a case, an error injection technique

that directly injects errors into the corresponding Other states (the integer condition

code in this example) can result in the same behavior instead of injecting multiple

register-file or memory errors.

In the LEON3 processor, the Other states are stored in flip-flops (Other state

flip-flops). The Other state flip-flops can get corrupted in the following ways:

1. A soft error directly causes a bit-flip in one of the Other state flip-flops.

2. A soft error in a flip-flop (not belong to the Other states) affects one or

multiple Other state flip-flops.

10 Integer condition codes indicate the resulting conditions of the recent operation, e.g., overflow or

carry bits.

45

3. A flip-flop soft error, propagated to the register-file or memory, results in

subsequent propagations to the Other states. Already corrupted Other states

may also result in (subsequent) corruptions of Other states.

We implemented another error propagation checker (in addition to the

propagation checkers in Fig. 2.4) to detect Other state corruptions (Fig. 2.8). Similar to

the error propagation tracking mechanism for the register-file and memory, we do not

consider subsequent propagations (case 3). The F-checker (Flip-flop-checker) detects

errors propagated to the Other states by comparing inputs to Other state flip-flops from

the erroneous core vs. the golden core. The F-checker also detects flip-flop soft errors

directly injected into the Other state flip-flops. In this setup, unlike the error

propagation tracking mechanism used in the prior sections (Fig. 2.4), the golden core

and the erroneous core share the same Other state flip-flops. These flip-flops are

always updated using the inputs from the erroneous core; the inputs from the golden

core are used by the F-checker for error propagation detection. By sharing the Other

state flip-flop contents between the two cores, the F-checker detects only initial

propagations to the Other states, not subsequent propagations (similar to the R-, M-,

and I-checkers in Fig. 2.4).

The list of architectural states that belong to the Other states for the LEON3

processor (detected by the F-checker) is shown in Table 2.6. For flip-flop errors that

result in at least one F-checker firing during the execution, Table 2.6 also shows how

often such a flip-flop error results in corruptions in each of the architectural states

(corruption rate).

46

This setup also includes a backup golden core and the backup propagation

checkers. The backup checkers (backup R-, M-, and I-checkers) are used for

identifying subsequent propagations to the register-file and memory that are caused by

corrupted Other states. The backup golden core has its own Other state flip-flops

(Table 2.7). If corrupted Other states result in subsequent error propagations to the

register-file or memory, there would be mismatches between the erroneous core and

the backup golden core, and the backup propagation checkers detect those mismatches.

Because the backup golden core does not share the (corrupted) Other states

with the erroneous core (while sharing the register-file and memory), the mismatches

detected by the backup propagation checkers are either subsequent propagations from

the Other states or initial propagations from the erroneous core. In contrast, the golden

core and the erroneous core will not show mismatches for subsequent error

propagations resulting from Other state corruptions. By comparing the differences

between the R-, M-, and I-checker firings and their corresponding backup checker

firings at the same cycle, we can identify the subsequent propagations resulting from

Other state corruption (Table 2.8 summarizes various checker firing scenarios).

47

LEON3

(Backup

Golden Core)

LEON3

(Golden Core)

LEON3

(Erroneous Core)

Register-fileRegister-file Interface

Memory Interface

Register-file Interface

Memory Interface

 R-checker

 Memory

Backup M- and I-checkers

Flip-flop

Error

Injector

Register-file Interface

Memory Interface

Backup R-checker

M-and I-checkers

Other States Flip-flops

F-checker

: Propagation Checker: Golden Copy: Erroneous Copy

: Input Signals from the Core : Output Signals to the Core

: Backup Propagation Checker

Notify the F-checker when a flip-flop error is directly

injected into one of the Other states flip-flops Other States Flip-flops

for Backup Golden Core

Figure 2.8. Error propagation detection logic for the Other states.

Table 2.6. List of architectural states belong to the Other states and their

corruption rates11 for the LEON3 processor.

State Corruption rates

Program counter corruption 40.02%

Integer condition codes 15.59%

Peripheral states 3.43%

Supervisor mode 3.59%

Processor internal interrupt mode 17.85%

Register window 26.43%

Multiplier result (Y-reg.) 20.04%

11 The corruption rates do not add up to exactly 100% because for some flip-flop errors, the F-checker

can trigger multiple times for multiple architectural states belong to the Other states.

48

Table 2.7. States shared by processor cores in Fig. 2.8. Private: The core has

its own state (not shared with other cores). Shared: The same (erroneous)

state is used by multiple cores. The shared states are updated with the inputs

from the erroneous core only.

Erroneous

core
Golden

core
Backup

golden core

Non-software-visible states Private Private Private

Software-visible
architectural states

Register-file Shared Shared Shared

Memory (includes
instructions)

Shared Shared Shared

Other states Shared Shared Private

49

Table 2.8. Various backup checker firing scenarios.

Original R-, M-, or I-checker

Triggers Does not trigger

Corresponding

backup checker

(backup R-, M-,

or I-checker)

Triggers
Initial propagation from

flip-flop error.

Subsequent propagation

from Other state

corruptions.

Does not

trigger

Initial propagation from

flip-flop error12.
No propagation detected.

Using the error propagation logic in Fig. 2.8, we ran 440,000 error injection

runs (40,000 error injection runs per application). Figure 2.9 shows a Venn diagram

of various propagation types including Other state corruptions detected by the F-

checker. Due to the added F-checker, the propagation types are different from the

propagation types discussed in Sec. 2.5.2.

1. Masked: The flip-flop error triggers none of the R-, M-, I-, and F-checkers.

12 In general, a backup checker (backup R-, M-, or I-checker) triggers when the corresponding original

checker (R-, M-, or I-checker) triggers. However, for some rare cases, an original checker may detect a

mismatch when the corresponding backup checker does not trigger. Consider the following flip-flop

error behavior:

1. A flip-flop error corrupts the Other states (these corrupted Other states are shared between the

erroneous core and the golden core).

2. Even after the Other states corruption, the flip-flop error persists in the non-software-visible

states of the erroneous core (i.e., corrupted non-software-visible states).

 In such a situation, all three cores have different states (i.e., erroneous core: corrupted Other states and

corrupted non-software-visible states, golden core: corrupted Other states only, and backup golden core:

no corrupted states). If an original checker triggers in this situation, the mismatch is caused by the

corrupted non-software-visible states in the erroneous core, which are not shared with the golden core.

Since those corrupted non-software-visible states are not shared with the backup golden core either, the

corresponding backup checker may also trigger. However, the difference between the erroneous core

and the backup golden core also includes the corrupted Other states of the erroneous core. If the

combination of the corrupted Other states and the corrupted non-software-visible states causes the

erroneous core to behave in the same way as the backup golden core, the corresponding backup checker

does not trigger (when the original checker triggers). Since the corrupted Other states alone do not

cause such behavior of the erroneous core, this behavior of the erroneous core is also classified as an

initial propagation (i.e., resulting from the flip-flop errors in non-software-visible states).

50

2. No-Other-corruption: The flip-flop error does not result in any Other state

corruption, i.e., only one or multiple of the R-, M-, and I-checkers trigger.

3. Other-only (O-only): The flip-flop error only results in Other state corruptions,

i.e., only the F-checker triggers (once or multiple times) during program

execution. As a result of the corrupted Other states, there could be subsequent

propagations to the register-file and memory.

4. Combination: The flip-flop error results in Other state corruptions and error

propagations to the register-file or memory (detected by the F-checker and one

or multiple of the R-, M-, and I-checkers). Errors detected by the R-, M-, or I-

checkers do not result from the propagation of errors detected by the F-checker.

It may not be possible to model error propagations to the register-file and

memory resulting from these flip-flop errors by error injections into the Other

states only.

51

Detected by the R-, M- and

I-checkers
Detected by the F-checker

①: Masked 77.06%

②: No-Other-corruption

10.81%

③: O-only

8.80%

④: Combination

3.33%

Figure 2.9. Observed rates of flip-flop error propagation types including Other

state corruptions.

Flip-flop errors with the O-only propagation type (③, 8.80% of injected flip-

flop errors) can be modeled by directly injecting errors into the corresponding Other

states using architectural- or software-level error injection techniques. Moreover, if the

Other state corruptions caused by an O-only flip-flop error is only a single-bit

corruption in the Other states, the resulting effects of the flip-flop error can be

modeled using a (simple) single bit-flip error injections into the Other states13.

Table 2.9 shows the observed rates of the following subsequent propagation

patterns to the register-file and memory (detected by the backup R-, M-, and I-

checkers) resulting from O-only flip-flop errors (③ in Fig 2.9).

13 Combinations of error injections into the register-file or memory and error injections into the Other

states may be used for better accuracies. In this section, for simplicity, we discuss the potential benefits

of error injections into the Other states only.

52

P1. No propagation: The Other state corruptions caused by the flip-flop

error do not result in any subsequent propagation to the register-file or

memory, i.e., result in the Vanished application outcome type.

P2. Single-bit-data only (SBD): The subsequent propagations resulting

from the Other state corruptions correspond to R- or M-only SBD.

These flip-flop errors are modeled by single bit-flip error injections into

the register-file or memory.

P3. Non-SBD: The Other state corruptions result in register-file or memory

propagations that have propagation patterns 1 or 2a-2f in Sec. 2.5.4.

These flip-flop error propagations are not identically modeled by single

bit-flip error injections into the register-file or memory.

The results show that Non-SBD pattern (P3) is more frequently observed vs.

the SBD pattern (P2) (4.49% vs. 0.69% of injected flip-flop errors or 51.02% vs. 7.86%

of O-only flip-flop errors). This means that for the majority of O-only flip-flop errors

(that result in Non-SBD subsequent propagations), single bit-flip error injections into

the register-file or memory do not identically model the resulting error propagations to

the register-file or memory (that are caused by corrupted Other states).

To quantify the portions of O-only flip-flop errors that can be modeled by

injecting a single bit-flip into the Other states only, Table 2.9 also shows the following

breakdown of the observed patterns of resulting mismatches (corruptions) in the Other

states detected by the F-checker (Other state corruption patterns).

53

C1. Single-bit: The F-checker detects only a single-bit mismatch14 in the

Other state flip-flops only once during the application execution.

C2. Multi-error: The F-checker detects multi-bit mismatches in the Other

state flip-flops during a single cycle or multiple cycles (including single-

bit mismatches over multiple cycles).

Most of the O-only flip-flop errors result in the Single-bit corruption (C1) in

the Other states (94.24% of O-only flip-flop errors or 8.29% of all injected flop-flop

errors). The resulting effects of these flip-flop errors can be modeled by injecting a

single error directly into the software-visible Other states (using a high-level error

injection technique).

14 Depending on the processor implementation, the Other states visible from the software and the actual

flip-flop contents may or may not have one-to-one correspondence on each bit (bit-to-bit

correspondence). The LEON3 processor implementation does have bit-to-bit correspondences for all

Other states (with the exception of hard-wired bits to ‘0’ or ‘1’, which are not affected by flip-flop soft

errors). If there is no bit-to-bit correspondence on some states, even a single-bit mismatch in the flip-

flop may be treated as the multi-error corruption pattern.

54

Table 2.9. Observed rates of Other state corruption patterns and subsequent

propagation patterns to the register-file and memory.

