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Abstract

The Hall thruster (or Hall effect thruster) is an electric propulsion device used for space

flight applications. Despite its use as a deployed production technology, much of the

underlying plasma physics which governs thruster behavior and performance is not well

understood. Specifically, laboratory experiments indicate an anomalously high electron

mobility in the direction perpendicular to the magnetic field, which exceeds that predicted

by classical theory. Predicting this so-called anomalous electron transport remains a key

research challenge. One possible mechanism for the generation of super-classical electron

transport is the interaction of correlated quasi-coherent fluctuations in the plasma proper-

ties. Instabilities in the plasma can lead to quasi-coherent wave fluctuations in the electric

potential, electron number density, and electron velocities; if these fluctuations are appro-

priately correlated, they can serve to either enhance or reduce electron transport across the

magnetic field. In this work, we use numerical simulations as a tool to characterize axial

and azimuthal fluctuations in the plasma discharge properties and study their impact on

cross-field electron transport.

We employ a two-dimensional axial-azimuthal (z-θ ) model to simulate an annular Hall

thruster discharge. We use a hybrid fluid-Particle-In-Cell approach in which the positive

ion (Xe+) and neutral (Xe) species are modeled using a Particle-In-Cell (PIC) treatment and

the electrons are modeled as a fluid continuum. The ion and neutral species are modeled as

discrete collisionless superparticles; due to their large mass and consequently large Larmor

radius, we neglect the magnetic field effect on the ions. For the electron fluid, we include

the first three moments of the Boltzmann equation to obtain 2D continuity and momentum

equations, using the drift-diffusion approximation, and a quasi-1D energy equation. The
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PIC and fluid treatments are coupled by assuming space charge neutrality, or quasineutral-

ity, between the ions and electrons.

We chose a simulated thruster model geometry and operating conditions to enable com-

parisons to experimental measurements of the Stanford Hall Thruster (SHT) laboratory dis-

charge. The simulated thruster channel is 8 cm long, with an outer diameter of 9.4 cm; we

include the full azimuth throughout the simulated domain, which includes the entire chan-

nel length and the near-plume. Using a non-uniform spatial resolution of 3 mm - 10 mm

and maximum time step of 10 ns, we can achieve a simulated time of extent on the order

of milliseconds, using a single PC processor core for a wall clock time of several days.

We present results for a representative simulated low voltage operating condition. Sim-

ulated plasma properties are compared to experimental measurements of the plasma prop-

erties and the effective electron mobility. We further analyze the simulated data to charac-

terize predicted axial and azimuthal fluctuations in the electric potential, electron number

density, and electron velocities. We consider the simulated wave fluctuations in the context

of linearized fluid theory models for specific dispersive propagation modes, as we attempt

to characterize their impact on the effective axial electron transport for various axial regions

within the thruster discharge.

For the simulated time and spatial scales presented here, correlated fluctuations appear

to enhance electron transport in some regions of the discharge and inhibit electron transport

in others. In the mid-channel region, where we believe gradients and in the electron den-

sity and magnetic field may contribute to gradient-driven waves, we observe enhancement

of the electron mobility beyond classical mobility values. Near the channel exit plane,

however, we observe a distinct electron transport barrier, similar to that observed in ex-

perimental measurements. Just upstream of the channel exit plane, correlated fluctuations

in the electron number density and the axial electron velocity appear to generate negative

current which opposes the positive bulk discharge current; in this region, we believe the

axial shear in the electron velocity may play a role in disrupting fluctuations and reducing

electron transport. In both cases, it is clear that simulated wave fluctuations impact axial

electron transport.
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Even in regions of observed transport enhancement, however, the simulated fluctuation-

driven transport does not fully account for the experimentally-observed super-classical mo-

bility. We believe that an additional transport mechanism – perhaps electron wall scatter-

ing or higher frequency, shorter wavelength fluctuations – is necessary to account for the

experimentally-observed electron mobility. Towards this end, we present results for addi-

tional simulations which include an artificially enhanced electron collision frequency; these

simulations show improved agreement with experimental results and confirm the need to

include additional physical mechanisms for anomalous electron transport. Finally, sugges-

tions for future work are included.
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Chapter 1

Introduction

1.1 Hall Thruster

The Hall thruster is an electric propulsion device developed for space flight (spacecraft)

applications, which has demonstrated high thrust efficiencies. Deployed as a production

technology for satellite station-keeping since the 1970s and late-1990s, by Russia and the

U.S., respectively (Choueiri, 2004; Goebel and Katz, 2008), it is particularly useful for

high specific impulse (i.e., high thrust to propellant mass consumption ratio) applications

and high-efficiency (i.e., high rocket jet propulsive power to electrical power consumption

ratio) low-thrust operations. Today, research continues towards design optimization and

performance enhancements; topics of present interest include improved thrust efficiency,

prevention and mitigation of lifetime-limiting erosion effects, and investigations into alter-

native propellants.

Figure 1.1 is a three-dimensional (3D) schematic of a typical stationary plasma thruster

(SPT) variant Hall thruster. The device generates thrust by accelerating heavy (positively-

charged) ionized particles through an imposed electric potential. A typical Hall thruster

geometry is comprised of an annular channel with an imposed primarily-radial magnetic

field, created by electromagnets, and an axial electric field, created by an anode located at

the base of the channel and an external cathode. The imposed magnetic and electric fields

induce an azimuthal Hall current (the effect for which the thruster is named), which traps

electrons creating a high-collisionality (high-ionization) zone and strong electric field just

1
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Figure 1.1: Schematic of coaxial (annular channel) Hall thruster. Image reproduced from
Thomas (2006).

inside the thruster channel near the exit plane of the thruster. Heavy neutral gas particles

(e.g., Xe) are introduced at the anode; as they move through the channel, these neutral

particles are ionized by collisions with electrons, particularly in the high electron density

region, or high-ionization zone, near the exit plane. The ionized particles are then accel-

erated across the electric potential, by the axial electric field, until they are ejected from

the thruster channel; the ejected mass of the ionized particles, which are moving at high

velocity (in the axial direction) due to their acceleration by the axial electric field, results

in a net thrust, i.e., rocket propulsion.

1.2 Motivation

Although the Hall thruster is a deployed production technology, much of the underlying

plasma physics which governs particle interactions, electron transport, and the ion acceler-

ation process is not well understood. The study of Hall thruster discharges continues to be
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an active research topic, and numerical simulations play an important role in ongoing re-

search in this field. Numerical models of the Hall thruster plasma discharge enable a more

detailed understanding of fundamental plasma physics, including particle interactions and

certain experimentally-observed macro-scale phenomena which are not well described by

classical theory. Specific phenomena of interest include electron transport and the semi-

random plasma density and current fluctuations which can contribute to enhanced electron

transport. Numerical simulations also provide a further means for investigating design im-

provements and varied operational conditions; such computational experiments serve as an

alternative to physical laboratory experiments for predicting and optimizing thruster design

and operation.

There is a significant body of existing work focused on Hall thruster simulations, which

will be discussed in Chap. 2. One of the remaining challenges in simulating a Hall thruster

discharge is accurately characterizing and predicting the so-called anomalous electron

transport. The possibility of anomalously high electron mobility across the magnetic field

has been experimentally documented since the early years of Hall thruster development

(Janes and Lowder, 1966; Meezan et al., 2001). The mechanism leading to this anoma-

lous mobility remains as one of the key challenges in Hall thruster research. A lack of

understanding about what generates anomalous mobility in some regions of the flow, while

the mobility is very near classical in other regions, has curtailed the usefulness of certain

simulations, particularly those that do not resolve the azimuthal (θ ) direction (Fernandez

et al., 1998; Fife, 1999; Hagelaar et al., 2002). Some theories attribute the anomalously

high cross-field electron mobility to quasi-coherent fluctuations resulting from instabilities

within the plasma (Janes and Lowder, 1966; Fife, 1999). There is also recent experimen-

tal evidence of coherent azimuthally-propagating fluctuations which may contribute to the

observed enhanced cross-field transport (Meezan et al., 2001; Knoll, 2010; Ellison et al.,

2012). Numerical simulations, particularly those that resolve the azimuthal direction, pro-

vide a useful complement to laboratory experiments in understanding how such fluctuations

may be related to electron transport and mobility.
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1.3 Research Objective

The objective of our research is to use a numerical model to predict and characterize az-

imuthal fluctuations in a Hall thruster discharge and study the impact of these fluctua-

tions on the electron transport process. Using numerical simulations to resolve the az-

imuthal electron dynamics, we focus on understanding the role played by fluctuations,

particularly those that propagate with components perpendicular to both the applied elec-

tric (E) and magnetic (B) fields. Where possible, we compare the simulated fluctuations

with experimentally-observed phenomena. By analyzing the various physical mechanisms

that contribute to the simulated electron transport, we can estimate the effect of certain

azimuthal fluctuations on the bulk electron transport.



Chapter 2

Hall Thruster Simulations

In this chapter, we discuss the motivation for continued research and development of im-

proved Hall thruster simulations. We highlight the remaining challenges, in both character-

izing the relevant physics and implementing robust computationally-efficient simulations.

We summarize relevant prior research efforts in the field and discuss the relevance of the

work described in this dissertation.

2.1 Purpose

The purpose of numerical study, i.e., simulations, of Hall thrusters is two-fold.

First, we can use simulations to predict thruster performance and operational behavior

under varied operating conditions. Numerical simulations can be used to predict the effect

of specific design changes or design optimizations, informing and complementing labora-

tory experiments; an example is the recent use of numerical simulations to investigate the

efficacy of novel alternative propellant fuels (Cha et al., 2009). Simulations have been used

to predict the performance, e.g., power, thrust, and efficiency, of various thruster configura-

tions (e.g., Fife, 1999; Bouchoule et al., 2004; Parra et al., 2006; Scharfe et al., 2008), and

study practical phenomena, such as predicted thruster lifetime as limited by erosion effects

(Sommier et al., 2007).

Second, and more broadly, numerical simulations can be used to perform computa-

tional experiments which supplement laboratory experiments. Numerical simulations can

5
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provide a more detailed description and investigation of underlying physical processes in

the plasma discharge. While certain physical phenomena, especially at small spatial scales

and in certain regions of the thruster discharge, can be difficult to characterize or measure

experimentally, simulations provide a wealth of computational data and can be easily ad-

justed to provide additional detail, such as increased time or spatial resolution, as needed.

In a manner analogous to laboratory experiments, we can use numerical simulations to test

a hypothesis and measure the effect of simulated conditions on specific physical processes.

2.2 Challenges

There are a number of challenges in developing and performing robust predictive simula-

tions of a Hall thruster plasma.

The primary challenge in developing an accurate Hall thruster model is adequately de-

scribing the underlying non-linear coupled physics which governs the plasma discharge.

There is a complicated interaction between the magnetic field, the electric fields, and a

fluctuating plasma comprised of high-velocity ions and electrons. The plasma behavior

can vary significantly between different regions of the thruster, and capturing the transient

behavior requires resolving and predicting oscillations in both space and time. There are

a number of simultaneous physical processes (some of which cannot be well-characterized

microscopically or experimentally) that must be adequately modeled. In many cases, we

resort to macro-scale and sometimes empirically-derived models to represent phenomena

which cannot otherwise be efficiently or effectively modeled; examples include ionization

and wall interactions (e.g., reflections or conductivity at the thruster channel walls). A

particular challenge, already mentioned in Chap. 1, is predicting the cross-field electron

transport, i.e., the electron transport in the direction perpendicular to the magnetic field;

various mobility models have been employed to account for this effect (Fife, 1999; Hage-

laar et al., 2002; Barral et al., 2003; Scharfe, 2009; Cha et al., 2015). In all cases, we make

certain simplifying assumptions in formulating the numerical model. The key is to include

the necessary physics for modeling the phenomena of interest, accounting for neglected

effects or approximations as needed and maintaining an awareness of the model’s strengths

and deficiencies.
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The practical, and sometimes limiting, constraint in performing Hall thruster simula-

tions is the computational expense. While continuing advances in computing power and

parallel architectures have enabled faster, larger simulations, there is still some practical

limit to the computational expense, which correspondingly limits the scope of calculations

in either time extent, spatial resolution, or detail in the modeling approach. Based on the

simulation objectives, one must make judicious choices in the modeling approach and sim-

ulation parameters, e.g., time and spatial resolution, accordingly.

2.3 Simulation Approaches

There are three distinct simulation approaches in common use for Hall thruster and, more

generally, plasma simulations. In this section, we will briefly describe each approach and

highlight their respective key assumptions, advantages and challenges.

The first approach is the kinetic, or particle simulation, approach. The premise is that

all relevant species in the plasma, or ionized gas, discharge are modeled as discrete par-

ticles. The particle motion is typically governed by the electric and magnetic fields, and

there are various means of resolving the particles’ motion more or less finely (e.g., resolv-

ing the detailed electron gyromotion versus tracking only the guiding center motion). Since

modeling each physical particle in even a low-density plasma would be extremely compu-

tationally expensive, some type of mass or density weighting is typically used; a single

superparticle, or macroparticle, is used to represent a larger collection of particles (Bune-

man, 1959; Dawson, 1962). To further reduce computational expense, the Particle-In-Cell

(PIC) method was developed (Dawson, 1983; Birdsall and Langdon, 2005). Instead of

simulating and calculating all forces and particle interactions using a pair-wise or particle-

by-particle approach, under the PIC treatment, certain system properties and interactions,

e.g., forces, are evaluated only at a limited set of grid points, which greatly reduces the

computational expense. We will describe the PIC approach in greater detail in Sect. 4.1.1.

Even with the PIC method, kinetic simulations, especially in three dimensions (3D), can

be extremely computationally expensive.

An alternative to the kinetic approach is the fluid continuum treatment. As in compu-

tational fluid dynamics, this approach requires that the plasma be sufficiently collisional
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for the continuum approximation to be valid. The fluid treatment is further predicated

upon the assumption of a Maxwellian distribution, or local thermal equilibrium, for each

of the modeled species. The fluid equations are typically derived by taking moments of

the Boltzmann equation. Fluid simulations can be less computationally expensive than ki-

netic simulations; however, the computational expense is driven by the time and spatial

resolution of the simulation and the efficiency of the solution method.

The final approach is the so-called hybrid fluid-PIC approach. Under the hybrid treat-

ment, some portion of the plasma is modeled by a fluid continuum treatment, while the

rest is modeled using a kinetic PIC treatment. Due to their small mass and consequently

faster timescales (which enable more rapid equilibration to a Maxwellian state), the elec-

tron species are often modeled using the fluid treatment. Depending on the simulation

objectives, the fluid treatment may not be a valid representation for the heavy ion or neutral

species; instead, the PIC approach is used for these remaining species. The computational

expense for the hybrid approach is typically greater than that for a comparable fully fluid

treatment, but less than that for a fully kinetic PIC approach.

2.4 Relevant Prior Work

There exists a significant body of prior work focused on numerical simulations of Hall

thruster discharges. Early simulations (e.g., Lentz, 1990), were performed in one dimension

(1D), typically in the axial (z) direction, under limited computational resources; since then,

the range of Hall thruster simulations has proliferated, with varied simulation approaches

and computational domains now employed. Here, we will discuss only the most recent

efforts which are most directly relevant to the work described in this dissertation.

2.4.1 2D Radial-Axial (r-z)

Over the past 20 years, there have a been a number of two-dimensional (2D) simulations

formulated in the radial-axial (r-z) coordinate system. The most directly relevant is the

work started at MIT by Lentz (1990) and Fife (1995; 1999), then continued, with a distinct
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implementation but similar approach, at the Stanford Plasma Physics Laboratory by Fer-

nandez et al. (1998), Scharfe (2009), and, most recently, Cha (2015). These simulations use

a hybrid fluid-PIC approach, similar to that employed for the work in this dissertation; the

r-z simulations typically model the full annular channel width W = router− rinner in r and

the full axial extent of the Hall thruster discharge, starting at the anode plane and extending

past the thruster exit plane into the near plume, in z. Additional hybrid fluid-PIC r-z sim-

ulations developed during this time include work by Hagelaar et al. (2002), Bareilles et al.

(2004), and Koo and Boyd (2004); further extensions to Fife’s original work include the

work of Parra et al. (2006) and Hofer et al. (2006; 2010). Most recently, Cha developed an

improved electron mobility model (Cha et al., 2015) and used these simulations to study the

use of alternative propellant gases, in lieu of the typical Xe fuel (Cha et al., 2009). Aside

from the discrepancy in the computational domains (coordinate formulations), the work of

Scharfe and Cha is most closely analogous to to the work described in this dissertation.

In all cases, the primary challenge in these r-z simulations has been the effective mod-

eling of the so-called anomalous cross-field electron mobility. Because these r-z models

do not treat the azimuthal (θ ) direction, they must use some other means to account for the

azimuthal dynamics and any resulting enhancement to the axial electron mobility. Com-

plicated theoretical and computational models (e.g., Scharfe, 2009; Cha, 2015) have been

developed to account for the super-classical electron mobility (i.e., mobility beyond that

predicted by the classical theory and relevant r-z dynamics); in many cases, the electron

mobility model must be tuned, i.e., empirically fit by adjusting model parameters, for each

operating condition.

2.4.2 2D Axial-Azimuthal (z-θ )

In an attempt to address this shortcoming of the r-z simulations and develop a more sound

basis for the electron transport description, 2D simulations were formulated in the axial-

azimuthal (z-θ ) coordinate system. The primary purpose of these simulations is to simulate

azimuthal fluctuations in plasma properties, specifically the electron density and electron

velocities, and study their effect on the electron mobility in the directions perpendicular to

the magnetic field, particularly the z-direction.
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Knoll developed a 2D z-θ simulation using a fully fluid approach in which all species

(electron, ions, and neutrals) are modeled using a fluid continuum treatment (Knoll, 2010).

Knoll’s work enabled the simulation and study of high-frequency, short-wavelength distur-

bances in a discharge similar to that modeled in this dissertation. However, the approach

is predicated on the validity of the fluid continuum treatment for all species, and, with the

given implementation, which focused on resolving relatively small length and time scales,

and available computing power, the time extent of simulations is limited to approximately

10 µs of simulated time.

Adam and Garrigues have performed kinetic simulations (employing PIC electrons and

ions with a neutral fluid background) in the z-θ coordinate system (Adam et al., 2004;

Garrigues and Coche, 2013); however, due to the computational expense of the kinetic

approach, certain compromises must be made to make such simulations computationally

tractable. These simulations have a truncated (partial) azimuthal extent, which can intro-

duce artificial periodicity in the azimuthal direction. To reduce the computational expense

associated with resolving the length and time scales of interest, they also employ certain

artificial scaling techniques, such as scaling the length and time scales by a permittivity

scaling factor in lieu of using the physical free space permittivity ε0(Garrigues and Coche,

2013).

The work described in this dissertation is an attempt to address the theoretical and

computational gap between these two extremes; the hybrid fluid-PIC approach represents

a practical compromise in computational expense between the fully fluid and fully kinetic

treatments. Building upon similar model implementations for r-z simulations (Fernandez

et al., 1998; Scharfe, 2009), we have developed a complementary z-θ hybrid fluid-PIC

model.

2.4.3 3D (x-y-z or r-z-θ )

More recently, enabled by advances in computational capability, a number of three-

dimensional (3D) kinetic simulations have been developed, e.g. by Taccogna et al. (2013)

and Matyash et al. (2013). To reduce computational expense, present 3D simulations ei-

ther limit the extent of the computational domain, e.g., to a partial azimuthal (Taccogna
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et al., 2013) or minimal axial extent (Oudini et al., 2013), or employ an artificial geometric

scaling (Taccogna et al., 2013; Matyash et al., 2013). In the case of these 3D simula-

tions, the primary challenge and present limiting factor is the computational expense; even

with state-of-the-art computational capability and parallelization, relevant 3D simulations

are extremely computationally expensive; typical wall clock time for relevant simulations,

focused on resolving high-frequency, short-wavelength phenomena, is 20 days on 4 pro-

cessors for a simulated time extent of 24 µs (Matyash et al., 2013).

2.5 Relevance of Described Research

As discussed in Sect. 2.4.2, the primary purpose of 2D axial-azimuthal simulations is to

provide a means for studying azimuthal fluctuations and their impact on electron transport.

In this dissertation, we describe the development of a 2D axial-azimuthal (z-θ ) hybrid-fluid

PIC model which is used to characterize cross-field azimuthal fluctuations in a discharge

similar to that modeled by Scharfe (2009) and Knoll (2010). The model described here has

two key distinguishing features which enable simulations that complement and augment

the existing body of work.

The first distinguishing feature is the extent of the computational domain. We model

a full size Hall thruster discharge; the model geometry, which will be further described in

Chap. 3, is based on that of a full size laboratory prototype Hall thruster. The axial ex-

tent of the computational domain includes the entire length of the thruster, starting from

the anode plane and extending past the exit plane into the near plume region; in the az-

imuthal direction, the computational domain includes the full azimuth, which prevents the

introduction of any artificial periodicity (as can occur when periodic boundary conditions

are employed with a truncated partial azimuth computational domain). The model does

not employ any artificial scaling in the geometry or time scales or any other parameters.

As far as we know, complemented by the work of Knoll (2010), these simulations (Lam

et al., 2009) are among the first z-θ -resolved simulations of an entire thruster, including the

full length of the thruster channel and the full azimuth, that are performed without ad hoc

artificial scaling of the physical scales (as is often done in fully kinetic PIC simulations).
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The second distinguishing feature is the available time extent of these simulations. The

computational efficiency of the hybrid fluid-PIC approach enables simulations on the order

of 1 ms of simulated time, using modest computational resources; typical wall clock time

for a 1 ms simulation, using the time step and spatial grid described in Chap. 4, is approx-

imately 4-5 days on a single processor. The time extent of these simulations enables the

observation and study of low- to mid-frequency fluctuations in the range of approximately

10 kHz to 10 MHz; such fluctuations in this lower frequency range cannot be accessed by

other comparable 2D (z-θ) and 3D simulations, which, due to their focus on finer time and

spatial scales, are limited to shorter simulated time extents on the order of 1-10 µs.



Chapter 3

Hybrid Fluid-PIC Axial-Azimuthal (z-θ )
Model

The model described and developed here follows from previous efforts (Fernandez et al.,

1998; Fife, 1999; Scharfe et al., 2006; Scharfe, 2009) to develop similar hybrid fluid-PIC

models in the two-dimensional (2D) radial-axial (r-z) domain. The initial axial-azimuthal

(z-θ ) model was developed by Fernandez (Fernandez et al., 2005) and is similar to the

previous radial-axial (r-z) models developed by Fife, Scharfe and Fernandez. We have since

extended and improved the initial z-θ model to include additional physical phenomena and

enhance numerical stability.

We employ a hybrid Fluid-PIC approach for the z-θ model. The heavy species, Xe and

Xe+, are modeled using a Particle-In-Cell (PIC) treatment, while the electrons are treated

as a two-dimensional (2D) fluid continuum. The PIC and fluid treatments are coupled by

assuming space charge neutrality or quasineutrality.

3.1 Model Geometry and Computational Domain

The geometry simulated is that of a laboratory Hall discharge, known as the Stanford Hall

thruster (SHT), for which a considerable amount of experimental data has been gathered

(Hargus, 2001; Meezan et al., 2001; Meezan, 2002).

13
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Figure 3.1: Schematic of the Stanford Hall Thruster (SHT) laboratory discharge geometry.

The SHT is comprised of two coaxial alumina (Al2O3) tubes which form the annular

thruster channel as shown in Fig. 3.1. The simulated channel has an outer diameter of 9.4

cm and and inner diameter 7 cm which gives a radial channel width of 1.2 cm. The axial

channel length is approximately 8 cm.

A magnetic circuit, comprised of inner and outer magnetic coils and plates, provides a

primarily radial magnetic field as shown in Fig 3.3. The anode plane is located at the closed

end of the thruster channel. A hollow cathode is located outside of the thruster channel,

approximately 2 cm downstream of the thruster exit plane. The voltage applied between

the anode and cathode creates the primarily axial electric field within the thruster channel.

The neutral propellant xenon (Xe) gas is supplied at a total mass flow rate of 2.3 mg/s

via holes in the anode plate and via the hollow cathode. The SHT discharge was operated

over a range of applied voltages between 100 V and 250 V. Hargus (2001) and Meezan

(2002) describe the SHT geometry, operation, and laboratory measurements in greater de-

tail.

The 2D computational domain is constructed in the axial-azimuthal (z-θ ) plane starting,

in the z-direction, at the anode plane and extending beyond the exit plane into the discharge

plume; in the θ -direction, we include the full azimuth (0 to 2π radians), as shown in Fig.

3.2. With the exception of the radial magnetic field effect (i.e., the effect of the radial
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Figure 3.2: 2D axial-azimuthal (z-θ ) computational domain.

magnetic field on charged particle motion in the z- and θ -directions), radial dynamics,

such as radial forces and radial motion, are not modeled; instead, we consider the radial

midpoint of the channel rmid = 4.1 cm. The domain can be thought of as the projection of

the three-dimensional (actual) physical geometry onto the z-θ plane located at rmid = 4.1

cm.

While the computational domain is 2D in z-θ , we consider the cross-sectional thruster

area and are interested in extensive properties, such as total current or flux through the sim-

ulated thruster. In this context, we can consider the 2D z-θ domain to be three-dimensional

with unit length in the r-direction and unit cross-sectional area in the r-z plane. The cross-

sectional area of interest in the r-z plane, per the SHT geometry, is

Asect = π(r2
outer− r2

inner)' 31 cm2 = 0.0031 m2 (3.1)

where router = 4.7 cm and router = 3.5 cm are the outer and inner radii of the thruster channel,

respectively. We consider any transverse simulated quantities, e.g., electron current flux

perpendicular to the in the z-direction (i.e., perpendicular to the θ -direction or the r-θ
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Figure 3.3: Axial variation of simulated and experimentally-measured magnetic field for
Stanford Hall Thruster (SHT). Laboratory measurements of the total magnetic field strength
and radial magnetic field were taken at the radial midpoint of the SHT channel rmid = 4.1
cm.

plane) , to be on a per unit area basis; the per unit area quantity must thus be multiplied

by the thruster (domain) cross-sectional area Asect = 31 cm2 to obtain the corresponding

extensive property for the thruster (i.e., for the physical 3D geometry).

In the model, the imposed constant magnetic field is based on experimental measure-

ments of the predominantly radial magnetic field strength. The magnetic field strength

measurements were taken at the midway (mid-channel) radial location rmid = 4.1 cm for

various locations along the SHT z-axis. Figure 3.3 shows both the experimentally-measured

and simulated magnetic field strength. The measured magnetic field strength peaks at a

value of approximately Br= 0.011 T just upstream of the channel exit. Note that for the

experimentally-measured magnetic field, the radial component of the magnetic field Br

is nearly equivalent to the total magnetic field strength; hence, the magnetic field is pre-

dominantly radial. In the model, we take the magnetic field to be purely radial. Figure

3.3 shows the magnetic field strength profile Br(z) used to initialize the simulation. The
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simulated magnetic field strength curve Br(z) is specified at a set of 71 equally-spaced z-

locations throughout the domain (0 ≤ z ≤ 0.12 m); a linear interpolation is then used to

find the magnetic field strength at the z-locations specified by the, sometimes nonuniform,

computational grid. The imposed interpolated magnetic field profile is taken to be constant

in time.The simulated axial electric field is imposed by a constant positive voltage (relative

to 0 V) applied at the anode.