Other state
corruption

pattern

Subsequent
propagation patterns

(to the register-file and
memory)

resulting from Other
state corruptions

Observed rates
(% of all injected
flip-flop errors)

Observed rates
(% of all O-only
flip-flop errors)

C1. Single-bit

P1. No propagation 3.47% 39.46%

P2. SBD 0.69% 7.86%

P3. Non-SBD 4.13% 46.92%

Total (C1. P1-P3) 8.29% 94.24%

C2. Multi-error

P1. No propagation 0.15% 1.66%

P2. SBD 0.00% 0.00%

P3. Non-SBD 0.36% 4.10%

Total (C2. P1-P3) 0.51% 5.76%

Total 8.80% 100%

2.5.7. Results Cross-Check

In this section, we analyze the outcomes obtained from flip-flop error

injections resulting in R- and M-only SBD (Sec. 2.5.2 and 2.5.4) versus outcomes

obtained from RegW and VarW error injections. We expect the inaccuracy of outcome

rates resulting from RegW (VarW) error injections to be lower when compared to flip-

flop error injections resulting in R-only (M-only) SBD, rather than the entire set of

flip-flop error injections (Sec. 2.3 and 2.4). While this analysis can be somewhat

conservative, given the discussion on equivalent error candidates in Sec. 2.5.5, it

55

provides insights into inaccuracies of high-level error injections resulting from the fact

that they model a small fraction of all flip-flop errors. As discussed in Sec. 2.3, RegU

and VarU error injections may inject errors into locations not accessed during the rest

of the execution. Hence, we focus on RegW and VarW error injections.

Tables 2.10-2.13 report the estimated inaccuracy of RegW and VarW error

injections for a given outcome x using the following expression.

|𝐺.𝑀𝑒𝑎𝑛(𝑥,𝐻)− 𝐺.𝑀𝑒𝑎𝑛(𝑥,𝐹)|

𝐺.𝑀𝑒𝑎𝑛(𝑥,𝐹)
 (2.2)

where H is the RegW or VarW error injection technique, F corresponds to flip-flop

error injections being compared to (either the entire set of flip-flop error injections or

flip-flop error injections resulting in R- or M-only SBD), and G.Mean(x, t) is the

geometric mean of normalized outcome rates obtained using (2.1). The accuracy

improvements with SBD are also estimated in Tables 2.10-2.13.

As expected, accuracies improve when high-level error injection results are

compared with respect to flip-flop errors resulting in SBD: by 2.17 (4.29 for IVM)

on average (geometric mean) for RegW and 4.83 (2.89 for IVM) on average for

VarW. For the OMM outcome type, the accuracies are improved for more than an

order of magnitude for both processors.

56

Table 2.10. Inaccuracies of outcome rates resulting from the RegW error

injection techniques for the LEON3 processor.

Outcome

RegW inaccuracies

vs. flip-flop error

injections (i)

vs. flip-flop error injections

resulting in R-only SBD (ii)

Accuracy

improvement (i / ii)

Vanished 11.6% 11.9% 0.97

ONA 126% 29.1% 4.3

OMM 416% 35.2% 11.8

UT 14.9% 32.9% 0.45

Hang 122% 56.5% 2.16

 Geometric mean 2.17

Table 2.11. Inaccuracies of outcome rates resulting from the VarW error

injection techniques for the LEON3 processor.

Outcome

VarW inaccuracies

vs. flip-flop error

injections (iii)

vs. flip-flop error injections

resulting in M-only SBD (iv)

Accuracy

improvement (iii / iv)

Vanished 40.1% 39.9% 1.0

ONA 468% 35.6% 13.2

OMM 1065% 49.3% 21.6

UT 4.18% 34.9% 0.12

Hang 199% 2.6% 77.0

 Geometric mean 4.83

57

Table 2.12. Inaccuracies of outcome rates resulting from the RegW error

injection techniques for the IVM processor.

Outcome

RegW inaccuracies

vs. flip-flop error

injections (i)

vs. flip-flop error injections

resulting in R-only SBD (ii)

Accuracy

improvement (i / ii)

Vanished 8.86% 3.72% 2.38

ONA 20.4% 43.7% 0.47

OMM 121% 5.14% 23.5

UT 69.6% 9.73% 7.15

Hang 108% 13.9% 7.77

 Geometric mean 4.29

Table 2.13. Inaccuracies of outcome rates resulting from the VarW error

injection techniques for the IVM processor.

Outcome

VarW inaccuracies

vs. flip-flop error

injections (iii)

vs. flip-flop error injections

resulting in M-only SBD (iv)

Accuracy

improvement (iii / iv)

Vanished 11.4% 3.93% 2.90

ONA 53.5% 53.4% 1.00

OMM 340% 11.8% 28.8

UT 16.4% 10.8% 1.52

Hang 88.6% 55.9% 1.58

 Geometric mean 2.89

58

2.6. Conclusion

Existing high-level error injection techniques, that inject single-bit errors at

randomly-chosen register and memory locations during randomly-chosen clock cycles,

can be highly inaccurate when compared to flip-flop error injection techniques. This

chapter demonstrates this point for the LEON3 in-order processor core as well as for a

complex out-of-order Alpha-like IVM processor core. This chapter also quantifies the

causes of these inaccuracies through a detailed analysis of error propagation through

various layers of the system stack. The presented results provide insights that can

potentially help us create new classes of high-level error models with significantly

higher accuracies. While the feasibility of high-level error models that are accurate for

any arbitrary digital system is unclear, one can possibly use our results to derive

accurate high-level error models that are tailored for certain families of digital systems.

This chapter focuses on the accuracy aspects of existing high-level error

injection techniques. However, depending on the application, accuracy is not

necessarily a requirement. For example, an inaccurate error injection technique can be

very useful as long as it is effective in driving the correct design decisions for building

robust systems. One such example exists in digital system testing literature. Stuck-at

faults are highly inaccurate in modeling actual manufacturing defects, but are highly

effective as test metrics that drive automatic test pattern generation and design for

testability techniques [McCluskey 00]. Future research must explore and quantify this

aspect of high-level error models.

59

Chapter 3

Mixed-mode Simulation Platform for Soft Error Simulation

© [2015] IEEE. Part of this chapter has been reproduced with permission from H. Cho

et al., “Understanding Soft Errors in Uncore Components”, Proceedings of Design

Automation Conference 2015.

3.1. Introduction

Radiation-induced soft errors pose a major challenge to building robust systems

using complex System-on-Chips (SoCs). Although the soft error rate at the device level

(e.g., SRAM cell or latch) stays roughly constant or even decreases over technology

generations, the system-level soft error rate increases as more devices are integrated into

SoCs [Mitra 14, Seifert 10, 12].

Uncore components1, such as cache controllers, DRAM controllers and I/O

controllers, are increasingly important because their overall area footprint and power

consumption in SoCs are comparable to that of processor cores [Gupta 12, Li 13]. The

1 Also be referred to as “nest,” “outside-core,” or “northbridge”. In this dissertation, we use this term to

refer to components that are not processors or accelerators.

60

need for studying soft errors in uncore components has been pointed out in the

literature [Mukherjee 05, Quinn 13]. While there are many studies on soft errors in

processor cores (e.g., [Cho 13, Ramachandran 08, Wang 04]), few have studied soft

errors in uncore components. The lack of such studies can be attributed to the

difficulties in modeling large-scale SoCs (with multiple processor cores and multiple

uncore components) for the following reasons.

1. Uncore studies should model the entire SoC because uncore components interact

with processor cores and other uncore components. Modeling only a part of the

system may not capture uncore behaviors accurately.

2. Studying system-level effects of soft errors requires real-world applications. This

becomes more relevant in the context of cross-layer resilience, where multiple error

resilience techniques from various layers of the system stack are combined to

achieve cost-effective solutions [DeHon 10, Mitra 10, 14].

3. For statistically significant results, a large number of error injection samples are

required. For example, when observing a certain outcome rate, more than 40,000

samples are required to achieve ±0.1% accuracy with 95% confidence when the

observed rate is 1%2.

Such requirements demand high-throughput error simulation or emulation

platforms. RTL simulators that model detailed error behaviors are extremely slow. For

example, RTL simulation of an out-of-order, superscalar processor core achieves less

2This assumes the normal approximation of the binomial distribution, similar to the confidence interval

used in [Choi 90].

61

than a thousand cycles per second [Maniatakos 11b]. High-level simulators, on the

other hand, achieve much faster simulation times [Simics]. However, naïvely injecting

errors into abstracted high-level layers without adequate low-level details can result in

highly inaccurate results (e.g., results in [Cho 13] for processor cores).

Existing uncore error studies are limited to very small designs (e.g., private L1

cache and bus controller in a design with a single processor core [Bailan 10]) or rely

on fast high-level simulators without low-level details (e.g., error injections into

primary input and output signals in [Graham 09, Lin 06]). While radiation testing can

be used to study overall soft error resilience of a design [Bender 08, Sanda 08], it is

only available after the chip is produced. Also, quantifying vulnerabilities of various

on-chip components can be difficult using radiation testing due to limited

observability.

In this chapter, we make the following contributions:

1. We present a simulation platform that is capable of simulating large-scale SoCs

while modeling detailed flip-flop soft errors. Compared to RTL-only simulation,

this platform achieves over 20,000× speedup.

2. We present the first study of system-level effects of soft errors in uncore

components in a large-scale OpenSPARC T2 SoC with 500 million transistors,

eight processor cores, and many uncore components [OpenSPARC]. We report

quantified results on the effects of soft errors in L2 cache controllers, DRAM

controllers, crossbar interconnects, and PCI Express I/O controllers. We show that

62

soft errors in uncore components can have significant reliability impact comparable

to that of processor cores.

3.2. Mixed-mode Soft Error Simulation Platform

To analyze the effects of uncore soft errors in large-scale SoCs, we created a

mixed-mode platform that combines two simulation platforms (sometimes referred to

as co-simulation in design validation literature [Benini 03]). The target uncore

component is simulated using an RTL simulator to model soft error behaviors with

low-level details, while the rest of the system is simulated using a high-level simulator.

Our mixed-mode platform is different from existing co-simulation-based studies on

error behaviors for the following reasons:

1. [Li 09, Ejlali 03] use co-simulation to study errors in small combinational logic

blocks, such as the ALU or the decoder module with only a few hundred gates,

inside a processor core. To correctly model how soft errors in flip-flops behave

inside an uncore component, we model an entire uncore component (more than

100K gates) using RTL, and ensure that state transfer between the RTL

simulator and the high-level simulator does not become a performance

bottleneck.

2. [Goswami 97, Kalbarczyk 99] profile high-level effects resulting from low-level

errors, and use the statistical information for quick error simulations. Profiled

error behaviors may not reflect subsequent error propagations due to interactions

with the rest of the system (e.g., a flip-flop error in a module may result in

multiple erroneous interactions with other components [Cho 13]). We model

63

how the error interacts in a chip by simulating its behavior at the entire chip level

until all the effects from the injected error have been fully modeled.

3. [Wang 04] uses two simulators at two different levels of abstraction to simulate a

processor core, but only one of the simulators is used at a given point in time.

This approach requires transferring the entire system state between the

simulators. In our platform, we utilize low-level simulation only for the target

uncore component. Our approach reduces state transfer and low-level simulation

overheads.

FPGA emulation platforms can achieve faster speeds compared to RTL

simulations while modeling low-level details [Asaad 12, Schelle 10]. However, to

model an entire SoC, the design may need to be mapped on multiple FPGA chips.

This is because the area required for the FPGA implementation of a design can be an

order of magnitude greater than an ASIC implementation (for the same technology

generation) [Kuon 07]. As a result, limited inter-FPGA I/O bandwidth can limit the

overall emulation speed to only a few MHz [Hauck 07].