We orient the coordinate system such that the positive z-direction corresponds to the

direction of positive axial electric field. The anode plane is located at z = 0. The channel

exit is at approximately z = 0.08 m and the domain extends approximately 4 cm past the

exit plane to z = 0.12 m. We treat the magnetic field as purely radial which leads to an E×B
drift velocity in the purely azimuthal direction. We orient the coordinate system such that

the E×B drift velocity is in the positive θ -direction, i.e., B = Br r̂, E is primarily in the

positive z-direction (E ' Ezẑ), and θ̂ = ẑ× r̂. While we focus here on simulations of the

SHT, the model can be adapted to simulate other thruster geometries, especially those of

similar geometric scale.

3.2 Key Assumptions

We assume space charge neutrality, or quasineutrality, throughout the computational do-

main. This quasineutrality assumption is consistent with modeling large-scale phenomena

since the Debye length of the typical Hall thruster plasma is smaller than the length scales

of interest (Fife, 1999; Chouieri, 2001). The Debye length

λD =

√
ε0kBTe

e2ne
(3.2)

where ε0 = 8.85×10−12 F/m is the free space permittivity, kB = 1.38×10−23 m2kgs−2K−1

is the Boltzmann constant, and e= 1.6×10−19 C is the elemental electron charge, indicates

the length scale over which charge, or Debye, shielding occurs. At length scales smaller

than the Debye length, significant space charge separation can be observed; however, for

length scales greater than the Debye length, the plasma appears electrically neutral due to

the plasma, or Debye, shielding effect. For typical SHT operation, the maximum Debye
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length, based on typical values for the plasma density ne ∼ 1017− 1018 m−3 and electron

temperature Te ∼3-18 eV, is approximately λD ' 0.1 mm; this maximum Debye length is

much smaller than the thruster length scales of interest and the spatial resolution of the

computational grid used for the electron fluid and PIC calculations. Hence, for the length

scales of interest (and at the resolution of the computational grid), the space charge is

effectively zero, and we can assume that the ion and electron number densities are equal.

The enforcement of quasineutrality allows us to couple the ion particle (PIC) and electron

fluid model treatments. As will be described in Chap. 4, we calculate the ion number

density via the PIC treatment; per quasineutrality, we take the electron number density to

be equal to the ion number density or, more generally, the plasma number density.

As previously mentioned, we assume the magnetic field is purely radial. At each z-

location, we impose a magnetic field strength based on experimental measurements of the

magnetic field strength as shown in Fig. 3.3. We assume that the interpolated time-constant

magnetic field acts only in the radial direction. In reality, the magnetic field has some

component in the z- and θ -directions; however, based on the magnetic field measurements

shown in Fig. 3.3, we assume that the non-radial components are small compared to the

radial field strength and can thus be neglected. The electron fluid dynamics are subject to

the magnetic field. Due to their relatively large mass and consequently large Larmor radius

(which will be further discussed in Sect. 3.4), we treat the ion particles as non-magnetized.

As will be described in Sect. 3.5, we assume the electron temperature to be axisymmet-

ric in θ and therefore one-dimensional (1D) in z. We expect that the azimuthal variation in

the electron temperature is small compared to the axial variation, i.e., ∂Te
∂θ
� ∂Te

∂ z . At each

z-location, we make the simplifying assumption that the azimuthal variation in the electron

temperature is negligible; we take the electron temperature to be constant in θ which results

in a 1D electron temperature distribution that varies only in z.

3.3 Neutral Gas

Atomic xenon (Xe) comprises the neutral propellant background gas. Neutral Xe atoms

are modeled as collisionless discrete superparticles. The neutral particles are initialized,

either per the simulation initial conditions or when injected from the anode plane, with
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initial positions and velocities in z and θ . Each neutral particle’s trajectory is determined

by its initial velocity (in z and θ ) as there is no external applied force to alter the particle’s

velocity. The particle advances in either the positive z- or negative z-direction until it exits

the computational domain at either the upstream (anode plane at z = 0) or downstream (z =

0.12 m) domain boundary.

Collisions between particles, i.e., between two neutrals or between a neutral and an ion,

are not modeled. Based on a rigid sphere collision model (Vicenti and Kruger, 1965) with

a peak neutral number density nn = 1020 m−3, the typical mean free path for collisions

between two neutrals λm f p,nn & 4 cm. The minimum mean free path λm f p,nn = 4 cm is

comparable to the thruster channel length and azimuthal extent; based on this calculated

minimum mean free path, a neutral would likely undergo a maximum of 3-5 collisions

with another neutral in the course of traversing the entire computational domain. In regions

where the neutral density is lower, λm f p,nn is even larger, and collisions between neutrals are

less likely (i.e., less frequent). The maximum ion number density is typically two to three

orders of magnitude smaller than the peak neutral number density; furthermore, the ions

are quickly accelerated out of the thruster channel and the corresponding computational

domain by the strong axial electric field. The mean free path for collisions between an

ion and a neutral is correspondingly greater than that for neutral-neutral collisions, i.e,

λm f p,in > λm f p,nn. Consequently, we neglect both neutral-ion and neutral-neutral collisions.

Since there are no radial dynamics, particle collisions with the inner and outer radial walls

of the thruster channel are not modeled. Particle collisions with the anode (z = 0) plane wall

are not modeled; neutral particles exit the domain and are removed from the simulation if

they cross the anode (z = 0) plane. Since we do not explicitly model particle collisions with

the channel walls and we neglect particle-to-particle collisions, we consider the particles to

be collisionless.

Neutral particles are continuously injected into the domain from the anode (z = 0) plane

according to the prescribed mass flow rate of 2.3 mg/s. Each injected neutral particle enters

the domain at a randomized θ location; on average, the particles are injected uniformly in

θ across the anode (z = 0) plane. Particles injected at the anode enter the computational

domain with a positive initial z-velocity, which is sampled from a one-way Maxwellian

flux distribution, shown in Fig. A.4a, based on an anode temperature Tanode = 650K with a
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mean (bulk) neutral injection velocity v0 = 300 m/s; while these parameters for the velocity

distribution were not directly experimentally measured, the discharge does not appear to be

particularly sensitive to the anode temperature. The injected particles then advance in the

positive z-direction until they exit the computational domain at the downstream (z = 0.12 m)

domain boundary. The injected particle’s initial θ -velocity can be positive or negative; it is

determined by projecting the particle’s sampled speed in the r-θ plane onto the θ̂ -direction,

accounting for the particle’s θ -position, as described in Appendix A. The particle’s speed

in the r-θ plane is sampled from a 2D Maxwellian speed distribution, based on the anode

temperature Tanode = 650K.

3.4 Ions

Neutral Xe ions are ionized to form Xe+ ions. In the model, we include only singly-charged

(or singly-ionized) Xe+ ions; doubly-charged Xe++ and other more highly-ionized ions are

not included.

We assume that Xe+ ions are created only by electron-neutral collisions. Similarly to

Fife (1999), we expect that, for the electron temperatures of interest, the number of doubly-

charged Xe++ ions (created by Xe+→ Xe++ ionization and direct Xe→ Xe++ ionization,

via electron-Xe+ and electron-neutral collisions, respectively) is negligible compared to

the number of Xe+ ions; hence, the presence of Xe++ ions is neglected. For more highly-

ionized ions, we expect that their ionization (i.e., creation) rates will be even lower than that

for Xe++ ions, so they too can justifiably be neglected. Fife (1999) provides further discus-

sion of the relative prevalence of the various positive ion species and their corresponding

ionization (creation) rates.

The singly-charged Xe+are ions modeled as discrete superparticles. Typically, charged

particle motion is governed by the Lorentz force, in this case,

FLorentz = miai = qi (E+vi×B) (3.3)
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Typical ion velocities (e.g., as measured in laboratory experiments) vary with axial posi-

tion within the range of ~100 m/s - 15,000 m/s. We consider the Larmor radius, or ion

gyroradius, due to the magnetic field contribution to the Lorentz force

rLarmor =
miv⊥
qiB

(3.4)

where v⊥ is the velocity in the direction perpendicular to the magnitude (in this case, either

the particle’s z- or θ -velocity). The Larmor radius indicates the effect of the magnetic field

on the charged particle motion; specifically, it is the radius of curvature associated with

particle gyromotion due to the magnetic field. For the range of ion z- and θ -velocities and

magnetic field strength values here, we find that the Larmor radius is much larger than

the thruster length scales of interest. An ion moving at a typical velocity of v⊥ = 10,000

m/s in the region of near peak magnetic field strength Br = 0.01 T, near the thruster exit

plane, will have an approximate Larmor radius rLarmor ' 140 cm. Further upstream in the

thruster channel (toward the anode plane), ions move more slowly and the magnetic field

is weaker; an ion with a typical velocity v⊥ = 100 m/s subject to a magnetic field strength

Br = 0.001 T will have an approximate Larmor radius rLarmor ' 14 cm. Compared to the

thruster channel length (8 cm) and azimuthal extent (at the midway radial location rmid =

4.1 cm, the length scale of the z-θ plane is 2πrmid ' 26 cm), the Larmor radius values are

much larger than the thruster length scales of interest. Due to the relatively large ion mass,

and consequently large Larmor radius relative to the thruster length scales of interest, we

neglect the effect of the magnetic field on the ion motion and consider the ion particles to

be non-magnetized.

The ion particle motion is thus governed by only the locally-computed electric field.

Since we consider only singly-charged Xe+ ions, the ion charge is equivalent to the ele-

mental electron charge e = 1.6× 10=19 C. The ion acceleration is determined by the ion

mass mi = mXe+ subject to the simplified (non-magnetized) Lorentz force:

ai =
e

mi
E (3.5)
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which gives the ion particle velocities

vz =
e

mi

∫
Ezdt (3.6a)

vθ =
e

mi

∫
Eθ dt (3.6b)

and position

z =
∫

vzdt (3.7a)

θ =
∫

vθ dt (3.7b)

Each ion particle moves through the computational domain until it exits the computational

domain at either the upstream (anode plane at z = 0) or downstream (z = 0.12 m) domain

boundary.

As in the case of the neutral particles, collisions between particles, i.e., between two

ions or between an ion and a neutral, are not modeled. As discussed in Sect. 3.3, we expect

the mean free path for collisions between an ion and a neutral λm f p,in to be greater than the

relevant thruster and computational domain length scales. We expect the mean free path

for collisions between two ions to be even greater than than for ion-neutral collisions, i.e.,

λm f p,ii� λm f p,in� λm f p,nn , since the maximum ion number density is typically several

orders of magnitude smaller than the neutral number density. We thus justifiably neglect

ion-neutral and ion-ion particle collisions. Ion particle collisions with the thruster channel

walls, including the inner and outer radial walls and the anode plane, are also neglected.

At the anode plane, the ion particles are treated in the same way as the neutral particles;

ion particles exit the domain and are removed from the simulation if they cross the anode

(z = 0) plane. In general, we neglect radial particle motion and dynamics; hence, in this 2D

model, there is no mechanism by which the ion particles can collide with the the inner and

outer radial thruster walls. We thus consider the particles to be collisionless. Similarly to

Fife (1999), we neglect ion-neutral momentum and charge exchange; these effects are not

expected to be significant within the computational domain.
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The singly-charged Xe+ ions are created by ionizing neutral Xe atoms according to the

local electron-neutral impact ionization rate. We use the ionization rate model described

by Ahedo et al. (2001)

ṅe = nnne

√
8kBTe

πme
σi0

(
1+

TeEi

(Te +Ei)2

)
exp
{
−Ei

Te

}
(3.8)

where nn and ne are the neutral and electron number densities, respectively, Te is the

electron temperature, kB = 1.38× 10−23 m2kgs−2K−1 is the Boltzmann constant, me =

9.1×10−31 kg is the elemental electron mass, σi0 = 5×10−20 m2 is a constant (with units

of collision cross section or area), and Ei = 12.13 eV (or 140,757 K) is the first ionization

energy for Xe. The ionization rate depends non-linearly on electron temperature; it is de-

termined from an analytical expression developed to fit experimental cross sections (Rapp

and Englander-Golden, 1965; Mathur and Badrinathan, 1987) and assumes a Maxwellian

distribution for the electrons.

3.5 Electron Fluid

We model the electrons as a 2D fluid continuum. In general, the continuum approximation

is valid when the fluid is sufficiently collisional, i.e., the mean free path is much smaller

than the length scales of interest. For typical SHT operation, the maximum electron mean

free path is approximately λm f p ' 1 cm (based on typical values for the electron veloc-

ity ve ∼ 104 m/s and electron-neutral collision frequency νen ∼ 106s−1). In a plasma, the

magnetic field has a further equilibrating effect due to the charged particle gyromotion;

because of their extremely small mass (me ' 9.2× 10−31 kg), the electrons have a small

Larmor radius on the order of rLarmor ' 0.01 cm or less, which causes the electrons to tend

towards being Maxwellian (or nearly Maxwellian) at length scales comparable to the Lar-

mor radius. The maximum electron Larmor radius is significantly smaller than the thruster

length scales of interest and the spatial resolution of the computational grid used for fluid

calculations. The electron population tends to be locally Maxwellian (at sufficiently small

spatial scale); hence, the fluid continuum treatment is a valid approximation, especially in

the z- and θ - directions, which are perpendicular to the radial magnetic field.
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We model the electron fluid by considering moments of the Boltzmann equation. The

electron fluid is 2D in z and θ , and we consider the first and second moments (continuity

and momentum, respectively) of the Boltzmann equation in both z and θ . We consider

the third moment (energy) of the Boltzmann equation in a quasi-1D sense. We assume the

electron temperature to be axisymmetric in θ and therefore one-dimensional (1D) in z; we

thus use a θ -averaged version of the electron energy equation as will be described in Sect.

3.5.3.

3.5.1 Continuity (Species and Current Conservation)

We consider the species continuity equations for the electron and ion species, respectively,

∂ne

∂ t
+∇ · (neue) = we (3.9a)

∂ni

∂ t
+∇ · (niui) = wi (3.9b)

where ne and ni are the number densities, ue and ui are the macroscopic fluid velocity

vectors, and we and wi are the species production rates of the respective electron and ion

species.

In this case, the species production rates are equivalent to the ionization rate described

by Eqn. 3.8.

we = wi = ṅe (3.10)

We can, thus, combine Eqns. 3.9a and 3.9b (i.e., subtract Eqn. 3.9a from Eqn. 3.9b) to

obtain:

∂

∂ t
(ni−ne)+∇ · (niui−neue) = 0 (3.11)

As discussed in Sect. 3.2, we assume quasineutrality

ni = ne (3.12)
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By substituting Eqn. 3.12 into Eqn. 3.11, we obtain:

∇ · [ne(ui−ue)] = 0 (3.13)

Note that if we multiply Eqn. 3.13 by the elemental electron charge e = 1.6×10−19 C, we

obtain the current continuity equation

∇ ·J = 0 (3.14)

where

J = e(niui−neue) = ene(ui−ue) (3.15)

is the total electrical current density.

3.5.2 Momentum Conservation

We consider the generalized electron momentum equation (e.g., from Bittencourt, 2004)

mene

(
∂ue
∂ t

+ue ·∇ue

)
=−ene (E+ue×B)−∇ ·Pe−meneνen (ue−un)

−meneνei (ue−ui)−meweue

(3.16)

where me = 9.1×10−31 kg is the elemental electron mass, E is the electric field vector, B
is the magnetic field vector, Pe is the electron pressure tensor, νen and νei are the respective

electron-neutral and electron ion collision frequencies, and we = ṅe is the ionization rate

(or electron species production rate). The left-hand side of Eqn.3.16 is equivalent the the

substantive, or material, derivative Due
Dt of the electron velocity; the right-hand side includes

terms for the Lorentz force, the electron pressure, the collisional drag due to electron-

neutral and electron-ion collisions, and the impulsive drag associated with newly produced

electrons. We then make a number of simplifying assumptions:
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1. We neglect the inertial term Due
Dt =

∂ue
∂ t +ue ·∇ue on the left-hand side of Eqn. 3.16.

Due to the small electron mass, mene
∂ue
∂ t ' 0; we further expect that ∇ue� (νen +

νei). The result is that the left-hand side of Eqn. 3.16 mene

(
∂ue
∂ t +ue ·∇ue

)
' 0.

2. We assume that the neutrals and ions are effectively stationary relative to the electron

fluid (for the continuum timescales of interest). Specifically, we assume that the

macroscopic neutral and ion velocities are small compared to the electron velocity,

i.e., un� ue and un� ue; the result is that we can neglect the respective neutral and

ion velocities, i.e., un ' 0 and ui ' 0, in the third and fourth terms, respectively, on

the right-hand side of Eqn. 3.16.

3. We assume that the electron pressure is isotropic and that it obeys the ideal gas law.

Under these assumptions, the electron pressure tensor Pe reduces to a scalar value

pe = nkBTe, where kB = 1.38×10−23m2kgs−2K−1 is the Boltzmann constant and Te

is the electron temperature.

4. We consider a single total collision frequency νe = νei + νen; with this substitution

and based on assumption 2 above, the third and fourth terms on the right-hand side

of Eqn. 3.16 collapse into a single term meneνeue. However, we neglect Coulomb

collisions per the ionization rate treatment described in Ahedo et al. (2001), i.e., we

assume νei� νen and, thus, νe ' νen.

5. We assume that the electron production rate, i.e., the ionization rate, is small

compared to the number of electron (in this case, electron-neutral) collisions, i.e.,

we � neνe; the result is that we can neglect the last term on the right-hand side of

Eqn. 3.16.

Under these assumptions, Eqn. 3.16 reduces to the following simplified electron momen-

tum equation, or the so-called drift-diffusion approximation:

0 =−ene (E+ue×B)−∇pe−meneνeue (3.17)

Making the substitutions pe = nkBTe and νe ' νen, we obtain:

0 =−ene (E+ue×B)−∇(nekBTe)−meneνenue (3.18)
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Since we assume the magnetic field is purely radial as discussed in Sect. 3.2, B = Br r̂. We

can write the simplified momentum equation for each of the coordinate directions, ẑ and θ̂ ,

for our 2D coordinate system.

In the ẑ-direction:

meneνenuez =−eneEz + eneueθ Br−
∂

∂ z
(nekBTe) (3.19a)

In the θ̂ -direction:

meneνenueθ =−eneEθ − eneuezBr−
1
r

∂

∂θ
(nekBTe) (3.19b)

We consider the electron cyclotron frequency

ωce =
eBr

me
(3.20)

and introduce the classical electron mobility

µ⊥ =
e

meνen

[
1+
(

ωce
νen

)2
] (3.21a)

and the corresponding electron diffusion constant

D⊥ =
kBTe

e
µ⊥ (3.21b)

where

νen = nnσenc̄e = nnσen

(
8kBTe

πme

)1/2

(3.22)

is the electron-neutral collision frequency described by Ahedo et al. (2001) (and also used

to calculate the ionization rate in Eqn. 3.8), assuming a constant collision cross-section

σen ' 27×10−20 m2 for Xe.
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Making these substitutions, we can combine Eqns. 3.19a and 3.19b to obtain the fol-

lowing expressions for the electron velocity components:

uez = −µ⊥Ez−
D⊥
ne

∂ne

∂ z
− D⊥

Te

∂Te

∂ z
− 1

1+
(

νen
ωce

)2
Eθ

Br

− 1

1+
(

νen
ωce

)2
kBTe

eneBrr
∂ne

∂θ
− 1

1+
(

νen
ωce

)2
kB

eBrr
∂Te

∂θ
(3.23a)

ueθ = −µ⊥Eθ −
D⊥
ner

∂ne

∂θ
− D⊥

Ter
∂Te

∂θ
+

1

1+
(

νen
ωce

)2
Ez

Br

+
1

1+
(

νen
ωce

)2
kBTe

eneBr

∂ne

∂ z
+

1

1+
(

νen
ωce

)2
kB

eBr

∂Te

∂ z
(3.23b)

To see how fluctuation-induced transport can occur, we note that the axial electron

velocity uez has a fluctuating E×B term arising from perturbations in the azimuthal elec-

tric field Eθ ; likewise, azimuthal gradients ∂ne
∂θ

in the electron density can affect the axial

electron velocity uez. If the fluctuating plasma density is properly correlated with this fluc-

tuating velocity, transport will result. The impact of these azimuthal fluctuations (Eθ ) and

gradients (∂ne
∂θ

) comprises the so-called anomalous contribution the the axial electron ve-

locity; a model which includes only the classical mobility µ⊥ and axial gradient terms

(∂ne
∂ z and ∂Te

∂ z ) will underpredict the axial electron velocity and the resulting axial electron

transport.

3.5.3 Energy Conservation

We consider the generalized electron energy equation (e.g., from Bittencourt, 2004)

3
2

nekB

(
∂Te

∂ t
+ue ·∇Te

)
+(Pe ·∇) ·ue +∇ ·qe = ∑

i
Si (3.24)
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where ∑
i
Si denotes all the contributing energy source and sink terms. As in Sect. 3.5.2,

we assume that the electron pressure is isotropic and that it obeys the ideal gas law; under

these assumptions, the electron pressure tensor Pe reduces to the scalar pressure pe = nkBTe.

Making this substitution into Eqn. 3.24, we obtain:

3
2

nekB
∂Te

∂ t
=−3

2
nekBue ·∇Te−nekBTe∇ ·ue−∇ ·qe +∑

i
Si (3.25)

We now consider each term on the right-hand side of Eqn. 3.25. For the energy source and

sink terms ∑
i
Si, we include Joule heating and ionization losses. We can rewrite Eqn. 3.25

as

3
2nekB

∂Te
∂ t = Ėconvect + Ėcompress + Ėdi f f use +S joule +Sioniz (3.26)

where

Ėconvect =−
3
2

nekB

(
uez

∂Te

∂ z
+

ueθ

r
∂Te

∂θ

)
(3.27a)

Ėcompress =−nekBTe

(
∂uez

∂ z
+

1
r

∂ueθ

∂θ

)
(3.27b)

Ėdi f f use =−∇ ·qe (3.27c)

and S joule and Sioniz refer to Joule heating and ionization losses, respectively.

We consider the diffusive term Ėdi f f use further. We can write the heat rate qe as

qe =−Ke⊥∇Te (3.28)

where Ke⊥ is the electron thermal conductivity described in Fife (1999)

Ke⊥ =
5
2

k2
B
e

neTeµ⊥ (3.29)
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Making these substitutions, we can rewrite Eqn. 3.27c as

Ėdi f f use = ∇ · (Ke⊥∇Te) (3.30a)

= ∇ ·
(

5
2

k2
B
e

neTeµ⊥∇Te

)
(3.30b)

We next consider the Joule heating source term. The electron Joule heating can gener-

ally be described as

S joule = Je ·E (3.31)

where Je is the electron current density and E is the electric field vector. We can write the

electron current current density as

Je =−eneue (3.32)

We further make the approximation that

ue '−µE (3.33)

where

µ =
e

meνe
(3.34)

and νe ' νen as in Sect. 3.5.2, from which we can approximate the electric field as

E'−meνen

e
ue (3.35)

Substituting Eqns. 3.32 and 3.35 into Eqn. 3.31, we obtain the following expression for

the Joule heating source term:

S joule = meneνen (ue ·ue) (3.36)

= meneνen
(
u2

ez +u2
eθ

)
(3.37)
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Finally, we describe the ionization loss (energy sink term) as

Sioniz =−γ ṅekBEi− ṅe
3
2

kBTe (3.38)

where Ei = 12.13 eV (or 140,757 K) is the first ionization energy for Xe and γ is a multi-

plicative ionization cost factor. The ionization loss term accounts for the both the energy

required to ionize the neutrals and the energy required for the newly created electrons to

equilibrate to the local electron temperature Te. Typically, we use ionization cost factor val-

ues γ = 1.0 - 2.8. The ionization cost factor γ is adjusted in an ad hoc manner based on the

thruster operating condition; typically, higher voltage operating conditions require a higher

value for the ionization cost factor γ to maintain a numerically stable electron temperature

profile Te(z) that is comparable to experimentally-measured values. An alternative is the

ionization cost factor model developed by Dugan and Sovie (1967); for the range of elec-

tron temperatures typically simulated, the ionization cost factor used here is comparable to

that predicted by the Dugan model.

We make the simplifying assumption that the electron temperature is axisymmetric in

θ . At each z-location, we assume the azimuthal variation in the electron temperature is

negligible, i.e., ∂Te
∂θ

= 0. We take the electron temperature to be constant in θ , which results

in a 1D electron temperature distribution Te = Te(z, t) that varies only in z. Under this 1D

electron temperature assumption, we can rewrite the convective and diffusive terms on the

right-hand side of Eqn. 3.26. The convective term, described by Eqn. 3.27a, simplifies to

Ėconvect =−
3
2

nekBuez
∂Te

∂ z
(3.39)

and the diffusive term, described by Eqn. 3.30b, can be written as

Ėdi f f use =
5
2

k2
B
e

[
µ⊥Te

∂ne

∂ z
∂Te

∂ z
+neµ⊥

(
∂Te

∂ z

)2

+neµ⊥Te
∂ 2Te

∂ z2 +neTe
∂Te

∂ z
∂ µ⊥
∂ z

]
(3.40)
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3.5.4 System Closure and Solution for Fluid Equations

3.5.4.1 System of Governing Equations

We consider the current continuity, momentum, and energy equations to form a system of

governing equations for the electron fluid. As in Sect. 3.5.3, we assume that electron tem-

perature is 1D in z, i.e., Te = Te(z, t) and ∂Te
∂θ

= 0, which allows us to further simplify the

electron velocity expressions in Eqns. 3.23a and 3.23b. We include the current continu-

ity equation (Eqn. 3.13), electron velocity expressions (Eqns. 3.23a-3.23b), and electron

energy equation (Eqn. 3.26) to form the following system of governing equations.

∇ · [ne(ui−ue)] = 0 (3.41a)

uez = −µ⊥Ez−
D⊥
ne

∂ne

∂ z
− D⊥

Te

∂Te

∂ z
− 1

1+
(

νen
ωce

)2
Eθ

Br

− 1

1+
(

νen
ωce

)2
kBTe

eneBrr
∂ne

∂θ
(3.41b)

ueθ = −µ⊥Eθ −
D⊥
ner

∂ne

∂θ
+

1

1+
(

νen
ωce

)2
Ez

Br

+
1

1+
(

νen
ωce

)2
kBTe

eneBr

∂ne

∂ z
+

1

1+
(

νen
ωce

)2
kB

eBr

∂Te

∂ z
(3.41c)

3
2nekB

∂Te
∂ t = Ėconvect + Ėcompress + Ėdi f f use +S joule +Sioniz (3.41d)

where Ėconvect , Ėcompress, Ėdi f f use, S joule, and Sioniz are as defined is Sect. 3.5.3.