3.2.1. Mixed-mode Platform Simulation Modes

Our platform operates in two modes:

1. Accelerated mode (Fig. 3.1a): All components on the chip, including processor

cores and uncore components, are simulated using the Simics instruction-set

simulator [Simics]. The uncore components are simulated using high-level

64

models. Under error-free conditions, they produce the same output signals to

processor cores as the actual uncore components (Fig. 3.1a ①). Table 3.1 lists

the uncore states modeled by the high-level uncore models (high-level uncore

state). Flip-flops inside uncore components are not fully modeled in this mode.

2. Co-simulation mode (Fig. 3.1b): The target uncore component is simulated

using an RTL simulator. Processor cores access uncore components by

exchanging requests and return packets through the on-chip interconnect (e.g.,

PCX and CPX packets in OpenSPARC T2). During co-simulation mode, these

access packets to and from the uncore component are transferred between the

high-level simulator and the RTL simulator (Fig. 3.1b ②). To ensure cycle-level

accuracy, the two simulators are synchronized every cycle to ensure transfer of

packets between simulators at the correct cycle.

Although the accelerated mode cannot simulate how a soft error behaves at the

flip-flop level, high-level models can correctly simulate subsequent behaviors after a

flip-flop soft error fully propagates to the high-level uncore state (i.e., no flip-flop or

SRAM array inside the uncore component, not included in the high-level uncore state,

contains an error).

65

High-level Simulator (Simics)

Processor

Cores
Processor

Cores
Processor

Cores

 ① High-level

Uncore Model

` : Request Packet to Uncore : Return Packet from Uncore

(a)

RTL Simulator

High-level Simulator (Simics)

③ Target Uncore

Component

④ Error Injection into

Target Flip-flop

⑤ Golden Uncore

Component

RTL Simulator

Interface

Processor

Cores
Processor

Cores
Processor

Cores

 ① High-level

Uncore Model

⑥

Compare

Flip-flops SRAM Arrays

...
High-level

Uncore State

...

High-level

Uncore State

S
ta

te
 T

ra
n

s
fe

r

②

(b)

Figure 3.1. Mixed-mode platforms. (a) Accelerated mode. (b) Co-simulation mode.

66

Table 3.1. High-level uncore states modeled by the high-level uncore models.

Uncore component High-level uncore states (size per instance)

L2 cache controller

Tag address array (28KB),

Cache line state bit array (5KB),

Cache data array (512KB),

L1 cache directory (2KB)

DRAM controller DRAM contents (4GB)

Crossbar interconnect None3

PCI Express I/O

controller
Transfer buffers (RX: 8KB, TX: 4KB)

3.2.2. Soft Error Injection Methodology

Figure 3.2 shows the flowchart of our uncore error injection methodology

using our mixed-mode platform. The co-simulation mode is invoked only when soft

error injection begins and terminated when the injected error disappears without any

remaining error or when the remaining errors can be simulated using the accelerated

mode.

3 The crossbar interconnect only delivers packets between processor cores and L2 cache controllers.

Therefore, its states can be reconstructed in the co-simulation mode without modeling a separate high-

level uncore state for the crossbar in the accelerated mode.

67

1. Start application using a saved snapshot

2. Run until the error injection cycle

3. Transfer the current uncore state to

the RTL simulator

4. Warm-up uncore components

5. Inject bit-flip error into the target flip-flop

6. Run co-simulation

7. Remaining errors?

11. Continue application execution

12. Determine application outcome

Yes

No

8. Error propagation?
No

Yes

9. Error vanished

10. Transfer the current (erroneous) uncore

state back to the high-level uncore model

Phase 1

Phase 2

Phase 3

Figure 3.2. Error injection using our new mixed-mode simulation platform.

Steps in gray color use co-simulation mode.

Phase 1. Prepare for Error Injection: For each error injection run, an error injection

cycle from high-level simulation (in accelerated mode) and a target flip-flop inside the

target uncore component are randomly selected. The mixed-mode platform starts

68

application execution in accelerated mode and simulates the application until the error

injection cycle (Fig. 3.2, steps 1 and 2). This step is shortened by starting the simulation

using one of the system state snapshots obtained from a one-time, error-free execution

of the application in accelerated mode. If the error injection cycle is Ci and the snapshots

are created every Cf cycles, the simulation is started using a snapshot created at cycle Cs,

where Cs=⌊Ci/Cf⌋×Cf. For our error injection runs, we created a snapshot every 2 million

cycles.

When RTL simulation starts (Fig. 3.2, step 3), high-level uncore states that

have been simulated by the high-level model (Fig. 3.1a ①) are transferred to the

target uncore component in the RTL simulator (Fig. 3.1b ③). A warm-up period is

required before the error injection to correctly restore all microarchitectural states (e.g.,

flip-flops and small SRAM buffers) that have not been simulated by the high-level

model (Fig. 3.2, step 4). The actual warm-up period is randomly selected for each run

to avoid injecting errors always after the same number of co-simulation cycles. In our

platform, the warm-up period is at least 1,000 cycles, which is enough to reconstruct

microarchitectural states for the tested OpenSPARC T2 uncore components (detailed

discussion in Sec. 3.4.1).

Phase 2. Inject Error: A bit-flip error is injected into the selected flip-flop (Fig. 3.1b

④, Fig. 3.2, step 5). The platform periodically checks if the accelerated mode can

take over the simulation by checking remaining errors in RTL (Fig. 3.2, steps 6-7).

This check is done by comparing the values of the storage elements (flip-flops, SRAM

arrays) in the target uncore component, where the error is injected (Fig. 3.1b ③), with

69

the corresponding values in the golden component (Fig. 3.1b ⑤). The golden

component is an identical copy of the target uncore component that receives the same

input, but simulated without error injection. It is only used for simulation purposes to

check when to end the co-simulation mode. The co-simulation mode is no longer

needed if the comparison finds no mismatch or all mismatches satisfy one of the

following conditions:

1. The mismatch can be directly mapped to high-level uncore states. The

subsequent effects can be simulated by using the accelerated mode.

2. The mismatch does not cause any functional difference (e.g., corrupted data field

when the associated valid flag is not set; the value will not be used by the

application in that case).

Phase 3. Determine Application Outcome: The current uncore state in RTL is

transferred back to the high-level model, and the mixed-mode platform continues to

run the application to completion in the accelerated mode to determine if the

application run results in any erroneous outcome (Fig. 3.2, steps 10-12).

During phase 2, the platform monitors if an injected error has produced

erroneous return packets to the processor cores by comparing return packets from the

target uncore component to those of the golden uncore component (Fig. 3.1b ⑥). If

no erroneous return packet has been detected and the transferred state from the target

uncore component matches that from the golden uncore component, the error injection

run will result in the same outcome as that of the error-free run. For those cases, the

70

simulation can stop early without executing the rest of the application in phase 3 (Fig.

3.2, steps 8-9).

3.2.3 Mixed-mode Simulation Performance

The effective simulation throughput of the mixed-mode platform is over 2M

cycles/sec, comparable to that of multi-FPGA platforms for large-scale SoCs [Asaad

12, Schelle 10]. Compared to the RTL-only simulation of the OpenSPARC T2 design

(up to 100 cycles/sec only [Weaver 08]), we achieve more than 20,000× speedup. By

utilizing saved snapshots, steps 1-2 take only 1M cycles on average. Steps 11-12 are

executed only for less than 1% of total error injection runs4. Table 3.2 summarizes the

performance of our mixed-mode platform when simulating an application with cycle

length L for the OpenSPARC T2 design. For applications with cycle lengths longer

than 280M, the throughput is over 2M cycles/sec. Applications with shorter lengths

achieve throughput values less than 2M cycles/sec (e.g., the Radix application with

L=120M in Sec. 3.3.2 achieves 1M cycles/sec); however, those applications require

shorter simulation times.

Throughput =
𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

𝑎𝑣𝑔. 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 =

𝐿

70+
𝐿

4𝑀

 > 2M cycles/sec, (L >280M)

4 Since a run may be terminated or may become unresponsive (UT or Hang outcome type) before step
11, the percentage of runs that require simulation steps 11 and 12 is less than the sum of all erroneous
outcome rates presented in Sec. 3.3.3.

71

Table 3.2. Mixed-mode simulation performance per each step.

Simulation type
Cycles

(average)

Performance

(cycles/sec.)

Execution time

(sec.)

Mixed-mode

simulation

Steps 1-2 1M 20K 50

Steps 3-10 10K 500 20

Steps 11-12 L/2 × 1% 20K L/4M

Total 70+L/4M

3.3. Soft Error Injection Results for Uncore Components

Using the mixed-mode error injection platform, we performed soft error

injection runs for uncore components in the OpenSPARC T2 design (Table 3.3). In

this chapter, we study soft errors in the L2 cache controller (L2C), the DRAM

controller (MCU), the Crossbar interconnect (CCX), and the PCI Express I/O

controller (PCIe)5.

5 NIU, SIU, and NCU are excluded from this study since RTL simulation of those components requires

additional high-level models available only for the Solaris OS on SPARC machines.

72

Table 3.3. Processor core and uncore components in OpenSPARC T2.

Component
Number of

instances

Number of Flip-flops

(per instance)

Gate count

(per instance)

Processor Core 8 44,288 513,597

L2C 8 31,675 210,540

MCU 4 18,068 155,726

CCX 1 41,521 370,738

PCIe6 1 29,022 376,988

NIU 1 135,699 1,297,427

SIU 1 16,908 105,695

NCU 1 17,338 143,374

3.3.1. Flip-flops Targeted for Error Injection

Our soft error injection study excludes flip-flops that are already protected or

inactive during normal operation. L2C, MCU, and PCIe have built-in error detection

and recovery / error correction, such as ECC and CRC, to address errors inside memory

arrays. Flip-flops storing ECC or CRC encoded data are effectively protected. Since a

single bit-flip in those flip-flops does not affect application-level behavior (after error

correction / recovery), they are excluded from error injection. The inactive flip-flops are

dedicated to built-in self-test and redundant arrays to repair defective SRAM cells. For

this study, we assume a defect-free chip where these flip-flops are not utilized. Table 3.4

shows the number of flip-flops targeted for error injection in the L2C, MCU, CCX, and

PCIe modules.

6 Because the OpenSPARC T2 distribution does not provide RTL source of the PCI Express controller,

we used an industrial implementation of state-of-the-art PCI Express generation 3 controller design to

model soft error effects in I/O controllers.

73

Table 3.4. Number of flip-flops in the targeted uncore components.

Uncore component

(number of instances in

OpenSPARC T2)

Error injection target

flip-flops per instance

(% of total flip-flops)

Excluded from error injection

Protected Inactive

L2C (8) 18,369 (58.0%) 8,650 (27.3%) 4,656 (14.7%)

MCU (4) 12,007 (66.4%) 4,782 (26.5%) 1,279 (7.1%)

CCX (1) 41,181 (99.2%) 0 (0%) 340 (0.8%)

PCIe (1) 23,483 (80.9%) 5,539 (19.1%) 0 (0%)

3.3.2. Benchmark Applications

We use a wide range of multi-threaded benchmark applications: 6 SPLASH-2

benchmarks [Woo 95], 9 PARSEC-2.1 benchmarks 7 [Bienia 11], and 3 Phoenix

MapReduce benchmarks for shared-memory systems [Yoo 09] (Table 3.5). To fully

utilize OpenSPARC T2’s 64 hardware threads, we instantiated 64 threads for each

benchmark application. For PCIe error injections, we modeled a situation where PCIe

I/O is used to transfer the application’s input data files. In our benchmark set, 12

applications have input data file as shown in Table 3.5, and they are used for PCIe

error injection runs. For each benchmark, we ran more than 40,000 error injection runs

7 Facesim application is not tested because the input file for simulation is not included in the benchmark

suite. Raytrace application from PARSEC is not tested because it produces no output files, and it is not

possible to validate the application results.

74

for each target uncore component. We assume that only one soft error happens for

each application run8.

8 The interval between flip-flop soft errors is usually much longer compared to the length of the target

benchmark applications [Mukherjee 05]. Actual failure rate of the system can be derived by applying

technology-dependent soft error rate to the observed application-level outcome rates per injected soft

error.

75

Table 3.5. Benchmark applications for uncore component soft error injection

simulations.

Benchmark application

Error-free

execution time

(cycles)

Input data file

size

SPLASH-2

Barnes (barn) 413M No input file

Cholesky (chol) 531M 1.7MB

FFT (fft) 862M No input file

LU-contiguous (lu-c) 215M No input file

Radix (radi) 120M No input file

Raytrace (rayt) 1,005M 4.5MB

PARSEC-2.1

Blackscholes (blsc) 164M 258KB

Bodytrack (body) 571M 2.5MB

Ferret (ferr) 763M 4.7MB

Fluidanimate (flui) 842M 1.3MB

Freqmine (freq) 353M 8.0MB

Streamcluster (stre) 695M No input file

Swaptions (swap) 591M No input file

Vips (vips) 1,003M 7.6MB

X264 (x264) 881M 2.8MB

Phoenix

MapReduce

Linear regression (p-lr) 54M 108MB

String match (p-sm) 248M 108MB

Word count (p-wc) 566M 99MB

We used the following five outcome categories to classify application-level

outcomes (same as Chapter 2): 1) Application Output Not Affected (ONA), 2)

76

Application Output Mismatch (OMM), 3) Unexpected Termination (UT), 4) Hang,

and 5) Vanished.

3.3.3. Application-level Erroneous Outcome Rates

Our soft error simulation results demonstrate that uncore soft errors can have

significant impact on the overall chip-level soft error rate. Figure 3.3 shows the

observed erroneous outcome rates for each of the uncore components across the

benchmark applications and their arithmetic means. For example, in Fig. 3.3a, error

injections into L2C for Barnes resulted in 0.42% of ONA, 0.02% of OMM, 1.34% of

UT, 0.26% of Hang, and 97.96% of Vanished outcomes.

As expected, most injected soft errors resulted in the Vanished outcome type

(over 97% of cases on average). Out of non-Vanished outcomes, UT is the most

frequent outcome type for L2C and CCX errors (0.69% on average). However,

depending on the application, OMM rates are also significant. For example, the OMM

rate for L2C is 0.3% for Fluidanimate and 0.42% for Streamcluster. PCIe error

injection results show higher OMM rates (0.89% on average) compared to other

components. Since PCIe transfers input data files in our simulations, soft errors in the

PCIe likely affect data values. On the other hand, soft errors in other uncore

components may corrupt control-related program variables, such as pointers or

condition variables that may result in UT or Hang outcomes. Overall, the probability of

having an erroneous application outcome (non-Vanished) for a single flip-flop soft error

is 1.4%, 1.7%, 2.2%, and 1.7% for L2C, MCU, CCX, and PCIe, respectively.

77

(a)

(b)

(c)

b
a
rn

c
h
o
l

ff
t

lu
-c

ra
d
i

b
ls

c

fl
u
i

fr
e
q

s
tr

e

s
w

a
p

p
-l
r

p
-s

m

p
-w

c

a
v
g
.

0%1%2%100%

 ONA OMM UT Hang Vanished

b
a

rn

c
h

o
l

ff
t

lu
-c

ra
d

i

ra
y
t

b
ls

c

b
o

d
y

fe
rr

fl
u
i

fr
e

q

s
tr

e

s
w

a
p

v
ip

s

x
2

6
4

p
-l
r

p
-s

m

p
-w

c

a
v
g

.

0%

1%

2%

100%

A
p

p
lic

a
ti
o
n

 O
u

tc
o

m
e

 R
a

te

b
a

rn

c
h

o
l

ff
t

lu
-c

ra
d

i

ra
y
t

b
ls

c

b
o

d
y

fe
rr

fl
u
i

fr
e

q

s
tr

e

s
w

a
p

v
ip

s

x
2

6
4

p
-l
r

p
-s

m

p
-w

c

a
v
g

.

0%

1%

2%

3%

4%

5%

6%
100%

A
p

p
lic

a
ti
o
n

 O
u

tc
o

m
e

 R
a

te

b
a

rn

c
h

o
l

ff
t

lu
-c

ra
d

i

ra
y
t

b
ls

c

b
o

d
y

fe
rr

fl
u
i

fr
e

q

s
tr

e

s
w

a
p

v
ip

s

x
2

6
4

p
-l
r

p
-s

m

p
-w

c

a
v
g

.

0%

1%

2%

3%
100%

A
p

p
lic

a
ti
o
n

 O
u

tc
o

m
e

 R
a

te

78

(d)

Figure 3.3. Application-level erroneous outcome rates resulting from error

injection for uncore components. (a) L2C. (b) MCU. (c) CCX. (d) PCIe.

The OMM outcome type is a serious reliability concern because, unlike the UT

and the Hang outcome types, the user may not be aware that the application resulted in

erroneous outputs (unless there are additional mechanisms to verify the correctness of

outputs). Figure 3.4 compares the observed OMM rates obtained from our uncore soft

error injection runs to the OMM rates of processor core soft errors reported in the

literature9. The observed OMM rates of uncore soft errors are comparable to that of

processor cores, showing that understanding soft error resilience is important for

uncore components in the studied OpenSPARC T2 design.

9 The results are based on injecting one soft error into a single target component (single uncore component

or single processor core). The results do not reflect any radiation-hardening techniques or device

technologies that have stronger soft error resilience (e.g., SOI [Loveless 11, Oldiges 09]).

c
h

o
l

ra
y
t

b
ls

c

b
o

d
y

fe
rr

fl
u
i

fr
e

q

v
ip

s

x
2

6
4

p
-l
r

p
-s

m

p
-w

c

a
v
g

.

0%

1%

2%

100%

A
p

p
lic

a
ti
o
n

 O
u

tc
o

m
e

 R
a

te

79

L2C MCU CCX PCIe LEON IVM Power OR
0%

1%

2%

3%

4%

O
M

M
 R

a
te

Uncore Components

 in OpenSPARC T2
Processor Cores

Figure 3.4. OMM rate of uncore components and processor cores (per instance).

Error bars are showing the minimum and maximum values observed across

benchmark applications. (LEON: LEON3 SPARC [Cho 13], IVM: IVM ALPHA [Cho

13], Power: IBM POWER6 [Sanda 08], and OR: OpenRISC [Meixner 07]).

3.4. Mixed-mode Platform Accuracy

Unlike RTL-only simulations or FPGA-based emulations, where the system is

simulated at the flip-flop level all the time, our mixed-mode platform models detailed

flip-flop behaviors only during the co-simulation mode. Hence, it is important to

quantify the accuracy of our approach.

3.4.1. Warm-up Period of Co-simulation Mode

To show that only a 1,000 cycle warm-up period is enough to restore the

microarchitectural states not included in the high-level uncore model (before an error

is injected at the flip-flop), we compared the logic value of each microarchitectural

state bit of our mixed-mode simulation setup (during co-simulation mode) vs. a

simulation setup that runs the RTL co-simulation from the very beginning (i.e., full-

80

co-simulation). In Fig. 3.5, the Y-axis represents the percentage of bits in our mixed-

mode setup (during co-simulation mode) that do not match the corresponding bit in the

full-co-simulation mode (unless the bit in the full-co-simulation mode is still

unknown). The results are averaged over 10,000 runs. After 1,000 cycles into the co-

simulation mode, the microarchitectural state of our mixed-mode platform closely

matches that of the full-co-simulation (difference less than 0.2%).

0 100 200 300 400 500 600 700 800 900 1000

0%

1%

2%

3%

4%

5%

M
ic

ro
-a

rc
h

it
e

c
tu

ra
l

S
ta

te
 D

if
fe

re
n

c
e

 (
%

)

Warm-up Cycles

 L2C

 MCU

 CCX

 PCIe

900 1000

0.0%

0.1%

0.2%

0.3%

Figure 3.5. Microarchitectural state difference during the warm-up period.

3.4.2. Limited Co-simulation Length

As discussed before, the co-simulation mode terminates early if the outcome of

the application run is determined or if only states modeled by high-level uncore

models are erroneous. However, in a few cases, errors may persist in uncore

microarchitectural states not modeled by high-level uncore models for extended

periods of simulation time. For these cases, limiting co-simulation length is a trade-off

81

between simulation efficiency and accuracy of the obtained results. For our error

injection study, only a small subset of soft errors that are injected into a small number

of flip-flops result in such situations10 past 100K cycles of co-simulation. Hence, we

limit co-simulation length to 100K cycles. These flip-flops represent 3.7%, 2%, 3.4%,

and 3.3% of all flip-flops in L2C, MCU, CCX, and PCIe, respectively (Fig. 3.6). Out

of all error injection runs, only 1.8% actually result in situations in which errors in

uncore microarchitectural states not modeled by high-level uncore models persist past

100K co-simulation cycles (L2C: 1.8%, MCU: 0.4%, CCX: 1.5% and PCIe: 1.4% of

their respective total runs).

Extending the co-simulation length beyond 100K cycles slows down

simulation and has diminishing returns in further determining application outcomes

(e.g., extending co-simulation cycle limit by 10× to 1M cycles increases the co-

simulation time 10-fold, but the percentage of error injection runs for L2C with errors

persisting beyond the cycle limit is reduced from 1.8% to 1.4% only). Since these

errors might vanish if given more co-simulation cycles, we do not report them as

erroneous outcomes in Figs. 3.3 and 3.4. However, one may conservatively choose to

protect these flip-flops for error resilient design, as we did in our study of QRR

described in Sec. 4.3.

10 These situations include errors injected into the flip-flops that are not accessed during the co-

simulation mode (therefore the mismatches with the corresponding flip-flops in the golden component

persist). As discussed in Sec. 3.2.2, persisting flip-flop errors that will eventually be masked (e.g.,

corrupted data field when the associated valid flag is not set) are not considered as persisting errors that

require extended co-simulation length.

82

<10
2

10
3

10
4

10
5

10
6

10
7

0%

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

 o
f
F

lip
-f

lo
p

s

in
 t
h

e
 u

n
c
ro

re
 c

o
m

p
o

n
e

n
t

Co-simulation Cycles

 L2C

 MCU

 CCX

 PCIe

10
6

10
7

0%

2%

4%

Figure 3.6. Percentage of flip-flops that result in situations in which errors in

uncore microarchitectural states not modeled by high-level uncore models

persist beyond the given co-simulation cycles.

3.4.3. Application-level Outcomes Accuracy

We compare the observed outcome rates from our mixed-mode platform vs.

those obtained from RTL-only simulations. Due to the slow speed of RTL simulators,

the comparison is limited to the FFT application with a smaller data set (1M cycles of

execution time), running on 4 threads without an OS. ONA and OMM types are

categorized into one outcome type because no specific output generation function (e.g.,

file write) is implemented in this setup. Figure 3.7 compares the observed application-

level erroneous outcome rates from the two setups obtained from 40,000 error

injection samples each. The observed rates from our mixed-mode platform closely

match (0.9-1.1×) those from the RTL-only simulations.