The electron number density ne = ni and ion velocities ui = uizẑ+uiθ θ̂ are known (ob-

tained) from the ion particle model, described in Sect. 3.4, and PIC treatment, which will

be further described in Chap. 4. We thus have a system of 4 equations, with 5 unknowns:

uez, ueθ , Ez, Eθ , and Te.
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3.5.4.2 Electric Potential

In order to achieve system closure, we must reduce the number of unknown variables. We

introduce the electric potential φ , such that

E =−∇φ (3.42)

For our 2D z-θcoordinate system,

Ez = −∂φ

∂ z
(3.43a)

Eθ = −1
r

∂φ

∂ z
(3.43b)

Making these substitutions into Eqns. 3.41b and 3.41c, we can reduce the number of un-

knowns; the result is a system of equations, with 4 unknowns: uez, ueθ , φ , and Te.

3.5.4.3 Reduced System of Equations for Numerical Solution

We achieve system closure with the set of 4 equations and 4 unknowns. However, we can

further reduce the set of equations for numerical solution to a system of 2 equations.

Using the electric potential notation, as defined by Eqns. 3.43a and 3.43b, we substi-

tute the electron velocity expressions (Eqns. 3.41b and 3.41c) into the current continuity

equation (Eqn. 3.41a). The result is a single equation that can be solved for the electric

potential φ :

A1
∂ 2φ

∂θ 2 +A2
∂φ

∂θ
+A3

∂ 2φ

∂ z2 +A4
∂φ

∂ z
+A5 = 0 (3.44)
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where

A1 = −neµ⊥
r2 (3.45a)

A2 = −1
r

[
ne

r
∂ µ⊥
∂θ

+
µ⊥
r

∂ne
∂θ

+
1

1+
(

νen
ωce

)2
∂

∂ z

(
ne

Br

)

+
ne

Br

∂

∂ z

 1

1+
(

νen
ωce

)2

] (3.45b)

A3 = −neµ⊥ (3.45c)

A4 =
1

1+
(

νen
ωce

)2
1

rBr

∂ne

∂θ
−ne

∂ µ⊥
∂ z
−µ⊥

∂ne

∂ z
+

ne

rBr

∂

∂θ

 1

1+
(

νen
ωce

)2

 (3.45d)

A5 = f
(
ne,Te,µ⊥,νen,ωce

)
+

ne

r
∂uiθ

∂θ
+

uiθ

r
∂ne

∂θ
+ne

∂uiz

∂ z
+uiz

∂ne

∂ z
(3.45e)

and
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f
(
ne,Te,µ⊥,νen,ωce

)
=

kBTeµ⊥
er2ne

(
∂ne

∂θ

)2

+
kBTeµ⊥

ene

(
∂ne

∂ z

)2

+
nekBTe

er2

[
1
ne

∂ µ⊥
∂θ

∂ne

∂θ
+

µ⊥
n2

e

(
ne

∂ 2ne

∂θ 2 −
(

∂ne

∂θ

)2
)]

+
nekBTe

e

[
1
ne

∂ µ⊥
∂ z

∂ne

∂ z
+

µ⊥
n2

e

(
ne

∂ 2ne

∂ z2 −
(

∂ne

∂ z

)2
)]

− kBTe

erBr

∂

∂θ

 1

1+
(

νen
ωce

)2

 ∂ne

∂ z

+
kBTe

erBr

∂

∂ z

 1

1+
(

νen
ωce

)2

 ∂ne

∂θ

− nekB

erBr

∂

∂θ

 1

1+
(

νen
ωce

)2

 ∂Te

∂ z
+2

kBµ⊥
e

∂Te

∂ z
∂ne

∂ z

− 1

1+
(

νen
ωce

)2
kBTe

erB2
r

∂Br

∂ z
∂ne

∂θ
(3.46)

+
nekB

e
∂ µ⊥
∂ z

∂Te

∂ z
+

nekBµ⊥
e

∂ 2Te

∂ z2 (3.47)

The electric potential equation (Eqn. 3.44) and the simplified electron temperature

equation (Eqn. 3.41d) form a system of 2 equations, with 2 unknowns: φ and Te. These are

the 2 equations that will be solved numerically by the simulation.

3.5.5 Summary of Fluid Equations for Numerical Solution

The following system of 2 equations will be solved numerically for the electron temperature

Te and the electric potential φ , respectively:

3
2nekB

∂Te
∂ t = Ėconvect + Ėcompress + Ėdi f f use +S joule +Sioniz (3.48a)



CHAPTER 3. HYBRID FLUID-PIC AXIAL-AZIMUTHAL (Z-θ ) MODEL 36

A1
∂ 2φ

∂θ 2 +A2
∂φ

∂θ
+A3

∂ 2φ

∂ z2 +A4
∂φ

∂ z
+A5 = 0 (3.48b)

The coefficients
{

A1,A2, . . . ,A5
}

in Eqn. 3.48b are as described in Sect. 3.5.4.3, and we

use the simplified forms, based on the 1D electron temperature assumption Te = Te(z, t),

for the right-hand side terms in Eqn. 3.48a:

Ėconvect =−
3
2

nekBuez
∂Te

∂ z
(3.49a)

Ėcompress =−nekBTe

(
∂uez

∂ z
+

1
r

∂ueθ

∂θ

)
(3.49b)

Ėdi f f use =
5
2

k2
B
e

[
µ⊥Te

∂ne

∂ z
∂Te

∂ z
+neµ⊥

(
∂Te

∂ z

)2

+neµ⊥Te
∂ 2Te

∂ z2 +neTe
∂Te

∂ z
∂ µ⊥
∂ z

]
(3.49c)

S joule = meneνen
(
u2

ez +u2
eθ

)
(3.49d)

Sioniz =−γ ṅekBEi− ṅe
3
2

kBTe (3.49e)

After solving numerically for the electric potential φ , we can obtain the electric field

components,

Ez = −∂φ

∂ z
(3.50a)

Eθ = −1
r

∂φ

∂ z
(3.50b)
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which we then use to calculate the electron velocities:

uez = −µ⊥Ez−
D⊥
ne

∂ne

∂ z
− D⊥

Te

∂Te

∂ z
− 1

1+
(

νen
ωce

)2
Eθ

Br

− 1

1+
(

νen
ωce

)2
kBTe

eneBrr
∂ne

∂θ
(3.51a)

ueθ = −µ⊥Eθ −
D⊥
ner

∂ne

∂θ
+

1

1+
(

νen
ωce

)2
Ez

Br

+
1

1+
(

νen
ωce

)2
kBTe

eneBr

∂ne

∂ z
+

1

1+
(

νen
ωce

)2
kB

eBr

∂Te

∂ z
(3.51b)



Chapter 4

Numerical Solution Method

In this chapter, we provide a detailed description of the numerical solution methods used

to simulate the 2D thruster model described in Chap. 3. We describe the overall simulation

process and data flow, including implementation details for both the particle (PIC) and fluid

treatments.

4.1 Hybrid Fluid-PIC Approach

4.1.1 Particle-In-Cell Approach

The Particle-In-Cell (PIC) method is a commonly used approach for kinetic (or particle-

based) plasma simulations. The basic premise is that particles can assume arbitrary posi-

tions within the computational domain; however, certain bulk properties, including forces,

are evaluated and calculated only at a set of defined computational grid points. Based on

the particle’s location within the cell formed by its nearest (i.e., adjacent surrounding) grid

points, some means of interpolation is used to assign or project particle properties to the

grid representation; likewise, a similar interpolation method is used to apply or distribute

quantities that are calculated at the grid points, e.g., calculated forces or fields, to nearby

particles. The PIC approach is a computationally efficient means of performing particle-

based, i.e., kinetic, simulations of partially-ionized gases, or plasmas. (Dawson, 1962;

Birdsall and Langdon, 2005)

38



CHAPTER 4. NUMERICAL SOLUTION METHOD 39

(a) Particle interpolation (projection) to grid. (b) Interpolation from grid to particle.

Figure 4.1: Generalized illustration of PIC interpolation.

In this case, we treat the ion and neutral species as discrete superparticles. A superpar-

ticle is a single computational (simulated) particle which represents a weighted version or

collection of, in this case, individual ion (Xe+) or neutral (Xe) particles. In our simulations,

typical ion and neutral superparticles correspond to ~106× and ~1010× mass-weighted

versions, respectively, of an individual ion or neutral particle. For a 10× weighted super-

particle, the superparticle’s mass is 10 times that of a physical Xe or Xe+ particle, i.e.,

msimulated = 10mXe. Superparticles are employed (in lieu of individual true physical mass

ion and neutral particles) to reduce computational expense.

The ion and neutral superparticles can assume arbitrary locations within the 2D z-θ

computational domain. Each superparticle is interpolated to the grid by projecting or ap-

portioning the superparticle’s mass to its nearest (surrounding) four grid points, as shown in

Fig. 4.1a. By projecting, or counting, each ion or neutral superparticle’s mass contribution

to its surrounding grid points, we can compute the interpolated (cumulative) ion or neutral

mass or number density at each grid point.

We use a bilinear interpolation, or first-order PIC weighting scheme, to interpolate

from each particle to the grid. Consider a single superparticle, denoted as particle k (i.e.,

numbered as the kth particle). The superparticle has an arbitrary z-θ location (zk, θk), which

falls within the interval zi ≤ zk < zi+1 and θ j ≤ θk < θ j+1, where zi, zi+1, θ j, and θ j+1 are
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the z- and θ - locations, respectively, of the nearest 4 grid points (zi, θ j), (zi+1, θ j), (zi, θ j+1),

and (zi+1, θ j+1) that surround the superparticle k. We calculate the bilinear interpolation

weights

Wk,i, j =
(zi+1− zk)

(
θ j+1−θk

)
∆z∆θ

(4.1a)

Wk,i+1, j =
(zk− zi)

(
θ j+1−θk

)
∆z∆θ

(4.1b)

Wk,i, j+1 =
(zi+1− zk)

(
θk−θ j

)
∆z∆θ

(4.1c)

Wk,i+1, j+1 =
(zk− zi)

(
θk−θ j

)
∆z∆θ

(4.1d)

where

∆z = zi+1− zi (4.2a)

∆θ = θ j+1−θ j (4.2b)

The superparticle k represents a collection of individual true mass Xe particles, such that

mk = ηkmXe (4.3a)

or, in the case of ions,

mk = ηkmXe+ (4.3b)

where mk is the simulated superparticle mass (for particle k) and ηk is a multiplicative

(superparticle multiplier) factor which can assume real number (non-integer) values. For

neutrals, typical values are in the range η ' 109 - 1011, with an average (mean value)

ηn,avg ' 1010, for a simulation with approximately 400,000 total neutral superparticles in

the computational domain; for ions, typical values are in the range η ' 103 - 107, with an
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average (mean value) ηn,avg ' 106, for a simulation with approximately 2 million total ion

superparticles in the computational domain.

To calculate the number density n at a particular point, we consider

n =
Nparticles

V
(4.4)

where V is the representative unit volume. We can calculate the contribution of a single

superparticle k to the number density at each of its surrounding grid points:

nContrk,i, j = Wk,i,, j
ηk

Vcell,i, j
(4.5a)

nContrk,i+1, j = Wk,i+1,, j
ηk

Vcell,i+1, j
(4.5b)

nContrk,i, j+1 = Wk,i,, j+1
ηk

Vcell,i, j+1
(4.5c)

nContrk,i+1, j+1 = Wk,i+1, j+1
ηk

Vcell,i+1, j+1
(4.5d)

where Vcell denotes the representative cell volume, e.g., at the grid point (zi, θ j)

Vcell,i, j =

(
r2

outer− r2
inner

)
2

(
zi+1/2− zi−1/2

)(
θ j+1/2−θ j−1/2

)
(4.6)

To find the number density at grid point (zi, θ j), we consider sum the contributions of

all nearby superparticles, i.e., particles adjacent to that grid point.

ni, j = ∑

k

zi−1 ≤ zk < zi+1

θ j−1 ≤ θk < θ j+1

nContrk,i, j (4.7)

In a similar manner, we can find the (local population average) ion and neutral species

velocities at the grid points. For a single superparticle k (ion or neutral), we can calculate
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the particle’s velocity contribution to the average (or cumulative) species velocity at each

of its surrounding grid points:

vContrk,i, j = Wk,i,, jηkvk (4.8a)

vContrk,i+1, j = Wk,i+1,, jηkvk (4.8b)

vContrk,i, j+1 = Wk,i,, j+1ηkvk (4.8c)

vContrk,i+1, j+1 = Wk,i+1, j+1ηkvk (4.8d)

To find the the species velocity, e.g., neutral velocity un, at grid point (zi, θ j), we sum

the contributions of all nearby neutral superparticles (particles adjacent to that grid point),

un,i, j =
1

Ni, j
∑

neutrals k

zi−1 ≤ zk < zi+1

θ j−1 ≤ θ j < θ j+1

vContrk,i, j (4.9)

normalizing for the (typically, non-integer) number of neutral particles Ni, j that contribute

to the neutral velocity (i.e., the number of particles counted) at grid point (zi, θ j)

Ni, j = ∑

neutrals k

zi−1 ≤ zk < zi+1

θ j−1 ≤ θ j < θ j+1

Wk,i, jηk (4.10)

The plasma and electromagnetic properties, including the electric field and correspond-

ing electrostatic (simplified Lorentz) force are calculated only at the grid points. To find

the force and corresponding acceleration that govern the motion of an individual superpar-

ticle, we consider the calculated force at that superparticle’s nearest (surrounding) four grid

points and interpolate the corresponding force contribution from the grid to the individual

superparticle, as illustrated in Fig. 4.1b.
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Consider an ion superparticle, denoted particle k; we are interested in the acceleration,

due to the force that acts on particle k. As described in Sect. 3.4, the ion motion is governed

by the simplified (non-magnetized) Lorentz force, i.e., by the electric field at particle k.

ak =
Fk
mi

=
e

mXe+
Ek (4.11)

where e = 1.6×10−19 C is the elemental electron charge, mi = mXe+ is the individual Xe+

ion (true physical) mass, and Ek = Ekzẑ+Ekθ θ̂ is the electric field vector at particle k.

We use a bilinear interpolation scheme to interpolate the electric field from the particle

to the grid. For a particle k at location (zk, θk) which falls within the interval zi ≤ zk < zi+1

and θ j ≤ θk < θ j+1, the bilinear interpolation weights are the same as before:

Wk,i, j =
(zi+1− zk)

(
θ j+1−θk

)
∆z∆θ

(4.12a)

Wk,i+1, j =
(zk− zi)

(
θ j+1−θk

)
∆z∆θ

(4.12b)

Wk,i, j+1 =
(zi+1− zk)

(
θk−θ j

)
∆z∆θ

(4.12c)

Wk,i+1, j+1 =
(zk− zi)

(
θk−θ j

)
∆z∆θ

(4.12d)

Using this bilinear weighting scheme, we can calculate the electric field at particle location

(zk, θk) from the simulated electric field values at each of the surrounding 4 grid points (zi,

θ j), (zi+1, θ j), (zi, θ j+1), and (zi+1, θ j+1):

Ek =Wk,i, jEi,j +Wk,i+1, jEi+1,j +Wk,i, j+1Ei,j+1 +Wk,i+1, j+1Ei+1,j+1 (4.13)

The use of superparticles (or macroparticles), in lieu of individual true physical mass

particles, means that we are using a reduced set, or number, of particles to represent the

true (realistic physical) phase space distribution of the physical ion and neutral species.

The simulation is a discretely sampled representation of the underlying local phase space
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distribution of each species. This sampled approach requires a sufficient number of sim-

ulated particles for adequate statistical representation of the sampled population. As we

interpolate from the particles to the grid, we are interested in the validity and adequacy of

the PIC grid quantities; this requires a sufficient number of particles per cell to assure that

the interpolated grid quantities are not too discontinuous and that they adequately represent

the simulated (sampled) species populations.

There is inherent noise and discontinuity associated with the use of discrete superpar-

ticles, i.e., a kinetic approach, e.g., compared to a fluid continuum approach. To some

degree, the associated numerical, or particle, noise is a desired, or even required, feature

of the PIC simulation. The simulated motion, or time advancement, of discrete, discon-

tinuous particles enables the simulation of certain inherently noisy or statistical kinetic

processes, e.g., collisional (impact) ionization, kinetic heating, and plasma fluctuations in-

cluding unsteady wave modes that we seek to model. In some cases, the numerical noise

serves to offset numerical damping or dissipation that is an artifact of our broader simu-

lation approach (i.e., the result of certain simplifying assumptions/approximations or the

consequence of the electron fluid treatment implementation). However, we must take care

that the simulation does not become dominated or solely driven by the numerical noise;

the PIC treatment (interpolation to the grid) has a mitigating effect, in this regard, as can

increasing the number of simulated particles, which reduces the level of discontinuity.

In general, it is desirable to maximize the number of simulated particles; however,

doing so significantly increases the computational expense, in both calculation time and

memory storage and access time requirements. Generally, we strike a compromise between

maximizing the number of particles, to improve statistical validity and mitigate numerical

noise and discontinuity, and minimizing computational expense.

4.1.2 Coupled Fluid-PIC Treatment

The assumption of space charge neutrality, or quasineutrality, is the mechanism by which

we couple the fluid treatment (for the electrons) and the PIC approach (for the ions and

neutrals). Specifically, we enforce the condition:
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ne = ni (4.14)

We use the same numerical grid for both electron fluid discretization and the PIC grid. Per

the PIC treatment, we calculate the (interpolated) ion number density at the PIC grid points;

we then use this ion number density ni as the electron number density ne, as needed for the

electron fluid calculations.

neFluid ≡ niPIC (4.15)

4.2 Simulation Process (Numerical Solution Algorithm)

Figure 4.2 illustrates the overall the numerical simulation process. The simulation employs

here are two distinct time steps: dt and dtsub. The outer loop of the simulation, which

includes the time advancement of the PIC species and the electric field (or electric potential)

solution, is time advanced at the larger time step dt = Nsubdtsub. The smaller time step dtsub

is used only for the inner loop time advancement of the electron temperature. The inner

loop (electron time advancement) is executed Nsub times per single outer loop execution.

Nsub = dt
dtsub

is an integer value simulation parameter used to prescribe the ratio between

the outer and inner loop time steps. Here, we describe each step in the simulation process,

including numerical solution details.

4.2.1 Particle Motion

The simulation cycle begins with the time advancement of the particle motion according to

the outer loop time step dt. We use the leapfrog integration method for the time advance-

ment of the particle positions and velocities. The leapfrog method is a common choice

for the particle push, or time advancement of the particle motion, in PIC simulations, pri-

marily due to its computational efficiency. Leapfrog integration requires a minimal set of

operations per integration calculation and imposes minimal memory storage requirements.

Despite its simplicity and low computational expense, the leapfrog method is acceptably

stable and accurate (with an appropriate choice of time step).
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Figure 4.2: Simulation process flowchart.

The leapfrog integration method is applied to the particle equations of motion described

in Sect. 3.4. In the case of the neutrals, there is no force (i.e., no acceleration) acting on the

neutral particles; the particle velocities vnz and vnθ are thus constant, and we advance only

the particle positions z and θ according to Eqns. 3.7a and 3.7b. In the case of the ions, the

ion particle motion is subject to the locally computed electric field according to Eqns. 3.6a

and 3.6b. For each ion particle, the electric field is interpolated from the PIC grid to the

particle’s location as described in Sect. 4.1.1.

Per the leapfrog treatment, the particle positions and acceleration components (due to

the electric field in the case of the ions) are known and calculated at whole time steps, while
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the particle velocities are calculated at half time steps. At time step n, we time advance the

particle velocities for the ions

vn+1/2
z = vz(tn−1/2 +dt) = vn−1/2

z +
e

mi
En

z dt (4.16a)

vn+1/2
θ

= vθ (tn−1/2 +dt) = vn−1/2
θ

+
e

mi
En

θ dt (4.16b)

and the particle positions for both the neutrals and ions

zn+1 = z(tn +dt) = zn +vn+1/2
z dt (4.17a)

θ
n+1 = θ(tn +dt) = θ

n +vn+1/2
θ

dt (4.17b)

4.2.2 Ionization

Neutral particles are ionized via a Monte Carlo sampling process according to the local

ionization rate described by Eqn. 3.8. To calculate the ionization rate for a given cell, we

calculate the ionization rate at each of the 4 surrounding grid points (zi, θ j), (zi+1, θ j),

(zi, θ j+1), and (zi+1, θ j+1) that comprise (border) the cell, using the PIC grid and fluid

properties calculated during the previous time step cycle tn; we then average, i.e., take the

arithmetic mean of, the ionization rates for the 4 grid points to find the local (average)

ionization rate within the cell. We determine the number of superparticles per cell that will

be ionized, according to the prescribed simulation parameters and the number of particles

presently within the cell. In cases where the number of ion superparticles within a given

cell is low, we ionize more neutral particles to create more ion particles in that cell. We

then use a pseudo-random variable (pseudo-random number generator) to determine which

specific particles within the cell will be ionized.

Once a neutral particle is selected for ionization, we create a corresponding new ion

superparticle with mass

mi,new =
1

Nipc
ṅe,cellVcellmXe+dt
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where Nipc is the number of neutral superparticles ionized for that cell, ṅe,cell is the ion-

ization rate (averaged from the 4 surrounding grid points) for that cell, and Vcell is the cell

volume described by Eqn. 4.6. The newly created ion particle assumes the same position

and velocity as the original neutral particle (i.e., the neutral particle from which it was

ionized).

To assure mass conservation, we must also adjust the mass of the neutral superparticles

accordingly. While only certain neutral particles, selected by the Monte Carlo sampling

process, are used to create new ion particles, we subtract the corresponding ionized mass

equally from all neutral particles within the cell. For each neutral particle in the cell, we

adjust the particle’s mass to account for the neutral mass lost to ionization (on a per cell

basis):

mn,updated = mn−
1

Nnpc
ṅe,cellVcellmXe+dt

where Nnpc is the total number of neutral superparticles in that cell. Typically, Nipc�Nnpc.

4.2.3 Neutral Injection

We inject neutral particles from the anode plane according to the prescribed neutral gas

mass flow rate. At each time step dt (outer loop simulation cycle), we inject a specified

number of neutral superparticles, as specified by the simulation parameters. The total neu-

tral mass injected per time step dt is determined by the prescribed mass flow rate ṁn. We

prescribe the mass of each injected superparticle

mn,in ject =
1

Nin ject
ṁndt

where Nin ject is the number of neutral particles injected per outer loop simulation cycle.

Typically, Nin ject = 1 or 2.

We introduce the injected neutral particles just inside the domain at the z-location z

= 0.01 nm. We give each injected neutral particle a random θ -location, sampled from a

uniform distribution over the range θ = 0 - 2π radians using a pseudo-random variable

(pseudo-random number generator).
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The velocity of each injected neutral particle is sampled from the distributions described

in Sect. 3.3 and Appendix A. The one-way flux distribution for the z-velocity of the injected

neutral particles is inverted by a Monte Carlo sampling process. Likewise, the θ -velocity

of each injected neutral particle is obtained by sampling the velocity in the r-θ plane (i.e.,

inverting the relevant speed and planar velocity orientation distributions) and projecting

that velocity onto particle’s θ̂ -direction as described in Appendix A, using the randomly

determined (sampled) θ -position for that particle. Details of the distribution inversion, or

sampling, procedure can be found in Birdsall and Langdon (2005) or Scharfe (2009). The

distribution inversion, or sampling, is performed a priori and the values are tabulated in a

file; during the simulation, the sampled velocity values are read in from the file.

4.2.4 PIC Interpolation and Smoothing

As described in Sect. 4.1.1, we interpolate the particle properties (from the particle loca-

tions) to the grid to obtain the PIC grid quantities that will be used, in the subsequent steps,

to find the electron temperature and electric potential solutions.

To mitigate the numerically destabilizing effect of strong spatial gradients due to the

PIC treatment (i.e., particle noise or discontinuities due to the particle treatment), we apply

a two-dimensional smoothing spline, described by Shikin and Plis (1995), to the PIC quan-

tities – specifically, the neutral density nn, ion or electron density ne, and the ion velocities

uiz and uiθ – prior to taking their derivatives or using these quantities in the ven calculation;

this smoothing applies only to cases in which we take spatial derivatives, e.g., we spatially

spline smooth ne prior to taking any spatial derivatives ∂ne
∂ z or ∂ne

∂θ
or higher order deriva-

tives. With the exception of the νen calculation, in all other calculations that require the the

actual quantity, e.g., when the quantity ne appears in the electron temperature or electric

potential equations, we use the unsmoothed PIC quantity.

In addition to using the updated PIC quantities nn , uiz and uiθ , we impose quasineu-

trality and use the PIC-calculated ion density as the plasma, or electron, density ne in the

subsequent electron fluid calculations – thus, linking the PIC and electron fluid treatments,

as discussed in Sect. 4.1.2.
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4.2.5 Time Advancement of Electron Temperature

We next perform the inner loop time advancement of the electron temperature. We use the

smaller time step dtsub =
dt

Nxub
for each inner loop simulation cycle, i.e., each time advance-

ment of the electron temperature. The time advancement of the electron temperature Te is

performed Nsub times, in succession, per outer loop simulation cycle (i.e., the inner loop is

executed Nsub times per outer loop simulation cycle).

During each inner loop simulation cycle, we numerically solve the electron energy, or

electron temperature, equation 3.48a. Specifically, we rewrite Eqn. 3.48a in the form

dTe

dt
= f (t,Te) (4.18)

which will allow us to time advance, or numerically integrate, the electron temperature Te.

For the spatial discretization of the (spatial) derivative terms, we use a central difference

scheme for both the first and second spatial derivatives where possible within the domain

(i.e., everywhere except the boundary points); for both the first and second spatial deriva-

tives, we apply a two-point forward or backward difference at the upstream (z = 0) and

downstream (z = 0.12 m) boundaries, respectively. As will be discussed in Sect. 4.3.2, the

grid spacing is uniform in θ ; hence, we use the usual central difference formulas for the

first and second spatial derivatives in θ . To find the spatial derivatives with respect to θ at

grid points (zi, θ j), we use the following discretization:

dgi, j

dθ
=

gi, j+1−gi, j−1

2∆θ
(4.19)

d2gi, j

dθ 2 =
gi, j+1−2gi, j +gi, j−1

(∆θ)2 (4.20)

In the z-direction, we sometimes use a non-uniform grid; in that case, we use a central

difference scheme for the first spatial derivative in z that is weighted based on proximity or

“nearness” (i.e., the point closer to the point of interest zi is weighted more heavily in the

derivative calculation):
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d fi, j

dz
=
(

fi+1, j− fi, j
) (zi− zi−1)

(zi+1− zi)(zi+1− zi−1)
+
(

fi, j− fi−1, j
) (zi+1− zi)

(zi− zi−1)(zi+1− zi−1)
(4.21)

For the second derivative in z, we use the typical central difference formula for a non-

uniform grid:

d2 fi, j

dz2 =
2
(

fi+1, j− fi, j
)

(zi+1− zi)(zi+1− zi−1)
+

2
(

fi−1, j− fi, j
)

(zi− zi−1)(zi+1− zi−1)
(4.22)

The non-uniform discretization formulas are derived from Hirsch (1988). For both the first

derivative (Eqn. 4.21) and the second derivative (Eqn. 4.22) formulas, the discretization

is second-order accurate for uniform or nearly uniform grid spacing; if the grid is highly

nonuniform, e.g., if zi− zi−1� zi+1− zi, the accuracy is reduced.