83

ONA+OMM UT Hang

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

O
u

tc
o

m
e

 R
a

te
 RTL-only

 Mixed-mode

Figure 3.7. Comparison of observed erroneous outcome rates from RTL-only

simulations vs. those from our mixed-mode platform. Error bars represent the

95% confidence intervals.

3.5. Conclusion

Studying the application-level effects of uncore soft errors in large-scale SoCs

is important but difficult. Our new mixed-mode simulation platform enables us to

accurately and effectively model uncore soft errors while achieving 20,000-fold

speedup compared to RTL simulations. This platform enabled us to characterize, for

the first time, system-level effects of soft errors in various uncore components of a

large and industrial-grade multi-core SoC.

Our results show that uncore soft errors can have significant impact on the

overall reliability of for the studied OpenSPARC T2 multi-core SoC. Hence, resilience

techniques to overcome uncore soft errors are required. In the next chapter, we discuss

the challenges for the uncore soft error resilience and introduce our new uncore soft

error resilience technique.

84

Chapter 4

Soft Error Resilience for Uncore Components

© [2015] IEEE. Part of this chapter has been reproduced with permission from H. Cho

et al., “Understanding Soft Errors in Uncore Components”, Proceedings of Design

Automation Conference 2015.

4.1. Introduction

As we discussed in Chapter 3, soft errors in uncore components can have

significant impact on system-level reliability. Therefore, it is important to provide

efficient soft error resilience mechanisms to uncore components to ensure the robust

operations of the entire system, including processor cores and uncore components.

In this chapter, we make the following contributions:

1. We show that traditional system-level checkpoint recovery techniques that

generally target processor cores are inadequate for uncore components.

2. We present a new soft error recovery technique called Quick Replay Recovery

(QRR) for uncore components belonging to the memory subsystem. We

85

demonstrate the effectiveness of QRR for the L2 cache controller and the DRAM

controller in the OpenSPARC T2 design. QRR results in 100× improvement (i.e.,

reduction) of the probability that an application run fails to produce correct

results due to soft errors in uncore components belonging to the memory

subsystem; the corresponding chip-level area and power impact for all L2C and

MCU instances are 1.44% and 2.49%, respectively.

4.2. System-level Checkpoint Recovery Challenges

Many error resilience solutions depend on system-level checkpoint recovery

techniques to revert the system to an error-free state upon error detection [Elnozahy

02]. One major challenge for ensuring correct recovery is the output commit problem

that may incur long delays for system outputs. Since rollback recovery may not be

able to invalidate committed outputs to the outside world1, such as network packets or

human interactions, outputs should be committed only when it is guaranteed that the

system will not roll back to a state before the outputs were produced [Elnozahy 02,

Nakano 06]. To avoid such long output delays, two conditions must be satisfied: 1)

errors must be detected quickly and 2) the recovery operation should not revert the

system to a very old state during rollback to an error-free state (i.e., rollback distance

should be short).

1 Outputs destined beyond the boundary of recovery (sphere of recovery). For example, if the recovery

does not include disks, a write to disk may not be nullified. A mechanism with a broader sphere of

recovery may mitigate the output commit problem, but the associated overheads can be high. For

example, it may take up to half an hour to create a checkpoint for petascale systems [Cappello 09].

86

4.2.1. Long Error Detection Latency of Uncore Soft Errors

Having long error detection latencies, i.e., the time elapsed from the cycle the

soft error affects the uncore component2 to the cycle the error is detected by an error

detection technique, may cause the system to roll back to a very old state in order to

revert the system to an error-free state. Error detection techniques at the software and

processor architecture levels, such as EDDI [Oh 02] and RMT [Mukherjee 08], can

detect uncore errors only after a processor core sees an erroneous output from the

uncore component. Therefore, the shortest error detection latency for such techniques

is longer than the error propagation latency to processor cores, i.e., the duration from

the cycle when a soft error affects an uncore component3 until the cycle when uncore

component produces an erroneous output to the processor cores.

 For soft errors injected in the uncore components associated with the memory

subsystem (L2C, MCU, and CCX) of OpenSPARC T2, we observed very long error

propagation latencies (Fig. 4.1). For example, soft errors in L2C take 36 million cycles

to propagate to processor cores on average. For processor cores, in contrast, errors can

be detected quickly within a short amount of time [Maniatakos 11a, Smolens 04].

Proactively loading and comparing memory values from uncore components can

reduce error propagation and detection latencies [Lin 14, 15]. These techniques have

been successfully used for validation purposes. The use of hardware support for such

2 The cycle when the soft error causes a bit-flip in the uncore component.
3 In this section, we use a conservative approach to quantify the resulting rollback distance. As long as a

recent checkpoint is error-free, a soft error detection may not result in a rollback to a very old state even

if the detection occurs a long duration after the actual bit-flip in the flip-flop. Therefore, we measure the

error propagation latency (≤ error detection latency) from the cycle when the flip-flop error eventually

results in a corruption in the states that are included in the checkpoint (e.g., software-visible state of the

main memory for the uncore components belonging to the memory subsystem).

87

approaches [Lin 15] can be promising for soft error detection and require further

experimentation and analysis.

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0%

20%

40%

60%

80%

100%

U
n

c
o

re
 E

rr
o

rs
 P

ro
p

a
g

a
ti
n

g

to
 P

ro
c
e

s
s
o

r
C

o
re

s

Error Propagation Latency (cycles)

 L2C

 MCU

 CCX

Figure 4.1. Cumulative distribution of uncore error propagation latencies to

processor cores.

4.2.2. Long Rollback Distance for Uncore Soft Errors

To ensure short rollback distance, the checkpointing mechanism has to create

checkpoints frequently (short checkpoint interval). To frequently create checkpoints,

the data size of each checkpoint has to be kept small due to the limited checkpoint

storage size and bandwidth. To achieve small checkpoint data size, incremental

checkpointing techniques are used [Prvulovic 02, Sorin 02]. They reduce the data size

88

of each checkpoint by saving logs of memory locations 4 modified by processor cores

between two checkpoints.

For soft errors in uncore components, however, such techniques may not be

adequate. For example, suppose that processor cores modified memory contents in the

address range [X-Y] (and, hence, only those memory contents were included in an

incremental checkpoint). However, a soft error in L2C might corrupt the content of

memory address Z which is outside the range [X-Y] (due to an address-related error).

In such a case, the recovery mechanism must roll back to an older state with an error-

free log on address Z.

The required roll back distance to recover from corrupted values in an arbitrary

memory location is determined by when a processor core last modified that memory

location.

Figure 4.2 shows the cumulative distribution of required rollback distances

resulting from soft errors in L2C and MCU. To cover more than 99% of soft errors

resulting in memory corruptions, the required rollback distance can be longer than

400M cycles.

4 Other architectural states, such as register values, have much smaller size compared to the main

memory state, and may not require incremental checkpointing.

89

Figure 4.2. Cumulative distribution of required rollback distance resulting from

soft errors in L2C and MCU.

4.3. Uncore Soft Error Resilience Using Quick Replay Recovery

Uncore soft error resilience can be achieved by utilizing radiation-hardened

flip-flops [Lilja 13, Mitra 05], but the associated costs may not be optimal (Sec. 4.3.5).

Logic parity [Mitra 00] can detect errors with very short error detection latency;

combined with an efficient recovery technique, logic parity can provide a low-cost

error resilience solution. For processor cores, efficient error recovery techniques exist

(e.g., by flushing instructions [Ando 03, Mukherjee 08], or by using instruction-level

retry [Meaney 05]). For uncore components, such mechanisms are inadequate due to

the following reasons:

1. As discussed in Sec. 3.2.1, uncore components process request packets from

processor cores. Those request packets need to be recreated for recovery. An

uncore component may not be able to regenerate request packets by itself.

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0%

20%

40%

60%

80%

100%

S
o

ft
 E

rr
o

rs
 R

e
s
u

lt
in

g
 i
n

C
o

rr
u

p
te

d
 M

e
m

o
ry

 V
a

lu
e

s

Required Rollback Distance(cycles)

 L2C

 MCU

90

2. Requesting processor cores to resend request packets may not always be possible

since processor cores may not store information about request packets being

processed by uncore components. For example, OpenSPARC T2 processor cores

retain request packets only until L2C sends corresponding return packets.

However, L2C may continue to process a request even after sending the return

packet to the processor core. For example, if a request results in a store miss, L2C

may spend hundreds of cycles to fetch a cache line even after sending the return

packet. In this case, the uncore operation may be affected by a soft error even after

the processor removes the request packet (upon receipt of the return packet).

3. Reverting processor cores, along with the erroneous uncore component, may

result in cascaded rollbacks since each uncore component can interact with

multiple processor cores and/or uncore components. For example, rolling back a

processor core might require rolling back the uncore components the processor

core interacted with, such as other instances of L2C. This, in turn, might require

rolling back other processor cores that interacted with those uncore components.

To overcome these challenges, we present a new technique called Quick

Replay Recovery (QRR) targeting uncore components (Fig. 4.3). QRR handles soft

errors without engaging processor cores during recovery. It is applicable for uncore

components that satisfy the following properties:

1. Executing requests multiple times in the same order does not change the

outcome. For example, this property is maintained in storage components such

as memory where duplicated operations in the same order do not change the

91

outcome. (For a detailed discussion regarding this property in the presence of

requests accessing the same address, please refer to Sec. 4.3.3).

2. The uncore component should be able to resume its operation upon reset of its

flip-flop contents. For flip-flop contents that should not be reset, such as flip-

flops used for configuration bits (e.g., cache disable bit in L2C), radiation-

hardening can be selectively used to protect those flip-flops (fewer than 3% for

L2C and MCU) from soft errors.

In this study, QRR works in conjunction with logic parity-based error detection

(other error detection techniques with very short error detection latencies are also

possible). It provides the following functionality:

1. Record request packets using a record table in the QRR controller. Packets are

stored in that table when a new request packet is sent to the uncore component,

and deleted from the table when the associated operation is completed by the

uncore component (Details in Sec. 4.3.1). Flip-flops in the QRR controller are

protected using radiation hardening.

2. When logic parity detects an error, the QRR controller performs recovery

operation by resending the request packets in the record table to the uncore

component (Details in Sec. 4.3.2).

92

MCU 3

Logic

Parity

Bank 7

Bank 1

Logic

Parity

L2C

Bank 0

Order Packet
Record

Table

(32 entries) ...

D
e

le
te

R
e

c
o

rd

Block Incoming Packets

L2C 0 MCU 0

Logic

Parity

Logic

Parity

Error

Detect

Completion

Monitoring

New request

Monitoring

Request Packet

QRR Controller

Miss

buffer

Processor

Cores

...

M
U

X

R
e

p
la

y

Replay

R
e

p
la

y

...

Write Disable

Store miss completion

Reset

...

Return Packet

Figure 4.3. QRR for L2C and MCU. QRR components are shaded.

We evaluate QRR for the L2C and MCU modules for which traditional

checkpoint recovery techniques are inadequate (Sec. 4.2). Because MCU receives

access requests through L2C only (e.g., cache line fill, eviction, or non-cached direct

DRAM access), recording and replaying L2C requests effectively covers MCU

requests as well5. QRR incurs a small performance impact during recovery. For L2C,

in the worst case when every replayed packet results in the longest operation (L2

cache load miss), the recovery takes fewer than 5,000 cycles.

5 Since an MCU instance operates with two L2C instances in OpenSPARC T2, soft error detection in an

MCU invokes recovery operation of two QRR controllers in the two L2C instances.