For the time advancement of the electron temperature Te(z, t), we use a second-order

Runge Kutta method (RK2). As discussed in Sect. 3.5.3, we assume the electron tem-

perature is 1D in z. We implement this quasi-1D electron temperature solution by first

calculating the right hand side of Eqn. 4.18 for all points in the 2D z-θ grid (i.e., all for all

z and all θ ) according to the spatially discretized versions of Eqns. 3.48a and 3.49a-3.49e;

we then take the azimuthal average (i.e., average over all θ) for each z-location zi to find the

right hand side of the 1D version of Eqn. 4.18 where Te = Te(z, t). Using this 1D version of

Eqn. 4.18, we time advance the electron temperature Te(z, t) according to the second-order

Runge Kutta scheme:

T ∗m+1/2
e = T m

e +
dtsub

2
f (tm,T

m
e ) (4.23)

T m+1
e = T m

e +dtsub f (
(

tm+1/2,T
∗m+1/2

e

)
(4.24)

described in Moin (2001), where f (tm,T m
e )is described by Eqn. 4.18.

To mitigate the numerically destabilizing effect of rapid temporal fluctuations in the

electron temperature, we limit the change in the electron temperature ∆T = |T m+1
e −T m

e | at
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each axial location z. We impose a maximum change ∆Te,max per inner loop (electron tem-

perature) time step dtsub; if ∆Te > ∆Te,max (for T m+1
e based on the RK2 time advancement),

then we artificially set the the electron temperature, at that point z, to T m+1
e = T m

e ±∆Te,max.

∆Te,max is prescribed as a simulation parameter; for dtsub = 0.1 ns, we typically use a value

of ∆Te,max = 10 K, resulting in a maximum change ∆Te,max
dtsub

= 10K
0.1ns .

To further assure that the electron temperature remains bounded within the operational

(experimentally-observed) electron temperature range, we enforce minimum and maximum

values Te,min and Te,max, respectively, for the electron temperature throughout the domain. If

the calculated electron temperature, per the RK2 time advancement, exceeds these bounds,

we artificially set the electron temperature, at that point z, to Te,min or Te,max, as appropriate.

Te,min and Te,max are prescribed as simulation parameters, based on the prescribed operat-

ing voltage; higher operating voltages warrant a higher maximum temperature condition

Te,max. We typically prescribe Te,max based on the experimentally-measured peak electron

temperature for the given operating voltage; for low voltage simulations (e.g., the represen-

tative case which will be presented in Chap. 5), the electron temperature typically does not

exceed the prescribed maximum value Te,max, i.e., no correction to the electron temperature

value is required based on the maximum temperature upper bound. For the lower bound,

we typically use a value of Te,min = 15,000 K (~ 1.3 eV), regardless of operating voltage; in

typical low voltage simulations, the time advanced electron temperature occasionally falls

below this minimum value and must be artificially corrected.

After performing the electron temperature time advancement, we can calculate the up-

dated electron velocities uez and ueθ according to Eqns. 3.51a and 3.51b, using the updated

electron temperature Te.

We repeat this process for each inner loop cycle with the time step dtsub; the inner loop

time advancement is successively executed Nsub times, resulting in a total time advance-

ment dt = Nsubdtsub of the 1D electron temperature Te(z, t).

4.2.6 Iterative Solution for Electric Potential

The final step in the outer loop simulation cycle is the calculation of the electric potential

φ , according to Eqn. 3.48b. In solving for the electric potential φ , and the resulting electric
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fields Ez and Eθ , we assume that the the modeled plasma discharge is in a quasi-steady-state

at time t = tn+1 = tn+dt (as calculated during the nth outer loop simulation cycle); we then

perform an electrostatic solution for the resulting electric potential φ (and corresponding

electric fields) at that moment in time t = tn+1. Note that we do not time advance the electric

potential, per se; instead, we calculate the electrostatic solution based on the particular set

of system conditions, or plasma properties, at that given moment in time t = tn+1.

The final solution value for φ is found by an iterative process. At each step (iteration)

in the solution process, we perform a direct solution for φ , based on certain calculated

properties (which are dependent on φ ); we then update these properties, based on the most

recent φ value (from the previous iteration), and calculate a new solution for φ . We iterate

successively in this manner until the value of φ has converged, as determined by a tolerance

ε which is set as a simulation parameter.

To find the electric potential φ , we must solve Eqn. 3.44. If we examine the coefficients

of this equation, as described by Eqns. 3.45a-3.45e and 3.46, we see that φ is a function

of the plasma properties nn, ne, Te, uiz, and uiθ . The neutral and plasma number densities,

nn and ne, and the electron temperature Te are known at time t = tn+1 from the previous

steps in the (nth) simulation cycle. However, due to the leapfrog staggering for the particle

positions and velocities, the PIC-interpolated ion velocities uiz and uiθ are known only at

the half time step t = tn+1/2 and are not known the present time t = tn+1.

To begin the iterative solution cycle, we make a guess for the ion velocities at time t =

tn+1. More specifically, we predict, or extrapolate, the ion velocities at time t = tn+1 based

on the known ion velocities at the previous two half time steps t = tn−1/2 and t = tn+1/2:

u∗n+1
iz = u∗iz(t = tn+1) =

3
2

un+1/2
iz +

1
2

un−1/2
iz (4.25a)

u∗n+1
iθ = u∗iθ (t = tn+1) =

3
2

un+1/2
iθ +

1
2

un−1/2
iθ (4.25b)

Using this guess for u∗n+1
iz and u∗n+1

iθ , we proceed to solve Eqn. 3.48b for φ∗n+1. We dis-

cretize Eqn. 3.48b and its coefficients (Eqns. 3.45a-3.45e and 3.46) using a high-order

finite-difference upwind method (with a four-point central difference stencil and q= 0.5)

described by Fletcher (1991). The method is up to third-order accurate for a uniform grid;
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however, for a non-uniform grid as typically used here, the accuracy is reduced. The dis-

cretization results in a system of equations of the form

A~φ = 0 (4.26)

where the matrix A is block tridiagonal.and the vector ~φ contains the values of the electric

potential φ∗i, j at all grid points (zi, θ j). We then solve directly for ~φ using Gauss-Jordan

elimination.

After solving for φ , we can update other dependent quantities accordingly, using this

new value φ∗n+1. We calculate the electric fields Ez and Eθ , according to Eqns. 3.50a-

3.50b, using the same central-difference scheme for the spatial derivatives described in

Sect. 4.2.5. We calculate the updated electron velocities uez and ueθ according to Eqns.

3.51a-3.51b.

Using the updated electric fields, Ez and Eθ , we can then update the ion velocities

u∗n+1
iz and u∗n+1

iθ . To do so, we use the newly updated electric field (or ion acceleration

terms) E∗n+1
z and E∗n+1

z to find the time advanced the particle velocities v∗n+3/2, which

can then be PIC interpolated to the grid to find the ion velocities (at the grid) u∗n+
3/2

iz and

u∗n+
3/2

iθ . We then calculate the updated ion velocities for time t = tn+1 by averaging the

PIC-interpolated ion velocities at times t = tn+1/2 and t = tn+3/2.

u∗n+1
iz =

1
2

(
un+1/2

iz +u∗n+
3/2

iz

)
(4.27a)

u∗n+1
iθ =

1
2

(
un+1/2

iθ +u∗n+
3/2

iθ

)
(4.27b)

Using the updated ion velocities u∗n+1
iz and u∗n+1

iθ , we restart the iteration cycle and

solve for φ , as before. We continue to iterate in this manner – solving for φ∗, then updating

Ez, Eθ , uez, ueθ , uiz, and uiθ – until the value of φ∗ converges. At each iteration cycle, we

calculate the residual

ri, j = |φ∗new
i, j −φ

∗prev
i, j | (4.28)
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at each grid point (zi, θ j). We determine convergence using the simulation parameter ε .

If ri, j > ε for any grid point (zi, θ j), then we continue to iterate, repeating the process

described above, until the φ solution converges. If ri, j ≤ ε for all grid points (zi, θ j), then

the solution has converged; we terminate the iterative solution cycle and store the solution

value φ n+1 = φ∗n+1 and the resulting updated quantities Ez, Eθ , uez, and ueθ . We typically

use a convergence tolerance of ε = 10−6; using the typical spatial grid and outer loop time

step dt described in Sect. 4.3 with the convergence tolerance value ε = 10−6, the potential

solution typically converges within 5 iterations.

At this point, we have completed the final step in the outer loop simulation cycle. We

then restart the outer loop simulation cycle.

4.3 Numerical Considerations

4.3.1 Time Step

The decision to use distinct time steps for the inner and outer simulation loops was driven

by both the governing physics and computational considerations. The disparity in mass

between the electrons and the heavy (ion and neutral) species means that the respective

electron and heavy species motion occur at significantly different timescales. Relative to

the heavy ion and neutral species, the electrons move more quickly, i.e., at faster timescales;

while a larger time step is sufficient to resolve the ion and neutral motions, a smaller time

step is required to adequately resolve the electron dynamics.

In early simulations, we used a single common time step for both the inner and outer

simulation loops; however, this approach proved to be computationally inefficient. In addi-

tion to the disparate physical (time and velocity) scales, the electron temperature solution

places additional constraints on the electron time step. The electron temperature equation

contains several stiff terms (on the right hand side of Eqn. 3.48a) which require a small

time step to maintain numerical stability when using an explicit time advancement method,

such as RK2. The inner loop simulation structure, and corresponding use of a smaller time

step, for the time advancement of Te was implemented to address this challenge in the nu-

merical solution and stability. (An alternative approach would have been to use a fully
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implicit solution method or perform implicit-explicit operator splitting; however, either of

these methods would be more computationally expensive than RK2.) While the electron

temperature solution requires a small time step, the time step constraint for resolving the

ion and neutral particle motion (and the resulting change in the electrostatic solution) is less

restrictive. We thus chose to implement the inner-outer simulation loop structure, using a

larger time step for the heavy particle motion and electric potential solution and a smaller

time step for the electron temperature time advancement. Typical values for the inner and

outer loop time steps are dtsub = 0.1 ns and dt = 10 ns, or Nsub =
dt

dtsub
= 100.

In selecting a value for the electron time step dtsub, we seek to resolve the electron

cyclotron frequency. The electron cyclotron frequency is maximum in the region of peak

magnetic field; for the peak magnetic field strength Br = 0.11 T, the electron cyclotron

frequency is approximately 2 rad/s, which corresponds to a timescale tωce ' 3 ns. Since

we assume the plasma is quasineutral, we are not concerned with resolving the plasma

frequency ωpe =
√

e2ne
ε0me

(where ε0 ' 8.85×10−12 F/m is the free space permittivity). For

ne = 1017- 1018 m−3, the electron plasma frequency is approximately 2-5× 1010 rad/s,

which corresponds to a timescale tωpe ' 0.1 - 0.3 ns. Although dtsub is close to resolving

the plasma frequency, this is irrelevant as the quasineutrality assumption prevents the model

from predicting Langmuir, or plasma, oscillations.

The outer loop time step dt = 10 ns does not quite resolve the electron cyclotron motion.

However, in the outer loop simulation cycle, we are concerned with resolving the ion and

neutral particle motion and finding the corresponding change in the electric potential due

the resulting changes in the electrostatic system conditions. The constraint on the time

step for the particle time advancement is determined by the particle velocities and the grid

spacing. To mitigate discontinuity and assure validity of the PIC treatment, we must select

a time step that is small enough to prevent a particle from skipping a cell, i.e., traversing a

distance larger than one cell (in either the z- or θ -direction), in a single time step.

We perform the electric potential solution according to the outer loop time step dt. To

find the electric potential solution, we assume that the system has equilibrated to a quasi-

steady-state. We do not perform the electric potential solution for each inner loop simula-

tion cycle as we do not believe the change in the electron temperature, at that timescale,

is significant to the overall electrostatic system conditions; furthermore, we can take the
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electric potential and electric fields to be quasi-steady, i.e., constant in time, at the electron

timescale dtsub. We instead solve for the electric potential at the outer loop timescale dt

since the changes in the electrostatic conditions, due to the particle time advancement and

the electron temperature advancement at that timescale dt = Nsubdtsub, are expected to be

significant in characterizing the system state and evolution.

4.3.2 Spatial Resolution

Figure 4.3a shows the typical computational grid employed. The grid contains 40 points

in z and 50 points in θ . The grid is non-uniform in z, with additional grid points clustered

in the region of peak magnetic field where gradients are expected to be large. Figure 4.3b

shows the grid spacing ∆z, which ranges from a maximum ∆zmax = 4.6 mm near the anode

to a minimum ∆zmin = 1.5 mm just upstream of the exit plane near the z-location of the peak

magnetic field. The grid points are spaced uniformly in θ , with ∆θ = 2π

50 ' 0.126 radians,

which corresponds to a distance rmid∆θ ' 5.1 mm.

In both directions z and θ , the grid spacing is comparable to the distance between mea-

surement probes in relevant laboratory experiments (Gascon and Cappelli, 2003). With the

computational grid shown in Fig. 4.3a, we can resolve disturbances with axial wavelengths

as small as λz ' 10 mm, even in regions where the grid is coarsest. In the azimuthal direc-

tion, we can resolve wavelengths as small as λθ ' 10 mm which corresponds to azimuthal

mode numbers up to mθ ' 20. While a finer spatial resolution might allow us to examine

smaller length scale phenomena, the spatial resolution shown in Fig. 4.3 (used with the

outer loop time step dt = 10 ns and inner loop time step dtsub = 0.1 ns) is, in most cases,

sufficient to resolve the fluctuations of interest, in both the axial and azimuthal directions.

4.3.3 Number of Simulated Particles (Validity of PIC Approach)

A sufficient number of particles per cell is required to mitigate numerical noise and dis-

continuity in the PIC treatment. Furthermore, increasing the number of simulated particles

generally provides better PIC statistics, i.e., a more accurate representation, or statistical

sampling, of the underlying statistical kinetic processes.
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(a) Numerical grid with 40 points (non-uniform) in z and 50 points (uniform) in θ .

(b) Grid spacing in z-direction.

Figure 4.3: Typical spatial resolution.



CHAPTER 4. NUMERICAL SOLUTION METHOD 59

In the case of the neutrals, neutral particles are introduced into the domain by the neutral

injection process. Neutral particles that exit the domain or that are lost to ionization (i.e.,

neutral particles whose mass is reduced to zero by the ionization process) deplete the num-

ber of neutral particles in the domain. The number of neutral particles can be controlled by

adjusting the number of neutral particles Nin ject that are injected per outer simulation loop.

In typical simulations, the total number of neutral superparticles is approximately 400,000,

which corresponds to an average of 200 particles per cell.

In the case of the ions, the number of ion particles is continuously and quickly depleted

as the ions, accelerated by the axial electric field, exit the domain. The only means of re-

plenishing the ion particle population is ionization; hence, we must adjust the number of

ionized particles per cell Nipc (set as a simulation parameter) to sustain a sufficient number

of ion superparticles in each cell in the domain. In the case of the ion particles, an insuf-

ficient number of particles per cell quickly leads to strong discontinuous gradients, which

lead to strong (unphysical) discontinuities and resulting numerical instability in the simu-

lated electric potential and electron temperature. We typically maintain the total number of

ion superparticles at approximately 1.5 million to 2.5 million particles, which corresponds

to an average of 750 - 1250 particles per cell.

4.3.4 Computational Expense

The computational expense, or total simulation wall clock time, is driven by the grid size

(total number of grid points) and the number of particles simulated. While we generally

wish to maximize the spatial grid resolution and the number of particles per cell (which

correspondingly increases the total number of simulated particles), we must balance these

priorities against the computational expense. Likewise, a smaller time step enables finer

timescale resolution, but requires more simulation cycles to complete a given extent of sim-

ulated time. We strike a practical compromise between these competing factors by choosing

a spatial resolution that adequately resolves the spatial phenomena of interest (particularly,

the azimuthal fluctuations) and time steps dt and dtsub that resolve the timescales of interest

(e.g., the electron cyclotron frequency), but permit sufficiently long simulations.
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For the 40 point × 50 point grid (2000 grid points total) shown in Fig. 4.3, and an

approximate total of 400,000 neutral and 2M ion particles, a typical simulation of 20,000

outer loop simulation cycles takes approximately 20 - 24 hours to run on a single Intel Xeon

3.40 GHz processor core. Using an outer loop time step dt = 10 ns with Nsub = 100 (or dtsub

= 0.1 ns), it takes approximately 100 - 120 hours (approximately 4-5 days) to simulate a

total time of 1 ms.

4.4 Boundary Conditions

For the θ -direction, we apply periodic boundary conditions. As discussed in Sect. 3.1,

the computational domain spans the full azimuth, and we apply the periodic boundary

condition θ0 = 0 = 2π . The computational grid is periodic in θ , and the periodic boundary

condition likewise applies to all particle motion and to the discretization of the electric

potential (φ ) equation and quasi-1D electron temperature (Te) equation.

In the z-direction, we apply mixed boundary conditions (Dirichlet at the upstream, i.e.,

z = 0, boundary and Neumann at the downstream, i.e., z = 0.12 m, boundary) for Te and

Dirichlet boundary conditions for φ . For the electron temperature Te(z), we typically pre-

scribe the temperature value at the z = 0 (upstream/anode) boundary; for the 100V operating

condition, Te(z = 0) = 1.5 eV is a typical value for the upstream Dirichlet boundary con-

dition. At the downstream end of the domain, z = 0.12 m , we typically use a zero-slope

boundary condition, i.e., ∂Te
∂ z (z = 0.12)= 0.

For the electric potential φ , we apply Dirichlet boundary conditions at z = 0 and z =

0.12 m, according to the prescribed thruster operating voltage. In both cases, the φ bound-

ary condition is applied axisymmetrically, i.e., uniformly in θ . Typically, we specify the

voltage drop, or electric potential difference, across the thruster. For the 100 V experimen-

tal operating condition, the operating voltage is set to 100V at the anode (by an external

power supply) and the electric potential at the downstream domain boundary (z = 0.12 m,

or 4 cm past the channel exit) is measured to be approximately 30V (Hargus, 2001); the

resulting electric potential difference between the anode (z = 0) and downstream (z = 0.12

m) domain end boundary is thus 70 V.
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At the anode plane (z = 0), we assume the applied voltage, or electric potential, is con-

stant across the plane for all θ . Likewise, at the downstream domain end (z = 0.12 m),

we assume the electric potential is constant across the plane for all θ . While the Dirichlet

boundary condition at the anode is reasonable (the anode is at a fixed voltage), the down-

stream boundary condition is less clear. Experimental measurements (Smith and Cappelli,

2009) indicate some azimuthal variation in the electric potential outside the thruster (be-

yond the channel exit in the discharge plume) due to the external electron-emitting cathode

(located at a “single point” in θ ) and other asymmetries. In imposing an axisymmetric

boundary condition for φ(z = 0.12m), we neglect this asymmetry. We expect that the

asymmetry does not significantly affect the plasma properties and fluctuations in the re-

gions of interest inside the thruster channel or in the near plume; furthermore, we observe

azimuthal variations in the simulated properties just inside the computational domain (a

few cells upstream of the z = 0.12 m boundary) – so we do not believe that the axisym-

metric boundary condition is significantly or artificially disrupting azimuthal fluctuations

or property variations within the computational domain.



Chapter 5

Simulation Results

In this chapter, we present representative simulation results for a low voltage thruster op-

erating condition. While we present only a single simulation case here, similar features,

especially with regard to waves and electron transport, have been observed in simulations

of other operating conditions (e.g., higher voltage and lower mass flow rate).

5.1 Simulation Conditions

5.1.1 Thruster Operating Condition

The simulated operating conditions were chosen to enable comparisons to low voltage SHT

laboratory experiments (Hargus, 2001; Meezan et al., 2001; Meezan, 2002; Gascon and

Cappelli, 2003) in which the axial plasma property profiles, effective electron mobility,

and dispersive wave characteristics were measured. Table 5.1 describes the simulated op-

erating condition. The voltage at the anode plane is supplied by an external power supply

which is set to the prescribed operating voltage of, in this case, 100 V. The electric poten-

tial in the near plume region of the discharge, near the external cathode location and the

computational domain end, was measured to be approximately 30 V (Hargus, 2001); the

result is an electric potential, or voltage, difference of 70 V between the anode plane and

the downstream computational boundary, which will be used to set the simulation boundary

conditions for the electric potential φ .

62
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Table 5.1: Simulated operating condition

Operating Parameter Value

Xe neutral propellant mass flow rate (ṁn) 2.3 mg/s

Voltage at anode plane, z = 0 (set by external power supply) 100 V

Voltage at cathode plane / “near” plume extent, z = 0.12 m (measured) 30 V

In laboratory experiments, Xe neutral gas is supplied to both the anode plate and exter-

nal cathode, respectively, by independent mass flow controllers. In relevant SHT experi-

ments, the prescribed respective mass flow rates were 2.0 mg/s to the anode plate and 0.3

mg/s to the external cathode, resulting in a total Xe supply rate of 2.3 mg/s (Hargus, 2001;

Meezan, 2002). In our simulations, we model the entire the entire neutral mass flow rate at

the anode plane, i.e., the total Xe mass flow rate of 2.3 mg/s is supplied (injected into the

computational domain) from the anode plane.

5.1.2 Simulation Parameters

Table 5.2 lists the relevant simulation parameters. We use the numerical grid shown in Fig.

4.3a, which contains 40 points non-uniformly spaced in z and 50 points uniformly-spaced

in θ , for a total of 40×50 = 2000 grid points. As discussed in Sect. 4.3.1, we use an outer

loop time step dt = 10 ns with Nsub =
dt

dtsub
= 100, which results in an inner loop time step

dtsub = 0.1 ns. The simulation is time advanced over 190,000 outer loop time steps, which

corresponds to 1.9 million inner loop time steps; the total simulated time extent is 1.9 ms

of simulated time.

We set the electric potential boundary condition by prescribing the electric potential

at the anode, relative to an electric potential of 0 V at the downstream domain boundary.

For the 100 V operating condition described by Table 5.1, the electric potential difference

between the anode plane (upstream domain boundary at z = 0) and the downstream domain

boundary (z = 0.12 m) is 70V; hence, we prescribe an electric potential boundary condition

of 70 V at z = 0, relative to an electric potential value (boundary condition) of 0 V at z =

0.12 m.
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Table 5.2: Summary of simulation parameters

Simulation Parameter Value Description

dt 10 ns Outer loop time step, used for particle time
advancement and electric potential solution

∆φ = φz=0−φz=0.12m 70 V Voltage difference between anode and
downstream domain boundary, used to set
electric potential boundary condition

ε 10−6 Convergence tolerance for electrical
potential solution

dtsub 0.1 ns Inner loop timestep, used for electron
temperature time advancement

Boundary condition
Te(z = 0)

Te = 17,500 K
(~ 1.5 eV)

Dirichlet boundary condition applied at
anode plane

Boundary condition
Te(z = 0.12 m)

∂Te
∂ z = 0 Neumann boundary condition applied at

downstream domain end

Te,min 15,000 K
(~ 1.3 eV)

Enforced minimum electron temperature
value throughout domain

Te,max 120,000 K
(~ 10.3 eV)

Enforced maximum electron temperature
value throughout domain

∆maxTe 10 K
(~ 8.6×10−4 eV)

Enforced maximum change in electron
temperature (at any given grid point) per
electron timestep dtsub

γ 1.0 Ionization cost factor for Sioniz (Eqn. 3.49e)

Number of neutral
particles

~ 400,000 Time-averaged total number of simulated
neutral superparticles in computational
domain

Number of ion
particles

~ 1.6M - 2.1M Time-averaged total number of simulated ion
superparticles in computational domain

Number of grid points 2000 Grid with 40 points (non-uniform) in z and
50 points (uniform) in θ

Total simulated time 1.9 ms Time extent of simulation (corresponds to
190,000 outer loop timesteps dt or 1.9M
inner loop timesteps dtsub)

Total wall clock time ~ 200 hours
(~ 8.3 days)

Simulation execution time on a single Intel
Xeon (E3-1245 v3) 3.40 GHz processor core
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5.1.3 Initial Conditions

Initial conditions were prescribed for the neutral and ion particle populations and the elec-

tron temperature Te(z). The neutral and ion particle populations were initialized by as-

signing a uniform number of superparticles to each cell, with the particles randomly dis-

tributed in position within each cell. The prescribed initial ion particle population was

set to reflect a uniform ion number density of ni = 2× 1017 m−3 throughout the compu-

tational domain; the neutral population was initialized according to a neutral density pro-

file which varied linearly from a peak value of nn(z = 0) = 4× 1019 m−3 at the anode to

nn(z = 0.12 m) = 2× 1019 m−3 at the downstream computational boundary. The particle

velocities were initialized by inverting the respective Maxwellian ion and neutral velocity

distributions, described in Appendix A, based on initial equilibrium temperatures Ti = 650

K for the ions and Tn < 1 K for the neutrals.

The initial electron temperature was prescribed according to the analytical temperature

profile

Te(z) = Te0 +Te,peak exp

(
−
(
z− zpeak

)2

z2
σ

)
with constants Te0 = 34,416 K (~ 3 eV), Te,peak = 36,416 K (~ 3.1 eV), zpeak = 0.077,

and zσ = 0.02, to roughly mimic the shape and magnitude of the experimentally-measured

electron temperature profile (Meezan, 2002). The analytical expression is used in lieu

of the experimentally-measured values to provide a smooth initial profile from which the

simulated profile can evolve. The initial electron temperature profile has a peak value of

approximately 6.1 eV just upstream of the thruster exit plane at z = 0.077 m.

5.2 Plasma Properties

5.2.1 Initial Transient Behavior

After initializing and launching the simulation, we observe an initial transient phase during

which the plasma properties evolve from the initial conditions before eventually settling

into a quasi-steady-state. Here, we present results for the particular operating and initial
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Figure 5.1: Electron temperature Te(z) at
various times t.
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Figure 5.2: Electric potential φ(z) at
various times t. (Shown relative to
experimentally-measured potential φ(z =
0.12) = 30V.)

conditions described in Sect. 5.1; however in all such numerically-stable simulations for

the low voltage operating condition (∆φ = 70 V), the plasma tends towards the same even-

tual quasi-steady-state (i.e., similar quasi-steady values and axial profiles for the plasma

properties), regardless of the prescribed initial conditions for nn, ni(= ne), and Te.