93

4.3.1. QRR Normal Operation

During normal operation, the QRR controller keeps track of request packets

that are being processed in the uncore component using its record table. QRR for an

L2C instance maintains a total ordering of all incomplete requests to that instance

based on their arrival order. This is a stricter ordering than the original design, which

only needs to maintain the arrival ordering between requests to the same cache line in

order to preserve the required SPARC total store ordering (TSO) [OpenSPARC].

Since each L2C and MCU instance exclusively serves disjoint memory address ranges,

maintaining ordering at each L2C instance (bank) is sufficient (without affecting

requests being processed by other instances).

When requests are completed without errors, they no longer need to be stored

by the QRR controller. A completion of a request is determined by monitoring return

packets to the processor cores. For uncore requests that require post processing even

after the return packet, additional monitoring may be required. For our QRR

implementation targets (L2C and MCU), the only return packet type requiring

additional monitoring is a store miss (described as an example in Sec. 4.3). In this case,

the QRR controller waits until the cache miss handling logic (Miss Buffer) in L2C

completes the operation before deleting the corresponding entry.

4.3.2. QRR Replay Recovery Operation

When logic parity detects an error, QRR first disables write enable signals to

data arrays (e.g., L2 cache tag, data, and DRAM) and valid signals of data ports

94

connected to processor cores or other uncore components to prevent the error from

corrupting those states and propagating to other components.

Propagating the parity error detection signal (individual error signal) to the

QRR controller and invoking the recovery operation may take multiple cycles because

signals from multiple parity detectors have to be aggregated. If a (detected) flip-flop

error propagates to a data array or to another component within a few cycles vs. the

number of cycles required to propagate the aggregated error signal to the QRR

controller, then the soft error might corrupt the corresponding data array or the

connected component before the recovery operation is invoked. This creates a non-

zero chance of corrupt outputs being produced by the SoC. In our current

implementation, we managed this issue by manually inspecting cases where such

situations might arise, and fixed the issues by routing individual error signals to

corresponding data arrays or other components before the error signals are fully

aggregated into the input for the QRR controller. These manually routed signals

disable write enable signals and valid signals before the flip-flop error propagates to

those arrays or components.

The next step is to assert the reset signal of the uncore component to clear its

flip-flop values. Accepting new request packets from processor cores is postponed

until recovery is completed. After reset, the QRR controller sends recorded packets to

the uncore component in the recorded order until all recorded incomplete request

packets are replayed. After the replay completes, the uncore component resumes

normal operation by starting to accept new request packets from processor cores.

95

QRR can successfully recover errors for the following reasons:

1. For L2C and MCU, executing incomplete request packets again (replay) does not

change the outcome. As long as multiple concurrent requests do not access the

same address, replaying requests in a given order results in the same outcome. For

example, executing requests “read from X”, “write A to Y”, and “read from Z”

multiple times have the same resulting effects. If there are dependencies (i.e.,

multiple requests that access the same address) between concurrent requests,

executing requests multiple time may result in a different outcome (e.g., “read

from X” and “write A to X” when the original value of X is not A). For requests that

exhibit dependencies, as discussed in Sec. 4.3.1, L2C in OpenSPARC is originally

designed not to begin the execution of the following request until the previous one

completes (i.e., only one of the requests are executed at a time). Therefore, the

replay by QRR does not result in a situation where multiple dependent requests are

executed multiple times. For example, suppose that requests R1, R2, and R3 have

dependencies to each other, and L2C executes the packets in R1R2R3 order.

If a soft error is detected when L2C executes R2, the replay by QRR results in a

re-execution of R2 only for the following reasons: 1) The execution of R1 is

already completed at that point (removed from the record table) and not included

in the replay. 2) The execution of R3 has not been started yet and the actual

execution of R3 happens only after the replay (no multiple execution of R3).

2. By enforcing a stricter ordering between recorded requests (vs. the default

memory ordering of the target uncore component), requests replayed by QRR do

not violate the memory access order of the original requests.

96

3. A detected soft error does not change the outcome of replayed operations since

the erroneous flip-flop values are reset by the QRR controller, the contents of the

SRAM and DRAM arrays are preserved, and data signals to other components

are invalidated (except for the corner case situation related to the error signal

propagation discussed in Sec. 4.3.2).

4.3.3. QRR Results

We implemented QRR for the L2C and MCU modules of OpenSPARC T2,

and evaluated its effectiveness using the mixed-mode platform discussed in Chapter 3.

To minimize the cost of parity-based error detection, we selectively used

radiation hardening for the following flip-flops:

1. Flip-flops with timing slack shorter than the path delay of the XOR tree used to

calculate a parity bit. In such a case, logic parity may not be a cost-effective

solution since it is not possible to place the XOR tree without slowing down the

clock or using additional flip-flops to split the XOR tree over multiple clock

cycles. 1,650 flip-flops of L2C (9%), 36 flip-flops of MCU (0.3%) belong to this

category.

2. Configuration flip-flops where reset and replay may fail to restore the required flip-

flop values. These flip-flops are excluded from reset. 55 flip-flops of L2C (0.3%),

309 flip-flops of MCU (2.5%) belong to this category.

3. Flip-flops in the QRR controller. 812 flip-flops per instance (~3% of the flip-flops

in L2C and MCU) belong to this category. Since the flip-flops in the QRR

97

controller are hardened, we did not protect the tables in the QRR controller

(assuming single soft errors).

The rest of the flip-flops in the uncore components are protected by logic

parity and QRR.

From simulations using the same set of applications as in Sec. 3.3.2, QRR

successfully recovered from all errors injected into the flip-flops covered by logic

parity for over 400,000 error injection runs for L2C and MCU.

4.3.3.1. Selective Flip-flop Protection Using QRR

To maximize the cost-effectiveness of a soft error resilience solution, not every

flip-flop in the design needs to be protected. We evaluate the resulting error resilience

improvement of QRR by comparing the sum of observed rates 6 of non-Vanished

outcome types7 (non-Vanished outcome rate).

𝐸𝑟𝑟𝑜𝑟 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

=
𝑁𝑜𝑛-𝑉𝑎𝑛𝑖𝑠ℎ𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑒𝑠𝑖𝑔𝑛

 𝑁𝑜𝑛-𝑉𝑎𝑛𝑖𝑠ℎ𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑟𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑄𝑅𝑅8

6 Since QRR does not introduce execution time overhead in error-free mode (and introduces short

recovery upon error detection), QRR does not change the error-free execution time of a given

application. Therefore, we assume that the probability of having a soft error during the execution of a

given application is the same for the original design and the design with QRR.
7 ONA, OMM, UT, and Hang.
8 When calculating the error resilience improvement for QRR, flip-flops protected using logic parity

error detection (and QRR recovery) are considered to have zero probability of having a non-Vanished

outcome (Sec. 4.3.5). Assuming 1,000× soft error rate reduction of radiation-hardened flip-flops [Lilja

13], flip-flops protected using radiation hardening are considered to have 0.001× probability of having a

non-Vanished outcome compared to that of the corresponding flip-flip in the original (i.e., without

radiation-hardened flip-flops) design.

98

For example, if the non-Vanished outcome rate of the original design is 1% and the

design with QRR reduces the rate to 0.1%, the resulting error resilience improvement

is 10×.

Flip-flops have varying degrees of vulnerability (i.e., the likelihood that a soft

error in the flip-flop cause non-Vanished outcome types). To meet the desired level of

error resilience improvement (error resilient improvement goal), we can selectively

provide soft error resilience solutions to protect flip-flops with higher vulnerability

first to minimize the associated overheads. Table 4.1 shows the error resilience

improvement goals and the percentage of flip-flops that need to be protected if we

prioritize flip-flops based on their vulnerabilities9. For example, to achieve 5× error

reilience improvement, 25.10% of flip-flops with the highest vulnerabilities in L2C

and MCU need to be protected.

Table 4.2 presents the area and power overheads of QRR for the corresponding

error resilience improvement goals. The area and power overheads are obtained after

synthesis and place-and-route10. Table 4.2 also compares the overheads of QRR to

those of the hardening-only mechanism that protects the same set of flip-flops using

radiation-hardened flip-flops. Compared to the hardening-only mechanism, QRR

9 In this section, we evaluated the vulnerability of a flip-flop based on the error injection results across

all benchmark applications in Sec. 3.3. However, the vulnerability of a flip-flop may vary depending on

the application (benchmark dependence). A soft error resilience solution optimized for a specific set of

applications may not result in the best error resilience for applications not included in the set. To

estimate the resulting error resilience for an arbitrary application, one may divide the benchmark

applications into two groups, one group of applications for selecting flip-flops to protect (referred to as

the training set) and another (disjoint) group of applications for evaluating the error resilience (referred

to as the evaluation set).
10 The area overhead is obtained using the Synopsys Design Compiler and a commercial 28nm

technology library. The power overhead is calculated using the Synopsys PrimeTime and application

execution traces. Chip-level overhead is estimated based on published data in related OpenSPARC T2

studies [Jung 14, Li 13].

99

achieves up to 20% and 13.6% lower area and power overhead, respectively, for 100×

error resilience improvement. When the number of protected flip-flops is small, QRR

does not show significant improvements or even shows worse result than the

hardening-only approach.

Table 4.1. Error resilience improvement goals and the required portions of flip-

flops that need to be protected.

Error resilience improvement

goal

Flip-flops in L2C and MCU that need

protection (%)

2× 10.91%

5× 25.10%

10× 31.33%

20× 35.99%

50× 44.71%

100× 57.11%

200× 66.75%

500× 71.95%

1000× 79.28%

100

Table 4.2. QRR overhead comparison. The percentages are overheads for

L2C and MCU (the percentages in parenthesis are chip-level overheads).

Error

resilience

improvement

goal

Area overhead % (chip-level %) Power overhead% (chip-level %)

QRR
Hardening

only
Improvement QRR

Hardening

only
Improvement

2× 3.28%
(0.24%)

0.17%
(0.01%)

-
1.45%

(0.19%)
0.44%

(0.06%)
-

5× 3.67%
(0.27%)

0.44%
(0.03%)

-
2.17%

(0.28%)
0.59%

(0.08%)
-

10× 4.23%
(0.31%)

1.13%
(0.08%)

-
2.27%

(0.29%)
0.99%

(0.13%)
-

20× 5.59%
(0.40%)

2.67%
(0.19%)

-
3.03%

(0.39%)
4.99%

(0.64%)
-

50× 7.27%
(0.53%)

4.02%
(0.29%)

-
4.23%

(0.54%)
4.21%

(0.54%)
-

100× 19.97%
(1.44%)

23.55%
(1.70%)

15.18%
19.35%
(2.49%)

21.56%
(2.77%)

10.27%

200× 22.69%
(1.64%)

28.01%
(2.03%)

18.97%
23.01%
(2.96%)

24.56%
(3.16%)

6.32%

500× 23.96%
(1.73%)

30.32%
(2.19%)

20.96%
25.80%
(3.32%)

28.53%
(3.66%)

9.54%

1000× 25.71%
(1.86%)

32.35%
(2.34%)

20.52%
26.77%
(3.44%)

30.98%
(3.98%)

13.59%

4.3.3.2. QRR Overheads Breakdown

To show the details of the area and power overheads, Table 4.3 presents the

breakdown of the overheads associated with the QRR implementation for L2C and

101

MCU. For this breakdown, QRR protects all flip-flops (i.e., flip-flops subject to error

injection in Table 3.4) in L2C and MCU. In this case, the majority of the overheads

come from logic parity or flip-flop hardening. The total area and power overheads of

QRR are 31.33% and 35.2% at each uncore component level (2.27% and 4.52% at

chip-level for all L2C and MCU instances).