Figures 5.1 - 5.4 illustrate the trends in various plasma properties during this initial

transient phase. In each case, the property values have been averaged over θ to provide a

θ -averaged axial profile of the property variation with z, e.g., Te(z); the respective figures

show the time evolution of these axial property profiles by providing a comparison of the

property profiles at various times, e.g., Te(z, t). In the case of the PIC properties (e.g.,

the ion and neutral velocities and neutral density), we sample the population average or

PIC-interpolated quantities at the computational grid points; likewise, the fluid properties

(e.g., electron velocities) and grid-calculated properties (e.g., the plasma density, electric

potential, and electric fields) are evaluated at these same grid points.

The electron temperature Te(z) and electric potential φ(z) profiles stabilize quickly,

within the first ~100 µs of the simulation, as shown in Figs. 5.1 and 5.2. The time evolution

of the axial electric field Ez(z) and axial ion velocity uiz(z) is shown in Figs. 5.3a and 5.3c,
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(a) Axial electric field Ez(z)
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(b) Neutral number density nn(z)
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(c) Axial ion velocity uiz(z)
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(d) Axial neutral velocity unz(z)

Figure 5.3: Axial electric field, axial ion velocity, neutral number density, and axial neutral
velocity at various times t.
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respectively. The axial profile of the population average axial ion velocity ui(z), which is

governed by the axial electric field Ez = −∂φ

∂ z , has mostly stabilized by t ' 100 µs (i.e.,

when the electric potential profile φ(z) has stabilized). However, there is a population of

slow-moving (low velocity) ions outside the channel exit (z & 0.1 m) which are created

by the ionization of slow-moving (low velocity) neutrals in that region; since the axial

electric field Ez is weak in this region, these newly created low velocity ions retain their

low velocity (due to the absence of a strong accelerating electric field) and serve to reduce

the population average ion velocity in the region. The result is the observed dip, i.e., the

decreased PIC-interpolated population average value, in the tail of the population average

ion velocity ui(z) for z & 0.1 m. These slow moving ions, created from slow moving

neutrals, are an artifact of the simulation initial conditions; by t ' 300 µs, the slow moving

ions and neutrals have been mostly flushed out of the computational domain (i.e., most

of the low velocity neutrals have either exited the computational domain without being

ionized or have been ionized, and the resulting ions have exited the computational domain

after being accelerated by the weak positive electric field Ez downstream of the channel) as

the ion velocity profile stabilizes to its quasi-steady-state.

Figures 5.3b and 5.3d show the time evolution of the neutral number density nn and

population average axial neutral velocity unz, respectively. The general shape and features

of the neutral density profile nn(z) stabilize fairly quickly, by t ' 150 µs; however, the

the extremum values (peak and minimum values) of this profile do not fully stabilize until

t ' 1200 µs. This is the time required for the initial neutral population to evolve, both

by ionization and by exiting the computational domain, to the quasi-steady-state, as the

injected neutral population (i.e., neutrals injected from the anode plane according to the

velocity distribution described in Sect. 3.3) move through the computational domain and

replace the initial neutral population. Correspondingly, the approximate profile shape of

the population average axial neutral velocity vn(z) stabilizes by t ' 300 µs; however, the

peak and minimum values do not fully stabilize until t ' 1200 µs, when the neutral particle

population and neutral density profile have stabilized.

Similar to the neutral density profile, the plasma number density, i.e., the electron den-

sity or ion density, profile ne(z) = ni(z) does not stabilize until t ' 1200 µs. The shape of
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(a) Electron number density ne(z) at various times t.
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(b) Time history of electron number density ne(t) at axial
location z' 0.04 m (density peak location).

Figure 5.4: Electron number density profile and time history, shown on logarithmic scale.

the plasma density profile, which evolves from the flat (uniform) initial condition, is estab-

lished within the first 100 µs of the simulation. There is an initial surge, throughout the

computational domain, in the magnitude of the plasma density during the first 100 µs of

the simulation; during this time, the magnitude of the plasma density rapidly increases as

the axial profile shape develops. The plasma density magnitude reaches its maximum value

at approximately t ' 100 µs; after that, the magnitude of the plasma density steadily falls,

decreasing by two orders of magnitude, until it finally stabilizes at approximately t ' 1200

µs. Once the axial profile shape has been established at t ' 100 µs, it remains consistent;

for t & 100 µs, the axial location of the defining feature of the plasma density profile, the

plasma density peak, persists at the location z ' 0.04 m, both while the magnitude of the

plasma density is evolving (i.e., decreasing for t ' 100 µs -1200 µs) and after the quasi-

steady-state has been reached (t & 1200 µs). Figure 5.4a shows the plasma density profile

as it evolves to the eventual quasi-steady-state, and Fig. 5.4b shows the time history of the

plasma density at the axial peak location z' 0.04 m; note that, in both figures, the plasma

density values ne(z, t) are shown on a logarithmic scale.
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5.2.2 Quasi-steady Operation

In typical Hall thruster operation and in SHT laboratory experiments, the thruster settles

into a quasi-steady operation mode after some initial start-up transient period. Similarly,

the simulated plasma properties eventually settle to a quasi-steady-state, in this case, for

t & 1200 µs. The simulated quasi-steady-state is representative of the quasi-steady op-

eration condition and enables comparison to laboratory measurements of the quasi-steady

operation of the SHT laboratory discharge; we compare the simulated quasi-steady state

to time-averaged laboratory measurements of properties within the SHT channel (Hargus,

2001; Meezan, 2002).

Figures 5.5 - 5.7 provide a comparison of the time-averaged simulated axial property

profiles with the experimentally-measured values. The simulated properties are first aver-

aged over θ to obtain the θ -averaged axial property profiles, e.g., Te(z, t), as described in

Sect. 5.2.1; the axial property profiles are then time-averaged over the interval t ' 1300 µs

- 1900 µs to obtain the time-averaged simulated axial profiles, e.g., T̄e(z), shown in Figs.

5.5 - 5.7.

In most cases, the time-averaged simulated property profiles agree reasonably well with

the experimental measurements, as shown in Fig. 5.5. Figures 5.5a and 5.5c show the re-

spective electric potential and axial ion velocity profiles. The shape of the simulated elec-

tric potential profile φ̄(z) is similar to the experimental profile, with comparable electric

potential values throughout the computational domain; however, the axial location of the

simulated electric potential fall (i.e., the z-region in which the maximum axial electric field

Ez exists and the majority of the electric potential drop occurs) is shifted slightly upstream,

relative to the experimental profile. There is a corresponding discrepancy between the sim-

ulated and experimentally-measured axial ion velocity profiles ūiz(z), which are primarily

governed by the axial electric field Ez = −∂φ

∂ z . While the simulated axial and ion velocity

profiles show excellent agreement toward the anode (z . 0.04 m) and outside the channel

(z& 0.1 m), there is a discrepancy in the ion acceleration region. In laboratory experiments,

most of the ion acceleration occurs in a narrow axial region near the channel exit plane at

z = 0.08 m; the simulated profile exhibits a broader axial ion acceleration region which

occurs further upstream (0.05 m . z . 0.08 m).
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(a) Electric potential φ̄(z)
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(b) Electron temperature T̄e(z)
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(c) Axial ion velocity ūiz(z)
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(d) Axial neutral velocity ¯unz(z)

Figure 5.5: Time-averaged electric potential, electron temperature, axial ion velocity and
axial neutral velocity profiles, compared with experimentally-measured values.
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(a) Simulated and experimentally-measured values,
shown on logarithmic scale.
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(b) Simulated profile shown on linear scale.

Figure 5.6: Time-averaged neutral number density profile n̄n(z) compared with
experimentally-measured values.
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(a) Simulated and experimentally-measured values,
shown on logarithmic scale.
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(b) Simulated profile shown on linear scale.

Figure 5.7: Time-averaged electron number density profile n̄e(z) compared with
experimentally-measured values.
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The simulated electron temperature values are slightly lower than the experimentally-

measured values, as shown in Fig. 5.5b; the simulated peak electron temperature value

is approximately 2 eV lower than the experimentally-measured peak and the simulated

minimum electron temperature values, which occur at the domain ends z = 0 and z = 0.12

m, are approximately 1 eV lower than the corresponding experimental values. The axial

location of the simulated electron temperature peak, at z' 0.06 m, occurs slightly upstream

of the experimentally-measured peak location (z' 0.075 m).

Inside the channel (z ≤ 0.08 m), the axial neutral velocity profile shows reasonable

qualitative agreement with the experimentally-measured profile, as shown in Fig. 5.3d.

For z & 0.02 m, both the simulated and experimental profiles exhibit the same increasing

velocity trend with increasing z. Outside the channel (z > 0.08 m), experimental measure-

ments are scarce, and the experimental and simulated profiles appear to diverge; however,

given the scarcity of data in this region and that we do not explicitly model the neutral

flow (or plume) expansion outside the channel, this discrepancy is not concerning. There

is a significant discrepancy between the simulated neutral number density profile n̄n(z) and

the experimentally-measured values; as shown in Fig., 5.6a, the simulated neutral den-

sity magnitude is significantly lower than the experimentally-measured values. The profile

shapes also differ significantly; however, for 0.02 m . z . 0.06 m, both the simulated and

experimental profiles exhibit a similar decreasing magnitude trend with increasing z. The

experimental neutral density values are based on an indirect, i.e., inferred, measurement; as

such, there is significant uncertainty in the experimentally-measured values for this prop-

erty, and the discrepancy between the simulated and experimentally-measured values may

be within the experimental measurement uncertainty.

The one notable discrepancy between the simulated and experimentally-measured pro-

files is in the electron number density n̄e(z), shown in Fig. 5.7. Throughout the domain, the

simulated quasi-steady electron number density is more than an order of magnitude smaller

than the experimentally-measured profile values. There is also a significant discrepancy in

the axial location and shape of the plasma density peak; the experimental profile is charac-

terized by a sharp peak at z ' 0.07 m, just upstream of the exit plane, while the simulated

profile exhibits a much broader peak which occurs farther upstream at z' 0.04 m.
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(a) Electron number density profile ne(z) at various times
t > 1200 µs.
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(b) Time history of electron number density ne(t) at axial
location z ' 0.04 m (density peak location), shown for
t ≥ 1200 µs.

Figure 5.8: Fluctuating nature of electron number density during quasi-steady-state opera-
tion.

In both cases (i.e., for both the experimental laboratory discharge and its simulation

counterpart), the quasi-steady-state is non-stationary; reflective of operational behavior, the

simulation predicts continuing sustained fluctuations in the plasma properties as shown in

Fig. 5.8. Once the simulated discharge has reached a quasi-steady-state, the plasma prop-

erty magnitudes do not vary significantly; we can characterize the continuing fluctuations

as small perturbations, or small signal oscillations, relative to the established steady-state,

or time-averaged, condition. These fluctuations are, in fact, a distinctive feature of the

simulation; we are particularly interested in characterizing the fluctuations, or sustained

oscillations, in the electron density and axial electron velocity as they relate to electron

transport and the total sustained discharge current.

5.3 Discharge Current

The total axial electric current, or discharge current, defines the I-V (current-voltage) oper-

ating condition of the thruster. The axial electric current is comprised of a contribution from
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the electron current and a contribution from the ion current; we define the axial discharge

current

ID = Ie + Ii (5.1)

where Ie and Ii are the respective electron and ion current contributions to the total discharge

current. At any axial location z, we can write the electron and ion currents in terms of the

respective current densities Jez and Jiz

Ie = JezAsect (5.2a)

Ii = JizAsect (5.2b)

where Asect = 0.0031 m2 is the cross-sectional area of the thruster as defined by Eqn. 3.1,

and

Jez(z) = − 1
2π

∫ 2π

0
ene(z,θ)uez(z,θ)dθ (5.3a)

Jiz(z) =
1

2π

∫ 2π

0
ene(z,θ)uiz(z,θ)dθ (5.3b)

with ni = ne according to quasineutrality and e = 1.6×1−−19 C. In practice, we calculate

the current density contributions at the discrete grid points (zi, θ j):

Jez(zi) = − 1
Nθ

∑
j

ene(zi,θ j)uez(zi,θ j) (5.4a)

Jiz(zi) =
1

Nθ
∑

j
ene(zi,θ j)uez(zi,θ j) (5.4b)

Note that we define positive current as positive charge moving in the +z-direction, i.e.,

from the anode towards the cathode. In the case of the electrons, due to their negative

electrical charge, electrons moving in the negative z-direction (-z) result in positive current;
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Figure 5.9: Discharge current ID(z) at various times t.

electrons moving in the positive z-direction (+z) result in negative current, according to the

current convention used here.

Figures 5.9 and 5.10 illustrate the fluctuating nature of the discharge current during

quasi-steady operation (t & 1200 µs). Figure 5.9 shows an overlay comparison of rep-

resentative time snapshots of the axial variation in the discharge current, which oscillates

throughout the domain about its quasi-steady (time-averaged) profile values. Figure 5.10

shows the time history of the simulated discharge current at an axial location just upstream

of the channel exit. As the plasma density ne rises, falls, then stabilizes to a quasi-steady

state, the discharge current correspondingly exhibits an initial surge (peak value at t ' 100

µs) followed by a steady decrease in magnitude, before it stabilizes to a quasi-steady value

of approximately 0.06 A at z = 0.078 m.

From Fig. 5.10b, we can observe an extremely slow-moving temporal oscillation in the

discharge current with an apparent time period of approximately T ' 1000 µs - 1200 µs,

which corresponds to a linear frequency f ≤ 1 kHz; a similar fluctuation can be observed

in the plasma density (electron number density), as shown in Fig. 5.8b. We believe that this

fluctuation may be related to the transit time of the neutrals across the domain, i.e., through

the thruster; for an axial neutral velocity unz = 70 m/s - 100 m/s, as observed upstream
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(a) Shown for simulated time extent t = 0 - 1900 µs.
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(b) Quasi-steady operation (t ≥ 1200 µs).

Figure 5.10: Time history of discharge current ID(t) at axial location z = 0.078 m (just
upstream of the exit plane).

in the channel for z . 0.04 m in Fig. 5.5d, the time required to traverse the length of the

thruster channel L = 0.08 m is approximately Tn,transit = L/unz ' 800 µs - 1200 µs. This

neutral transit time oscillation may be similar to or related to the experimentally-observed

breathing mode phenomenon.

In laboratory experiments at this operating voltage, the measured discharge current was

approximately 2 A. The simulated quasi-steady discharge current, which varies between

0.05 - 0.12 A, is significantly lower than the experimentally-measured current. We attribute

this discrepancy to the extremely low simulated plasma density (ne) magnitude (discussed

in Sect. 5.2.2 and shown in Fig. 5.7a). The simulated plasma density magnitude is 1 - 2

orders of magnitude lower than the experimentally-measured plasma density; as expected,

the simulated discharge current is correspondingly 1 - 2 orders of magnitude smaller than

the experimentally-measured current.

The relative contributions of the electron and ion currents, Ie and Ii, respectively, to

the total discharge current ID vary with z. Fig. 5.11 shows the time-averaged electron

and ion contributions to the total discharge current (all time-averaged over the interval t

= 1300 µs - 1900 µs). For z . 0.05 m, the electron current dominates; in this region,

the electron current comprises most of the total current and the ion current contribution
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Figure 5.11: Comparison of time-averaged ion and electron current contributions to total
discharge current.
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(a) At axial location z' 0.04 m (mid-channel).
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(b) At axial location z = 0.078 m (just upstream of the
exit plane).

Figure 5.12: Time history of ion and electron current contributions to total discharge current
during quasi-steady operation (t ≥ 1200 µs).
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Figure 5.13: Time snapshot of ion and electron current contributions to total discharge
current.

is small or, in some cases (i.e., for z . 0.02 m near the anode), negative. For z & 0.07

m, the electron current contribution is extremely small and the ion current dominates; for

most of this region, the electron current is an extremely small positive current and, near the

exit plane (z = 0.08 m), the electron current is sometimes negative, leading to a reduction

in the total current. Figure 5.12 shows the time history of the current at representative z-

locations within the two distinct current regions in which the respective electron and ion

current contributions dominate; in all cases (i.e., for all z), the ion and electron current

contributions and the resulting total current fluctuate with time.

Figure 5.13 shows a representative time snapshot of the current contributions and to-

tal current, during simulated quasi-steady operation. Note that the total discharge current

varies, in some cases, significantly, with axial position. Although the relative electron

and ion current contributions can vary with z, current conservation dictates that the ax-

ial discharge current should be conserved, i.e., dID
dz = 0; the simulated results clearly vi-

olate current conservation. We suspect that the current non-conservation is an artifact of

the non-conservative numerical scheme used in the simulations; for the finite-difference

discretization scheme and numerical solution method employed here, there is no specific
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enforcement of current conservation. An alternative approach would be to use a conser-

vative, e.g., finite volume, numerical scheme; a finite volume formulation of this model is

being developed separately and is currently still in progress. When completed, it will be

compared to the present results and may provide an alternative to the present finite differ-

ence implementation. For most of the computational domain, the current non-conservation

(dID
dz 6= 0) is not significant; in the region z > 0.05 m, the total current is reasonably well

conserved and varies minimally, by < 10%. However, near the anode, for z ≤ 0.04 m, the

axial variation in the total discharge current is significant.

In the region z ≤ 0.04 m, the total current varies by as much as 40% over a range of

0.05A A (from approximately 0.07 A minimum to 0.12 A maximum). We believe the

strong variation in the axial current (for z ≤ 0.04 m) to be a consequence of the non-

conservative numerical scheme, coarse grid resolution, and strong gradients in the plasma

properties in this region. The imposition of the axisymmetric electric potential boundary

condition at the anode (z = 0) leads to an effective boundary layer and strong gradients near

the anode; without significantly finer (computationally expensive) grid resolution, such

strong gradients can be difficult to resolve via a finite difference scheme, as employed here.

We believe the coarseness of the axial grid in this region, i.e., the failure to sufficiently re-

solve strong axial gradients in this region, contributes to the apparent lack of global current

conservation in this region.

To assess the effect of axial grid resolution on the current non-conservation effect, we

performed a limited grid refinement study; we refined the grid in z as shown in Fig. 5.14a,

reducing the grid spacing from a maximum ∆z = 4.6 mm for the original non-uniform

grid to a minimum ∆z = 2 mm near the anode for the 61-point uniform grid (and ∆z =

0.75 mm near the exit plane for the 79-point non-uniform grid). Figure 5.14b compares

a representative time snapshot of the resulting respective axial profiles for the discharge

current. We observe some improvement in axial current conservation (i.e., a reduction in

the current non-conservation effect) with grid refinement, especially in the region 0.02 m

≤ z ≤ 0.04 m. We expect further grid refinement would further improve the axial current

conservation.
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Figure 5.14: Comparison of axial current conservation with axial grid refinement.
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Even with further grid refinement, properly resolving the anode region, and the dis-

charge current in this region, has historically been problematic for other similar hybrid sim-

ulations (e.g., Scharfe, 2009); furthermore, in this region of weak magnetic field strength,

there is little experimental data for comparison and validation. In general, the near anode

region is less well described and more difficult to accurately simulate than other features of

the thruster discharge; the variation in the predicted axial current is thus not surprising. The

current is reasonably well conserved throughout the rest of the thruster channel and com-

putational domain (z > 0.04 m) with the present numerical scheme and original (coarsest)

grid resolution.

5.4 Electron Transport

We are interested in characterizing the cross-field axial electron transport, i.e., the electron

transport perpendicular to the radial magnetic field Br in the axial (z-) direction. We define

the effective axial electron mobility

µ(z) =
Jez

eneEz
(5.5)

wheree = 1.6× 1−−19 C, Jez is as defined in Eqns. 5.3a and 5.4a, and ne = ne(z) and

Ez = Ez(z) are the θ -averaged electron number density and axial electric field, respectively,

at axial location z.

We can compare the simulated axial electron mobility profile µ(z) with experimentally-

measured values (Meezan et al., 2001; Meezan, 2002). To obtain the time-averaged simu-

lated mobility profile, we first calculate the time-dependent axial electron mobility µ(z, t)

for all sampled time t and locations z; we then time-average the mobility values µ(z, t) over

the specified time interval to obtain the time-averaged profile µ̄(z). In Fig. 5.15, the simu-

lated mobility values have been time-averaged over the quasi-steady operation interval t '
1300 µs - 1900 µs.

We can also calculate the various contributions to the cross-field electron transport, or

mobility. We consider the axial electron velocity, described by Eqn. 3.51a and repeated

here for convenience,
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uez = −µ⊥Ez−
D⊥
ne

∂ne

∂ z
− D⊥

Te

∂Te

∂ z
− 1

1+
(

νen
ωce

)2
Eθ

Br

− 1

1+
(

νen
ωce

)2
kBTe

eneBrr
∂ne

∂θ
(5.6)

The first three terms on the right hand side of Eqn. 5.6 comprise the so-called classical

contribution to the electron mobility, where

µ⊥ =
e

meνen

[
1+
(

ωce
νen

)2
] (5.7)

is the classical expression for the cross-field electron mobility, i.e., the electron mobility

in the direction perpendicular to the magnetic field, based on electron-neutral collisions.

Including the second and third terms, which account for the effect of axial gradients in

the electron number density and the electron temperature (i.e., gradients in the electron

pressure), we can calculate the so-called classical electron velocity and resulting classical

mobility (i.e., the axial electron mobility based solely on classical theory):

uez,classical = −µ⊥Ez−
D⊥
ne

∂ne

∂ z
− D⊥

Te

∂Te

∂ z
(5.8)

where

D⊥ =
kBTe

e
µ⊥ (5.9)

Jez,classical(z) =−
1

2π

∫ 2π

0
eneuez,classicaldθ (5.10)

µclassical(z) =
Jez,classical

eneEz
(5.11)
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and , as in Eqn. 5.5, ne = ne(z) and Ez = Ez(z) are the θ -averaged electron number density

and axial electric field, respectively, at axial location z. The fourth and fifth terms on the

right hand side of Eqn. 5.6 comprise the so-called anomalous contribution to the electron

current, i.e., the portion of the electron transport (or current) beyond that described by

classical theory. It is via these two terms that the azimuthal (θ ) dynamics influence the axial

electron velocity uez; specifically, azimuthal gradients in the electric potential −∂φ

∂θ
= Eθ

and the electron density ∂ne
∂θ

can affect the axial electron velocity. We can calculate the

so-called anomalous transport, i.e., the contribution to the axial electron current due to

temporal and spatial fluctuations and gradients in θ .

uez,anom = − 1

1+
(

νen
ωce

)2
Eθ

Br
− 1

1+
(

νen
ωce

)2
kBTe

eneBrr
∂ne

∂θ
(5.12)

Jez,anom(z) =−
1

2π

∫ 2π

0
eneuez,anomdθ (5.13)

µanom(z) =
Jez,anom

eneEz
(5.14)

Figure 5.15 provides a comparison of the total effective simulated electron mobility

µ̄(z) and the experimentally-measured effective electron mobility; time-averaged profiles,

taken on the same interval t ' 1300 µs - 1900 µs, for the classical cross-field mobility

µ̄⊥(z) and overall classical contribution to the mobility µ̄classical(z) are shown for refer-

ence. Figure 5.16 illustrates the relative contribution of the anomalous electron current

Ie,anom = Jez,anomAsect to the corresponding time-averaged electron current Ie and the dis-

charge current ID; as before, the various current contributions and the total discharge current

have been time-averaged over the interval t ' 1300 µs - 1900 µs.

We are interested in the simulation’s ability to predict the axial electron mobility, as

compared to the experimentally-measured values. For much of the domain, there is a sig-

nificant discrepancy between the simulated mobility and the experimentally-measured val-

ues; for z & 0.035 m, the simulated mobility is 1 - 1.5 orders of magnitude smaller than the

experimentally-measured values.
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Figure 5.15: Time-averaged simulated axial electron mobility µ̄(z) compared to
experimentally-measured values. Simulated classical mobility terms µ̄classical and µ̄⊥are
shown for reference.
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Figure 5.16: Comparison of time-averaged ion, electron, and anomalous electron current
contributions to total discharge current.
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We can further focus on the relative contributions of the so-called classical and anoma-

lous electron mobility (or electron transport) terms. For z & 0.03 m, the classical mobility

contribution is significantly lower then the experimentally-measured mobility. In com-

paring the classical contribution (i.e., the electron mobility predicted by classical theory)

and the experimental mobility, we see that classical theory alone cannot fully account for

the experimentally-observed electron transport; by consequence and as has been shown

in previous simulation efforts (Bouchoule et al., 2004; Adam et al., 2008; Scharfe, 2009;

Cha, 2015), models based solely on classical theory (i.e., with no ad hoc or experimentally-

based super-classical mobility scaling or inclusion of azimuthal effects) cannot be expected

to fully capture the axial electron transport.

For much of the domain (0.005 m . z . 0.06 m and z & 0.105 m), the total simulated

mobility is significantly higher than the simulated classical mobility; we can attribute this

discrepancy, or mobility enhancement above the classical mobility, to the anomalous por-

tion of the electron current. As shown in Fig. 5.16, the anomalous contribution comprises

the majority (> 50%) of the electron current in these regions. Near the channel exit plane

and outside the channel (z & 0.07 m), the total electron current is relatively small and,

consequently, comprises a small portion of the total current; the anomalous contribution

is correspondingly small, even in the region z & 0.105 m where it comprise most of the

electron current. However, inside the channel for 0.005 m . z . 0.06 m, the anomalous

contribution to the electron current is significant; in this region, the anomalous contribution

current significantly enhances, i.e., adds to, the total effective electron mobility. For 0.03

m . z . 0.06 m and z & 0.105 m, the anomalous electron current contribution leads to a

total enhanced electron mobility that is greater than the classical mobility and that is, in

some cases, comparable to the experimentally-measured values. In these regions, the sim-

ulated anomalous transport thus accounts for some of the difference between the classical

mobility and the experimental mobility.

A representative time snapshot of the relative anomalous contribution to the the elec-

tron current, as shown in Fig. 5.17, reveals interesting axial variations not easily discerned

from the time-averaged profile, shown in Fig. 5.16, and provides further insight into the

role of the anomalous electron current. As in the time-averaged case, the electron current

is strongly anomalous (i.e., the anomalous contribution appears to primarily comprise the
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Figure 5.17: Time snapshot of ion, electron, and anomalous electron current contributions
to total discharge current.

positive electron current) in the region 0.005 m . z . 0.05 m; in this region, the simu-

lated anomalous electron current appears to enhance the electron mobility, adding to and

augmenting the classical electron mobility, resulting in a total effective mobility that is, in

some cases, comparable to the experimentally-measured values. However, near the exit

plane at z = 0.08 m, the anomalous electron transport results in a negative current contri-

bution to the electron current, i.e., the anomalous contribution serves to oppose, or reduce,

electron transport in this region; as will be further discussed in Chap. 6, it appears that the

anomalous electron current may contribute to a transport barrier in this region (instead of

a transport enhancement as it does upstream inside the thruster channel). It is clear that

the anomalous electron current plays a significant role in the overall electron transport for

most of the simulated domain, resulting in either enhanced or reduced transport for certain

distinct axial regions within the thruster and near plume.



Chapter 6

Discussion

6.1 Fluctuation-Induced Transport

6.1.1 Premise

It has been suggested (Yoshikawa and Rose, 1962; Janes and Lowder, 1966; Fife, 1999)

that quasi-coherent fluctuations resulting from instabilities in the plasma can play a role

in electron transport – specifically, that correlated azimuthal fluctuations in the electron

(plasma) density and the electron velocity can can contribute to axial (i.e., cross-field)

electron transport. As a simple example, consider a spatially- and temporally-fluctuating

electron number density and electron velocity, each fluctuating with the same wavenumber

k = 2π/λ and frequency ω = 2π f ,

ñe(x, t) = nocos(kx−ωt) (6.1a)

ũe(x, t) = uocos(kx−ωt +ψ) (6.1b)

We can calculate the current density based on this fluctuating density ñe and velocity ũe

Je(x, t) = eñe(x, t)ũe(x, t) (6.2)

88
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Figure 6.1: Time history of electron number density ne(t) and axial electron velocity uez(t),
shown for t = 1600 µs - 1800 µs at z' 0.043 m.

where e = 1.6×10−19 C. Averaging over one full cycle, i.e., over one spatial wavelength λ

and one temporal period T = 1/f , we can find the net resulting fluctuation-induced current

〈Je〉 =
1
T

1
λ

∫
T

∫
λ

enocos(kx−ωt)uocos(kx−ωt +ψ)dxdt

=
1
2

enouo cosψ (6.3)

From Eqn. 6.3, we see that the resulting net, or average, current depends on the phase

difference ψ between the fluctuating quantities ñe and ũe. This phase offset ψ , between the

fluctuating electron number density and electron velocity, determines not only the magni-

tude, but also the sign, or direction, of the resulting current.

Figure 6.1 shows the time history of the electron number density and axial electron

velocity at a representative location (z,θ). The fluctuating electron density and axial elec-

tron velocity appear to have a similar, i.e., correlated quasi-coherent, temporal structure
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or fluctuation frequency f ; depending on the phase difference between the two fluctuating

quantities, so-called anomalous or fluctuation-induced electron current can result. We are

specifically interested in the axial electron current

〈Jez〉anom =
1
T

1
λ

∫
T

∫
θ

enocos(kθ θ −ωt)uocos(kθ θ −ωt +ψ)dxdt

generated by azimuthally-propagating fluctuations.

6.1.2 Simulated Waves

We observe spatially- and temporally-varying fluctuations in the plasma properties. In Fig.

6.2, we present representative time snapshots of the spatially-varying electron number den-

sity ne, axial electron velocity uez, and electric potential φ to illustrate the spatial structure

of the simulated waves; the properties also fluctuate with time, as shown previously for the

electron number density in Fig. 5.8b. We can characterize the fluctuations as dispersive

waves (or sinusoidal oscillations) with characteristic axial and azimuthal wavenumbers,

kz = 2π/λz and kθ = 2π/λθ , respectively, and temporal frequency ω = 2π f , e.g.,

ñe(z,θ , t) = nocos(kzz+ kθ θ −ωt) (6.4a)

ũez(z,θ , t) = uocos(kzz+ kθ θ −ωt +ψ) (6.4b)

We are interested in the dispersive wave characteristics, i.e., frequencies and wavenum-

bers ω(k) or, equivalently, linear frequencies and wavelengths f (1/λ), especially those that

propagate in the azimuthal direction and generate axial electron transport. At any axial

location z, we can calculate the fluctuation-induced anomalous electron current

Jez,anom(z, t) =
1

2π

∫
θ

ñe(z,θ , t)ũez(z,θ , t)dθ

where ne(z,θ , t) and uez(z,θ , t) assume a form similar to Eqns. 6.4a and 6.4b. Note that we

do not limit our study to a single wavenumber or frequency; we fully expect that, multiple
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frequencies f and wavenumbers kz and kθ will be present and can propagate simultane-

ously.

6.1.2.1 Azimuthal (θ ) Grid Refinement

In order to better characterize, i.e., more finely resolve the wave structure in the azimuthal

(θ ) direction, we performed limited grid refinement in θ ; we doubled the number of grid

points in θ , resulting in a grid with 100 points uniformly spaced in θ , i.e., ∆θ = 2π/100. Due

to the additional computational expense, we performed simulations with the refined 100-

point azimuthal grid only for a limited time duration t = 1600 µs - 1800 µs, starting from

the plasma properties at t = 1600 µs based on the previous simulation with the original grid

with 40 points in z × 50 points in θ , i.e., ∆θ = 2π/50.

Figure 6.3 provides a comparison of representative time snapshots for the 50- and 100-

point azimuthal grids. For much of the domain, the discrepancy between the two grids is

not significant; however, near the exit plane where there is fine azimuthal spatial structure

in the axial electron velocity, shown for the respective grids in Figs. 6.3b and 6.3d, the

increased azimuthal grid refinement is necessary. Figure 6.4 provides a comparison of time

snapshots of the anomalous contribution to the electron current for simulations with the

respective grids. It is clear that the azimuthal grid refinement affects the simulated current

contributions throughout the channel (z ≤ 0.08 m); near the exit plane at z = 0.08 m, the

azimuthally-refined grid simulation predicts a stronger negative anomalous current than the

original 50-point grid case. The resulting effect can be seen in Fig. 6.5 which provides a

comparison of the time-averaged electron mobility; for the azimuthally-refined grid, we

observe a a lower effective mobility (due to the negative anomalous electron current) at z'
0.08 m. This dip, or decrease, in the effective electron mobility near the exit plane is re-

ferred to as the transport barrier; with the azimuthally-refined grid, the simulated transport

barrier near the exit plane is more pronounced.

6.1.2.2 Time Step Sampling (Undersampling of Simulated Time)

Both sets of simulations for the respective 50-point and 100-point azimuthal grids were per-

formed using an outer loop time step dt = 10 ns. In the interest of reducing data storage and
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(a) Electron number density ne(z,θ)
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(b) Axial electron velocity uez(z,θ)
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Figure 6.2: Representative time snapshots of axial and azimuthal variation in plasma prop-
erties.
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(a) Electron number density ne(z,θ) for grid with 40
points in z × 50 points in θ (∆θ = 2π/50).
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(b) Axial electron velocity uez(z,θ) for grid with 40
points in z × 50 points in θ (∆θ = 2π/50).
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(c) Electron number density ne(z,θ) for grid with 40
points in z × 100 points in θ (∆θ = 2π/100).
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(d) Axial electron velocity uez(z,θ) for grid with 40
points in z × 100 points in θ (∆θ = 2π/100).

Figure 6.3: Comparison of representative time snapshots of electron number density
ne(z,θ) and axial electron velocity uez(z,θ) with azimuthal grid refinement.
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Figure 6.4: Time snapshot of anomalous contribution to electron current with azimuthal
grid refinement.
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(b) Grid with 40 points in z × 100 points in θ (∆θ =
2π/100), time-averaged over the interval t = 1600 µs - 1800
µs.

Figure 6.5: Comparison of time-averaged simulated axial electron mobility µ̄(z) with az-
imuthal grid refinement. Experimentally-measured values and simulated classical mobility
terms µ̄classical and µ̄⊥are shown for reference.
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data transfer overhead, we typically undersample the simulated data using a sampling time

step tsamp = 1 µs = 100dt. A comparison of simulation results using the respective sam-

pling time steps tsamp,max = dt = 10 ns and tsamp = 1 µs = 100dt shows that undersampling

the data does not have any significant effect for most cases of interest.

The sampling time step most significantly affects the minimum time resolution or max-

imum resolvable temporal frequency; the maximum time step sampling tsamp,max = dt pro-

vides a Nyquist frequency of fNyq,max = 50 MHz, whereas undersampling at tsamp = 100dt

results in a Nyquist frequency fNyq,samp = 500 kHz. In the following analysis, we see that

the relevant frequency content typically does not exceed fmax =
1
2 fNyq,samp = 250 kHz. It

is not critical to resolve the timescale any more finely than tsamp = 1 µs; hence, the under-

sampled data is, in most cases, sufficient.

6.2 Analysis of Simulated Waves

We focus on four axial regions in which we observe distinct wave structure and propagation

characteristics:

1. Near-anode region: z≤ 0.01 m

2. Mid-channel region: 0.02 m . z . 0.06 m

3. Near exit plane (i.e., just upstream of exit plane): 0.07 m ≤ z≤ 0.08 m

4. Outside channel: z > 0.08 m

Figures 6.6a and 6.6b are maps of the axial variation in the simulated axial wavenumber

kz( f ) and azimuthal wavenumber kθ ( f ), respectively. The dispersive wave characteristics

in Fig. 6.6 were obtained by performing a Morlet wavelet decomposition analysis, similar

to that detailed in Thomas (2006) and Scharfe (2009) and further described in Appendix B.

While most of the analysis results shown here are for the axial electron velocity uez, sim-

ilar wave structure and propagation characteristics (kz, kθ , f ) are observed in the electron

density.

Figure 6.6a indicates that upstream in the channel for z≤ 0.06 m, the axial wavenumber

kz is negative, i.e., the waves in this region propagate in the negative z-direction; near the
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(c) Power spectral density Smax(kz, f )
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(d) Power spectral density Smax(kθ , f )

Figure 6.6: Axial variation of axial and azimuthal wave characteristics for axial electron
velocity uez. Analysis performed for t = 1600 µs - 1800 µs with ∆θ = 2π/100, sampled at
Tsamp = 1 µs ( fmax =

1
2 fNyq = 250 kHz).
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(a) Electron number density ne (b) Axial electron velocity uez

Figure 6.7: Axial streak plots at azimuthal location θ = 0, shown for time duration t = 1600
µs - 1800 µs with ∆θ = 2π/100.
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exit plane, kz is positive, indicating that the waves in this region propagate in the positive

z-direction. We can observe the axial propagation direction more clearly from the streak

plots (of axial position z versus time t, observed at single θ -location) shown in Fig. 6.7.

For z ≤ 0.06 m, we observe wave propagation in the negative z-direction; for z ≥ 0.08 m,

axial wave propagation is in the positive z-direction. Figure 6.6b shows the axial variation

in the azimuthal wavenumber kθ ( f ); for most of the domain (and at most frequencies f ),

azimuthal wave propagation is the positive θ -, i.e., the +E×B, direction, where E ' Ezẑ

and B' Br r̂.

Note that not all wavenumbers and frequencies kz( f ) and kθ ( f ) depicted in Figs. 6.6a

and 6.6b are equally significant. Figures 6.6c and 6.6d show the maximum scattering func-

tion, or power spectral density, values for the respective kz(z, f ) and kθ (z, f ) shown in Fig.

6.6; the scattering function values indicate the relative magnitude or strength, i.e., the rela-

tive power or energy, carried in each of the propagation modes kz(z, f ) and kθ (z, f ). Note

that lower frequency modes in the range f ' 0 - 120 kHz appear to be the most dominant;

they have the largest Smax(kz, f ) and Smax(kθ , f ) values, indicating that they carry the most

power (relative to other frequency modes).

6.2.1 Near Anode (z≤ 0.01 m)

Near the anode for z≤0.01 m, we observe a relatively low-velocity azimuthal disturbance

with a long azimuthal wavelength λθ . From the azimuthal streak plots (of azimuthal posi-

tion θ versus time t, observed at z' 0.005 m) shown in Fig 6.8b, we see that the disturbance

appears in both the electron density ne and the axial electron velocity uez and corresponds

to an azimuthal mode number mθ = 4. The wave propagation direction is tilted, i.e., the

wave propagates in both the axial and azimuthal directions – in this case, in the negative

z-direction (i.e., toward the anode) and the positive θ -direction.

We believe this disturbance may represent the so-called rotating spoke, which is a slow

moving azimuthal rotation of the plasma near the anode which has been observed in labo-

ratory experiments (Ellison et al., 2012). The spoke instability is characterized by distinct

low azimuthal mode numbers (mθ = 3 - 4) and its radial extent across the channel width;

viewed in the r-θ plane (i.e., cylindrical cross-sectional view of the thruster channel), it
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(a) Electron number density ne

(b) Axial electron velocity uez

Figure 6.8: Azimuthal streak plots at axial location z ' 0.005 m (near anode), shown for
time duration t = 1600 µs - 1800 µs with ∆θ = 2π/100.
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resembles the rotating spokes of a wheel. The rotating spoke is believed to carry significant

current and represents a significant non-uniformity in the r-θ plane, with the majority of

the current carried by the high electron density regions or spokes. Since we are concerned

about current non-conservation (due to to insufficient axial grid resolution) in this region

as discussed in Sect. 5.3, it is difficult to a make a strong statement regarding the current

carried in this simulated disturbance. However, it is possible that current carried in the sim-

ulated spoke and the resulting strong gradients in both the axial and azimuthal directions

contribute to the difficulty with the current non-conservation; in addition to the axial grid

resolution required to address strong axial gradients in this region, the non-uniformity due

to the rotating spoke may place further, more stringent constraints upon the required axial

and azimuthal grid resolution in this region.

6.2.2 Mid-channel (0.02 m ≤ z≤ 0.06 m)

In the mid-channel region 0.02 m ≤ z ≤ 0.06 m, we observe tilted waves which propa-

gate in the negative z-direction and positive θ -direction, as shown in the respective axial

and azimuthal streak plots Figs. 6.7 and 6.9. Figure 6.10 shows the scattering functions

S(kz, f ) and S(kz, f ) for the axial and azimuthal propagation, respectively, obtained from

the wavelet decomposition analysis at z' 0.04 m. As expected, Fig. 6.10a indicates propa-

gation in the negative z-direction at fairly low wavenumber kz/2π ' -30 m−1, i.e., long axial

wavelength λz, and fairly low frequency f ' 30 kHz - 70 kHz. In the azimuthal direction,

Fig. 6.10b indicates propagation in both the positive and negative θ -directions; while there

is some propagation in the negative θ -direction for very low frequency ( f ≤ 10 kHz), there

is clear propagation in the positive θ -direction for azimuthal wavenumbers up to kθ/2π ' +

50 m−1 at frequencies up to f ' 150 kHz.

We can consider these disturbances in the context of drift waves and make comparisons

to the linearized model developed by Kapulkin and Guelman (2008) and further extended

by Frias et al. (2012). Frias uses a linearized small-amplitude fluctuation (i.e., perturbation

analysis) model to describe drift waves driven by axial gradients in the plasma density ne

and magnetic field B ' Br r̂. For the conditions simulated here, the simulated wave char-

acteristics kz( f ) and kθ ( f ) appear to be consistent with the dispersion relation ω(kz,kθ )
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Figure 6.9: Azimuthal streak plot of axial electron velocity uez at axial location z' 0.04 m
(mid-channel), shown for time duration t = 1600 µs - 1800 µs with ∆θ = 2π/100.
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Figure 6.10: Simulated dispersive wave propagation at z ' 0.04 m. Analysis performed
for t = 1600 µs - 1800 µs with ∆θ = 2π/100, sampled at Tsamp = 1 µs ( fmax =

1
2 fNyq = 250

kHz).
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described by Frias et al. (2012); however according to the Frias model, it is unclear whether

these waves can generate significant current. At these fairly low frequencies and wavenum-

bers kz( f ) and kθ ( f ), the Frias model predicts neither significant current nor significant

growth of these particular instability modes kz( f ) and kθ ( f ). From the calculated effective

electron mobility, shown in Fig. 6.5, we see that the anomalous fluctuation-induced elec-

tron current leads to some enhancement over the classical mobility in this region; further

analysis and investigation of alternate transport (i.e., dispersive wave propagation) mod-

els may be warranted to determine whether and by what mechanism these waves generate

anomalous transport.

6.2.3 Near Exit Plane (0.07 m ≤ z≤ 0.08 m)

Inside the thruster channel near the exit plane for 0.07 m ≤ z ≤ 0.08 m, we observe wave

structure of much higher azimuthal wavenumber kθ , i.e., shorter azimuthal wavelength

λθ . In the axial direction, the simulated waves propagate in the positive z-direction at

wavenumbers up to kz/2π ' 30 m−1 and frequencies up to f ' 150 kHz, as indicated by

Fig. 6.11a. In the azimuthal direction, we observe propagation in both the positive and

negative θ -directions. From the streak plot Fig. 6.13a shown for the time duration t =

1600 µs - 1800 µs, we observe a dominant mode which propagates in the positive θ -

direction; however, on shorter timescale, e.g., t = 1700 µs - 1750 µs as shown in Fig.

6.13b, we also observe wave structures which propagate in the negative θ -direction and

others which appear constant in θ , i.e., which propagate only in the axial direction and

not in the azimuthal direction. Figure 6.11b indicates negative azimuthal wavenumbers

as low as kθ/2π ' -50 m−1 at very low frequencies ( f ≤ 10 kHz) and positive azimuthal

wavenumbers up to kθ/2π ' 60 m−1 at frequencies up to f ' 200 kHz. From Fig. 6.12.

we also observe low wavenumber propagation in the positive axial and positive azimuthal

directions, with kz/2π . 10 m−1 and kθ/2π . 20 m−1, at frequencies up to f ' 8 MHz.

From Fig. 6.14b, we see that the anomalous fluctuation-induced electron current con-

tribution in this region is negative, i.e., it opposes or reduces the classical electron current.

Figure 6.14a depicts the axial electron shear s = ∂uez/∂ z; we see that there is strong negative

shear (i.e., negative values of large magnitude for the axial shear) in this region. Shear is
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Figure 6.11: Simulated dispersive wave propagation at z ' 0.079 m. Analysis performed
for t = 1600 µs - 1800 µs with ∆θ = 2π/100, sampled at Tsamp = 1 µs ( fmax =

1
2 fNyq = 250

kHz).
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Figure 6.12: Simulated dispersive wave propagation at z ' 0.079 m. Analysis performed
for t = 1600 µs - 1602 µs with ∆θ = 2π/50, sampled at Tsamp = 10 ns ( fmax =

1
2 fNyq = 25

MHz).
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(b) t = 1700 µs - 1750 µs

Figure 6.13: Azimuthal streak plots of axial electron velocity uez at axial location z = 0.078
m (just upstream of exit plane), shown for various time durations with ∆θ = 2π/100.
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believed to a play a role in fluctuation-induced transport; it can serve to disrupt correlated

fluctuations and coherent wave structure, resulting in reduced electron transport.

We consider the small signal model and dispersion relations ω(k) developed by Thomas

(2006). It appears that the simulated waves in this region may be consistent with the stream-

ing instability described by Thomas. For the conditions simulated here, the Thomas model

predicts pairs of azimuthally counter-propagating instabilities, including one at lower fre-

quencies ( f ' 100 kHz - 800 kHz) for low azimuthal wavenumbers kθ , similar to the

simulated kθ ( f ) observed here for f ' 200 kHz; however, it is not clear whether this low

frequency instability grow or decays, nor is is clear whether this propagation mode gener-

ates positive or negative current. The Thomas model predicts another instability at higher

frequencies ( f '1 MHz - 6 MHz) which appears to be consistent with that shown in Fig.

6.12b; however, again, it unclear whether this mode grows or decays and whether it gen-

erates positive or negative current. The Thomas model also predicts instabilities at even

higher frequencies ( f ' 1.5 GHz) and higher wavenumbers kz( f ) and kθ ( f ) than those

simulated here; however, it may be that finer time resolution and finer spatial resolution are

required to simulate these higher frequency and higher wavenumber instabilities.

It is possible that the resulting macroscopic effect of counter-propagating waves, which

can destructively interfere with (i.e., cancel) each other, is a perceived azimuthally-standing

or slowly azimuthally-propagating wave; the counter-propagating waves can combine to

create an aliased version (of the original two waves) which appears as a single, slower-

moving fluctuation. Based on the Thomas model with the simulated conditions in this

region, it is clear that the axial shear plays a significant role in determining the predicted

propagation characteristics and resulting anomalous current. For the azimuthal wavenum-

bers frequencies kθ ( f ) simulated here, the Thomas model does, in some cases, predict a

growing instability which generates negative fluctuation-induced current.

From Figs. 6.4 and 6.5b, it is clear that the fluctuation-induced anomalous transport

in this region generates negative current and results in a pronounced transport barrier near

the channel exit plane; it is likely that the axial shear plays a role in creating this transport

barrier, as evidenced by the coincident significant shear in these region. It may be that

azimuthally counter-propagating instabilities exist in the region, complicating the analysis

and observation of the resulting fluctuations.
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6.2.4 Outside Channel (z > 0.08 m)

Outside the thruster channel for z > 0.08 m, we observe a disturbance that propagates in the

positive z-direction and positive θ -direction, as shown in Fig. 6.15; this disturbance appears

to be similar to that observed just inside the exit plane (0.07 m ≤ z ≤ 0.08 m). However,

at shorter timescale as shown in Fig. 6.15b, we also observe azimuthally-standing struc-

tures (i.e., structures which propagate only in the positive z-direction and do not propagate

in the θ -direction) and azimuthal propagation in the negative θ -direction. There also ap-

pears to be an unsteady advection of the electron flow in the positive axial direction; this

phenomenon manifests as azimuthally-standing (or very low azimuthal velocity) structures

which persist with significant magnitude for only a limited time duration, e.g., for t = 1705

µs - 1725 µs at θ ' 4.5 radians in Fig. 6.15b.

From Figs. 6.14b and 6.5, we see that there is positive anomalous current of small mag-

nitude and some electron current enhancement in this region, especially for 0.10 m ≤ z ≤
0.12 m. It has been suggested that small spatial scale, high-frequency turbulence in this

region can contribute to enhanced electron transport. However, it is difficult to make strong

assertions regarding the anomalous current and simulated wave structures in this region.

In our model formulation, there is little distinction between the computational domain and

simulated conditions inside and outside the thruster channel; aside from the decreased mag-

netic field strength which results in decreased magnetic confinement outside the channel,

there is no significant difference in the simulated plasma or model treatment outside the

channel (compared to the portion of the domain that is inside the thruster channel). The

decreased magnitude of the axial shear in this region points to the possibility of anomalous

electron transport, i.e., mobility enhancement, in this region; however, since we do not sim-

ulate the radial expansion of the discharge plume, the cathode electron flow, or other salient

features of the plume dynamics, we hesitate to draw strong conclusions from the simulated

results in this region.
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(b) t = 1700 µs - 1750 µs

Figure 6.15: Azimuthal streak plots of axial electron velocity uez at axial location z ' =
0.10 m (outside channel), shown for various time durations with ∆θ = 2π/100.
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6.3 Summary

The simulation predicts a rich variety of quasi-coherent wave fluctuations which propagate

at various frequencies and wavenumbers in the axial and azimuthal directions. We can

identify four distinct axial regions which exhibit distinct wave structure and propagation

characteristics. In the mid-channel region (0.02 m ≤ z ≤ 0.06 m) and outside the channel

(z≥ 0.10 m), appropriately-correlated fluctuations in the electron number density and axial

electron velocity serve to enhance axial electron transport, resulting in an effective axial

mobility that is higher than the classical mobility in those regions. Inside the channel near

the exit plane (0.07 m ≤ z ≤ 0.08 m), it appears that fluctuations may, in fact, reduce the

magnitude of the total electron current to create a transport barrier near the exit plane.

The dispersion characteristics (i.e., wavenumbers and frequencies) of the mid-channel

(0.02 m ≤ z ≤ 0.06 m) waves appear to be consistent with gradient-driven drift waves, as

suggested by Frias et al. (2012); near the exit plane (0.07 m ≤ z ≤ 0.08 m), the simulated

waves bear some resemblance to the streaming instability described by Thomas (2006).

Near the anode, we observe a simulated disturbance similar to the experimentally-observed

rotating spoke phenomenon.

While the simulated fluctuations appear to contribute to both enhancement and re-

duction of the electron mobility consistent with some of the axial variation in the

experimentally-measured electron mobility, the simulated fluctuation-induced transport

does not appear to fully account for the total effective electron mobility observed in ex-

periments. This leads us to conclude that some additional mechanism or transport model

is needed to account for the remaining super-classical experimental mobility; we expect

that additional physics (i.e., the inclusion and modeling of additional physical phenomena)

may be required to generate the additional mobility enhancement required to match the

experimentally-measured mobility.

We consider the relevant approximations and assumptions in our model. A key simpli-

fication is the exclusion of radial dynamics and wall effects, which may contribute to en-

hanced electron transport. The neglected plasma interactions with the walls could account

for the missing electron transport enhancement required to address the gap between the



CHAPTER 6. DISCUSSION 110

predicted fluctuation-induced transport and total experimentally-measured effective elec-

tron mobility.



Chapter 7

Enhanced Collision Frequency
(Additional Results)

7.1 Electron Mobility Enhancement due to Wall Interac-

tions

The so-called near wall conductivity, due to electron interactions with the thruster

channel wall, was proposed early on (Morozov, 1968) as a mechanism to explain the

experimentally-observed super-classical cross-field electron mobility, i.e., electron mobil-

ity in the direction perpendicular to the magnetic field. The premise is that electron col-

lisions with the walls can disrupt the electron cyclotron motion and result in enhanced

electron movement across the magnetic field lines in the direction perpendicular to the

magnetic field.

As the theory for the near wall conductivity was further developed (Bugrova et al.,

1992; Morozov and Savelyev, 2000), laboratory experiments have provided evidence that

the thruster walls, e.g., wall material, can have a significant effect on cross-field electron

mobility (Gascon et al., 2003). Further theoretical work and numerical simulations (Bar-

ral et al., 2003) have shown that both electron scattering (backscattering) and secondary

electron emission (SEE) at the walls can contribute to enhanced electron mobility near the

111
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channel walls. Most recently (Sydorenko et al., 2008), it has been suggested that an in-

stability in the plasma sheath near the wall (more specifically, fluctuations in the near-wall

electric potential within the plasma sheath) can influence secondary electron emission and

result in significant near wall conductivity and cross-field electron transport.

In all cases, the near wall conductivity, i.e., the additional conductivity due to electron

interactions with the thruster channel walls and the near-wall plasma sheath, is shown to

contribute to the cross-field electron mobility. In our 2D z-θ model, we do not model the

radial (r) direction; our model, thus, does not include the effect of electron, or plasma,

interactions with the outer and inner radial channel walls. As such, it is likely that we

are underestimating the realistic electron collision frequency; while we model effective

electron collisions with neutrals, we neglect electron collisions with the walls. We be-

lieve that at least some of the discrepancy between our simulated electron mobility and the

experimentally-measured results can be attributed to the neglected wall interactions.

7.2 Enhanced Collision Frequency

As an ad hoc means to account for the additional electron transport not captured by the

existing model, we introduce an enhanced collision frequency. The collision frequency en-

hancement is intended to address the discrepancy between the simulated electron transport

and the experimentally-measured electron mobility. Wall effects and scattering have been

shown to contribute to an increased electron conductivity near the channel walls; we use

the enhanced collision frequency as a proxy for these wall effects and any other collisional

mobility-enhancing mechanisms that are not otherwise explicitly included.