Table 4.3. QRR area and power overhead breakdown for L2C and MCU. Flip-

flops in the QRR controller are protected using radiation-hardening.

Overhead

QRR Hardening

only (chip-

level)

Logic

parity

Flip-flop

hardening

QRR controller

and record table

Total

(chip-level)

Area 20.7% 4.83% 5.8%
31.33%

(2.27%)
42.1% (3.05%)

Power 25.0% 6.3% 3.9%
35.2%

(4.52%)
40.7% (5.22%)

4.4. Conclusion

Our results show that uncore soft errors can have significant impact on the

overall reliability of for the studied OpenSPARC T2 multi-core SoC. Hence, resilience

techniques to overcome uncore soft errors are required. However, uncore soft errors

pose several challenges for traditional system-level checkpointing techniques that are

generally effective for processor cores. Our Quick Replay Recovery approach

overcomes these challenges for uncore components in the memory subsystem of

OpenSPARC T2. We demonstrate the effectiveness of QRR for L2C and MCU in the

102

OpenSPARC T2 design. QRR achieves 100× error resilience improvement with the

chip-level area and power impact of 1.44% and 2.49%, respectively.

103

Chapter 5

Concluding Remarks

In this dissertation, we quantify the inaccuracies associated with existing soft

error injection techniques and analyze the sources of such inaccuracies. This analysis

shows that widely-used soft error injection techniques can lead to highly inaccurate

error injection results when evaluating the system-level reliability in the presence of

soft errors. To avoid such inaccuracies and obtain high simulation throughputs for

large-scale designs, we created a new mixed-mode simulation platform that simulates

soft errors in uncore components. Using this platform, we demonstrate that soft errors

in uncore components have significant reliability impact, comparable to soft errors in

processor core components. This indicates that it is important to study system-level

effects arising from soft errors in all components in the system design, not limited to

soft errors in processor cores, to achieve system-wide soft error resilience.

We also analyze the challenges of soft error resilience for uncore components

using traditional system-level checkpoint recovery. Due to the long error detection

latencies associated with soft errors in uncore components, system-level checkpoint

104

recovery techniques may induce long delays when the system produces outputs to the

outside world, known as the output commit problem. For uncore components belong

to the memory subsystem, our QRR soft error recovery technique can avoid such

challenges while achieving high degrees of soft error resilience at low area and power

overheads.

The following research directions can further extend the results of this

dissertation:

1) While we focused on soft errors in this dissertation, future work must address

other sources of errors as well, e.g., errors induced by manufacturing and

environmental variations, early-life failures, and circuit aging.

2) Future research directions should explore cross-layer error resilience techniques

(spanning circuit, logic, architecture, software, and application layers) to

systematically derive optimized error resilience solutions for a broad range of

components, including processor cores, uncore components, and accelerators.

105

Publications

1. H. Cho, C.-Y. Cher, T. Shepherd, and S. Mitra, “Understanding Soft Errors in

Uncore Components,” Proc. Design Automation Conf., 2015.

2. S. Mitra, P. Bose, E. Cheng, H. Cho, R. Joshi, Y. M. Kim, C. Lefurgy, Y. Li, K.

Rodbell, K. Skadron, J. Stathis and L. Szafaryn, “The Resilience Wall: Cross-

Layer Solution Strategies,” Proc. IEEE Intl. Symp. VLSI Technology, Systems

and Applications and IEEE Intl. Symp. VLSI Design, Automation and Test,

2014 (invited).

3. S. Mirkhani, H. Cho, S. Mitra, and J. A. Abraham, “Rethinking Error Injection

for Effective Resilience,” Proc. IEEE Asia and South Pacific Design

Automation Conf., pp. 390–393, 2014 (invited).

4. H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham and S. Mitra, “Quantitative

Evaluation of Soft Error Injection Techniques for Robust System Design,”

Proc. Design Automation Conf., 2013.

5. H. Cho, L. Leem, and S. Mitra, “Error Resilient System Architecture for

Probabilistic Applications,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

and Syst., vol. 31, no. 4, pp. 546–558, Apr. 2012.

6. S. Mitra, H. Cho, T. Hong, Y. Kim, H. Lee, L. Leem, Y. Li, D. Lin, E.

Mintarno, S. Park, N. Patil, H. Wei and J. Zhang, “Robust System

Design,” IPSJ Trans. System LSI Design Methodology, 2011 (Invited)

106

7. L. Leem, H. Cho, J. Bau, Q. A. Jacobson, S. Mitra, “Error Resilient System

Architecture for Probabilistic Applications,” Proc. Design, Automation and

Test in Europe, pp. 1560–1565, 2010.

8. L. Leem, H. Cho, H.-H. Lee, Y. M. Kim, Y. Li, S. Mitra, “Cross-layer error

resilience for robust systems,” Proc. Intl. Conf. Computer-Aided Design, pp.

177–180, 2010 (invited).

107

References

[Ando 03] H. Ando et al., “A 1.3 GHz Fifth Generation SPARC64 Microprocessor ,”

Proc. Intl. Solid-State Ciruits Conf., pp. 702–705, 2003.

[Arlat 03] J. Arlat et al., “Comparison of Physical and Software-Implemented Fault

Injection Techniques,” IEEE Trans. Computers, vol. 52, no. 9, pp. 1115–1133,

Sept. 2003.

[Asaad 12] S. Asaad et al., “A Cycle-accurate, Cycle-reproducible multi-FPGA System

for Accelerating Multi-core Processor Simulation,” Proc. Intl. Symp. Field

Programmable Gate Arrays, pp. 153–162, 2012.

[Bailan 10] O. Bailan et al., “Verification of soft error detection mechanism through

fault injection on hardware emulation platform,” Proc. Intl. Conf. Dependable

Systems and Networks Workshops, pp. 113–118, 2010.

[Bender 08] C. Bender et al., “Soft-error resilience of the IBM POWER6 processor

input/output subsystem,” IBM Journal of Research and Development, vol. 52, no. 3,

pp. 285–292, May 2008.

[Benini 03] L. Benini et al., “SystemC Co-simulation and Emulation of Multiprocessor

SoC Designs,” IEEE Computer, vol. 36, no. 4, pp. 53–59, Apr. 2003.

[Bernick 05] D. Bernick et al., “NonStop® Advanced Architecture,” Proc. Intl. Conf.

Dependable Systems and Networks, pp. 12–21, 2005.

[Bienia 11] C. Bienia, “Benchmarking Modern Multiprocessors,” Ph.D. Dissertation,

Princeton University, Princeton, NJ, USA, 2011.

108

[Borkar 07] S. Borkar, N. P. Jouppi, and P. Stenstrom, “Microprocessors in the Era of

Terascale Integration,” Proc. Design, Automation and Test in Europe, pp. 237–242,

2007.

[Borkar 11] S. Borkar and A. A. Chien, “The Future of Microprocessors,” Commun.

ACM, vol. 54, no. 5, pp. 67–77, May 2011.

[Bottoni 14] C. Bottoni et al., “Heavy ions test result on a 65nm Sparc-V8 radiation-

hard microprocessor,” Proc. IEEE Intl. Reliability Physics Symp. pp. 5F.5.1-5F.5.6,

June 2014.

[Cappello 09] F. Cappello, “Fault Tolerance in Petascale/ Exascale Systems: Current

Knowledge, Challenges and Research Opportunities,” Intl. Journal of High

Performance Computing Applications, vol.23, no.3, pp. 212–226, Aug. 2009.

[Chen 06] G. Chen et al., “Object Duplication for Improving Reliability,” Proc. Asia

and South Pacific Design Automation Conf., pp. 140–145, 2006.

[Chen 08] D. Chen et al., “Error Behavior Comparison of Multiple Computing

Systems: A Case Study Using Linux on Pentium, Solaris on SPARC, and AIX on

POWER,” Proc. IEEE Pac. Rim Intl. Symp. Dependable Computing, pp. 339–346,

2008.

[Cho 13] H. Cho et al., “Quantitative Evaluation of Soft Error Injection Techniques for

Robust System Design,” Proc. Design Automation Conf., 2013.

[Choi 90] G. S. Choi, R. K. Iyer, and V. A. Carreno, “Simulated Fault Injection: A

Methodology to Evaluate Fault Tolerant Microprocessor Architectures,” IEEE

Trans. Reliability, vol. 39, no. 4, pp. 486–491, Oct. 1990.

109

[Davis 09] J. D. Davis, C. P. Thacker, and C. Chang, “BEE3: Revitalizing Computer

Architecture Research,” Microsoft Tech. Rep. MSR-TR-2009-45, 2009.

[DeHon 10] A. DeHon, H. M. Quinn, and N. P. Carter, “Vision for Cross-Layer

Optimization to Address the Dual Challenges of Energy and Reliability,” Proc.

Design, Automation and Test in Europe, pp. 1017–1022, 2010.

[Ejlali 03] A. Ejlali et al., “A Hybrid Fault Injection Approach Based on Simulation and

Emulation Co-operation,” Proc. Intl. Conf. Dependable Systems and Networks, pp.

479–488, 2003.

[Elnozahy 02] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of

rollback-recovery protocols in message-passing systems,” ACM Comput. Surv., vol.

34, no. 3, pp. 375–408, Sept. 2002.

[Feng 10] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic Soft

Error Reliability on the Cheap,” Proc. Intl. Conf. Architectural Support for

Programming Languages and Operating Systems, pp. 385–396, 2010.

[Fleming 86] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: The

correct way to summarize benchmark results,” Commun. ACM, vol. 29, no. 3, pp.

218–221, Mar. 1986.

[Gem5] “The gem5 Simulator System,” http://www.m5sim.org

[Goswami 97] K. K. Goswami, R. K. Iyer, and L. Young, “DEPEND: A Simulation-

Based Environment for System Level Dependability Analysis,” IEEE Trans.

Computers, vol. 46, no. 1, pp. 60–74, Jan. 1997.

110

[Graham 09] D. Graham, P. Strid, S. Roy, and F. Rodriguez, “A low-tech solution to

avoid the severe impact of transient errors on the IP interconnect,” Proc. Intl. Conf.

Dependable Systems and Networks, pp. 478–483, 2009.

[Gu 04] W. Gu, Z. Kalbarczyk, and R. K. Iyer, “Error Sensitivity of the Linux Kernel

Executing on PowerPC G4 and Pentium 4 Processors,” Proc. Intl. Conf.

Dependable Systems and Networks, pp. 887–896, 2004.

[Gupta 12] V. Gupta et al., “The Forgotten 'Uncore': On the Energy-efficiency of

Heterogeneous Cores,” Proc. USENIX Annual Technical Conf., 2012.

[Hauck 07] S. Hauck and A. DeHon, “Reconfigurable computing: the theory and

practice of FPGA-based computation,” Morgan Kaufmann, 2007.

[Howard 10] J. Howard et al., “A 48-Core IA-32 Message-Passing Processor with

DVFS in 45nm CMOS,” Proc. IEEE Intl. Solid-State Circuits Conf., pp. 108–109,

2010.

[Jung 14] M. Jung et al., “On Enhancing Power Benefits in 3D ICs: Block Folding and

Bonding Styles Perspective,” Proc. Design Automation Conf., 2014.

[Kalbarczyk 99] Z. Kalbarczyk et al., “Hierarchical Simulation Approach to Accurate

Fault Modeling for System Dependability Evaluation,” IEEE Trans. Software

Engineering, vol. 25, no. 5, pp. 619–632, Sept.–Oct. 1999.