We use a simple implementation for the enhanced collision frequency, which requires

minimal modification to the existing model. The enhanced collision frequency is used

as a simulation tool (parameter) to investigate the effect of (i.e., characterize the effective

mobility discrepancy due to) the wall scattering and other collisional or conductivity effects

not explicitly modeled here. We do not expect that this simple implementation will provide

a precise or accurate model; however, the simulations provide a rough quantitative and

qualitative appreciation for the effect of such additional conductivity mechanisms.
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7.2.1 Model Implementation

We introduce a constant additional collision frequency contribution νadd throughout the do-

main. In the electron fluid equations 3.48a, 3.48b, and 3.51a-3.51b, we replace all instances

of the electron-neutral collision frequency νen with the effective collision frequency

νe f f = νen +νadd (7.1)

where νen is calculated, as before, according to Eqn. 3.22 and νadd is prescribed as a

simulation parameter which is constant in space and constant in time.

The collision frequency appears several times throughout the electric potential φ , elec-

tron velocity (uez and ueθ ), and electron temperature Te equations – notably, in the cross-

field electron mobility µ⊥ (Eqn. 3.21a), the corresponding diffusion constant D⊥ (Eqn.

3.21b), the electron velocity expressions uez and ueθ (Eqns. 3.51a-3.51b), and the elec-

tric potential φ (Eqn. 3.48b) coefficients
{

A1,A2, . . . ,A5
}

(Eqns. 3.45a-3.45e and 3.46);

in the electron temperature Te equation (3.48a), the collision frequency appears in the dif-

fusive (Eqn. 3.49c) and Joule heating (Eqn. 3.49d) terms. In each case, i.e., for each of

these expressions or equations described in Chap. 3, the electron-collision frequency νen is

replaced by the enhanced effective collision frequency νe f f .

7.2.2 Effect of Collision Frequency Enhancement (νadd)

In an attempt to match the experimentally-measured property data and roughly quantify the

impact of the collision frequency enhancement, we performed simulations with a range of

νadd values. For the original simulation with νadd = 0 (i.e., the simulation results presented

in Chap. 5), the time-averaged electron-neutral collision frequency νen is on the order

of 107 s−1. We expect that νadd must be of the same order of magnitude to contribute

appreciably to νe f f and have any significant impact on electron transport.

For a lower bound on νadd , we consider the work of Boeuf and Garrigues (1998) and

Fife (1999). In similar 1D hybrid simulations described by Boeuf and Garrigues (1998), an

additional constant collision frequency term νwalls is used to account for the electron-wall
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interactions and resulting electron conductivity enhancement; for these 1D (axial) simula-

tions of a thruster of comparable channel width, the value νwalls = 2×106 s−1 was chosen

to match experimental results. Fife (1999) presents a more detailed analysis of electron

interactions with the channel walls; based on this detailed analysis, we can calculate a wall

collision frequency νwall = 105 - 106 s−1 for the range of electron temperatures simulated

and experimentally-measured here. We choose a lower bound of νadd = 106 s−1; we expect

any smaller νadd value will have negligible impact on the total effective collision frequency

νe f f and the resulting electron transport.

For an upper bound on νadd , we consider the maximum possible frequency for electron

collisions with the walls, based on the mean electron speed. To roughly estimate the elec-

tron speed, we consider the electron temperature Te; for the peak experimentally-measured

electron temperature Te = 7 eV, the mean electron speed is c̄e =
√

8kBTe/πme ' 2×106 m/s.

If we consider the channel width W = router−rinner = 0.012 m, we can estimate a maximum

collision frequency νmax = c̄e/W ' 1.5×108 s−1. This is an absolute maximum collision fre-

quency, based on the assumption that each electron traverses the channel width and strikes

the wall. In reality, only a small percentage of electrons, typically the more energetic, i.e.,

higher velocity, electrons strike the wall. There is an electron-repelling plasma sheath that

develops near the channel walls; in order to strike the wall, an electron must overcome the

sheath potential. Only the most energetic electrons can overcome the sheath potential to

strike the wall; hence, the actual collision frequency, and resulting electron scattering at the

walls, is significantly lower than our estimated νmax. For purposes of comparison, we use

νadd = 108 s−1 as an upper bound.

Using simulation parameter values similar to those in Table 5.2, we performed simula-

tions with νadd over the range νadd = 106 s−1.- 108 s−1. Figure 7.1 provides a comparison

of the time-averaged simulation results. Figure 7.1a provides a comparison of the effective

collision frequency νe f f = νen + νadd for each case; Fig. 7.1b shows the corresponding

time-averaged electron number density profiles n̄e(z), as compared to the experimentally-

measured values. For the νadd = 106 s−1 simulation, the time averages were taken over

the last 300 µs of the simulation; for all other values of νadd (including νadd = 0), the time

averages were taken over the last 500 µs of each simulation.
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(b) Time-averaged electron number density n̄e(z) for var-
ious values νadd , compared to experimentally-measured
values.

Figure 7.1: Comparison of simulation results for various values νadd = 106 s−1 - 108 s−1.

For νadd = 106 s−1, the effect of the collision enhancement is insignificant compared

to the electron-neutral collision frequency νen; the effective collision frequency νe f f is

dominated by the νen term, i.e., νadd � νen and νe f f ' νen, so the collision frequency

enhancement νadd has almost no effect. As shown in Fig. 7.1a, the effective collision

frequency νe f f is nearly identical for the νadd = 0 and νadd = 106 s−1 cases; the νadd =

106 s−1 simulation, in fact, predicts a lower electron number density than the νadd = 0

simulation, as shown in Fig. 7.1b.

For νadd = 5×107 s−1 and νadd = 108 s−1, the collision frequency enhancement domi-

nates the effective collision frequency, i.e., νadd� νen and νe f f ' νadd . In these cases, νadd

is responsible for almost all the electron transport; the collision frequency enhancement

becomes the dominant electron transport mechanism, obscuring the role of the anomalous

fluctuation-driven transport contributions. The electron transport becomes primarily a func-

tion of the prescribed value νadd; while νadd could be used as a simulation parameter to

match the experimental measurements, this would lead to a tuned model, which would be

counter to the purpose of our work here and would preclude the use of our simulation as a

tool for characterizing the effects of fluctuation-induced anomalous electron transport. The

predicted electron number density values for νadd = 5× 107 s−1 and νadd = 108 s−1 are
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significantly higher than the experimentally-measured values, especially inside the thruster

channel for z . 0.06 m, as shown in Fig. 7.1b.

For νadd = 107 s−1, the simulated electron number density is comparable to the

experimentally-measured values. The collision frequency enhancement νadd is comparable

to, i.e., of the same order of magnitude as, νen; both terms contribute comparably to the

effective collision frequency νe f f . The contribution from νadd is significant and clearly im-

pacts the plasma property profiles and overall electron transport, as will be shown in Sect.

7.3; however, the fluctuation-induced anomalous transport is of comparable significance.

Overall, νadd = 107 s−1 appears to provide a reasonable fit to experimentally-measured

data, both in the magnitude and axial variation (profile shapes) of the most relevant plasma

properties. The value νadd = 107 s−1 falls within the expected range for the electron-wall

collision frequency 106 s−1 ≤ νwall ≤ 108 s−1 and is a reasonable choice to represent the

wall scattering and near wall conductivity effect. Note that the purpose of these particular

simulations is not to precisely match or predict thruster operation, but to provide qualitative

(and roughly quantitative, i.e., order or magnitude) insight into the level of missing trans-

port or collision frequency enhancement required to address the discrepancy between the

(un-enhanced) simulation results and the experimentally-measured values (i.e., experimen-

tal mobility and plasma property profiles). While the exact value of νadd could be further

fine tuned (e.g., νadd = 1− 3× 107 s−1 or νadd = νadd(z)), the constant value νadd = 107

s−1 provides a fairly good, i.e., comparable to experiment, prediction of plasma properties

and trends, while still enabling the the study of fluctuations and the relative classical and

anomalous contributions to electron transport.

7.3 Simulation Results for νadd = 107 s−1

We present updated simulation results, similar to those presented in Chaps. 5 and 6; the

only difference between the simulation presented here and that presented in Chap. 5 is

the introduction of the constant collision frequency enhancement νadd via the effective

collision frequency νe f f = νen + νadd . Whereas the simulation described previously in

Chap. 5 did not include any collision frequency enhancement (i.e., νadd = 0), for the
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Table 7.1: Simulated operating condition for enhanced collision frequency simulation

Operating Parameter Value

Xe neutral propellant mass flow rate (ṁn) 2.3 mg/s

Voltage at anode plane, z = 0 (Set by external power supply) 100 V

Voltage at cathode plane / “near” plume extent, z = 0.12 m (Measured) 30 V

simulation presented here, we use νadd = 107 s−1. We present a complete set of simulation

results, with comparison to the the original (νadd = 0) case, where relevant.

7.3.1 Simulation Conditions

The simulated thruster operating condition is the same as before, as described by Table

5.1, repeated here as Table 7.1 for convenience. Table 7.2 lists the relevant simulation

parameters. We use the same simulation parameters as before; the only change from the

previous case is the slightly longer simulation duration and, of course, the inclusion of

νadd = 107 s−1. We use the same numerical grid shown in Fig. 4.3a, which contains

40 points non-uniformly spaced in z and 50 points uniformly-spaced in θ , for a total of

40× 50 = 2000 grid points; we also perform grid refinement in θ , as before, using an

azimuthally-refined grid with 100 points uniformly-spaced in θ . As before, we use an

outer loop time step dt = 10 ns with Nsub =
dt

dtsub
= 100, which results in an inner loop time

step dtsub = 0.1 ns. The simulation is time advanced over 200,000 outer loop time steps,

which corresponds to 2 million inner loop time steps; the total simulated time extent is 2.0

ms of simulated time.

7.3.2 Plasma Properties

7.3.2.1 Initial Transient Behavior

As before, we observe an initial transient phase during which the plasma properties evolve

from the initial conditions before eventually settling into a quasi-steady-state. Figures 7.2

- 7.5 illustrate the trends in various plasma properties during this initial transient phase. In

each case, the property values have been averaged over θ to provide a θ -averaged axial
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Table 7.2: Summary of simulation parameters for enhanced collision frequency simulation

Simulation Parameter Value Description

νadd 107 Collision frequency enhancement (constant
in space and time)

dt 10 ns Outer loop time step, used for particle time
advancement and electric potential solution

∆φ = φz=0−φz=0.12m 70 V Voltage difference between anode and
downstream domain boundary, used to set
electric potential boundary condition

ε 10−6 Convergence tolerance for electrical
potential solution

dtsub 0.1 ns Inner loop timestep, used for electron
temperature time advancement

Boundary condition
Te(z = 0)

Te = 17,500 K
(~ 1.5 eV)

Dirichlet boundary condition applied at
anode plane

Boundary condition
Te(z = 0.12 m)

∂Te
∂ z = 0 Neumann boundary condition applied at

downstream domain end

Te,min 15,000 K
(~ 1.3 eV)

Enforced minimum electron temperature
value throughout domain

Te,max 120,000 K
(~ 10.3 eV)

Enforced maximum electron temperature
value throughout domain

∆maxTe 10 K
(~ 8.6×10−4 eV)

Enforced maximum change in electron
temperature (at any given grid point) per
electron timestep dtsub

γ 1.0 Ionization cost factor for Sioniz (Eqn. 3.49e)

Number of neutral
particles

~ 400,000 Time-averaged total number of simulated
neutral superparticles in computational
domain

Number of ion
particles

~ 1.6M - 2.1M Time-averaged total number of simulated ion
superparticles in computational domain

Number of grid points 2000 Grid with 40 points (non-uniform) in z and
50 points (uniform) in θ

Total simulated time 2.0 ms Time extent of simulation (corresponds to
200,000 outer loop timesteps dt or 1.9M
inner loop timesteps dtsub)

Total wall clock time ~ 210 hours
(~ 8.38 days)

Simulation execution time on a single Intel
Xeon (E3-1245 v3) 3.40 GHz processor core
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Figure 7.2: Electron temperature Te(z) at
various times t.
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Figure 7.3: Electric potential φ(z) at
various times t. (Shown relative to
experimentally-measured potential φ(z =
0.12) = 30V.)

profile of the property variation with z, e.g., Te(z); the respective figures show the time

evolution of these axial property profiles by providing a comparison of the property profiles

at various times, e.g., Te(z, t).

Overall, the plasma property profiles stabilize quickly, within the first ~500 µs of the

simulation. There is an initial surge in the electron temperature Te(z), as illustrated in Fig.

7.2. The electron temperature quickly reaches a maximum value of approximately 12 eV; at

t ' 250 µs, the peak value (at the axial location z' 0.705 m) starts to decrease, eventually

stabilizing to its quasi-steady value of approximately 8 eV by t ' 500 µs. Figure 7.3 shows

the time evolution of the electric potential profile φ(z). The electric potential profile φ(z)

stabilizes quickly, with the shape of the electric potential profile φ(z) – most notably, the

slope and axial location potential fall region – mostly stabilized by t ' 300 µs. The time

evolution of the axial electric field Ez(z) and axial ion velocity uiz(z) is shown in Figs. 5.3a

and 5.3c, respectively. The axial profile of the population average axial ion velocity ui(z),

which is governed by the axial electric field Ez =−∂φ

∂ z , is mostly stabilized by t ' 300 µs

(i.e., when the electric potential profile φ(z) has stabilized). However, as before, there is a

population of slow-moving (low velocity) ions, created by the ionization of slow-moving
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(a) Axial electric field Ez(z)
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(b) Neutral number density nn(z)
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(c) Axial ion velocity uiz(z)
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(d) Axial neutral velocity unz(z)

Figure 7.4: Axial electric field, axial ion velocity, neutral number density, and axial neutral
velocity at various times t.
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(a) Electron number density ne(z) at various times t.
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(b) Time history of electron number density ne(t) at axial
location z' 0.05 m (density peak location).

Figure 7.5: Electron number density profile and time history, shown on logarithmic scale.

(low velocity) neutrals, outside the channel exit (z & 0.1 m); the results is the observed

dip in the tail of the population average ion velocity ui(z) for z & 0.1 m. By t ' 500 µs,

the axial ion velocity has stabilized to its quasi-steady-state; for t ≥ 500 µs, a shallow dip

in the axial ion velocity tail persists. We attribute the decreased axial ion velocity in this

region to the continuing preferential ionization of low velocity neutrals in this region.

Figures 7.4b and 7.4d show the time evolution of the neutral number density nn and

population average axial neutral velocity unz, respectively. In both cases, the general shape

and profile features stabilize by t ' 300 µs; however, the extremum values (peak and

minimum values) continue to evolve until they reach the quasi-steady-state shown for t '
500 µs.

There is an initial surge in the plasma density (i.e., the electron density or ion density)

ne = ni during the first ~50 µs of the simulation, as shown in Fig. 7.5; during this time,

the magnitude of the plasma density rapidly increases as the axial profile shape develops,

reaching its maximum value at t '50 µs. For 50 µs . t . 400 µs, the magnitude of

the plasma density steadily falls, decreasing by nearly two orders of magnitude, until it

stabilizes to the quasi-steady-state profile shown for t ' 400 µs in Fig. 7.5a; during this

time, the profile shape ne(z) changes slightly as the axial location of the density peak shifts

slightly downstream (from the initial peak location z' 0.03 m shown for t = 50 µs in Fig.
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7.5a), resulting in the quasi-steady-state plasma density peak location z ' 0.05 m. Figure

7.5a shows the plasma density profile as it evolves to the eventual quasi-steady-state, and

Fig. 7.5b shows the time history of the plasma density at the axial peak location z ' 0.05

m; note that, in both figures, the plasma density values ne(z, t) are shown on a logarithmic

scale.

7.3.2.2 Quasi-steady Operation

By t = 500 µs, the simulated discharge has settled to its quasi-steady-state. For t ≥ 500 µs,

the remaining 1500 µs (t = 500 µs - 2000 µs) of simulated time represents quasi-steady

thruster operation.

We can compare the time-averaged simulated axial property profiles to those for the

vadd = 0 simulation and to the the experimentally-measured values. Figures 7.6 - 7.8 show

the time-averaged simulated axial property profiles for the vadd = 0 and νadd = 107 s−1

simulations, compared with the experimentally measured values. As before, the simulated

properties are first averaged over θ to obtain the θ -averaged axial property profiles, e.g.,

Te(z, t), which are then time-averaged to obtain the time-averaged axial profiles, e.g., T̄e(z);

the νadd = 107 s−1 simulation results are time-averaged over the interval t = 1000 µs - 2000

µs, while the νadd = 0 results are time-averaged over the interval t = 1300 µs - 1900 µs.

In most cases, the νadd = 107 s−1 time-averaged profiles show improved agreement with

the experimentally-measured values, compared to the νadd = 0 case. The electric potential

profile φ̄(z), shown in Fig. 7.6a, exhibits excellent agreement with the experimentally-

measured values, especially in the acceleration region 0.07 m. z .0.08 m where most

of the potential fall and maximum axial electric field Ez occur; the potential fall region

is shifted downstream, compared to that in the νadd = 0 case, and the slope and values

of the time-averaged electric potential φ̄ align closely with the experimentally-measured

values in this region. The simulated electron temperature profile T̄e(z), shown in Fig. 7.6b,

also shows good agreement with the experimentally-measured values; the peak temperature

value of approximately 8.5 eV is comparable to the experimentally-measured peak of ~7

eV, and the axial location of the simulated temperature peak at z' 0.07 m aligns well with

the experimentally-measured peak location.
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(a) Electric potential φ̄(z)
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(b) Electron temperature T̄e(z)
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(c) Axial ion velocity ūiz(z)
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(d) Axial neutral velocity ¯unz(z)

Figure 7.6: Time-averaged electric potential, electron temperature, axial ion velocity and
axial neutral velocity profiles, compared with experimentally-measured values.
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(a) Simulated and experimentally-measured values,
shown on logarithmic scale.
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Figure 7.7: Time-averaged neutral number density profile n̄n(z) compared with
experimentally-measured values.
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(a) Simulated and experimentally-measured values,
shown on logarithmic scale.
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(b) Simulated and experimentally-measured values,
shown on linear scale.

Figure 7.8: Time-averaged electron number density profile n̄e(z) compared with
experimentally-measured values.
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The simulated axial ion velocity profile ūiz(z), shown in Fig. 7.6c, is similar, if not

slightly improved, compared to that for the νadd = 0 case. The acceleration region is shifted

slightly downstream and the ūiz(z) profile in this region exhibits a slightly steeper slope,

compared to the νadd = 0 case; however, there is a discrepancy, when compared to the

experimentally-measured values which indicate a narrower acceleration near the exit plane

at z = 0.08 m. Throughout the rest of the domain, the simulated values show reasonable

agreement with the experimentally-values, with the exception of the dip in the simulated

ūiz(z) profile tail for z & 0.01 m. For z & 0.01 m, the simulated ūiz values are noticeably

lower than both the experimentally-measured values and those for the νadd = 0 case; we at-

tribute this decreased axial ion velocity to the continuing ionization of low velocity neutrals

in this region. In general, we expect that low velocity neutrals will be preferentially ionized,

compared to higher velocity ions which can move through this region and exit the domain

more quickly. As shown in Fig. 7.6d, the axial neutral velocity values in this region are

similar for the νadd = 0 and νadd = 107 s−1 cases; however, due to a slightly higher electron

temperature and higher electron number density in the νadd = 107 s−1 case, we expect that

the ionization rate in this region (given by Eqn. 3.8) is higher for the νadd = 107 s−1 case.

The simulated axial neutral velocity profile ¯unz(z), shown in Fig. 7.6d, differs somewhat

from the experimentally-measured values; however, it exhibits a similar general trend of

increasing velocity values ¯unz with increasing z inside the channel (z < 0.08 m), as does the

νadd = 0 case. For most of the domain, the simulated neutral density profile n̄n(z), shown in

Fig. 7.7, is slightly smaller in magnitude than that for the νadd = 0 case. For both simulated

cases (νadd = 107 s−1 and νadd = 0), the simulated values are significantly lower than the

experimentally-measured values; however, as discussed previously in Sect. 5.2.2, there is

significant uncertainty in the experimentally-measured values.

Figure 7.8 shows the simulated electron number density, profile n̄e(z). The simu-

lated electron density profile exhibits good magnitude agreement with the experimentally-

measured values and represents a significant improvement, compared to the νadd = 0 case.

While the peak values of the simulated and experimentally-measured profiles are compa-

rable, there is a discrepancy in the axial location of the density peak; the simulated profile

n̄e(z) exhibits a broad peak centered at z ' 0.05 m, while the experimental measurements
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(b) Time history of electron number density ne(t) at axial
location z ' 0.04 m (density peak location), shown for
t ≥ 1200 µs.

Figure 7.9: Fluctuating nature of electron number density during quasi-steady-state opera-
tion.

indicate a narrower peak farther downstream at z ' 0.705 m. Even so, the simulated pro-

file represents an improvement compared to the νadd = 0 case; the peak location is shifted

downstream, closer to the experimental peak location, compared to the νadd = 0 peak loca-

tion at z' 0.04 m, and the improved magnitude agreement with the experimental values is

encouraging.

As before, the simulated quasi-steady-state is non-stationary; Fig. 7.9 illustrates the

fluctuating nature of the electron number density. Similar sustained fluctuations, which can

be characterized as small signal oscillations about a steady-state or time-averaged value,

can be observed in most of the other plasma properties, including the electric potential φ

and electron velocities uez and ueθ .

7.3.3 Discharge Current

As before, we are interested in the various contributions to the discharge current ID = Ie+Ii.

Figure 7.10 illustrates the time-fluctuating nature of the discharge current ID. The early

peak in the discharge current ID, shown in Fig. 7.10a, corresponds to the initial surge in the
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(a) Shown for simulated time extent t = 0 - 2000 µs.
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(b) Quasi-steady operation (t ≥ 500 µs).

Figure 7.10: Time history of discharge current ID(t) at axial location z = 0.078 m (just
upstream of the exit plane).

electron number density ne. There appears to be a semi-periodic, or time repeating, struc-

ture in the quasi-steady discharge current, shown for t > 500 µs in Fig. 7.10b; a similar

periodicity can be observed in the time history of the plasma density, shown in Fig. 7.9b.

The observed time period is approximately T = 400 µs - 500 µs, which corresponds to a

linear oscillation frequency of approximately f = 2 kHz; we believe this oscillation may

be related to the neutral depletion and replenishment cycle, i.e., the neutral injection flow

and neutral depletion by ionization, and to the experimentally-observed breathing mode fre-

quency f = 15 - 20 kHz (which is a consequence of the ionization process and the respective

depletion and replenishment time scales for the neutral and electron/ion populations).

Figure 7.11 shows the time-averaged ion and electron current contributions to the total

time-averaged discharge current, time averaged over the interval t = 1000 µs - 2000 µs.

From the time-average profile shown in Fig. 7.11 and the time-fluctuating profiles and time

histories shown in Figs. 7.10b and 7.12, we see that the discharge current fluctuates within

the approximate range 1 A - 1.8 A for most of the domain; in SHT laboratory experiments

at the same operating voltage, the measured discharge current was approximately 1.8 A

(Meezan, 2002). The simulated discharge current is thus comparable to the experimentally-

measured quasi-steady value.
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Figure 7.11: Comparison of time-averaged ion and electron current contributions to total
discharge current.
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Figure 7.12: Time history of ion and electron current contributions to total discharge current
during quasi-steady operation (t ≥ 500 µs).
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The relative contributions of the respective electron and ion currents, Ie and Ii, to the to-

tal discharge current ID vary with z, as shown in Fig. 7.11; Fig. 7.11 provides a comparison

of the relative ion and electron contributions to the total discharge current, time-averaged

over the interval t = 1000 µs - 2000 µs. For z . 0.06 m, the electron current dominates; in

this region, the electron current comprises most of the discharge current and the ion current

contribution is small or, in some cases (i.e., for z . 0.02 m near the anode), negative. For

z & = 0.07 m, the electron current contribution is extremely small and the ion current dom-

inates; for most of this region, the electron current is an extremely small positive current.

Figure 7.12 shows the time history of the current at representative z-locations within the

two distinct regions in which the respective electron and ion current contributions domi-

nate; in all cases (i.e., for all z), the ion and electron current contributions and the resulting

total current fluctuate with time.

7.3.4 Electron Transport

We observe wave structure similar to that described in Chap. 6; as before, fluctuations in

the electron number density and axial electron velocity appear to, in some cases, enhance

and, in other cases, inhibit cross-field axial electron transport. As shown in Fig. 7.13, the

spatial wave structure varies distinctly with axial location; we can observe four distinct

axial regions in the spatial (and corresponding temporal) wave structure, similar to and

consistent with that described in Sect. 6.2.

Figure 7.14 shows the relative ion, electron, and anomalous electron contributions to the

total discharge current, time-averaged over the interval t = 1000 µs - 2000 µs. As before,

the anomalous contribution to the electron current varies significantly with axial location.

In the mid-channel region (0.02 m . z . 0.05 m), the anomalous contribution comprises

a significant portion of the electron current. Near the anode (z . 0.01 m) and toward the

channel exit plane (z & 0.06 m), however, the anomalous contribution comprises a small

positive current or, in some case, a negative (i.e., opposite flowing) current contribution.

We can see the effect of the anomalous contribution more clearly from a representative

time snapshot of the respective current contributions, as shown in Fig. 7.15. For 0.02 m
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(a) Electron number density ne(z,θ) for grid with 40
points in z × 50 points in θ (∆θ = 2π/50).
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(b) Axial electron velocity uez(z,θ) for grid with 40
points in z × 50 points in θ (∆θ = 2π/50).
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(c) Electron number density ne(z,θ) for grid with 40
points in z × 100 points in θ (∆θ = 2π/100).
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(d) Axial electron velocity uez(z,θ) for grid with 40
points in z × 100 points in θ (∆θ = 2π/100).

Figure 7.13: Comparison of representative time snapshots of electron number density
ne(z,θ) and axial electron velocity uez(z,θ) with azimuthal grid refinement.
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Figure 7.14: Comparison of time-averaged ion, electron, and anomalous electron current
contributions to total discharge current.
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Figure 7.15: Time snapshot of ion, electron, and anomalous electron current contributions
to total discharge current.
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Figure 7.16: Time-averaged simulated axial electron mobility µ̄(z) compared to
experimentally-measured values. Simulated classical mobility terms µ̄classical and µ̄⊥ are
shown for reference.

. z . 0.05 m, the anomalous fluctuation-induced contribution comprises a significant por-

tion of the positive electron current; the simulated waves in this region somewhat resemble

the gradient-driven drift wave suggested by Frias et al. (2012), and the anomalous current

serves to enhance the classical electron transport. Near the anode (z . 0.01 m), the sim-

ulated structure resembles a rotating spoke; near the exit plane (z ' 0.08 m), we observe

simulated wave structure similar to the azimuthally counter-propagating streaming insta-

bilities predicted by Thomas (2006). In both these regions (z . 0.01 m and z ' 0.08 m),

the anomalous current contribution is negative; the anomalous current serves to reduce or

oppose the (positive-flowing) classical electron current. Outside the channel (z≥ 0.08 m),

the anomalous contribution is minimal; however, the total electron current in this region is

likewise minimal.

Figure 7.16 provides a comparison of the time-averaged total effective simulated elec-

tron mobility µ̄(z) and the classical electron mobility µ̄classical(z); the experimentally-

measured values and the classical cross-field electron mobility term µ̄⊥are also shown for
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reference. Note that µ⊥(νen+νadd) = µ⊥(νe f f ) refers the classical cross-field mobility µ⊥

based on the enhanced effective collision frequency νe f f = νen+νadd; by contrast, µ⊥(νen)

is the classical cross-field mobility calculated using only on νen, i.e., without the collision

frequency enhancement. The profiles shown in Fig. 7.16 have all been time-averaged over

the interval t = 1000 µs - 2000 µs.

In the region 0.02 m . z . 0.05 m, where the anomalous contribution is significant,

the anomalous fluctuation-induced transport serves to enhance electron transport; the result

is a total effective electron mobility that is greater than the classical mobility. As before,

the anomalous transport appears to contribute to the transport barrier, or reduced electron

mobility, near the channel exit plane at z = 0.08 m. It appears that the anomalous transport

may also contribute to some mobility reduction near the anode (z . 0.01 m) and far outside

the channel (z & 0.115 m).

7.4 Summary

With the collision frequency enhancement νadd = 107 s−1, the simulation results generally

provide a good match to experimentally-measured values. Compared to the νadd = 0 case,

the agreement with the experimentally-measured property profiles is, in some cases, sig-

nificantly improved; most notably, the axial location of the electron temperature peak and

the ion acceleration region have both shifted downstream (relative to the νadd = 0 case),

to more closely align with the corresponding experimentally-measured profiles. The mag-

nitudes of both the simulated plasma density ne and the simulated discharge current ID

are comparable to the experimentally-measured values, enabling analysis of realistic quasi-

steady-operation similar to that observed in laboratory experiments.

The improved agreement with the experimental data is encouraging, as it indicates the

that the collision frequency enhancement νadd = 107 s−1 is of the appropriate magnitude to

account for the near wall conductivity and other transport-enhancing effects not explicitly

included in the model. With only a minimal change to our model implementation, we

achieve significantly improved results which validate the use of our model as an effective

tool for predicting quasi-steady plasma properties.
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(a) νadd = 0
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(b) νadd = 107

Figure 7.17: Comparison of simulated wave structure in axial electron velocity uez(z,θ),
shown for grid with 40 points in z × 100 points in θ .
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(a) νadd = 0 (time-averaged over the interval t = 1300 µs
- 1900 µs).
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(b) νadd = 107 (time-averaged over the interval t = 1000
µs - 2000 µs).

Figure 7.18: Comparison of time-averaged simulated axial electron mobility µ̄(z).
Experimentally-measured values and simulated classical mobility terms µ̄classical and
µ̄⊥are shown for reference.
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As before, our primary objective is to characterize the role of fluctuations and quantify

their impact on the electron transport process. As shown in Fig. 7.17, we observe similar

dispersive wave structure in both the νadd = 0 and νadd = 107 s−1 simulations. For the most

part, the wave characteristics (i.e., wave number, frequency, and propagation direction) and

the axial variation of the wave structure are similar; however, in the νadd = 107 s−1 case, the

mid-channel waves appear to be shifted slightly downstream, extending through z ' 0.07

m. In both cases, as shown in Fig. 7.18, the fluctuation-induced anomalous transport serves

to enhance electron transport in the mid-channel region and reduce transport, leading to a

distinct transport barrier, near the exit plane (z = 0.08 m). In the νadd = 107 s−1 case, the ef-

fective total electron mobility that results from the collision frequency enhancement and the

fluctuation-induced anomalous transport appears to largely account for, i.e., roughly match,

the experimentally-observed mobility; however, due to the increased classical mobility that

results from the enhanced collision frequency, the significance of the fluctuation-driven

anomalous transport (relative the classical contribution and the total effective mobility) is

diminished, compared to the νadd = 0 case. While the collision frequency enhancement

improves the model’s viability as a general-purpose tool for predicting plasma properties,

the effect of the enhanced collision frequency somewhat obscures the role and quantita-

tive impact of the fluctuations; overall, this seems a reasonable trade to make for improved

predictive model performance.



Chapter 8

Conclusion

8.1 Research Summary

We use the described 2D axial-azimuthal (z-θ ) hybrid fluid-PIC simulation as a tool to

investigate the role of fluctuations in generating cross-field electron transport in a simulated

Hall thruster discharge. The simulated results are compared to experimental measurements

of a similar laboratory discharge (the Stanford Hall Thruster); with the inclusion of an

enhanced collision frequency, the simulated results show improved agreement with the

experimental measurements.

It appears that azimuthal fluctuations do indeed impact cross-field axial electron trans-

port. The fluctuation-induced anomalous transport contributes to axial electron mobility

enhancement in some regions, primarily in the thruster mid-channel region; near the exit

plane, the anomalous transport contributes to a marked electron transport barrier, consistent

with that observed in laboratory experiments.

The time and spatial resolution of our simulations limit the spatial and temporal charac-

teristics of the observable simulated phenomena. For the time resolution and simulated time

extent presented here, the observable frequency range is approximately 1 kHz to 10 MHz.

Based on the non-uniform axial grid spacing, the minimum observable axial wavelength

range is λz,min ' 3 mm - 9 mm; in the azimuthal direction, the minimal observable wave-

length is λθ ,min ' 5 mm (for the azimuthally-refined grid with 100 points uniformly spaced

in θ ). The observed simulated fluctuations fall well within these frequency and wavelength

136
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limits, with maximum observed frequencies up to approximately 200 kHz and minimum

axial and azimuthal wavelengths λz ' 3 cm and λθ ' 1.5 cm (mθ ' 16), respectively.

Overall, the simulated fluctuation-induced transport appears to account for some mobil-

ity enhancement; however, the simulated anomalous transport does not fully account for all

of the experimentally-measured super-classical electron mobility. Additional simulations

with a constant collision frequency enhancement νadd = 107 s−1 indicate that an additional

transport mechanism is needed to generate a simulated mobility profile of comparable mag-

nitude to that measured experimentally; the required level of collision frequency enhance-

ment is consistent with that due to wall scattering, or the so-called near wall conductivity.

It is also possible that higher-frequency, shorter-wavelength fluctuations, which we do not

simulate here, are responsible for additional mobility enhancement.

8.2 Suggestions for Future Work

We propose two future endeavors to address the discrepancy between the anomalous elec-

tron transport simulated here and the experimentally-measured effective electron mobility.

Additional z-θ simulations, using this same hybrid model, with finer grid spacing

and shorter time step would enable the investigation of higher-frequency and shorter-

wavelength fluctuations which may contribute to additional transport enhancement. Such

simulations could be significantly computationally expensive and would perhaps require

further modification to the numerical solution approach; however, they could provide fur-

ther insight into fluctuation-induced anomalous transport processes and improved predic-

tions of the effective electron mobility.

It is clear that the inclusion of wall effects, i.e., wall conductivity, may be critical to

accurately predicting the the cross-field axial electron mobility. We suggest either an aug-

mented z-θ model with an improved model for plasma interactions with the wall or, alter-

natively, a 2D r-z model with an anomalous transport model (e.g., based on a z-θ model

similar to that presented here). A 3D r-z-θ (or x-y-z) model would address both the radial

dynamics, i.e., wall interactions, and the azimuthal fluctuation-induced transport; if the

computational expense can be made sufficiently tractable to enable simulations with both a

small time step (to capture high frequency oscillations) and a long simulated time extent (to
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address slowly-evolving phenomena, e.g, the thruster breathing mode), this may be the best

approach. Recent advances in efficient numerical solution methods and increased compu-

tational capability, based on modern parallelized computing architectures, can reduce the

computational expense associated with 3D simulations. For improved simulation of the

near plume region outside the thruster channel where turbulence at small spatial scales

may affect electron transport, we suggest a modified treatment outside the channel to more

accurately model the plume expansion and cathode electron flow.



Appendix A

Particle Velocity Distribution Sampling

A.1 Implementation

In order to initialize the ion and neutral particle velocities, either for the simulation initial

conditions or neutral injection at the anode, we sample the particle velocities from spec-

ified velocity distributions. In this appendix, we describe the particle velocity sampling

implementation.

A.1.1 Distribution Inversion (Sampling)

We use the distribution inversion, or sampling, method described by Scharfe (2009) and

Birdsall and Langdon (2005). The process involves using a uniformly-distributed random

variable, generated by a pseudo-random number generator algorithm, to sample the appro-

priate distribution function. Often, the sampling process, i.e., the pseudo-random number

generation and associated sampling of the velocity distribution is performed on-the-fly as

part of the simulation calculation; however, in our case, we perform the velocity distribu-

tion sampling a priori and store the sampled values in a simulation input file. The sampled

values are then read in from the file, as needed, during the simulation. We perform this a

priori distribution sampling for the various velocity distributions described below.
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Figure A.1: Velocity projection in r-θ plane.

A.1.2 Projection onto z-θ Plane

The z-velocities are sampled directly from the appropriate axial velocity distribution , e.g.,

fMaxwellian(vz). For the θ -velocity sampling, however, the process is more complicated.

To determine a particle’s θ -velocity, we sample its speed crθ in the r-θ plane. The parti-

cle is also given a random velocity direction within the r-θ plane, determined by the the ve-

locity orientation angle αc. The speed crθ is sampled from the appropriate 2D Maxwellian

speed distribution (which accounts for the cylindrical z-r-θ , or circular r-θ , coordinate

system), specified for the various species in Sect. A.2. The orientation αc of the velocity

vector is sampled from a uniform distribution over the interval 0 to 2π radians.

A particle’s initial θ -velocity can be positive or negative; it is determined by projecting

the particle’s sampled speed crθ in the r-θ plane onto the θ̂ -direction, accounting for the



APPENDIX A. PARTICLE VELOCITY DISTRIBUTION SAMPLING 141

particle’s θ -position, as shown in Fig. A.1. The vector ~crθ has a magnitude determined

by the sampled value crθ and the orientation angle αc, defined as shown in Fig. A.1.

Accounting for the azimuthal position θ , we can project the velocity vector ~crθ onto the

particle’s θ̂ -direction to determine its θ -velocity:

vθ = ~crθ · θ̂ (A.1)

= −crθ cos(β +αc)

= −crθ cos
(

π

2
−θ +αc

)
= crθ sinαc cosθ − crθ cosαc sinθ (A.2)

A.2 Velocity Distributions

A.2.1 Initial Conditions

For the simulation initial conditions, the ion and neutral velocities are sampled from the

distinct velocity distributions shown in Figs. A.2 and A.3, respectively. In each case, the z-

velocities are sampled from a Maxwellian velocity distribution at the specified temperature,

and the speed values crθ are sampled from a Maxwellian speed distribution. The orientation

angle αc is sampled from a uniform distribution over the interval 0 to 2π radians.

Figures A.2 and A.3 are histograms of the sampled velocity values contained in the

respective simulation input files. For the ions, both the velocity distribution for viz and the

speed distribution for crθ , shown in Figs. A.2a and A.2b, respectively, are based on an

initial equilibrium temperature Ti = 650 K. For the neutrals, we sample a distribution iden-

tical to that used for the ions for the speed crθ ; however, for the axial neutral velocity vnz,

we use a Maxwellian distribution, shown in Fig. A.3a, based on an extremely low initial

temperature Tn < 1 K. Using a low velocity (low temperature) distribution for the neutral

initialization ensures that a sufficient population of neutrals will remain within the compu-

tational domain to provide a background (population source) for ionization, as required to

sustain the simulated discharge.
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(a) Axial velocity viz (b) Speed in r-θ plane crθ

Figure A.2: Sampled velocity distributions for ion particle initial conditions.

(a) Axial velocity vnz (b) Speed in r-θ plane crθ

Figure A.3: Sampled velocity distributions for neutral particle initial conditions.
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(a) Axial velocity vnz (b) Speed in r-θ plane crθ

Figure A.4: Sampled velocity distribution functions for injected neutral particles.

A.2.2 Neutral Injection

Injected neutral particles are introduced into the computational domain at the anode plane.

The injected particles can assume either positive or negative values of vnθ ; however, their

initial axial velocities vnz must be positive. The z-velocities vnz are sampled from a one-way

Maxwellian flux distribution, shown in Fig. A.4a, based on an anode temperature Tanode =

650K with a mean (bulk) neutral injection velocity v0 = 300 m/s. The particle speed values

crθ , used to determine vnθ , are sampled from a Maxwellian speed distribution at the same

temperature Tanode = 650K; the peak value of this speed distribution, shown in Fig. A.4b,

occurs at the most probably speed crθ ' 200 m/s. While these parameters for the velocity

distribution were not directly experimentally measured, the discharge does not appear to be

particularly sensitive to the anode temperature Tanode which governs the distribution.



Appendix B

Analysis of Dispersive Wave Behavior

In Chap. 6, we describe spatially and temporally-varying fluctuations in the plasma proper-

ties. In this appendix, we further describe the analysis process used to mine the simulated

wave data and discuss comparisons to linearized fluid theory models for dispersive wave

propagation.

As in Chap. 6, we consider fluctuations in the electron density, axial electron velocity,

and electric potential of the form

ñe(z,θ , t) = nocos(kzz+ kθ θ −ωt) (B.1a)

ũez(z,θ , t) = uocos(kzz+ kθ θ −ωt +ψ) (B.1b)

φ̃(z,θ , t) = φocos(kzz+ kθ θ −ωt +ξ ) (B.1c)

where each wave propagation mode is characterized by its axial and azimuthal wavenum-

bers kz = 2π/λz and kθ = 2π/λθ , respectively, and temporal frequency f = ω/2π. We

are interested in the dispersion relation ω(kz,kθ ) between the propagation frequencies

and wavenumbers. Note that multiple propagation modes, i.e., multiple frequency and

wavenumber combinations, can exist simultaneously; in fact, we expect, and the linearized

theory predicts, that multiple propagation modes will exist, each with distinct wave charac-

teristics (frequency and wavenumber) and a corresponding unstable growth or decay rate.
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B.1 Analysis of Simulated Data

In order to characterize the wavenumber and frequency content of the simulated data, we

use a Morlet wavelet decomposition analysis described in detail by Thomas (2006) and

Scharfe (2009), based on the approach described by Beall et al. (1982). We consider the

time history of a particular plasma property at pairs of probes, separated in either z or θ ;

based on the wavelet decomposition analysis, we can obtain a scattering function S(k, f ),

similar to a power spectral density, which indicates the strength (or power) associated with

correlated frequencies f and wavenumbers k along the propagation direction between the

two probes. The range of resolvable frequencies and wavenumbers is determined by the

time sampling resolution of the time history at each probe and the probe separation distance.

In the case of simulated data, we consider the plasma property data at the computational

grid points. The limiting probe separation distance, and corresponding wavenumber range,

is thus determined by the spatial resolution of the computation grid; likewise, the frequency

range is determined by the time resolution of the simulated data, or the outer loop simu-

lation time step. Fig. B.1a is an example of the scattering function S(kθ , f ) for two grid

points, or probe locations, azimuthally separated by ∆θ = 2π/50, at the axial location z '
0.04 m.

We perform this analysis across the axial extent the computational domain, considering

simulated data at a pair of axially-adjacent grid points and a pair of azimuthally-adjacent

grid point for each axial location z. In order to develop the dispersion map shown for kθ

in Fig. B.1c (and the corresponding dispersion map for kz), we consider the scattering

functions S(kz, f ) and S(kθ , f ) for all axial locations z. At each axial location z, we identify

the dominant wavenumbers kz and kθ at each frequency f . For a given frequency, we

find the wavenumber k associated with the maximum scattering function value; by doing

so for each frequency f at a given axial location z we can find the dominant dispersion

relation f (k/2π), or ω(k), shown in Fig. B.1b for the azimuthal wavenumber (based on

a pair of azimuthally-adjacent probe points) at axial location z ' 0.04 m. We perform

this analysis, identifying the dominant wavenumbers kz( f ) and kθ ( f ) at each frequency,

for each axial location z; we can then aggregate this data (e.g., Fig. B.1b) to create the
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Figure B.1: Dispersion map (c) is assembled from individual probe pair analyses (shown
in a and b) at axial locations z.
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dispersion map shown in Fig. B.1c, which illustrates the axial variation in the simulated

dominant dispersive wavenumber kθ ( f ).

We are interested in characterizing dispersive wave fluctuations in the electron number

density ne, axial electron velocity uez, and electric potential φ . As described in Chap. 6, we

find that the wave characteristics vary with axial location.

B.2 Comparison to Linearized Fluid Theory

We attempt to relate the simulated fluctuations and the resulting fluctuation-induced anoma-

lous electron current to wave propagation modes described by linearized fluid theory mod-

els. Specifically, we consider the mid-channel region (0.02 m . z . 0.06 m) waves and

resulting electron mobility enhancement in the context of gradient-driven drift waves de-

scribed by Kapulkin and Guelman (2008) and Frias et al. (2012). For the waves observed

near the exit plane (0.07 m ≤ z ≤ 0.08 m), we seek qualitative comparisons to the dis-

persion relations and fluctuation-induced transport described by Thomas (2006). Here, we

describe the dispersive wave characteristics and resulting fluctuation-induced electron cur-

rent predicted by the respective linearized fluid theory models for the relevant discharge

conditions.

B.2.1 Linearized Model Approach

The various linearized fluid theory models are based on the same general approach. In

each case, we begin by considering the relevant fluid equations for the electron (and, as

relevant, other plasma) species. Each fluctuating quantity can be written in terms of a

constant steady-state component and a small-amplitude fluctuation or perturbation, e.g., in

the case of the electron number density,

ne (z,θ , t) = nSS (z,θ)+ ñe(z,θ , t) (B.2)

where the fluctuating component ñe(z,θ , t) is of the form shown in Eqn. B.1a. We can

represent the small-amplitude fluctuation in terms of the exponential function:



APPENDIX B. ANALYSIS OF DISPERSIVE WAVE BEHAVIOR 148

ñe(z,θ , t) = nocos(kzz+ kθ θ −ωt)

= noRe{exp [i(kzz+kθ θ −ωt)]} (B.3)

We can represent each fluctuating quantity, e.g., φ , uez, ueθ , Ez, in a similar manner;

we then introduce the fluctuating quantities into the appropriate fluid equations. Next,

we linearize the resulting fluid equations about the steady state solution, neglecting any

higher-order derivatives and small amplitude quantities (i.e., the products of any fluctuation

amplitudes, e.g., noφo). Once the equations have been linearized, we can typically solve

for a dispersion relation ω (kz,kθ ). Often, the dispersion relation will give complex values

of ω (kz,kθ ), which can be written in the form

ω = ωR + iωI (B.4)

In such cases, the real component ωR determines the propagation frequency, and we can

find the associated growth or decay rate for that frequency mode ωR by considering the

corresponding imaginary component ωI .

ñe(z,θ , t) = noRe{exp [i(kzz+kθ θ −ωt)]}

= noRe{exp [i(kzz+kθ θ −ωRt)+ωIt]} (B.5)

= nocos(kzz+ kθ θ −ωt)exp(ωIt) (B.6)

From Eqn. B.6, we see that the sign of ωI determines whether the frequency mode grows

or decays. For ωI > 0, the instability will grow; for ωI < 0, the instability will decay. From

the linearized equations, we can also calculate the fluctuation-induced current

Iez,anom = Asecte〈ñeũez〉 (B.7)

associated with propagation mode ω (kz,kθ ).

The linearized fluid theory models discussed below are based on the same general lin-

earized small-amplitude fluctuation (i.e., perturbation analysis) approach described here.
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However, in each case, varying assumptions and approximations in the derivation of the

fluid equations and the linearization process result in distinct dispersion relations, with

corresponding growth/decay rates and associated fluctuation-induced current predictions.

B.2.2 Frias Model (0.02 m ≤ z≤ 0.06 m)

We consider the gradient-driven waves described by Frias et al. (2012). In the Frias model,

which is an extension of the model originally described by Kapulkin and Guelman (2008),

axial gradients in the magnetic field strength and the electron number density can drive un-

stable oscillations in the plasma properties which generate electron current. The predicted

dispersion relation ω (kz,kθ ) is particularly sensitive to the relationship between the respec-

tive gradients, or gradient length scales, of the axially-varying magnetic field strength and

the electron density.

For the mid-channel region (0.02 m ≤ z ≤ 0.06 m), we compare the simulated wave

characteristics to those predicted by the Frias model. Table B.1 lists the plasma properties

required by the Frias model; we report the approximate nominal values for a representative

axial location z = 0.04 m within the mid-channel region 0.02 m ≤ z ≤ 0.06 m. Table B.2

describes the resulting dispersive wave modes predicated by the Frias model for the range

of inverse azimuthal wavelengths (or azimuthal wavenumbers) -50 m−1≤ kθ/2π ≤ 50 m−1.

The wavenumbers predicted by the Frias model are consistent with those observed in the

simulated data for this mid-channel region. According to the Frias model, both modes

result in positive current of extremely small magnitude. Furthermore, due to the small

magnitudes of their growth rates, it is unclear whether these modes can grow or persist over

any significant length or time scale. As such, it is unclear whether these gradient-driven

waves are significant contributors to the electron transport enhancement in this region.

B.2.3 Thomas Model (0.07 m ≤ z≤ 0.08 m)

For the region just upstream of the channel exit plane (0.07 m ≤ z ≤ 0.08 m), we con-

sider the linearized fluid theory model for a streaming (two stream) instability described by

Thomas (2006). Thomas’ model includes the effect of the axial shear s = ∂ueθ/∂ z ; based on

the simulated data, we believe that the strong axial shear in this region may impact axial
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Table B.1: Summary of relevant plasma property values at z' 0.04 m

Property Nominal Value Description

λ−1
z = kz/2π -30 m−1 Inverse axial wavelength

Br 0.002 T Magnetic field strength

Te 3.5 eV Electron temperature

ne 3×1016 m−3 Electron number density

uiz -500 m/s Axial ion velocity

Ez -100 V/m Axial electric field

lB 0.029 m Length scale for axial gradient of magnetic
field, defined by

l−1
B =

1
B

∂B
∂ z

lN -0.015 m Length scale for axial gradient of electron
density, defined by

l−1
N =

1
ne

∂ne

∂ z

Table B.2: Summary of dispersive wave modes predicted by Frias model for -50 m−1≤
kθ/2π ≤ 50 m−1

Root Approximate Frequency Range Growth or Decay Current Contribution

1 50 kHz to 320 kHz Indeterminate Positive

2 -160 kHz to -450 kHz Indeterminate Positive
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Table B.3: Summary of relevant plasma property values at z' 0.078 m

Property Nominal Value Description

λ−1
z = kz/2π 15 m−1 Inverse axial wavelength

Br 0.0105 T Magnetic field strength

Te 5 eV Electron temperature

ne 3×1016 m−3 Electron number density

uiz 6500 m/s Axial ion velocity

uiθ 100 m/s Azimuthal ion velocity
∂uiz/∂ z 2×105 s−1 Axial gradient of axial ion velocity
∂uiθ/∂θ 0 Neglect azimuthal variation in azimuthal ion

velocity

uez -50,000 m/s Axial electron velocity

ueθ 100,000 m/s Azimuthal electron velocity
∂eiz/∂ z −107 s−1 Axial gradient of axial electron velocity
∂ueθ/∂θ 0 Neglect azimuthal variation in azimuthal

electron velocity

s = ∂ueθ/∂ z 2×107 s−1 Axial shear (axial gradient of azimuthal
electron velocity)

Table B.4: Summary of dispersive wave modes predicted by Thomas model for -50 m−1≤
kθ/2π ≤ 50 m−1

Root Approximate Frequency Range Growth or Decay Current Contribution

1 100 kHz to 800 kHz Growth Positive/Negative

2 -500 kHz to -800 kHz Decay Positive

3 1 MHz to 6 MHz Growth/Decay Positive/Negative

4 1 GHz to 2 GHz Growth Negative

5 -1 GHz to -2 GHz Growth Positive
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electron transport. Table B.3 lists the plasma properties required by the Thomas model,

with nominal values reported for the axial location z = 0.78 m just upstream of the channel

exit plane.

Table B.4 describes the resulting dispersive wave modes predicted by the Thomas

model for the range of inverse azimuthal wavelengths (or azimuthal wavenumbers) -50

m−1≤ kθ/2π ≤ 50 m−1; the numbers [1-5] in the leftmost column refer to the five distinct

roots of the dispersion relation ω (kz,kθ ). For all 5 roots, the magnitude of the current

contribution is extremely small for negative kθ (kθ < 0), but there is significant predicted

current for positive kθ (kθ > 0).

For certain azimuthal wavenumbers kθ , roots 1 and 2 assume similar frequency values

(~100 kHz - 800 kHz) of opposite sign, indicating a pair of azimuthally counter-propagating

modes. The negative frequency root [2] decays while the positive frequency root [1] has a

positive growth rate; the negative frequency root [2] results in a positive electron current,

while the negative frequency root [1] generates positive current for 5 m−1. kθ/2π . 25 m−1

and negative current otherwise.

Likewise, roots 4 and 5 comprise a second pair of azimuthally counter-propagating

modes at f ' 1.5 GHz. In this case, both counter propagating modes have a positive

growth rate; however, one results in a positive current contribution while the other generates

negative current. The predicted frequencies are beyond the time step resolution of our

simulated data. Simulations at finer time step would enable comparison to these predicted

high frequency modes.

Root 3 represents a single (unpaired) propagation mode at f ' 1 MHz - 6 MHz. For 5

m−1. kθ/2π . 25 m−1, this is a decaying mode which generates positive current. For all

other computed values of kθ , this mode has a positive growth rate and generates negative

current.

We can estimate the impact of the axial shear by considering the resulting predicted

modes for various shear values. We compare the nominal s = 2× 107 s−1 to a case with

s = 0. For the s = 0 case, the predicted modes ω (kz,kθ ) are similar; however, the relative

growth rates of the respective modes change. The nominal s = 2×107 s−1 case and the s =

0 case predict different maximal growth rate modes. For the plasma conditions simulated

here, the shear magnitude clearly affects the relative growth rates of the various modes and
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can determine which propagation mode will dominate, or grow most quickly; this, in turn,

can determine whether the associated flucuation-induced electron current serves to enhance

or reduce the effective bulk axial electron mobility.

B.3 Summary

We consider the Frias and Thomas linearized fluid models for the respective discharge

conditions inside the thruster channel. The wavenumbers and frequencies predicted by the

Frias and Thomas models for the mid-channel (0.02 m ≤ z ≤ 0.06 m) and near exit plane

(0.07 m ≤ z ≤ 0.08 m) regions, respectively, appear to be consistent with those observed

in the simulated data. However, there is not a clear correspondence between the effective

electron mobility variation in the simulated data and the growth rates and electron current

contributions predicted by the linearized models.

It is possible that complicated non-linear interactions contribute to the growth of certain

unstable modes and their corresponding current contributions; the linearized models cannot

be expected to capture such phenomena which may affect instability growth or contribute

to the electron transport. Other mechanisms may also be responsible for the fluctuations

and resulting electron transport observed in the simulated data; corresponding investigation

of other theoretical models may be warranted.
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