[Kanawati 93] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “EMAX: An

Automatic Extractor of High-Level Error Models,” Proc. AIAA Computing

Aerospace Conf., pp. 1297–1306, 1993.

[Kim 07] J. Kim et al., “Multi-bit Error Tolerant Caches Using Two-Dimensional

Error Coding,” Proc. Intl. Symp. Microarchitecture, pp. 197–209, 2007.

111

[KleinOsowski 02] AJ KleinOsowski, and D. J. Lilja, “MinneSPEC: A New SPEC

Benchmark Workload for Simulation-Based Computer Architecture Research,”

IEEE Computer Architecture Letters, vol. 1, no. 1, Jan.–Dec. 2002.

[Kuon 07] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,”

IEEE Trans. Comput.-Aided Des. Integr. Circuits and Syst., vol. 26, no. 2, pp. 203–

215, Feb. 2007.

[Leon] Aeroflex Gaisler, “Leon3 Processor,” http://www.gaisler.com.

[Li 09] M.-L. Li et al., “Accurate Microarchitecture-level Fault Modeling for Studying

Hardware Faults,” Proc. IEEE Intl. Symp. High Performance Computer

Architecture, pp. 105–116, 2009.

[Li 13] Y. Li, E. Cheng, S. Makar, and S. Mitra, “Self-Repair of Uncore Components in

Robust System-on-Chips: An OpenSPARC T2 Case Study,” Proc. IEEE Intl. Test

Conf., 2013.

[Lilja 13] K. Lilja et al., “Single-Event Performance and Layout Optimization of Flip-

Flops in a 28-nm Bulk Technology,” IEEE Trans. Nucli. Sci., vol. 60, no. 4, pp.

2782–2788, Aug. 2013.

[Lin 06] I.-C. Lin, S. Srinivasan, and N. Vijaykrishnan, “Transaction Level Error

Susceptibility Model for Bus Based SoC Architectures,” Proc. Intl. Symp. Quality

Electronic Design, pp. 775–780, 2006.

[Lin 14] D. Lin et al., “Effective Post-Silicon Validation of System-on-Chips Using

Quick Error Detection,” IEEE Trans. Comput.-Aided Des. Integr. Circuits and Syst.,

vol. 33, no. 10, pp. 1573–1590, Oct. 2014.

112

[Lin 15] D. Lin et al., “Quick Error Detection Tests with Fast Runtimes for Effective

Post-Silicon Validation and Debug,” Proc. Design, Automation and Test in Europe,

pp. 1168–1173, 2015.

[Loveless 11] T. D. Loveless et al., “Neutron- and Proton-Induced Single Event Upsets

for D- and DICE-Flip/Flop Designs at a 40 nm Technology Node,” IEEE Trans.

Nucli. Sci., vol. 58, no. 3, pp. 1008–1014, June 2011.

[Maniatakos 11a] M. Maniatakos, C. Tirumurti, A. Jas, and Y. Makris, “AVF Analysis

Acceleration via Hierarchical Fault Pruning,” Proc. European Test Symposium, pp.

87–92, 2011.

[Maniatakos 11b] M. Maniatakos et al., “Instruction-Level Impact Analysis of Low-

Level Faults in a Modern Microprocessor Controller,” IEEE Trans. Computers,

vol. 60, no. 9, pp. 1260–1273, Sept. 2011.

[McCluskey 71] E. J. McCluskey and F. W. Clegg, “Fault Equivalence in

Combinational Logic Networks,” IEEE Trans. Computers, vol. 20, no. 11, pp.

1286–1293, Nov. 1971.

[McCluskey 00] E. J. McCluskey and C.-W. Tseng, “Stuck-Fault Tests vs. Actual

Defects,” IEEE Intl. Test Conf., pp. 336–343, 2000.

[Meaney 05] P. J. Meaney, S. B. Swaney, P. N. Sanda, and L. Spainhower, “IBM z990

soft error detection and recovery,” IEEE Trans. Device and Materials Reliability,

vol. 5, no. 3, pp. 419–427, Sept. 2005.

[Meixner 07] A. Meixner, M. E. Bauer, and D. J. Sorin, “Argus: Low-Cost,

Comprehensive Error Detection in Simple Cores,” Proc. Intl. Symp.

Microarchitecture, pp. 210–222, 2007.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=E.J.%20McCluskey
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=F.W.%20Clegg

113

[Michalak 12] S. E. Michalak et al., “Assessment of the Impact of Cosmic-Ray-

Induced Neutrons on Hardware in the Roadrunner Supercomputer,” IEEE Trans.

Device and Materials Reliability, vol. 12, no. 2, pp. 445–454, June 2012.

[Mirkhani 14] S. Mirkhani, H. Cho, S. Mitra, and J. A. Abraham, “Rethinking Error

Injection for Effective Resilience,” Proc. IEEE Asia and South Pacific Design

Automation Conf., pp. 390–393, 2014.

[Miskov-Zivanov 10] N. Miskov-Zivanov and D. Marculescu, “Multiple Transient

Faults in Combinational and Sequential Circuits: A Systematic Approach,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits and Syst., vol. 29, no. 10, pp. 1614–

1627, Oct. 2010.

[Mitra 00] S. Mitra and E. J. McCluskey, “Which Concurrent Error Detection Scheme

to Choose?,” Proc. Intl. Test Conf., pp. 985–994, 2000.

[Mitra 05] S. Mitra et al., “Robust System Design with Built-In Soft-Error Resilience,”

IEEE Computer, vol. 38, no. 2, pp. 43–52, Feb. 2005.

[Mitra 10] S. Mitra, K. Brelsford, and P. N. Sanda, “Cross-Layer Resilience

Challenges: Metrics and Optimization,” Proc. Design, Automation and Test in

Europe, pp. 1029–1034, 2010.

[Mitra 14] S. Mitra et al., “The Resilience Wall: Cross-Layer Solution

Strategies," Proc. IEEE Intl. Symp. VLSI Design, Automation and Test, 2014.

[Mukherjee 05] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The Soft Error Problem:

An Architectural Perspective,” Proc. IEEE Intl. Symp. High Performance Computer

Architecture, pp. 243–247, 2005.

114

[Mukherjee 08] S. S. Mukherjee, “Architecture Design for Soft Errors,” Morgan

Kaufmann, 2008.

[Nakano 06] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas, “ReViveI/O:

Efficient Handling of I/O in Highly-Available Rollback-Recovery Servers,” Proc.

Intl. Symp. High-Performance Computer Architecture, pp. 200–211, 2006.

[Oh 02] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error Detection by Duplicated

Instructions in Super-Scalar Processors,” IEEE. Trans. Reliability, vol. 51, no. 1, pp.

63–75, Mar. 2002.

[Oldiges 09] P. Oldiges et al., “Technologies to further reduce soft error susceptibility

in SOI,” Proc. IEEE Intl. Electron Devices Meeting, 2009.

[OpenSPARC] “OpenSPARC: World’s First Free 64-bit Microprocessor,”

http://www.opensparc.net.

[Pattabiraman 11] K. Pattabiraman et al., “Automated Derivation of Application-

Specific Error Detectors Using Dynamic Analysis,” IEEE Trans. Dependable and

Secure Computing, vol. 8, no. 5, pp. 640–655, Sept.–Oct. 2011.

[Pellegrini 12] A. Pellegrini et al., “CrashTest’ing SWAT: Accurate, Gate-Level

Evaluation of Symptom-Based Resiliency Solutions,” Proc. Design, Automation

and Test in Europe, pp. 1106–1109, 2012.

[Prvulovic 02] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-Effective

Architectural Support for Rollback Recovery in Shared-Memory Multiprocessors,”

Proc. Intl. Symp. Computer Architecture, pp. 111–122, 2002.

115

[Quinn 13] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner, “Fault

Simulation and Emulation Tools to Augment Radiation-Hardness Assurance

Testing,” IEEE Trans. Nucli. Sci., vol. 60, no. 3, pp. 2119–2142, June 2013.

[Racunas 07] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee,

“Perturbation-based Fault Screening,” Proc. IEEE Intl. Symp. High Performance

Computer Architecture, pp. 169–180, 2007.

[Ramachandran 08] P. Ramachandran et al., “Statistical Fault Injection,” Proc. IEEE

Intl. Conf. Dependable Systems and Networks, pp. 122–127, 2008.

[Rebaudengo 02] M. Rebaudengo, M. S. Reorda, and M. Violante, “Analysis of SEU

effects in a pipelined processor,” Proc. IEEE Intl. On-Line Testing Workshop, pp.

112–116, 2002.

[Rimen 94] M. Rimen, J. Ohlsson, and J. Torin, “On microprocessor error behavior

modeling,” Proc. IEEE Intl. Symp. Fault-Tolerant Computing, pp. 76–85, 1994.

[Sanda 08] P. N. Sanda et al., “Soft-error resilience of the IBM POWER6 processor,”

IBM Journal of Research and Development, vol. 52, no. 3, pp. 275–284, May 2008.

[Schelle 10] G. Schelle et al., “Intel Nehalem Processor Core Made FPGA

Synthesizable,” Proc. Intl. Symp. Field Programmable Gate Arrays, pp. 3–12, 2010.

[Seifert 10] N. Seifert, “Radiation-induced Soft Errors: A Chip-level Modeling

Perspective,” Foundat. Trends® in Electron. Design Autom., vol. 4, no. 2–3, pp.

99–221, Feb. 2010.

[Seifert 12] N. Seifert et al., “Soft Error Susceptibilities of 22 nm Tri-Gate Devices,”

IEEE Trans. Nucli. Sci., vol. 59, no. 6, pp. 2666–2673, Dec. 2012.

116

[Simics] “Windriver Simics Full System Simulation,”

http://www.windriver.com/products/simics/.

[Smolens 04] J. C. Smolens et al., “Fingerprinting: Bounding Soft-error Detection

Latency and Bandwidth,” Proc. Intl. Conf. Architectural Support for Programming

Languages and Operating Systems, pp. 224–234, 2004.

[Sorin 02] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “SafetyNet:

Improving the Availability of Shared Memory Multiprocessors with Global

Checkpoint/Recovery,” Proc. Intl. Symp. Computer Architecture, pp. 123–134, 2002.

[Wang 04] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the

Effects of Transient Faults on a High-Performance Processor Pipeline,” Proc. Intl.

Conf. on Dependable Systems and Networks, pp. 61–70, 2004.

[Wang 07] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE Analysis

Reliability Estimates Using Fault-Injection,” Proc. Intl. Symp. Computer

Architecture, pp. 460–469, 2007.

[Weaver 08] D. L. Weaver, “OpenSPARC internals: OpenSPARC T1/T2 CMT

throughput computing,” Sun Microsystems, 2008.

[Woo 95] S. C. Woo et al., “The SPLASH-2 Programs: Characterization and

Methodological Considerations,” Proc. Intl. Symp. Computer Architecture, pp. 24–

36, 1995.

[Yim 10] K. S. Yim, Z. Kalbarczyk, and R. K. Iyer, “Measurement-based Analysis of

Fault and Error Sensitivities of Dynamic Memory,” Proc. IEEE/IFIP Intl. Conf. on

Dependable Systems and Networks, pp. 431–436, 2010.

117

[Yoo 09] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scalable

MapReduce on a large-scale shared-memory system,” Proc. Intl. Symp. Workload

Characterization, pp. 198–207, 2009.

[Zhang 10] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August, “DAFT: Decoupled

Acyclic Fault Tolerance,” Proc. Intl. Conf. Parallel Architectures and Compilation

Techniques, pp. 87–98, 2010.

